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ABSTRACT The design of patient-specific implants for cranioplasty surgery is time-consuming and
challenging. Hence, the 2021 AutoImplant II challenge, consisting of the SkullBreak and SkullFix datasets,
was organized to foster research on computer vision techniques pursuing automation of the cranial implant
design task. Data-driven methods working on Computed Tomography (CT) emerged as a promising
procedure for the realization of such a task. The best performing approaches turned out to rely on ensembles
of Convolutional Neural Networks (CNN) architectures that either process each CT slice separately or
the entire voxelized volume through computationally demanding three-dimensional convolutions. More
recently, few methods were designed to deal with different data representations, for instance point clouds,
to perform skull completion. Similarly, we investigate a novel solution for implant generation that deploys a
conditioned occupancy network. Starting from the partial point cloud, we directly reconstruct the completed
voxel grid by evaluating the learned occupancy function in the given space resolution. Our approach can
generate high-quality implants achieving qualitative and quantitative results comparable to state-of-the-art
methods on the SkullBreak and SkullFix datasets while requiring significantly less computational resources.
The model trained on the SkullBreak dataset successfully generalize to real craniotomies provided in the
MUG500+ dataset.

INDEX TERMS 3D deep learning, autoimplant challenge, cranioplasty surgery, shape completion,
personalized medicine, surgery planning, implicit neural representation.

I. INTRODUCTION
Cranioplasty is the surgical procedure involving the repair
or replacement of a cranial bone defect arising from
traumatic injuries, tumor resections, and other neurosurgical
interventions. In cranioplasty, it is crucial to restore both
the aesthetic and functional aspects of the cranial skeleton.
During the past years, this medical procedure has witnessed
significant advances thanks to joint interdisciplinary efforts
between neurosurgeons, biomaterial scientists, radiologists,
and bioengineers. Hence, surgical planning relies nowa-
days on manual manipulation of three-dimensional medical
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imaging data carried out by specialized professionals through
sophisticated and expensive computer aided design (CAD)
software. Nonetheless, the process is time-consuming, as it
requires from days to weeks to generate a cranial implant.
Moreover, the resulting implant can vary significantly across
clinicians, as shown in [6]. To overcome these limitations as
well as reach better accuracy and faster surgical planning, the
first (2020) and second (2021) editions of the AutoImplant
challenge were organized in order to foster research on
computer vision techniques pursuing automation of the
cranial implant design task. Two datasets have been released
in the challenge: SkullBreak and SkullFix. They consist
of binary voxel grid triplets extracted from Computed
Tomography (CT) scans: the complete skull, the defective
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skull and the implant. While in SkullFix the synthetic
implant does not vary much, in SkullBreak the defect is
injected in a random position with a random shape. A major
finding from the challenge deals with data-driven methods
working on CTs emerging as a promising approach to achieve
automation of implant design. In particular, the task can be
addressed by Computer Vision techniques aimed at shape
completion, which pertains to predicting a complete shape
given a partial one. Most of the proposed solutions rely on
CNNs (Convolutional Neural Networks) that process either
3D voxel data [12], [16], [19], [29] or 2D CT slices [25],
[33]. Even if CNN-based solutions that work on the above
regular, grid-like data structures yield promising results
and, nowadays, achieve state-of-the-art performance in the
AutoImplant challenge, they require careful ad-hoc pre-
processing of the input voxel grid to reduce its size without
compromising the output quality, a compromise attainable on
the particular data released for the challenge but not possible
in general. In real cases where such pre-preprocessing is
not feasible, their deployment is likely to be hindered by
high-memory consumption and slow training and inference
time. Recently, few works [7], [27] have tried to overcome
the above-mentioned limitations by performing the shape
completion task on memory-efficient data structures such as
point clouds and then applying a voxelization step to match
the output format required by the challenge. In particular, the
latest work in the field [7] proposes the first investigation
on the use of Diffusion Models [9], [36], arguably the most
successful AI tool for visual content generation, to address
the implant generation task.

In this work, we explore the use of another family
of modern and effective deep learning tools, i.e. implicit
neural representations of 3D shapes [4] (also more broadly
referred to as neural fields [32]). In particular, we propose
a novel approach to automatic cranial implant generation
based on representing the completed skull as a continuous
occupancy function parameterized as a neural network [21].
The occupancy function is conditioned by the encoding
of the partial point cloud representing the surface of the
defective skull. The complete skull is generated by evaluating
the occupancy function on the whole voxel grid at its
original spatial resolution and voxel size, seamlessly possible
thanks to the continuous nature of the learned implicit
representation, and the implant is then extracted by the
reconstruct and subtract technique.

Our approach generates high-quality implants with a low
memory footprint, a fast generation time and an end-to-end
training protocol. Quantitative evaluation on the SkullBreak
and SkullFix datasets shows that such limited consumption of
resources does not affect output quality, which is comparable
with respect to current state-of-the-art methods. Eventually,
it is worth highlighting how, unlike any previous proposals,
ours learns a continuous function representing the whole
skull and, therefore, is conducive to seamlessly generating
implants at any desired resolution.

II. RELATED WORK
The use of 3D printed patient-specific implants is nowa-
days common practice for cranioplasty. Current approaches
for designing the implant rely on the manipulation of
three-dimensional medical imaging data. This method can
require days to weeks to create an implant and necessitate
highly trained professionals. Other approaches are based
on computer-aided design (CAD) like: mirroring-based
methods [1], [5]; surface interpolation methods [2], [28]
or template deformation methods with statistical shape
models [8], [24]. Although CAD approaches are effective,
they lack generalizability depending, for example, on the
defect position or the dataset used to select the template.

Instead, deep learning methods arise as a promising
solution for the automatic implant generation task. The
first (2020) and second (2021) editions of the AutoImplant
challenge allowed investigation of the effectiveness of deep
learning approaches on the skull completion task for synthetic
cranial defects.

Promising techniques rely on 3D CNN architectures [12],
[19], [29]. The authors of [29] trained a cascade of two
3D U-Nets directly on the voxel grid. The first network
aims to predict the implant shape which is concatenated
with the defective input and fed into the second U-Net to
predict the complete skull. Even if they reached high-quality
results, the training time and GPU memory consumption
represent a drawback, as highlighted in [13]. Since the
majority of the space is occupied by the background [11],
Li et al. [16] proposed a coarse-to-fine solution to deal with
the memory consumption problem. The authors identified
that the difference between coarse and high-resolution voxel
grids is the arrangement pattern of valid voxels. For this
reason, after a coarse voxel grid is generated by a 3D
CNN architecture, the high-resolution shape is obtained by
rearranging valid voxels. Another solution to avoid wasting
memory and time to process the empty background relies on
sparse 3D convolutions, like those implemented in [12], [14].
Despite the lower memory consumption, all these solutions
obtain lower performance compared to [29].

Slice-based methods [25], [33] tried to address the
automatic implant generation task by using 2D convolution
separately on each slice of the CT scan. The authors of [25]
proposed to deal with this task following an inpainting
approach. The inpainting is performed separately for each
slice exploiting CNN. They trained three different CNN
networks to predict directly the implant slices. Each network
processes slices taken along different axes of the volume
(i.e., multiaxial CNN). A post-processing stage synthetizes
the estimated 2D slices to obtain the final volumetric implant.
Yang et al. [33] proposed to use an ensemble of three RNN
and three CNN multiaxial models to compensate for the loss
of global skull features observed in the previous solution [25].
The output of the CNN multiaxial slice networks and RNNs
is then fused to obtain the final implant estimation. While
slice-based methods have lower computational requirements
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FIGURE 1. Complete pipeline for implant generation. The defective binary voxel grid is pre-processed to generate a partial point cloud that acts as a
condition for the occupancy function. The implicit function computes an occupancy value for each point of the voxel grid generating a completed skull.
The final implant is obtained with a post-processing stage.

compared to methods that process the whole 3D volume [12],
[29], the overall quality is lower as the generated surfaces are
not as smooth as the one obtained with such methods and they
exhibit a loss of details due to missing global information.

To deal with both the loss of global information and the
high memory consumption, a few recent works [7], [27], [30]
proposed to tackle the skull implant generation problem by
using Point Clouds as data representation. The authors of [27]
employ a Generative Adversarial Network (GAN) to generate
the complete shape of the skull. However, this solution
processes low-resolution point clouds which results in a
poor mesh reconstruction. A solution to the low resolution
problem is proposed in [30], where multiple random samples
of a high-resolution skull are completed through a point
cloud completion method based on transformers [34], and
the results are merged to generate the implant. However,
completion performance is always lower than that attained
by methods using 3D CNNs. Instead, [7] proposed to use
Diffusion Probabilistic Models [36] to generate the implant’
points cloud. The output of the diffusion model is further
processed by a voxelization network [20] to reconstruct the
complete voxel grid. Thanks to the powerful generation
ability of the diffusion model, they can ensemble different
generations for each defective skull. Even if they can achieve
results comparable to the state of the art, the diffusion
network and the voxelization network cannot be trained end-
to-end and the probabilistic diffusion generation requires
1000 denoising steps. Overall, the implant generation process
can take up to 1200s.

Differently from the solutions described above we propose
to deal with the cranial implant design problem by learning
an occupancy function conditioned on the partial point cloud
of the defective skull. The learnable implicit function can
be trained end-to-end with few pre-processing and post-
processing steps. The proposed solution has a fast inference
time and a small GPU memory consumption and can achieve
comparable qualitative and quantitative results with respect
to state-of-the-art methods.

III. CRANIAL IMPLANT GENERATION
We address cranial implant generation as a shape completion
task. As depicted in Figure 1 our proposed solution consists

FIGURE 2. Pre-processing pipeline defined to sample the defective skull
partial point cloud.

of three main stages. First, the CT scan of the partial, i.e.
defective, skull is converted into a point cloud with a pre-
processing step. Then, the partial point cloud is provided
as input to a learned deep occupancy network which, for
each 3D query point, predicts the probability of belonging
to the complete shape. By computing and thresholding the
occupancy function at each center point of a chosen voxel
grid, a binary voxel grid representing the completed skull
is obtained. Finally, the implant is extracted through a post-
processing step.

A. PRE-PROCESSING
Starting from the binary volume extracted from the CT
scan, the goal is to obtain a point cloud that represents the
surface of the partial skull. To this end, the triangular mesh
is extracted using the Marching Cubes algorithm [18]. Then,
in order to have a uniform partial point cloud of fixed size,
npartial vertices are sampled using the Poisson Disk Sampling
algorithm [35] as shown in Figure 2. We set npartial =

35000 in our experiments.

B. OCCUPANCY NETWORK
Differently from [7] which exploits diffusion models to
perform the shape completion starting from a partial point
cloud, we propose to represent the skull using a learned
implicit function, i.e. the occupancy function, parametrized
as a neural network. Peculiarly, our training process does not
mandate discretizing the 3D space and shapes are represented
in a continuous way. In more detail, we learn a neural network
that predicts an occupancy value for each 3D query point,
conditioned by the partial point cloud extracted from the
defective skull. To this end, we employ the Convolution
Occupancy Network proposed in [21].
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FIGURE 3. Query points generation starting from the complete point
cloud sampled from the ground truth shape.

The input point cloud xpartial ∈ Rnpartial×3 is first encoded
into a 3D feature grid using a shallow PointNet [22] with
local pooling. All the features that fall in the same voxel
are processed through average pooling to encapsulate local
geometry information. This process outputs a 3D feature
volume, xc, of dimension r × r × r × d , where r is the
resolution of the voxel grid and d is the feature dimension-
ality. This feature volume is then processed through a 3D
convolutional U-Net architecture [23]. This step is important
to integrate both local and global shape information. The
convolution occupancy network exploited in ourmodel works
on a volumewith r = 64. In order to extend the receptive field
of our network and avoid generating incomplete implants
caused by the sparseness of the volume, we modified the
3D U-Net used in [21] by adding one 3D convolutional
layer.

The goal of the occupancy function is to estimate the
probability of an input query point q ∈ R3 to belong to the
conditioning 3D shape.

Thus, along with the spatial coordinates of the query
point, the predictor (aka implicit decoder) takes as input
the trilinear interpolation of the 3D features associated with
the vertices of the voxels in xc where the query point falls.
The overall learnable occupancy function can be expressed
as:

fθ (q, φ(q, xc)) → [0, 1], (1)

where fθ is a neural network composed of multiple ResNet
blocks, θ are the weights of the network, q is the query point
for which the occupancy is predicted, xc is the 3D feature
volume grid and φ(q, xc) returns the query point feature.
At training time, 60k query points are chosen from the

ground truth point cloud by extracting samples from the
complete volume. As illustrated in Figure 3, this involves two
distinct sampling phases. In the first one, a set of sampled
points is slightly displaced by adding random Gaussian noise
with a standard deviation of σ1 to the coordinates. The second
set of sampled points undergoes a similar procedure, but
this time with a different standard deviation, σ2, where σ2 is
higher than σ1. In addition, random points are uniformly
sampled from the whole bounding volume. The selection of

FIGURE 4. Post-processing pipeline defined to generate the final implant.

FIGURE 5. SkullBreak samples for each defect type. The ground truth
implant is highlighted in red.

uniform points in the whole volume is necessary because
more than 90% of the volume is empty [11].

Differently from [21], we employ the Focal Loss [17]
between the predicted ôq and the true occupancy values oq
as the objective function:

L(ôq, oq) = −[α oq (1 − ôq)γ log(ôq) + (2)

+ (1 − α) (1 − oq) ôγ
q log(1 − ôq)] (3)

Indeed, due to 90% of the binary volume being empty, the
focal loss enables to weigh less the many easy-to-classify
samples (e.g., points in the empty part of the volume) while
giving more importance to harder ones (e.g., points that
belong to the skull or lay close to the surface). At inference
time, each point within a voxel grid of any desired resolution
can be used as a query.

C. POST-PROCESSING
Compared to existing solutions that generate implants at
a smaller resolution than the input one, and require slow
and ad-hoc postprocessing to upsample it to the desired
resolution, thanks to its implicit formulation our method can
directly generate the complete skull voxel grid at arbitrary
resolutions. Therefore, the aim of our postprocessing is only
implant extraction. The overall post-processing pipeline is
shown in Figure 4. The first step performs an abjunction
between the generated skull voxel grid and the defective
one in order to select only the voxels of interest for the
implant. Since some noise emerges during this process, a
3D binary opening operation is performed. After this step,
the implant can be recognized as the largest connected
volume. Therefore, a clustering algorithm is exploited to
extract the implant. Finally, to enhance the implant’s border
shape, the extracted implant is added back to the defective
skull voxel grid and re-processed by performing a binary
closing, an abjunction operation, and a second step of
clustering.
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TABLE 1. Comparison of the average DCS, bDCS and HD95 obtained on the SkullBreak test set. For [7] we also report the result obtained considering their
ensemble strategy.

TABLE 2. Comparison of the average DCS, bDCS and HD95 obtained on the SkullFix test set. For [7] we also report the result obtained considering their
ensemble strategy.

FIGURE 6. Some training samples of SkullFix with the highlighted ground
truth implant in red.

IV. EXPERIMENTS
In this section, we report on a series of experiments
performed to assess the validity of the proposed approach.
A brief description of the implementation settings and the
datasets employed is first provided. Then, an analysis of the
quantitative performance is conducted, also in comparison
with state-of-the-art models, such as the cascaded 3D U-Net
architecture [29], the method based on sparse volumetric
convolutions [12], the ensemble of multi-axial slice-based
2D network [33] and the latest proposal in the field, namely
the approach relying on a diffusion probabilistic model
of point clouds followed by a voxelization network [7]
(PCDM). Finally, qualitative samples of the implant meshes
reconstructed using the proposed solution are presented,
along with some concluding remarks.

A. IMPLEMENTATION DETAILS AND SETTINGS
Our networks have been trained for 1000 epochs using
Adam [10] as the optimizer and a learning rate of 10e−4, for
both datasets. The Focal Loss has been used as the training
objective function while, at validation time, the Intersection
over Union (IoU) over the entire binary volume is used to
select the best checkpoint. We set γ = 2 and α = 0.7 for
the Focal Loss. All the experiments have been performed on

a NVIDIA RTX3090 Ti GPU with 24GB of memory. All
the point coordinates are normalized in the interval [0, 1].
As described in Section III-B, a total number of 60k points
are used as query points for each partial shape. These query
points are sampled from the complete point cloud of the skull
as follows: 20k points are randomly sampled and modified
by adding a Gaussian noise with σ1 = 0.005; other 20k
points are sampled and modified by adding a Gaussian noise
with σ2 = 0.01 and the remaining 20k points are sampled
uniformly from the unit cube. In the post-processing, the
binary opening is performed using a three-dimensional kernel
of size 3, while the binary closing has a kernel size of 5.

B. DATASETS
The data used in the experiments comprise the training
sets of the SkullBreak and SkullFix [11] datasets from the
AutoImplant II Challenge. They are composed of binary CT
scan slices where synthetic defects have been injected. Both
are subsets of the publicly available CQ500 [3] dataset, which
was collected in various hospitals across India.

The SkullBreak training set has 114 samples with
5 different synthetic defects for each skull with multiple
positions and shapes. The aim is to emulate the variability
in cranioplasty by placing the defect in specific positions,
such as bilateral, fronto-orbital, and parieto-temporal, but
also randomly. Some examples are shown in Figure 5. In this
dataset, the defect’s borders are not perfectly cropped to
reflect the bone resorption at different stages in cranioplasty.
The skulls in the dataset have an isotropic voxel size of 0.4mm
with a voxel grid of 512 × 512 × 512 .

The SkullFix training set has 100 skulls with one implant
per sample. Each skull has a variable voxel size with a
variable voxel grid of 512 × 512 × Z . For this reason,
following [7], the CT scans have been resized with an

VOLUME 12, 2024 95189



S. Mazzocchetti et al.: Automatic Implant Generation for Cranioplasty via Occupancy Networks

TABLE 3. Different measures for the results obtained by the proposed solution on the SkullBreak and SkullFix datasets considering different defects.

isotropic voxel of 0.45mm which results in a cubic voxel grid
of 512 × 512 × 512 . Some samples are shown in Figure 6.
Differently from SkullBreak, the defect shape and position
are similar in the whole SkullFix dataset. Therefore, the shape
completion task is easier when compared with SkullBreak.

Since the challenge is no longer active, to assess the
performance of all models we used the train/test splits created
from the original training sets in [7] and kindly shared with us
by the authors. The new training sets have been additionally
split into train/validation sets to validate the network during
training and perform early stopping. More in detail, for
SkullBreak we use 78 samples for train, 8 for validation and
28 for test. While for SkullFix we consider 68 samples for
training, 7 for validation, and 25 for the test set.

Finally, an experiment on a dataset not used for training
has been performed to verify the generalization abilities of the
proposed approach. In particular, the subset of theMUG500+
dataset [15] with real craniotomies and the ground truth
implants designed by expert clinicians has been used. This
dataset was constructed based on the head CT scans acquired
from the Medical University of Graz (MUG) in clinical
routines. The partial skulls in this dataset are characterized
by a voxel grid size of 512× 512× Z where Z ∈ [147, 291].
Moreover, the voxel size dx, dy, dz is variable. In particular
dx ∈ [0.35, 0.5], dy ∈ [0.35, 0.5] and dz ∈ [0.5, 1.0].
As pointed out in [31], completion networks are trained
to inpaint the missing shape of the skull. In contrast, the
optimal shape of the implant depends on the geometric and
mechanical properties of the 3D printing material which the
networks cannot be aware of, e.g. the implants designed by
clinicians in theMUG500+ dataset are thinner than the actual
skull bone [6]. Hence, quantitative comparisons between the
ground-truth and the network predictions are not meaningful,
and we provide qualitative results to assess the performance
of the model on this dataset.

C. QUANTITATIVE EVALUATION
In this section, we provide a detailed quantitative evaluation
in terms of output quality, resource consumption and
inference speed.

FIGURE 7. Qualitative results for the SkullFix dataset.

1) OUTPUT QUALITY
Tables 1 and 2 summarize the average results on both
datasets in comparison with existing state-of-the-art solu-
tions. As reported in the table, due to the large memory
footprint required by 3D convolutions, the experiments con-
ducted in [7] employed different resolutions for each method,
following the settings used in the original solutions [7], [12],
[29], [33]. Here, we adopt the same resolutions. In particular,
a voxel grid resolution of 240 × 200 × 240 was used for 3D
U-Net [29], 512 × 512 × 277 for 3D U-Net (sparse) [12],
512×512×512 for PCDM [7] and an image of 512×512 for
2D U-Net [33]. It is worth noting that to compare results
with the ground-truth, the outputs of the competitors’ models
require a post-processing step by using decropping, padding
and spline interpolation to bring back each voxel grid to the
original resolution and voxel size, which are then used to
compute the metrics. Notably, this slow and ad-hoc post-
processing step is not required in our approach, which can
seamlessly produce outputs at arbitrary resolution and voxel
size thanks to its continuous formulation.

Results are reported in terms of Dice Similarity Score
(DSC), boundary Dice Similarity Score (bDSC) and Haus-
dorff distance at the 95th percentile (HD95), as proposed
in the AutoImplant II challenge. More in detail: the Dice
Similarity Score (DSC) measures the area of overlap between
the predicted implant and the ground truth implant; the
boundary Dice Similarity Score (bDSC) quantifies the DSC
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FIGURE 8. Qualitative results for the SkullBreak dataset.

at the border of the implant, while the Hausdorff Distance
95% (HD95) measures how far the contours of the predicted
implant are from the ground truth at the 95th percentile.

From Tables 1 and 2 we can appreciate how there is one
method that is under-performing, i.e. 3D U-Net (sparse) [12].
The remaining methods including our solution attain similar
performance, e.g. our solution obtains average bDSC values
of 0.89 and 0.93 on the SkullBreak and SkullFix datasets,
respectively, which is the second best result in both datasets.
As shown in [13], the bDSC is the most important metric due
to its correlation to the doctor’s evaluation.

Table 3 provides a more detailed evaluation of the different
types of defects. Overall, performance is consistent across

defect types and the overall variance across samples is
low, especially for the important bDSC metric. Some large
variations are mainly due to synthetic defects which produce
unrealistic cranioplasty scenarios, e.g. large frontal defects
in the eye regions (see also Figure 11). In these cases,
the eye orbits can be considered as a part of the defect
leading to large errors, e.g. low minimum DSC values on
the Random 1 and Random 2 defect types. Indeed, on the
SkullFix dataset, where real defects are considered and only
minor variations in shape and position appear, such outliers
are absent and the standard deviation is lower. Detailed
results for SkullFix are reported in the last column of
Table 3.
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FIGURE 9. Surface reconstruction for different voxel grid resolutions.

FIGURE 10. Comparison between implants generated with a 5123 and
10243 voxel grid resolution.

FIGURE 11. Defective skull mesh, reconstructed implant and GT implant
for two error cases in the SkullBreak test set.

2) RESOURCE CONSUMPTION AND INFERENCE SPEED
In terms of efficiency, among the well-performing methods
ours is by far the fastest, as reported in Tables 1 and 2.
In particular, our solution is about 40x faster than the method
based on diffusion models [7] which requires more than
15 minutes to generate an implant. Our solution is also faster
than methods processing directly voxel grids like 3D U-Net
[29] since handling voxel grids with 3D convolutions is
highly expensive. For this reason, they have to process an

input voxel grid with a lower resolution of 240 × 200 ×

240 which, however, as detailed above, requires a costly
and ad-hoc post-processing operation to undo the effects of
cropping, padding and spline interpolation that increases the
overall time to run such solutions. Moreover, such ad-hoc
reduction of input size is possible only because of the peculiar
arrangement of the input voxel grids in the considered dataset.
Indeed, in these datasets there is a large amount of empty
voxels around the skulls along the axes, which can be
cropped, thereby reducing the size of the voxel grid, without
incurring information loss. This is however not the case in
general, and had 3D U-Net be required to process the input
volumes at the original resolution, it would have required
a massive amount of memory and would have been much
slower. Indeed, wewere not able to run it on the original voxel
grids even on a GPU with 40 GBs of V-RAM.

D. QUALITATIVE EVALUATION
In this section, we qualitatively analyze the performance of
the proposed approach by showing the mesh generated from
the binary voxel grid. Qualitative results for the SkullFix
test samples are presented in Figure 7 while in Figures 8
we show two generated implants alongside ground truth for
each type of defect in SkullBreak. We can observe that the
proposed method generalizes well to unseen defects while
still being able to generate high-quality implants featuring
a smooth surface. In particular, generalization abilities on
SkullBreak are particularly remarkable since it contains
5 different synthetic defects that have been generated with a
random shape in different locations of the skull. Nonetheless,
our approach is able to produce an implant that can perfectly
fit these varying defects, providing experimental evidence of
its ability to generalize to diverse skull defects and patient
anatomies.

The learned deep occupancy function can effectively
represent the overall shape of the skull. To highlight this
phenomenon, we evaluate the occupancy function at different
voxel grid resolutions and then visualize in Figure 9 the
corresponding meshes extracted by Marching Cubes. It can
be observed how the surface becomes smoother as the
resolution increases. Theoretically, our approach is not bound
to an upper resolution limit. Thus, we performed an additional
experiment by evaluating the occupancy function on a
10243 resolution voxel grid. The resulting mesh is also

95192 VOLUME 12, 2024



S. Mazzocchetti et al.: Automatic Implant Generation for Cranioplasty via Occupancy Networks

FIGURE 12. Qualitative results on the real craniotomy skull of
MUG500+ [15]. Starting from the left column we report: the ID; the
defective skull; the isolated predicted implant; the predicted implant with
the partial skull; the implant designed by the clinician; and the implant
designed by the clinician with the partial skull (best in colors and
zoomed).

shown in Figure 9. Moreover, to extract the implant, the
defective binary mask can be up-sampled via interpolation
to 10243 resolution. In Figure 10 we show the corresponding
triangular meshes for two examples. It can be noticed that the
higher-resolution implant has a smoother surface and exhibits
more fine-grained details. Such detailed, high-quality results
are possible only with our implicit, continuous formulation,
which can generate implants at arbitrary resolutions, as
methods based on U-Nets or diffusion models are bound to
work at a fixed output resolution.

Although the proposed approach can effectively recon-
struct the defective region of the skull, some errors have
been observed, as shown in Figure 11. The first row displays
a large, randomly-shaped defect encompassing the parietal,
frontal, and sphenoid bones of the skull. Such a defect is
unrealistic in a cranioplasty scenario, particularly due to the
need to incorporate the eye orbit into the implant design.
We can notice how the predicted and ground truth implants
are quite different, which is reasonable as there can be many
possible plausible reconstructions for large defect areas. The
second row of Figure 11 shows, instead, the predicted and
ground truth implants for a Fronto-Orbital defect type. It can
be seen that the reconstructed zygomatic bone is thinner
compared to the ground truth and some fine-grained details
are missing.

Finally, the generalization capability of our solution has
been evaluated by running the proposed model on the
subset of the MUG500+ dataset [15] with real craniotomies.
Given the diversity of positions, sizes, and contours of the
defects, the model pre-trained on the SkullBreak dataset
has been employed. It is worth pointing out that the
quality of the segmentation of the CT scans in this dataset
is significantly lower than in SkullBreak and SkullFix.
Nonetheless, as shown by the qualitative results reported
in Figure 12, our approach can effectively generalize to a
new dataset and generate plausible implants that can be used
as a starting point for clinicians to speed up the implant
design workflow. Even in the presence of two defects in the
B0008 case, our model can produce a good reconstruction
from which we extracted two implants by selecting two
clusters in the post-processing stage.

V. CONCLUSION
We have introduced a novel approach for automatic cranial
implant generation. Ours is the first solution to explore the
use of neural fields to tackle this problem. The learned
deep occupancy function is conditioned on the point cloud
of the partial defective skull. This allows for limiting the
memory footprint of the method while being able to generate
high-quality implants with fast inference time. We achieve
comparable scores with respect to SOTA methods that
in contrast need longer generation time, higher memory
consumption or costly ad-hoc post-processing. Peculiarly,
our solution based on neural fields enables generating
seamlessly high-resolution patient-specific implants due to
the continuous nature of the learned occupancy function.
This leads to high-resolution triangular meshes that can
result in higher quality implants. Moreover, the model can
generalize on real clinical cases coming from a different
dataset exhibiting robustness against possible biases from
the training set. We hope that the insights and experimental
findings offered by our work will foster further research
on the deployment of neural fields for automated and
patient-specific design of surgical implants. As future work,
we plan to investigate automatic implant design with a focus
on the splanchnocranium portion of the skull, a region far
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richer in fine-grained details (e.g. in the jaw and teeth) which
may require the use of periodic activation functions [26] in
both the conditioning encoder and the implicit decoder to
more accurately reconstruct high-frequency details.

Finally, since this paper presents a study on the feasibility
and effectiveness of implicit representations for the task of
implant design and does not present a clinical study of a
real deployment of the system, it has not addressed the
ethical implications of such deployment. Yet, we deem it
worth discussing such implications to conclude our study.
In particular, during the deployment of deep-learning-based
Software as Medical Devices (DL-based SaMD) one major
concern is the lack of transparency of deep learning models.
Therefore, it would be important that such models are
deployed in a real clinical setting only as an aid tool for
clinicians to speed up the implant design process and not
to take decisions in place of them. Having a clinician to
always review the output of the model and take the final
decision on the implant shapewould certainly help tomitigate
the potential ethical concerns of its deployment. In addition,
the implant predicted by our solution is only an initial
guess that should then be properly adapted by the clinician
for thickness, rim width, surface area, and volume [6].
The second major issue in the deployment of an AI/ML-
based SaMD is the potential bias inherited from the training
datasets. Therefore, before clinical deployment, the biases
and limitations of the trained models should be thoroughly
characterized.Moreover, to prevent biases, a large and diverse
training dataset should be collected, encompassing CT scans
across various genders, ethnicities, and age groups. We note
that our model shows good generalization capabilities on
the MUG500+ dataset, collected in Austria, despite being
trained solely on scans from the SkullBreak dataset, which
comprises CT scans from hospitals in India. This suggests
that it already naturally exhibits some robustness to ethnicity
biases of the training set.
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