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A B S T R A C T

The paper proposes an aggregated model that represents the flexibility potential of car parks equipped with
multiple electric vehicle (EV) charging stations. The model is used in a stochastic optimization procedure to
estimate in advance the maximum flexibility margins of the parking lot. The EV aggregator responsible for
the charging stations offers intra-day ancillary services to the grid by specifying the possible margins within
which the absorbed power can be varied, either up or down. These adjustments are made at the request of
the distribution system operator, ensuring an appropriate level of EV charging. The effectiveness of the model
is evaluated for parking lots with different numbers of charging stations and different daily profile forecasts
of the number of EV arrivals and departures.
1. Introduction

Electric vehicle (EV) batteries are expected to play an expanded role
in the provision of grid services, as described in [1] and references
therein. This paper presents a multistage stochastic optimization pro-
cedure for calculating the flexibility capabilities of an electric vehicle
(EV) parking lot equipped with many charging stations. The aggregator
of the charging stations offers flexibility services in response to the dis-
tribution system operator’s (DSO) requests. The paper does not address
the possibility of concurrent participation in a wholesale flexibility
market. The maximum deviations of the parking lot load consumption
with respect to a reference profile need to be calculated in advance by
the EV aggregator in order to support the DSO with the information
needed to efficiently use the service.

Other than different model-based or data-driven approaches on
EV charging power forecasting (e.g., [2] and references therein), the
literature includes several studies that explore the impact of optimizing
the operation of EV parking lots in addressing network congestions
[3] and mitigating the variability of renewable energy sources [4].
Additionally, various models have been proposed to represent the par-
ticipation of EV aggregators in energy and ancillary services markets,
e.g. [5], and within the framework of demand response programs, as
in [6].

The flexibility in the load profile of the EV parking lot can be
harnessed by the DSO to address voltage or congestion issues, as shown
in, for example, [7]. Procuring reserve flexibility should ensure the
energy recovery needed for the provision of the expected charging
services to the EVs [8]. Furthermore, the flexibility offered by EV
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charging stations can also play a significant role in optimizing the
design and operation for energy communities and virtual power plants,
as shown in, e.g., [9–11].

This paper focuses on the calculation of the maximum flexibility
margins, i.e., the maximum up and down feasible variations with
respect to the expected reference consumption profile. These margins
are offered in advance by the EV parking lot aggregator to the DSO. To
improve the dynamic adaptation of the margin calculation to current
parking conditions (i.e., to the number and characteristics of the EVs
actually connected to the charging stations), a multistage stochastic
optimization approach is integrated with an intraday decision proce-
dure. This approach allows the update of the calculated margins at
the beginning of each stage in which the daily horizon is divided. In
general, this approach produces results, specifically flexibility margins,
that are close to those estimated assuming perfect information about
the future (deterministic solution) and larger than those obtained by
considering the worst-case scenarios (robust solution).

The paper presents a multistage optimization procedure based on
an aggregated representation of the EV parking lot, which takes into
account several factors, including power absorbed from the grid, the ef-
ficiency of EV battery charging and vehicle-to-vehicle (V2V) exchanges
allowed by the use of bidirectional charging stations, self-discharge
rates, and the energy levels of EVs upon arrival and departure from
the car park.

The procedure begins by generating scenarios based on the fore-
casted number of EVs entering and leaving the parking lot. These
scenarios account for the uncertainty associated with the daily forecast,
vailable online 27 June 2024
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Nomenclature

Stochastic parameters

𝜋𝜔: probability value of scenario 𝜔
𝑁𝜔,𝑡

EV in, 𝑁𝜔,𝑡
EV out: number of electric vehicles (EVs) arriving

and departing in period 𝑡, respectively
𝐸𝜔,𝑡S+ , 𝐸𝜔,𝑡S- : cumulative stored energy of the EVs arriving

and departing in period 𝑡, respectively
𝐸𝜔,𝑡ini 𝑗 , 𝐸

𝜔,𝑡
g 𝑗 : initial energy and energy gain of the EVs

arriving in period 𝑗 and leaving in period 𝑡
𝑁𝜔,𝑡
𝐸𝑉 , 𝐸𝜔, 𝑡Smax, 𝑃𝜔, 𝑡max: number of parked EVs at the end of pe-

riod 𝑡, corresponding total battery size, and
cumulative maximum charge power

𝜇𝜔,𝑡: utilization fraction of EV energy entering at
time 𝑡

Deterministic parameters

𝛥𝑡: single period duration
𝐸EV, 𝑃EV: EV battery size and its maximum charging

power
𝜂ch, 𝜂V2V: efficiency of grid battery charging and of

vehicle-to-vehicle (V2V) energy transfer
𝛿: self-discharge rate of EV batteries
𝜌𝑡TOU, 𝜌𝑡flex, 𝜌𝜇 : time-of-use tariff of energy from the grid, of

power flexibility services, and of initial EV
energy use

𝑡flex, 𝑛+flex, 𝑛rec: first period of the flexibility interval, number
of subsequent flexibility periods, and number
of recovery periods

𝑁park max: maximum number of EV charging points

Sets

𝑇𝑠: periods in stage 𝑠
𝑆𝜔,𝑡in , 𝑆𝜔,𝑡out: sets of EVs entering and leaving the car park

in period 𝑡

Variables

𝛥𝑃𝜔,𝑡flex, 𝑅𝜔,𝑡flex: maximum allowed increase or decrease in
car park power consumption in period 𝑡 and
corresponding flexibility revenue

𝐶𝜔,𝑡S : cost of using the initial EV stored energy
𝐸𝜔,𝑡S net, 𝐸

𝜔,𝑡
ch grid: net energy stored in the batteries and

charging energy from the grid in period 𝑡
𝐸𝜔,𝑡ch 𝑗 : minimum energy profile to properly charge

EVs arriving in period 𝑗
𝑃𝜔,𝑡ref : reference consumption profile of the parking

lot
𝑃𝜔,𝑡: power absorbed by the parking lot from the

grid
𝑙𝜔, 𝑡V2V: V2V energy transfer losses in period 𝑡

considering also the EV rated battery size and diffusion, as well as
the maximum charging power. Subsequently, a clustering procedure is
applied to construct a multistage scenario tree that represents various
possibilities of EV charging. The optimization model, which is built
upon the approach presented in [12], calculates the reference con-
sumption profile for the representative scenario of each cluster. This is
achieved by minimizing the procurement costs for the EV parking lot,
which include both those associated with purchasing the energy from
the grid and the consumption of the initial energy stored in the vehicles.
2

Additionally, the model determines the maximum power reduction and
increase margins to be offered as flexibility services.

The flexibility margins represent the maximum achievable power
reduction and increase that ensure the maintenance of appropriate EV
charging levels. Following a power change requested by the DSO, the
considered regulatory framework allows the EV parking lot to recover
its energy level within a predefined subsequent interval, through a
constant variation in the absorbed power.

The structure of the paper follows. Section 2 describes the scenario
management of the stochastic parameters, which represent the parked
EVs, and the construction of the multistage scenario tree. Section 3
describes the optimization models of the EV parking lot that provide the
demand flexibility services. Section 4 describes the case studies and the
results for different sizes of parking lots. Section 5 concludes the paper.

2. Stochastic parameters and scenario management

The flexibility margins of the EV parking lot, which determine how
much power consumption can be reduced or increased in response
to a DSO request while ensuring appropriate EV charging level, are
calculated using stochastic optimization, where some parameters and
variables are subject to uncertainty or randomness. These uncertainties
mainly relate to the characteristics and the number of EVs connected
to the charging stations throughout the day.

The description of the procedure is divided into two parts. The
first part, which is the subject of this Section, defines the stochastic
parameters by using scenarios, each representing a different realization
of the uncertain parameters, and performs scenario management. This
process generates the multistage tree model, which aggregates similar
scenarios at various stages of the day-long optimization horizon.

Section 3 deals with the second part of the procedure, which in-
cludes the definition of constraints and objectives of the stochastic
models. A first optimization model calculates the daily reference con-
sumption profile of the car park without any request for providing
flexibility to the DSO. Two additional models allow the calculation of
the maximum feasible reduction and increase in power consumption
for each period. All of these models are formulated as linear program-
ming mathematical problems, without the inclusion of binary variables,
ensuring computational efficiency, even when dealing with a large
number of EVs and charging stations. This is achieved by adopting
an aggregate representation of the charging stations and EV batteries,
which preserves the accuracy of the calculation of the power exchanges
with the network and of the charge/discharge losses, including those
associated with V2V exchanges.

2.1. Scenario generation

The procedure starts by generating a number of scenarios for the
next day. The scenario generation procedure assumes the availability
of the forecasts of the number of EVs entering and leaving the parking
lot in each of the 96 periods of the following day. These forecasts can
be obtained by the analysis of the EV entry and exit data from previous
or similar days. All the entries and departures of a period are assumed
to occur at the end of that period.

For each scenario 𝜔, entering 𝑁𝜔,𝑡
EV in and leaving 𝑁𝜔,𝑡

EV out EV num-
bers are obtained by multiplying the corresponding forecast sequences
by 1+𝑘𝑡, which accounts for the increasing forecast uncertainty
hroughout the day. Time series 𝑘𝑡 is generated by using a normal

distribution with the mean value set to zero, and the standard deviation
calculated as

√

1 − 𝜓 𝑡2, where 𝜓 𝑡 is a decreasing function of 𝑡. Each
value obtained is rounded to the nearest positive integer. Moreover,
for each scenario, the order of the numbers of leaving EVs is adjusted
so that the number of parked EVs is never negative.

To construct an accurate aggregate model of the parking lot, the
sequences of arriving and departing EV numbers are associated with

specific populations of EVs. Each EV is defined by entry and exit time
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periods, ensuring that the entire population of EVs reproduces the
sequences of arriving and departing EV numbers. To achieve this, a
simple ’first in, first out’ strategy is implemented. Only those EVs that
can connect to an available charger are considered (i.e., they are limited
by 𝑁park max) and they are assumed to disconnect at their departure
time.

Furthermore, each EV is characterized by its rated battery size 𝐸EV,
the maximum power 𝑃EV allowed by the charging station, and the ini-
ial state of charge. To define the first two characteristics, the procedure
ses a predefined categorization of currently available EV models and
heir market penetration. Specifically, the attributes of each EV are
elected based on the prevalence of each category, which represents
he probability that a vehicle entering the parking lot belongs to that
ategory. The initial energy of the vehicles entering the car park follows
truncated normal distribution, with the mean and standard deviation
alues assumed to be 0.3 times the size of the battery.

It is assumed that the EVs leaving the parking lot are fully charged
r charged to the maximum level allowed by the charging power and
arking duration. While it is possible to account for scenarios where
ome EVs leave the parking lot with lower energy levels by introducing
penalty into the objective functions, this aspect is not addressed here

or the sake of simplicity.
The results of this paper have been obtained assuming the same

ated power for all charging stations, but the procedure can be adapted
o the case where different types of charging stations are present.

.2. Scenario clustering and tree construction

The procedure has been implemented as a day-ahead evaluation
onsidering a 4-stage stochastic approach (one day-ahead stage and
hree intraday stages), where the day-ahead evaluation is updated
very 6 h during the day to use information on the actual number and
haracteristics of the EVs in the parking lot. We assume that the EV
arking lot aggregator provides the reference consumption profile and
he down and up flexibility margins at the beginning of each intraday
tage for each of the relevant 15-minute time periods.

For each stage 𝑠, similar scenarios are grouped into a scenario tree.
For this purpose, the 𝑘-medoid clustering procedure is applied. Starting
from a single cluster in the first (day-ahead) stage, each cluster can
originate different clusters in the next stage. The clustering procedure
provides both the medoid for each cluster and stage (i.e., one of the
initial scenarios that minimizes the dissimilarity measure with respect
to the other scenarios in the cluster) and probabilities 𝜋𝜔. Compared to
the 𝑘-means algorithm, which calculates centroids by averaging data
points within clusters, the 𝑘-medoid approach avoids non-integer num-
bers of entering, leaving, and parked EVs. This ensures the preservation
of scenario feasibility after clustering.

Here is a detailed description of the procedure. The clustering
is based on the number of parked EVs (assuming that they are all
connected to a charging station), 𝑁𝜔,𝑡

𝐸𝑉 . Alternatively, the clustering can
use the sum of the battery sizes of the parked EVs. Even a combination
of the two parameters can be considered, normalizing them based on
their minimum and maximum values at each time period, as described
in [13].

For each stage, the dissimilarity measure 𝑑, based on the Euclidean
distance ‖‖2 between two scenarios 𝑁𝜔1 ,𝑡

𝐸𝑉 and 𝑁𝜔2 ,𝑡
𝐸𝑉 is

𝑑
(

𝑁𝜔1 , 𝑡
𝐸𝑉 , 𝑁𝜔2 , 𝑡

𝐸𝑉

)

=
∑

𝑡∈𝑇𝑠

‖

‖

‖

𝑁𝜔1 , 𝑡
𝐸𝑉 −𝑁𝜔2 , 𝑡

𝐸𝑉
‖

‖

‖

(1)

where 𝑇𝑠 is the subset of periods in stage 𝑠. Regarding the clustering
procedure, different distance definitions can be used to assess the
dissimilarities between scenarios, such as the Manhattan distance, as
shown in [14].

At stage 𝑠 = 1, a scenario 𝜔𝑖 is chosen as medoid 𝐶𝑠=11 such that
the average dissimilarity between 𝑁𝜔𝑖 ,𝑡

𝐸𝑉 and every other scenario 𝑁𝜔𝑗 ,𝑡
𝐸𝑉
3

in the set of generated scenarios is minimized. At stage 𝑠 = 2 and
subsequent stages, the set of scenarios aggregated in the previous stage
is divided into 𝐾 clusters. The steps of the clustering routine applied in
stage 𝑠 = 2 and subsequent stages are the following.

(1) Selection of initial medoids: the first medoid is randomly chosen,
and the remaining 𝐾 − 1 initial medoids are selected as the
most distant 𝐾 − 1 scenarios by using (1). Various methods for
selecting initial medoids are detailed in [15].

(2) Selection of the closest medoid: each scenario 𝜔 is grouped to
the medoid for which the distance given by (1) is minimal. This
results in the creation of 𝐾 clusters denoted as 𝐶𝑠1 to 𝐶𝑠𝐾 for stage
𝑠.

(3) Update of the medoids: within each cluster, the scenario that
minimizes the average distance to every other scenario in the
same cluster is chosen as the new medoid.

(4) Iteration and medoid update: after updating the medoids, the
procedure is repeated starting from step 2. This iterative pro-
cess continues until either the scenarios chosen as medoids do
not change in consecutive iterations, or the maximum allowed
number of iterations is reached.

(5) Cluster merging check: the distance between each pair of
medoids and the average distance among the scenarios grouped
in the relevant clusters is compared, and if the former is lower
than the latter, the two clusters are merged.

(6) Scenario replacement: when stable medoids are obtained, all
the scenarios of each cluster are replaced by the corresponding
medoid, namely, the sequences of 𝑁𝜔,𝑡

EV in and 𝑁𝜔,𝑡
EV out for 𝑡 in

𝑇𝑠. To ensure feasibility during the transition between stages,
this replacement is performed at the level of each individual EV
within the population, preserving all EV characteristics, includ-
ing the rated battery size, maximum charging power, and initial
charging level.

(7) Subsequent stages: the clustering routine is independently car-
ried out for each cluster of the previous stage.

(8) Scenario tree construction: the described procedure results in
the formation of a scenario tree composed of nodes (namely,
the medoids) at each stage, connected by arcs. The probabil-
ity associated with each node in the tree corresponds to the
summation of the probabilities of each scenario assigned to the
corresponding cluster.

The maximum number of clusters 𝐾 is chosen to preserve the
tractability of the problem by limiting the final number of scenarios
in the tree while ensuring an adequate representation of the stochastic
processes during the day. The scenario generation technique allows
for the inclusion of specific metrics that assess the selection of the
maximum value of 𝐾, such as the elbow method or the silhouette
coefficient, using the obtained objective function values. Other metrics,
like the value of stochastic solution and the expected value of perfect
information, can also be considered. In this paper, the results are
obtained for a maximum 𝐾 equal to 3.

2.3. Characterization of each scenario in the tree

As a result of the scenario tree construction, sets 𝑆𝜔,𝑡in and 𝑆𝜔,𝑡out of
entering and leaving EVs are defined, for each scenario 𝜔 and period 𝑡.
The aggregated storage size 𝐸𝜔, 𝑡Smax of the parking lot and the maximum
charging power 𝑃𝜔, 𝑡max are derived by summing the corresponding data of
the individual arriving and departing vehicles, i.e. 𝐸EV, 𝑃EV. Moreover,
the increase of stored energy due to the initial energy in the incoming
EVs, 𝐸𝜔,𝑡S+ , and the energy decrease due to the charged outgoing EVs,
𝐸𝜔,𝑡S- , are obtained as

𝐸𝜔, 𝑡𝑆+ =
∑

𝑖∈𝑆𝜔,𝑡in

𝐸0
𝑖 (2)

𝐸𝜔, 𝑡𝑆− =
∑

𝜔,𝑡
𝐸−
𝑖 (3)
𝑖∈𝑆out
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where 𝐸0
𝑖 and 𝐸−

𝑖 are the energy of the 𝑖th EV when entering and
leaving the parking lot, respectively. The difference between 𝐸−

𝑖 and
𝐸0
𝑖 represents the final charge gain during the parking time, for the 𝑖th

EV.
Each set of EVs that enter and leave in the same periods is grouped

by means of two matrices, the rows of which indicate the entry periods
and the columns the exit periods. Specifically, in order to retain the
information on the period of entry and exit of the energy initially stored
in the batteries, matrix 𝐸𝜔, 𝑡ini 𝑗 is formed as the sum of 𝐸0

𝑖 for the EVs that
enter in period 𝑗 and exit in period 𝑡. Similarly, for the charge gain,
matrix 𝐸𝜔, 𝑡g 𝑗 is constructed as the summation of 𝐸−

𝑖 − 𝐸0
𝑖 for the EVs

entering at period 𝑗 and leaving at period 𝑡.

2.4. Intraday decision procedure

The solution provided by the recourse model, which is based on the
scenario tree constructed using the day-ahead forecasts of the number
of arriving and departing EVs, generates multiple potential decisions at
each stage beyond the first one (i.e., during the day). Consequently,
a decision making procedure is implemented to determine the most
suitable decision for each stage among those identified by the stochastic
problem solution. This selection takes into account the current number
of parked EVs. More precisely, at the beginning of each of the con-
sidered three stages after the first, the intraday procedure selects the
scenario from the tree that offers the best match with the real number
of parked EVs compared to those associated with the nodes/medoids of
the scenario tree.

3. Optimization models to represent EV parking lot flexibility

Once the scenario tree is defined, the procedure uses the optimiza-
tion models described in this Section. The models are formulated as
linear programming problems and calculate, for each stage and node
of the tree, non-negative variables 𝑃𝜔,𝑡ref and 𝛥𝑃𝜔,𝑡flex through repeated
stochastic optimizations. Due to the aggregated structure of the EV
parking lot model and its linearity, each optimization is computa-
tionally efficient, requiring only tens of milliseconds regardless of the
number of EVs and charging stations.

The assumptions made include an agreement between the EV park-
ing lot aggregator and the DSO that allows the parking lot to recover
the power change during a predefined interval following the flexibility
provision interval. Therefore, each flexibility margin is associated with
a maximum recovery of opposite sign within the recovery interval. The
actual recovery is assumed to be proportional to the effective reduction
requested by the DSO. It is also assumed that the DSO does not request
any further reductions or increases during the recovery period and that
the power variation is constant over time.

The model calculates the flexibility margins assuming that the DSO
request is limited to a single 15-min period, denoted as of 𝑡flex. Fur-
thermore, the calculation is repeated assuming that the DSO requires
flexibility provision in additional consecutive 15-min periods after 𝑡flex,
denoted as 𝑛+flex. These calculations are performed with the constraint
that the flexibility margin remains the same throughout the entire
flexibility interval, i.e., from 𝑡flex to 𝑡flex+𝑛+flex.

The values of 𝑃𝜔,𝑡ref and 𝛥𝑃𝜔,𝑡flex, along with their associated recovery
profiles, are provided to the DSO at the beginning of each stage.

3.1. Calculation of the reference consumption profiles

The objective function for the day-ahead calculation of the parking
lot consumption profile 𝑃𝜔,𝑡 is to minimize the procurement costs,
considering probability 𝜋𝜔 of each scenario 𝜔:

min
∑

𝜋𝜔
∑

(

𝜌𝑡𝑇𝑂𝑈𝑃
𝜔,𝑡𝛥𝑡 + 𝐶𝜔,𝑡S

)

(4)
4

𝜔 𝑡
The model considers the presence of bidirectional charging stations,
used for V2V energy exchanges but not to inject power into the external
grid. These exchanges help ensure that EVs depart with the maximum
charge allowed by the parking duration, 𝐸𝜔,𝑡S- , using the energy stored
in EVs expected to have prolonged parking times.

The energy balance equation for the parking lot is:

𝐸𝜔,𝑡S net = (1 − 𝛿)𝐸𝜔,(𝑡−1)S net + 𝐸𝜔,𝑡ch grid − 𝐸𝜔,𝑡S- +

𝜇𝜔, 𝑡𝐸𝜔,𝑡S+ − 𝑙𝜔, 𝑡V2V +
𝑡−1
∑

𝑗=1
(1 − 𝜇𝜔, 𝑗 )𝐸𝜔, 𝑡ini 𝑗

(5)

that represents the aggregate energy stored in the parked EVs in
scenario 𝜔 at the end of period 𝑡 > 0. 𝐸𝜔,𝑡S net takes into account not
only the energy supplied by the grid 𝐸𝜔,𝑡ch grid = 𝜂ch 𝑃𝜔,𝑡𝛥𝑡 but also the
possibility to use for V2V a part of the initial energy 𝐸𝜔,𝑡S+ of the EVs
that entered the parking lot in period 𝑡 (namely, 𝜇𝜔, 𝑡𝐸𝜔,𝑡S+ ). The fraction
of the initial energy used is represented by non-negative variable 𝜇𝜔, 𝑡,
which is subject to upper bound 𝜇𝜔,𝑡max that ensures a minimum energy
margin 𝑒min maintained in the EV batteries. The associated cost of using
the initial energy of the EVs is represented by 𝐶𝜔,𝑡S = 𝜌𝜇𝜇𝜔, 𝑡𝐸

𝜔, 𝑡
S+ in (4),

which can be interpreted as the remuneration of the vehicles providing
the service.

In the context of V2V energy exchanges, constraint (5) accounts for
the associated energy losses through non-negative variable 𝑙𝜔, 𝑡V2V given
by

𝑙𝜔,𝑡V2V ≥
(

1 − 𝜂V2V
)

(

𝐸𝜔,𝑡ch grid −
𝑡−1
∑

𝑗=1
𝐸𝜔, 𝑡ch 𝑗 + 𝜇

𝜔, 𝑡𝐸𝜔,𝑡S+

)

(6)

where 𝜂V2V represents the efficiency of the V2V energy exchanges,
taking into account the losses in the power electronic converters and
in the batteries. The long-term reduction in efficiency due to aging and
demanding operation is not considered.

𝐸𝜔, 𝑡ch 𝑗 for 𝑡 > 𝑗 is the profile that ensures that the EVs parked in the
interval (𝑗, 𝜏] receive 𝐸𝜔,𝜏g 𝑗 , i.e., their final charge gain, before leaving
the parking lot. 𝐸𝜔, 𝑡ch 𝑗 is zero for 𝑡 ≤ 𝑗. The sum of 𝐸𝜔, 𝑡ch 𝑗 is equal to
the total net charge increase at the departure period 𝜏 of the last EVs
among those entered in period 𝑗, while it is larger before that period.
The constraints representing 𝐸𝜔, 𝑡ch 𝑗 are

𝑖
∑

𝑡=𝑗+1
𝐸𝜔, 𝑡ch 𝑗 −

𝑖
∑

𝑡=𝑗+1
𝐸𝜔, 𝑡g 𝑗 ≥ 0 for all 𝑖 < 𝜏

𝑗
∑

𝑡=1
𝐸𝜔, 𝑡ch 𝑗 = 0

𝜏
∑

𝑡=𝑗+1
𝐸𝜔, 𝑡ch 𝑗 −

𝜏
∑

𝑡=𝑗+1
𝐸𝜔, 𝑡g 𝑗 = 0

(7)

where 𝜏 is the departure period of the last EV among those entered in
period 𝑗.

In the presence of V2V energy exchanges, some EVs receive more
energy from the grid than they need to cover their final charge gain
during their parking time. In (6), the term 𝐸𝜔,𝑡ch grid−

∑𝑡−1
𝑗=1 𝐸

𝜔, 𝑡
ch 𝑗+𝜇

𝜔, 𝑡𝐸𝜔,𝑡S+
represents the energy from the grid that is used for V2V exchanges.

According to (6), 𝑙𝜔,𝑡V2V losses are calculated when the excess energy
is stored, not when the V2V exchange is performed. This does not affect
the final result since 𝜂V2V is assumed to be constant. If the chargers are
not bidirectional, both 𝜇 and 𝑙V2V are set to zero. The V2V energy can
also be used to add a cost in the objective function (4) associated with
the remuneration of vehicles providing the V2V service.

Non-negative variable 𝐸𝜔,𝑡S net is constrained as

𝐸𝜔,𝑡S net ≤ 𝐸𝜔, 𝑡Smax −
𝑡−1
∑

𝑗=1
(1 − 𝜇𝜔, 𝑗 )𝐸𝜔, 𝑡ini 𝑗 , (8)

Assuming that the connection of the parking lot with the external
grid is limited by 𝑃max,grid then

𝑃𝜔,𝑡 ≤ min
(

𝑃 , 𝑃𝜔,𝑡
)

(9)
max,grid max



Electric Power Systems Research 234 (2024) 110732T. Harighi et al.
The solution of problem (4)–(8) provides reference profile 𝑃𝜔,𝑡ref =
𝑃𝜔,𝑡 for all scenarios 𝜔.

3.2. Calculation of the maximum power reduction and increase margins

The calculation of the flexibility margins is performed for each pe-
riod, seprately for maximum power reduction and increase. It considers
cases where flexibility is requested in a single period 𝑡flex and cases
where flexibility is also requested in additional consecutive periods
𝑛+flex, limited to 𝑛+max,flex.

The objective function is

min
∑

𝜔
𝜋𝜔

∑

𝑡

(

𝜌𝑡𝑇𝑂𝑈𝑃
𝜔,𝑡𝛥𝑡 + 𝐶𝜔,𝑡S − 𝑅𝜔, 𝑡flex

)

(10)

where non-negative 𝑅𝜔,𝑡flex is the revenue associated with the provision
of the maximum flexibility in 𝑡𝑓𝑙𝑒𝑥:

𝑅𝜔, 𝑡flex =

{

𝜌𝑡flex 𝛥𝑃
𝜔, 𝑡
flex 𝛥𝑡 if 𝑡flex ≤ 𝑡 ≤ 𝑡flex + 𝑛+flex

0 otherwise
(11)

Predefined tariff 𝜌𝑡flex is the compensation rate that the DSO pays
to the flexibility provider for achieving a non-negative power change
𝛥𝑃𝜔,𝑡flex in period 𝑡flex compared to reference power level 𝑃𝜔,𝑡ref . 𝛥𝑃𝜔,𝑡flex is
defined as
𝛥𝑃𝜔, 𝑡flex = 𝑃𝜔, 𝑡ref − 𝑃𝜔, 𝑡 for down margin
𝛥𝑃𝜔, 𝑡flex = 𝑃𝜔, 𝑡 − 𝑃𝜔, 𝑡ref for up margin
for 𝑡flex ≤ 𝑡 ≤ 𝑡flex + 𝑛+flex

(12)

The model includes the possibility for the EV parking lot to recover
the power change with respect to 𝑃𝜔,𝑡ref that occurred at 𝑡 ∈ [𝑡flex, 𝑡flex +
+𝑛+flex] in a predefined number of periods 𝑛rec after 𝑡flex+𝑛+flex. 𝛥𝑃𝜔, 𝑡flex is
constrained to be uniform in the recovery interval by:

𝛥𝑃𝜔,𝑡flex ≥ −
𝑡flex+𝑛+flex
∑

𝑗=𝑡flex

𝛥𝑃𝜔,𝑗flex
𝑛rec

for 𝑡flex + 𝑛+flex < 𝑡 ≤ 𝑡flex + 𝑛+flex + 𝑛rec

𝛥𝑃𝜔,𝑡flex = 0 for 𝑡 < 𝑡flex and 𝑡 > 𝑡flex + 𝑛+flex + 𝑛rec

(13)

The inequality of the previous constraint becomes an equality for
the flex-up scenario to prevent the use of incremental losses (such as
unnecessary V2V exchanges) to enhance the flexibility margin.

In the case of multiple consecutive periods of flexibility, the maxi-
mum margin is constrained to be the same in all the periods:

𝛥𝑃𝜔, 𝑡flex = 𝛥𝑃𝜔, 𝑡flex
flex for 𝑡flex < 𝑡 ≤ 𝑡flex + 𝑛+flex. (14)

All the models are completed with nonanticipativity constraints, typical
in stochastic optimization, which ensure that decisions made at differ-
ent stages depend only on currently available information and not on
future outcomes or information that will be revealed later.

4. Case studies and results

4.1. Test cases and scenarios

The case studies include three parking lots, denoted as PL A, B, and
C, each with a maximum power import capacity of 3 MW. The number
of available charging stations for these parking lots is 70 for PL A and
PL B, and 45 for PL C. In all scenarios, the parking lots are empty at
the beginning of the day, and all EVs leave before the end of the day.

Fig. 1 shows the different day-ahead forecasts for the number of
EVs entering and leaving each parking lot in 𝛥𝑡 = 15 min time
periods. These forecasts are used to generate a total of 60 different
daily scenarios. The 𝜓 𝑡 function is assumed to decrease linearly from
0.9999 in the first period to 0.99 in the last period. Similar scenarios
are grouped together using the k-medoid method, resulting in a 4-stage
tree composed of nodes representing the scenarios that are the medoids
5

Fig. 1. Day-ahead forecast profiles of the number of EVs entering (solid lines) and
exiting (dashed lines) in the three parking lots considered: PL A in black, PL B in blue,
PL C in red.

Fig. 2. Scenario tree for parking lot PL A. The identification numbers of the medoids
are shown for each stage of 6 h, together with, between parenthesis, both the arc
probabilities and scenario probabilities 𝜋𝜔.

obtained. The profiles of scenarios with common nodes in the tree are
bounded at each stage based on the tree structure. Fig. 2 illustrates
the tree corresponding to parking lot PL A with 24 medoids in the last
stage.

In the tests, the types of EVs are classified into 4 categories based
on their battery capacities and market penetration rates: (1) 𝐸EV =
25 kWh with 15% penetration, (2) 𝐸EV = 45 kWh with 45% penetration,
(3) 𝐸EV = 70 kWh with 25% penetration, (4) 𝐸EV = 100 kWh with
15% penetration. These values are derived from data available from
various Internet sources. While they may be appropriate for the current
situation in certain countries, it is essential to adapt them to the actual
usage-specific conditions. A maximum charging power of 40 kW is
assumed for each charging station, which is representative of typical ac
charging stations installed in parking lots where EVs remain connected
for extended periods of time.
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Fig. 3. Flexibility margins and corresponding recoveries of scenario 56 of PL A: down
flexibility starting at 𝑡flex=29 (7:15 am) and up flexibility starting at 𝑡flex=45 (11:15 am).

For the EV batteries, 𝛿 is assumed to be zero. The charging and
V2V energy transfer efficiencies, 𝜂ch and 𝜂V2V, are set to 0.96 and 0.92,
respectively.

Time of use price 𝜌𝑡TOU is equal to 72.39 e/MWh from 6 am to 10 pm
and to 51.62 e/MWh at other times. If 𝜇𝜔,𝑡max is set greater than 0, the
price for using the initial EV energy is 𝜌𝜇 = 50 e/MWh, which is lower
than the grid price. In each period, minimum initial energy 𝑒min is set
to 20% of the sum of the rated capacity of the batteries of the entering
EVs.

For both downward and upward power flexibility provided by the
parking lot, predefined tariff 𝜌𝑡flex is set to 100 e/MWh, significantly
higher than the grid prices. For all the cases, the recovery interval is
𝑛rec=3 periods after the end of the flexibility interval.

4.2. Results

AIMMS Developer was used to implement the optimization proce-
dures. The adopted LP solver is Gurobi V10 on 4.7-GHz processors with
32 GB of RAM, running 64-bit Windows.

The objective function values of the stochastic optimizations for the
three parking lots are: e 438 for PL A, e 568 for PL B, and e 242 for
PL C. The average and maximum objective function reductions with
single flexibility are: 1.32% and 8.63% for PL A, 1.08% and 12.11%
for PL B, 1.37% and 18.71% for PL C, respectively. These reductions
depend on the difference between 𝜌𝑡flex and 𝜌𝑡TOU.

As an illustrative example of the upward and downward flexibility
margin evaluations and of the subsequent recovery periods, Fig. 3
shows the down and up margins in power variations at 𝑡flex=29 and
𝑡flex=45, respectively, relative to the reference profile for scenario 56
of PL A included in the stochastic tree of Fig. 2. The figure shows the
results considering the flexibility interval given by a single period or 2
or 3 consecutive 15-min periods. While both up and down margins can
generally be computed for the same interval, the figure separates the
up and down flexibilities into distinct 𝑡flex for clarity.

Fig. 4 shows the periods when the maximum up and down flexi-
bility margins exceed 100 kW for scenario 56 in PL A. It considers
the flexibility interval of a single 15-min period (𝑛+flex=0), 2 periods
(𝑛+flex=1), and 3 consecutive periods (𝑛+flex=2). Only the first period of
the flexibility interval is shown in the figure. In time period 46, the
parking lot can provide both up and down flexibility for 𝑛+flex=0. In
several cases, when single period flexibility cannot be provided, a two-
or three-period flexibility is allowed as the different recovery interval
is more suitable.

Fig. 4 also shows the results obtained by tripling both the size
(i.e., increasing the number of charging stations to 210) and the number
6

Fig. 4. Initial period of the flexibility intervals with a margin larger than 100 kW for
scenario 56: (a) PL A, (b) PL D. Downward flexibility in green and upward flexibility
in red.

of EVs entering and exiting with respect to PL A. This expanded
scenario is referred to as PL D. As a result of the changes introduced,
the operating conditions of the corresponding scenarios differ between
the two parking lots. Nevertheless, the figure shows that the flexibility
widens as the size of the parking lot increases, as expected. In scenario
56, for PL A, the maximum up flexibility is 54.0 kW with an average
equal to 12.2 kW, and the maximum down flexibility is 70.8 kW with
an average equal to 13.1 kW; for PL D, the maximum up flexibility is
101.0 kW with an average equal to 24.3 kW, and the maximum down
flexibility is 129.2 kW with average equal to 38.6 kW. In time period
53, the PL D can provide both up and down flexibility for 𝑛+flex=0.

The computation time for the cases considered in the paper is
always less than a few minutes.

5. Conclusion

The paper introduces a method to characterize the flexibility offered
by parking lots equipped with EV charging stations, which can be
used by the distribution system operator to address challenges such as
voltage and congestion problems.

Key aspects of the method include computing the reference demand
profile and flexibility margins for each period of the following day,
considering predefined incentives for load changes. The approach uses
a multistage stochastic procedure that adapts to real-time conditions
and vehicle connections to the charging stations throughout the day.

Scenarios for stochastic optimization are created based on forecasts
of EV arrivals and departures, accounting for factors like battery size,
diffusion, and maximum charging power. Clustering of similar sce-
narios using the 𝑘-medoid method reduces computational complexity
while maintaining scenario feasibility.

The optimization model aggregates EV battery behavior and for-
mulates the problem as a linear one, making it computationally ef-
ficient even for large parking lots. It accounts for losses associated
with grid charging and vehicle-to-vehicle energy exchanges enabled by
bidirectional charging stations.

To enhance the flexibility of the EV parking lot, power reductions
and increases in consecutive periods are considered while ensuring
schedule feasibility, by including a recovery after the interval when the
flexibility is requested.

This approach operates as a day-ahead evaluation with a 4-stage
stochastic process, updating the decisions every 6 h to reflect real-time
EV data. Numerical tests on parking lots of various sizes demonstrate
the effectiveness of the method.

Overall, this procedure ensures that charging requirements are met
and serves as a valuable tool for the EV aggregator offering flex-
ibility services to improve the operation of the power distribution
network and mitigate the impacts of electromobility. The typical main
barriers to practical implementation are related to the lack of an
appropriate regulatory framework for the local market and an efficient
communication infrastructure.
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