Procedural life cycle inventory of chemical products at laboratory and pilot scale: a compendium

Daniele Cespi,^{a,b,*}

^o Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Del Risorgimento 4, 40136, Bologna (BO), Italy
^b Center for Chemical Catalysis - C3, Alma Mater Studiorum Università di Bologna, Viale del Risorgimento 4, Bologna (BO), Italy

Corresponding author: Daniele Cespi, <u>daniele.cespi2@unibo.it</u>

Electronic supporting information (ESI)

Solvent type	n° C atom	n° H atom	MM (kg/kmol)	Boiling point (°C)	Vapor pressure (Torr)	Heating (MJ/kg)	Cooling (MJ/kg)	Tot. (MJ/kg)
Methanol	1	4	32.04	64.50	97.00	2.08	1.93	4.01
Ethanol	2	6	46.07	78.37	44.63	1.67	1.49	3.15
Acetic acid	2	4	50.05	118.00	15.70	0.66	0.55	1.21
Acetone	3	6	58.08	56.00	184.50	0.97	0.88	1.86
Isopropyl alcohol	3	8	60.10	82.00	32.40	1.39	1.19	2.58
THF	4	8	72.11	66.00	142.00	0.84	0.73	1.57
DMF	3	7	73.09	153.00	2.70	1.01	0.73	1.74
Ethyl ether	4	10	74.12	34.00	442.00	0.69	0.64	1.32
Hexane	6	14	86.18	69.00	124.00	0.72	0.59	1.31
Ethyl acetate	4	8	88.11	77.00	73.00	0.81	0.68	1.49
Toluene	7	8	92.14	110.60	28.50	0.67	0.49	1.16
Chloroform	2	1	119.38	61.20	158.40	0.49	0.43	0.92
1,2-dichlorobenzene	6	4	147.00	180.00	1.20	0.84	0.64	1.48

 Table S 1 – Average energy consumption values in MJ/kg for solvent recovery. Data were extrapolated from literature.45

Table S 2 – Average energy consumption values in MJ/kg respect the number of H atoms. Data were extrapolated from literature.²⁰

	Average values in MJ/kg							
	separatio	n energy	total e	nergy				
n° H atom	heating	cooling	heating	cooling				
0	0.8	-1.8	1.6	-2.8				
1	2.1	-2.9	2.4	-3.9				
2	2.3	-4.4	4.6	-9.8				
3	1.3	-2.5	2.7	-4.5				
4	1.9	-3.7	3.4	-8.6				
5	1.0	-1.5	1.6	-2.6				
6	1.7	-2.7	3.6	-4.3				
7	1.3	-2.5	2.6	-4.1				
8	2.1	-2.8	3.6	-3.5				
9	3.1	-4.7	4.7	-6.6				
10	1.2	-1.6	2.2	-2.8				
11	1.7	-4.2	4.0	-4.9				
12	2.0	-2.3	2.7	-3.4				
14	1.9	-2.4	2.9	-3.3				
15	0.2	-2.1	1.7	-2.5				
16	2.0	-1.3	2.5	-1.6				
22	0.6	-0.8	1.1	-2.6				

Table S 3 – Average energy consumption values in MJ/kg respect the number of C atoms. Data were extrapolated fromliterature.²⁰

	Average values in MJ/kg						
	separatio	n energy	total e	nergy			
n° C atom	heating	cooling	heating	cooling			
0	0.4	-0.3	0.8	-1.7			
1	2.1	-3.1	2.9	-4.3			
2	1.1	-2.3	2.5	-5.1			
3	1.4	-3.4	2.8	-4.9			
4	2.1	-3.2	3.9	-5.3			
5	1.9	-2.1	2.6	-3.0			
6	2.0	-2.9	3.4	-4.4			
7	1.7	-1.8	2.5	-3.2			
8	1.7	-3.6	3.9	-7.9			
9	1.1	-1.3	2.2	-2.3			
10	0.6	-0.8	1.1	-2.6			
11	0.5	-0.8	1.5	-1.2			
15	3.5	-1.7	3.5	-2.0			

b)

a)

Figure S 1 – Separation energy consumption in MJ/kg for heating procedures plotted per the number of C (a) and H (b) atoms. Data were extrapolated from literature.²⁰

b)

Figure S 2 – Separation energy consumption in MJ/kg for cooling procedures plotted per the number of C (a) and H (b) atoms. Data were extrapolated from literature.²⁰

a)

Figure S 3 – Energy for heating (MJ/kg) respect to molecular weight (kg/kmol) subsets: a) 30 < MM < 69, b) 70 < MM < 136, and c) MM >137. Data were extrapolated from literature.²⁰

Figure S 4 – Energy for heating (MJ/kg) respect to molecular weight (kg/kmol) subsets: a) 30 < MM < 69, b) 70 < MM < 136, and c) MM >137. Data were extrapolated from literature.²⁰

Table S 4 – Mass balance C 100%, S 100%, Y 100%. (1) MO:C1S1Y1 C 100%, S 100%, Y 100%; (4) MA:C1S1Y1 [(1)+Andraos]; (7) MP:C1S1Y1 [(1) + Proxy MA]; (10) MPC:C1S1Y1 [(1) + Proxy C4 avg].

1.02E-02
4.08E-02
5.10E-02
1.02E-02
4.08E-02

Total

Table S 5 – Mass balance C 95%, S 100%, Y 95%. (2) MO:C1S1Y0.95 C 95%, S 100%, Y 95%; (5) MA:C1S1Y0.95 [(2)+Andraos]; (8) MP:C1S1Y0.95 [(2) + Proxy MA]; (11) MPC:C1S1Y0.95 [(2) + Proxy C4 avg].

5.10E-02

	MM (kg/kmol)	Conversion (%)	Selectivity (%)	Yield (%)	Amount (kg)	Amount (kmol)
Input						
Bio-butanol	74.1	95%	-	-	0.8	1.07E-02
Oxygen (O ₂)	32.0	-	-	-	1.3	4.08E-02
Total						5.15E-02
<u>Output</u>						
Maleic anhydride	98.1	-	100.0%	95.0%	1.0	1.02E-02
Water	18.0	-			0.7	4.08E-02
Bio-butanol	74.1				4.0E-02	5.37E-04
Total						5.15E-02

Table S 6 – Mass balance C 100%, S 50%, Y 50%. (3) MO:C1S1Y0.5 C 100%, S 50%, Y 50%; (6) MA:C1S1Y0.5 [(3)+Andraos]; (9) MP:C1S1Y0.5 [(3) + Proxy MA]; (12) MPC:C1S1Y0.5 [(3) + Proxy C4 avg].

	MM (kg/kmol)	Conversion (%)	Selectivity (%)	Yield (%)	Amount (kg)	Amount (kmol)
Input						
Bio-butanol	74.1	100%	-	-	1.5	2.04E-02
Oxygen (O ₂)	32.0	-	-	-	2.9	9.18E-02
Total						1.12E-01
<u>Output</u>						
Maleic anhydride	98.1	-	50.0%	50.0%	1.0	1.02E-02
Carbon dioxide	44.0	-	50.0%	50.0%	0.4	1.02E-02

Water 18.0 - 1.7	9.18E-02
------------------	----------

Total

1.12E-01

Table S 7 – Energy balance Scen (4) MA:C1S1Y1 [(1)+Andraos] and (5) MA:C1S1Y0.95 [(2)+Andraos], $\Delta r H^{\circ}$ calculation. In the case of MA:C1S1Y0.95 the unreacted butanol does not contribute to the $\Delta r H^{\circ}$.

Stoichiometric reaction	$C_4H_{10}O+3O_2\rightarrow C_4H_2O_3+4H_2O$		
<u>Input</u>	Δ _f H°r (kJ/mol)	V	
Bio-butanol	-274.9	1	
Oxigen (O ₂)	498.4	3	
∑v @ ∆fH°r	1220.3		
Output	Δ _f H°r (kJ/mol)	V	
Maleic anhydride	-398.3	1	
Water	-241.8	4	
∑v @ ∆fH°p	-1365.5		
٨rH°	-2585.8	MJ/kmol	
	-7.3	kWh/FU	

Table S 8 – Energy balance (6) MA:C1S1Y0.5 [(3)+Andraos], ΔrH° calculation.

Stoichiometric reaction	$\rm C_4H_{10}O + 9/2O_2 \rightarrow 1/2C_4H_2O_3 + 2\ \rm CO_2 + 9/2H_2O$				
<u>Input</u>	Δ _f H°r (kJ/mol)	V			
Bio-butanol	-274.9	1			
Oxigen (O ₂)	498.4	4.5			
∑ v @ ∆fH°r	1967.9				
Output	∆ _f H°r (kJ/mol)	V			
Maleic anhydride	-398.3	0.5			
Water	-241.8	4.5			
Carbon dioxide	-393.5	2			
∑ v @ ∆fH°p	-2074.2				
٨rH°	-4042.2	MJ/kmol			
	-1.1E+01	kWh/FU			

Table S 9 – Energy balance, net energy input (nEI) calculation.

<i>q</i> bio-ButOH (liquid → gas)							
Cp liq (J/mol K)	A + BT + CT^2 + DT^3 + ET^4						
Source:*	А	В	С	D	E		
bio-ButOH (liquid)	83.877	5.66E-01	-0.0017208	2.28E-06	-		
T1(=Tenv)	298	H at T1	3.95E-02	kJ/mol			
T2(=Tb)	391	H at T2	5.51E-02	kJ/mol			
		ΔΗ	1.57E-02	kJ/mol			
Cp gas (J/mol K)	A + B[(C/T)/sinh(C/T)]^2+ D[(E/T)/cosh(E/T)]^2						
Source:*	A	В	С	D	E		
bio-ButOH (gas)	8.16E+00	4.10E-01	-2.26E-04	6.04E-08	-6.28E-12		

T1(=Tb)	391	H at T1	3.35E-03	kJ/mol	
T2(=Tr)	613	H at T2	5.25E-03	kJ/mol	
		ΔΗ	1.90E-03	kJ/mol	
ΔH_{vap} (Source ^{**})	43.29	kJ/mol	390.9	К	
<i>q_{tot}</i> bio-ButOH	4.33E+01	kJ/mol			

<i>q</i> oxygen (gas)						
Cp gas (J/mol K)	A + B[(C/T)/sinh(C/T)]^2+ D[(E/T)/cosh(E/T)]^2					
	А	В	С	D	E	
	29.526	-8.90E-03	3.81E-05	-3.26E-08	8.86E-12	
T1(=Tenv)	298	H at T1	8.80E-03	kJ/mol		
T2(=Tr)	613	H at T2	1.81E-02	kJ/mol		
		ΔΗ	9.30E-03	kJ/mol		

	q tot reaction***			
<i>q_{tot}</i> bio-ButOH + <i>q</i> oxygen	4.33E+01	kJ/mol	4.33E+04	kJ/kmol
			4.42E+02	kJ/FU
			1.22E-01	kWh/FU

Net energy input = <i>q</i> tot reaction - ΔrH° Scen (4) and (5)													
Net energy input	7 2E+00	k\//b/EU	Since negative, it was assumed to be recovered as										
Net energy input	-7.22+00	KWII/I U	steam for other processes (9.4E+00 kg steam/FU)										
Net energy input = q tot reaction - ΔrH° Scen (6)													
Net energy input	-1.1E+01	kWh/FU	Since negative, it was assumed to be recovered as										
			steam for other processes (1.5E+01 kg steam/FU)										

*Ludwig's Applied Process Design for Chemical and Petrochemical Plants, Volume 1, Fourth Edition, A. Kayode Coker Gulf Professional Publishing is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA Linacre House, Jordan Hill, Oxford OX2 8DP, UK 2007 Elsevier Inc.³

**National Institute of Standards and Technology (NIST) available at <u>https://webbook.nist.gov/cgi/cbook.cgi?ID=C71363&Mask=4</u> (accessed 5 August 2024).⁴

***It represents the energy requirements to heat reagents according to literature.⁵¹

Table S 10 – MA production from bio-butanol, comparison of different scenarios using the method IPCC 2021, GWP100 incl. CO_2 uptake, v.1.01 (kg CO_2 eq.). (1) MO:C1S1Y1 C 100%, S 100%, Y 100%; (2) MO:C1S1Y0.95 C 95%, S 100%, Y 95%; (3) MO:C1S1Y0.5 C 100%, S 50%, Y 50%; (4) MA:C1S1Y1 [(1)+Andraos], (5) MA:C1S1Y0.95 [(2)+Andraos]; (6) MA:C1S1Y0.5 [(3)+Andraos]; (7) MP:C1S1Y1 [(1) + Proxy MA]; (8) MP:C1S1Y0.95 [(2) + Proxy MA]; (9) MP:C1S1Y0.5 [(3) + Proxy MA]; (10) MPC:C1S1Y1 [(1) + Proxy C4 avg]; (11) MPC:C1S1Y0.95 [(2) + Proxy C4 avg]; (12) MPC:C1S1Y0.5 [(3) + Proxy C4 avg].

	MO:C1S 1Y1	MO:C1S 1Y0.95	MO:C1S 1Y0.5	MA:C1S 1Y1	MA:C1S 1Y0.95	MA:C1S 1Y0.5	MP:C1S 1Y1	MP:C1S 1Y0.95	MP:C1S 1Y0.5	MPC:C1 S1Y1	MPC:C1 S1Y0.95	MPC:C1 S1Y0.5	MA_bio ButOH*
biogenic	0.3	0.5	1.0	0.2	0.4	0.9	0.3	0.5	1.1	0.3	0.5	1.1	0.5
CO ₂ uptake	-5.9	-6.3	-11.7	-6.0	-6.3	-11.4	-5.9	-6.3	-12.1	-5.9	-6.2	-11.8	-8.6
fossil	1.6	1.7	3.2	-1.0	-1.0	-1.1	5.0	5.1	6.7	2.8	2.9	4.4	0.5
land transforma tion	-4.1E-03	-4.3E-03	-7.9E-03	-4.4E-03	-4.9E-03	-8.4E-03	-2.9E-03	-3.0E-03	-7.4E-03	-3.8E-03	-4.0E-03	-7.7E-03	0.1
Net	-4.0	-4.1	-7.5	-6.7	-6.9	-11.6	-0.6	-0.7	-4.3	-2.8	-2.9	-6.4	-7.5

SD	1.0	1.1	2.2	1.3	1.3	2.3	1.1	1.1	2.2	1.0	1.1	2.1	2.9
* Cucciniello	o et al.42												

Table S 11 – MA production from bio-butanol, comparison of different scenarios using the method CED, v.1.11 (MJ). ((1) MO:C1S1Y1 C 100%, S 100%, Y 100%; (2) MO:C1S1Y0.95 C 95%, S 100%, Y 95%; (3) MO:C1S1Y0.5 C 100%, S 50%, Y 50%; (4) MA:C1S1Y1 [(1)+Andraos], (5) MA:C1S1Y0.95 [(2)+Andraos]; (6) MA:C1S1Y0.5 [(3)+Andraos]; (7) MP:C1S1Y1 [(1) + Proxy MA]; (8) MP:C1S1Y0.95 [(2) + Proxy MA]; (9) MP:C1S1Y0.5 [(3) + Proxy MA]; (10) MPC:C1S1Y1 [(1) + Proxy C4 avg]; (11) MPC:C1S1Y0.95 [(2) + Proxy C4 avg]; (12) MPC:C1S1Y0.5 [(3) + Proxy C4 avg].

	MO:C1 S1Y1	MO:C 1S1Y0 .95	MO:C 1S1Y0 .5	MA:C1 S1Y1	MA:C1 S1Y0. 95	MA:C1 S1Y0. 5	MP:C1 S1Y1	MP:C1 S1Y0. 95	MP:C1 S1Y0. 5	MPC: C1S1Y 1	MPC: C1S1Y 0.95	MPC: C1S1Y 0.5	MA_bi oButO H*
Non-renewable, biomass	0.2	0.2	0.3	0.2	0.2	0.3	0.2	0.2	0.3	0.2	0.2	0.3	0.2
Non-renewable, nuclear	1.2	1.3	2.5	0.2	0.2	0.7	2.5	2.5	3.7	1.7	1.7	2.9	0.7
Non renewable, fossil	17.3	18.3	34.7	-23.7	-22.9	-30.8	71.2	71.7	88.1	36.0	37.2	53.6	-1.7
Renewable, biomass	63.5	67.0	127.3	63.9	66.9	126.2	64.0	67.9	126.8	64.0	67.9	128.1	92.1
Renewable, water	0.5	0.6	1.1	0.3	0.3	0.7	1.1	1.1	1.6	0.7	0.7	1.3	0.4
Renewable, wind, solar, geothe	0.2	0.2	0.3	0.0	0.0	0.1	0.4	0.4	0.5	0.2	0.2	0.4	0.1
Net	82.9	87.4	166.1	40.8	44.7	97.2	139.4	143.7	221.0	102.7	108.0	186.5	91.9
SD	18.9	21.7	41.0	23.2	24.7	45.8	21.3	22.0	39.7	20.4	20.9	39.7	27.4
*													

* Cucciniello et al.42.

Table S 12 – MA production from bio-butanol, comparison of different scenarios using the method of different scenarios using the method IPCC 2021, GWP100 incl. CO_2 uptake, v.1.01 (kg CO_2 eq.). (1) MO:C1S1Y1 C 100%, S 100%, Y 100%; (2) MO:C1S1Y0.95 C 95%, S 100%, Y 95%; (3) MO:C1S1Y0.5 C 100%, S 50%, Y 50%; (4) MA:C1S1Y1 [(1)+Andraos], (5) MA:C1S1Y0.95 [(2)+Andraos]; (6) MA:C1S1Y0.5 [(3)+Andraos]; (7) MP:C1S1Y1 [(1) + Proxy MA]; (8) MP:C1S1Y0.95 [(2) + Proxy MA]; (9) MP:C1S1Y0.5 [(3) + Proxy MA]; (10) MPC:C1S1Y1 [(1) + Proxy C4 avg]; (11) MPC:C1S1Y0.95 [(2) + Proxy C4 avg]; (12) MPC:C1S1Y0.5 [(3) + Proxy C4 avg]. The table includes the mean, the standard deviation (SD) and the coefficient of variation (CV).

	MO	C1S1	Y1	MO:C	C1S1\	0.95	MO:	C1S1	Y0.5	MA:	C1S1	Y1	MA:C	C1S11	/0.95	MA:	C1S1	Y0.5	MP	:C1S1	IY1	MP:	C1S1)	(0.95	MP:	C1S1	Y0.5	MPC	C:C1S	1Y1	MPC:	C1S1	Y0.95	MPC	:C1S1	Y0.5
Unit	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV
biogenic	0.3	0.1	24.1	0.5	0.1	15.9	1.0	0.2	17.3	0.2	0.1	35.1	0.4	0.1	20.8	0.9	0.2	18.6	0.3	0.1	23.3	0.5	0.1	15.2	1.1	0.2	17.0	0.3	0.1	22.0	0.5	0.1	16.5	1.1	0.2	17.1
CO ₂ uptake	-5.9	1.5	-24.8	-6.3	1.5	-23.7	-11.7	3.0	-25.9	-6.0	1.5	-25.8	-6.3	1.6	-25.1	-11.4	2.8	-24.1	-5.9	1.5	-26.0	-6.3	1.5	-24.4	-12.1	3.0	-24.9	-5.9	1.4	-23.6	-6.2	1.6	-25.5	-11.8	2.9	-24.9
fossil	1.6	0.4	24.3	1.7	0.4	23.5	3.2	0.8	25.6	-1.0	0.8	-79.9	-1.0	0.8	-83.3	-1.1	1.3	-123.8	5.0	0.5	10.6	5.1	0.5	9.8	6.7	0.9	13.0	2.8	0.4	14.0	2.9	0.4	15.2	4.4	0.8	17.8
land transformation	0.0	0.0	-98.4	0.0	0.0	-99.8	0.0	0.0	-100.9	0.0	0.0	-89.5	0.0	0.0	-87.6	0.0	0.0	-89.7	0.0	0.0	-141.9	0.0	0.0	-146.8	0.0	0.0	-108.8	0.0	0.0	-111.0	0.0	0.0	-109.2	0.0	0.0	-101.9

Table S 13 – MA production from bio-butanol, comparison of different scenarios using the method of different scenarios using the method CED, v.1.11 (MJ). (1) MO:C1S1Y1 C 100%, S 100%, Y 100%; (2) MO:C1S1Y0.95 C 95%, S 100%, Y 95%; (3) MO:C1S1Y0.5 C 100%, S 50%, Y 50%; (4) MA:C1S1Y1 [(1)+Andraos], (5) MA:C1S1Y0.95 [(2)+Andraos]; (6) MA:C1S1Y0.5 [(3)+Andraos]; (7) MP:C1S1Y1 [(1) + Proxy MA]; (8) MP:C1S1Y0.95 [(2) + Proxy MA]; (9) MP:C1S1Y0.5 [(3) + Proxy MA]; (10) MPC:C1S1Y1 [(1) + Proxy C4 avg]; (11) MPC:C1S1Y0.95 [(2) + Proxy C4 avg]; (12) MPC:C1S1Y0.5 [(3) + Proxy C4 avg]. The table includes the mean, the standard deviation (SD) and the coefficient of variation (CV).

	MO	:C1S1	Y1	MO:C	:1S1Y	0.95	MO:	C1S1)	Y0.5	MA	:C1S1	Y1	MA:0	C1S1Y	0.95	MA:	C1S1)	(0.5	MP	:C1S1	Y1	MP:0	C1S1Y	0.95	MP:0	2151)	(0.5	MPO	C:C1S1	Y1	MPC:	C1S1Y	′ 0.95	MPC	C1S1	Y0.5
Impact category Non-	Mean	SD	cv	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	CV	Mean	SD	cv	Mean	SD	CV	Mean	SD	CV
renewable, biomass Non-	0.2	3.6E- 02	23.3	0.2	4.1E- 02	24.7	0.3	0.1	24.8	0.2	3.7E- 02	23.5	0.2	4.2E- 02	25.0	0.3	0.1	24.3	0.2	3.8E- 02	24.2	0.2	4.0E- 02	24.2	0.3	0.1	23.7	0.2	3.8E- 02	24.4	0.2	4.0E- 02	23.9	0.3	0.1	23.7
renewable, nuclear Non renewable	1.2	0.4	35.8	1.3	0.5	39.4	2.5	0.9	36.9	0.2	0.4	270.2	0.2	0.5	214.9	0.7	0.8	116.9	2.5	0.8	31.2	2.5	0.8	31.1	3.7	1.2	32.6	1.7	0.5	33.1	1.7	0.6	32.0	2.9	1.0	35.1
fossil	17.3	4.1	23.6	18.3	4.6	25.5	34.7	8.7	25.0	-23.7	12.1	-51.0	-22.9	12.3	-53.7	-30.8	20.5	-66.6	71.2	7.9	11.1	71.7	7.7	10.7	88.1	10.4	11.8	36.0	4.8	13.3	37.2	4.9	13.3	53.6	8.8	16.4
Renewable, biomass Renewable,	63.5	14.5	22.8	67.0	16.6	24.7	127.3	31.5	24.8	63.9	15.2	23.7	66.9	16.7	25.0	126.2	31.5	25.0	64.0	15.5	24.1	67.9	16.3	24.0	126.8	30.2	23.8	64.0	15.6	24.4	67.9	16.0	23.6	128.1	30.3	23.7
water Renewable	0.5	0.1	24.6	0.6	0.1	26.6	1.1	0.3	26.0	0.3	0.1	46.3	0.3	0.2	46.0	0.7	0.3	41.8	1.1	0.1	13.2	1.1	0.2	14.2	1.6	0.3	16.8	0.7	0.1	19.5	0.7	0.1	19.3	1.3	0.3	21.7
wind, solar, geothe	0.2	3.9E- 02	24.4	0.2	0.0	26.3	0.3	0.1	25.7	2.4E- 02	5.3E- 02	221.0	3.1E- 02	0.1	176.1	1.0E- 01	1.0E- 01	99.7	0.4	4.2E- 02	11.7	0.4	4.6E- 02	12.6	0.5	0.1	15.6	0.2	4.2E- 02	18.3	0.2	4.3E- 02	18.0	0.4	0.1	21.0

Table S 14 – Impact per different energetic vector, expressed in kg CO₂ eq/kWh. Method IPCC 2021, GWP100 incl. CO₂ uptake, v.1.01 (kg CO₂ eq.).

Energetic vector	fossil	biogenic	land transformation	CO ₂ uptake	Total
Heat, from steam, in chemical industry {RER} market for heat, from steam, in chemical industry APOS, U*	4.0E-01	1.1E-02	7.6E-05	-8.0E-03	4.1E-01
Cooling energy {GLO} market for cooling energy APOS, U*	2.5E-01	2.2E-03	1.4E-04	-1.8E-03	2.5E-01
Electricity, medium voltage {Europe without Switzerland} market group for electricity, medium voltage APOS, U	3.3E-01	6.5E-02	1.4E-03	-2.8E-02	3.7E-01
Electricity, high voltage {ES} electricity production, solar thermal parabolic trough, 50 MW APOS, U	5.4E-02	7.9E-04	3.2E-05	-5.4E-04	5.4E-02
Electricity, high voltage {DE} electricity production, wind, >3MW turbine, onshore APOS, U	3.4E-02	8.4E-04	9.0E-05	-6.8E-04	3.4E-02

* used in the simulation.

Table S 15 – Impact per different energetic vector, expressed in MJ/kWh. Method CED, v.1.11 (MJ).

Energetic vector	Non renewable, fossil	Non- renewable, nuclear	Non- renewable, biomass	Renewable, biomass	Renewable, wind, solar, geo	Renewable, water	Total
Heat, from steam, in chemical industry {RER} market for heat, from steam, in chemical industry APOS, U*	5.8E-01	1.6E-01	6.4E-05	8.8E-02	3.4E-02	3.9E-02	9.1E-01
Cooling energy {GLO} market for cooling energy APOS, U*	4.9E-01	1.4E-01	7.7E-05	1.9E-02	4.5E-02	6.6E-02	7.6E-01
Electricity, medium voltage {Europe without Switzerland} market group for electricity, medium voltage APOS, U	1.9E+00	3.8E+00	1.1E-03	3.1E-01	7.7E-01	7.7E-01	7.6E+00
Electricity, high voltage {ES} electricity production, solar thermal parabolic trough, 50 MW APOS, U	8.8E-02	1.7E-02	3.9E-05	6.0E-03	4.3E-03	9.7E-03	1.2E-01
Electricity, high voltage {DE} electricity production, wind, >3MW turbine, onshore APOS, U	1.4E-01	2.8E-02	1.1E-04	8.1E-03	3.9E+00	2.0E-02	4.1E+00

* used in the simulation.