
Database
Models of the Human Reference
0022-2836/� 2024 The Autho
licenses/by-nc-nd/4.0/).
Alpha&ESMhFolds: A Web Server for
Comparing AlphaFold2 and ESMFold

Proteome
Matteo Manfredi 1,†, Castrense Savojardo 1,⇑,†, Georgii Iardukhin 1,†,
Davide Salomoni 2, Alessandro Costantini 2, Pier Luigi Martelli 1,⇑ and Rita Casadio 1

1 - Biocomputing Group, Dept. of Pharmacy and Biotechnology, University of Bologna, Italy

2 - INFN-CNAF, Bologna, Italy
Correspondence to Castrense Savojardo and Pier Luigi Martelli: castrense.savojardo2@unibo.it (C. Savojardo),
pierluigi.martelli@unibo.it (P.L. Martelli)
https://doi.org/10.1016/j.jmb.2024.168593
Edited by Michael Sternberg

Abstract

We develop a novel database Alpha&ESMhFolds which allows the direct comparison of AlphaFold2 and
ESMFold predicted models for 42,942 proteins of the Reference Human Proteome, and when available,
their comparison with 2,900 directly associated PDB structures with at least a structure to sequence cov-
erage of 70%. Statistics indicate that good quality models tend to overlap with a TM-score >0.6 as long as
some PDB structural information is available. As expected, a direct model superimposition to the PDB
structure highlights that AlphaFold2 models are slightly superior to ESMFold ones. However, some
55% of the database is endowed with models overlapping with TM-score <0.6. This highlights the different
outputs of the two methods. The database is freely available for usage at https://alpha-esmhfolds.bio-
comp.unibo.it/.
� 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://crea-

tivecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Recently published results from the Critical
Assessment of methods for Structure Prediction
(CASP 15, https://predictioncenter.org/casp15/
index.cgi) confirm the relevance of Artificial
Intelligence (AI)-based modelling on the accuracy
of protein structure prediction.1 On some one hun-
dred assembly targets the impressive performance
of the submitting community was due to methods
differently based on DeepMind’s AlphaFold2
(https://alphafold.ebi.ac.uk/),2 which in CASP14
paved the way to highly accurate large-scale struc-
ture predictions.3,4 AlphaFold2 contains deep neu-
ral networks (transformers) trained to produce
protein structures from amino acid sequences, mul-
tiple sequence alignments, and homologous pro-
teins. As an alternative, recent methods take
advantage of protein Language Models (pLMs),5
r(s). Published by Elsevier Ltd.This is an open ac
and sequence embeddings to develop end-to-end
models of protein structures, such as ESMFold
(https://esmatlas.com/).5 CASP 15 indicates that
when proteins are better annotated at the level of
the protein family, AlphaFold2 models are superior
to those generated by purely embedding systems,
as expected given its development and the large
amount of pre-existing information it takes as input.
In this paper we develop a novel database,

Alpha&ESMhFolds, where we store two models
per human sequence. Models are downloaded
from https://alphafold.ebi.ac.uk/, the model
database developed by Google DeepMind and
EMBL-EBI,6 and paired with models generated in
house with ESMFold. Our database gives the
unique opportunity for a given human protein to
directly compare the two models, and when avail-
able, to compare them with the associated PDB
structure (https://www.rcsb.org/).7,8 Our database,
cess article under theCCBY-NC-ND license (http://creativecommons.org/
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which presently contains 85,884 models for 42,942
proteins of the human Reference Proteome, is a
unique resource for investigating when both meth-
ods give similar or dissimilar good/bad quality mod-
els. The information is particularly interesting in the
absence of an experimental reference structure,
allowing a direct evaluation and comparison of the
high-quality predicted regions for each protein.
The models can support research in different areas,
such as active site conservations, functional anno-
tation for specific biological processes, mapping of
disease related variations and new developments
for improving protein structure prediction, consider-
ing the different approaches of the prediction
methods.
The database is freely available at https://alpha-

esmhfolds.biocomp.unibo.it/.

Materials and Methods

Protein database

Human proteins adopted in this study were
extracted from the human Reference Proteome
(UP000005640), available at UniProt,9 release
2023_03, as of January 2023 (80,581 proteins,
https://ftp.uniprot.org/pub/). From the initial set, we
excluded fragments, short peptides (shorter than
50 residues) and sequences for which AlphaFold22

models were not available in AlphaFoldDB.6,10 We
ended up with 42,942 protein sequences, which
we also modelled in house with ESMFold.5

When necessary for data analysis, we performed
a clustering procedure to reduce internal
redundancy. To this aim, we ran MMseqs211 with
a sequence identity threshold set to 50% over an
alignment coverage of 70%. The number of non-
redundant protein sequences turns out to be
23,939 (Table S1). In the set, 13,489 proteins are
reviewed and present in UniProt/SwissProt.
In order to retrieve the best available structure

from the Protein Data Bank (PDB, https://www.
rcsb.org/ we extracted structural data associated
to our dataset by adopting the PDBe entry-based
SIFTS REST API (available at https://www.ebi.ac.
uk/pdbe/api/sifts.html),12 which recovers structures
mapping to a UniProt accession sorted by coverage
of the protein and resolution (Table S1). After con-
sidering only structures with residues in the protein
sequence for which atomic coordinates are avail-
able (by excluding potential artifacts in the PDB
(e.g. tags), unmodeled regions (i.e., gaps) and sort-
ing signals (N-terminal signal and/or transit peptides
reported with experimental evidence in the UniProt
entry)), and constraining a minimum PDB coverage
of at least 70%, we were able to retain 2,900 PDB
chains, of which 2,404 are associated to non-
redundant proteins in Swiss-Prot. This data set
was then adopted as structural ground truth to
assess predictive performance of both AlphaFold2
and ESMFold (Table S1). The minimum structure
to sequence coverage is constrained in order to
2

avoid the association of a sequence to small struc-
tural fragment/s.
For sake of extending the set of structural data

associated to human proteins, we took advantage
of the basic principles and rules of template
search in building by comparison13. We aligned with
MMSeqs2 the remaining 40,042 human proteins of
our set not endowed with a directly associated PDB
structure (Table S1) to the PDB database, requiring
a minimum sequence identity of 50% (an arbitrary
threshold for functional conservation) over an align-
ment coverage of at least 70%. After this search, we
retrieved PDB templates for other 5,736 additional
human sequences.
Characteristics of the human data set
modelled with Alphafold2 and ESMFold

Human proteins modelled with AlphaFold2 and
ESMFold span a wide range of lengths, from the
shortest ones, accounting for 51 residues
(A0A286YFK9, Small integral membrane protein
38) to the longest ones including 1,836 residues
(P35499, Sodium channel protein type 4 subunit
alpha). Evidently, the set comprises both
monodomain and polydomain proteins. Figure S1
shows the protein length distribution of reviewed
(SwissProt) and unreviewed (TrEMBL) entries in
the dataset (Table S1, Figure S1).
For 2,409 non-redundant proteins, a PDB chain

covering at least 70% of the sequence is available
(Table S1). The vast majority of included
structures were obtained with X-ray diffraction
after crystallization (1,643 chains, about 68% of
the dataset), followed by Electron Microscopy
(EM, 689 chains, about 29%) and Nuclear
Magnetic Resonance (NMR, 77 chains, about 3%).
Structural alignments and scoring metrics

We adopted Foldseek14 to produce pairwise
structural alignments between pairs of models pre-
dicted with AlphaFold2 and ESMFold, and between
the computed models and the corresponding PDB
chain, when available. The Foldseek program was
run using the alignment type set to the TM-align
algorithm (option --alignment-type 1) and disabling
prefiltering of results (option --prefilter-mode 2).
The remaining program parameters were left to
default values.
Standard metrics were always adopted to score

the structural similarity of two superimposed
structures, including the template modelling score
(TM-score)15 and the Root Mean Square Deviation
(RMSD). When comparing models, we also
adopted the Global Distance Test (GDT) score,16,17

which is well suited for comparing two predicted
models of the same protein sequence. RMSD val-
ues were directly retrieved from Foldseek output
and are computed considering Ca atoms of the
structural aligned regions. TM-score and GDT
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score consider backbone Ca atoms and are com-
puted using the ClusCo tool.17
Computational infrastructures

The computational infrastructure employed in this
work to generate EMSFold models has been made
accessible through the Istituto Nazionale di Fisica
Nucleare (INFN, https://home.infn.it/it/).
Specifically, the INFN’s primary data processing
and computing research centre, CNAF (https://
www.cnaf.infn.it/en/), supplied the necessary
cloud resources via the INFN private cloud, known
as INFN Cloud (https://www.cloud.infn.it/
architecture/). The virtual machine (VM) used in
this study operates on the �86_64 architecture
and runs the Ubuntu 22.04 operating system. It is
equipped with 8 CPU cores, each being an Intel
Xeon Processor (Cascadelake) with 1 thread per
core and 1 core per socket. It boasts 32 GB of
CPU RAM and is equipped with a single NVIDIA
V100 Tensor Core GPU boasting 32 GB of RAM.
Its storage infrastructure includes a hard disk drive
(HDD) with a total capacity of 97 GB and a 3.5 TB
additional storage space.
ESMFold runtime is strongly correlated with

sequence length, ranging from a few seconds for
very short sequences to about 60 s for sequences
with 600 residues and up to 800 s for longer
sequences (about 1800 residues). Structure
alignments and superpositions are performed in a
few seconds by Foldseek for each pair of
structures considered (either model-vs-model or
model-vs-PDB).
The model database is now hosted at the

computational infrastructure of the Bologna
Biocomputing Group (https://www.biocomp.unibo.
it/).
Web server implementation

The web application has been implemented using
the Python Django application server (https://www.
djangoproject.com, version 4.0.4). The user
interface adopts the Bootstrap frontend toolkit
(https://getbootstrap.com, version 5.3.2). Results
of the queries in the search page are displayed
with DataTables (https://datatables.net, version
2.0.2). For molecular visualizations, we adopt the
PDBe Mol* viewer JavaScript plugin (https://
github.com/molstar/pdbe-molstar, version 3.1.3).
The backend database has been implemented
using the PostgreSQL DBMS (version 13) and it
stores all data and files displayed on the web
server. All queries to the database are
implemented adopting the Python Psycopg library
(version 2.9.9).
3

Results

Introducing Alpha&ESMhFolds, a database of
AlphaFold2 and ESMFold paired models for
human proteins

Following AlphaFold2,2 the predicted local dis-
tance difference test (pLDDT) reliably predicts the
Ca local distance difference test (lDDT-Ca) accu-
racy of the corresponding prediction. The pLDDT
score computed by AlphaFold2 is also computed
by ESMFold (https://esmatlas.com/),5 and indicates
a per-residue confidence score between 0 and 100
(see also https://alphafold.ebi.ac.uk/faq#faq-12).
In Table 1, we organise paired models as a

function of the relative fraction of high-quality
residues (with pLDDT value >70, High or
Confident), considering four possible intervals (up
to 25%, 50%, 75%,100% of the protein sequence,
respectively). Alpha&ESMhFolds contains 85,884
models of 42,942 human proteins computed with
AlphaFold2 and ESMFold. Their superimposition
is evaluated with the TM-score (which ranges from
0 to 1), 0.6 being the threshold among good and
bad superimposition.15,18

In Table 1, for each interval of high confidence
residues in both models, we show the number of
proteins, and among round brackets the number of
PDB available structure/s in the subset, the
median value of TM-scores and the number of
model pairs (proteins) with TM-score > 0.6.
Considering that the total number of modelled
proteins is 42,942, 65.5% of the models (cells
along the main diagonal) have similar quality;
33% of the models have TM-score > 0.6 and 26%
of the models are high quality (pLDDT > 70 for at
least 75% of the residues)6,10 and superimposable.
Off diagonal, we find models which are predicted
with a larger fraction of high-quality residues by
ESMFold than AlphaFold2 or vice versa. Interest-
ingly enough, 17 proteins have ESMFold models
which superimpose with a TM-score > 0.6 with low
quality AlphaFold2 models, while the opposite hap-
pens for 47 proteins. The number of PDB structures
in the whole set is 2,900, 2,792 of which (96.3%) are
included in the four labelled cells with an empty dot
(�) of Table 1. Figure S2 shows the TM-score distri-
bution of paired models as a function of bins of pro-
tein length. The median TM-score and data set
median value are also included. It appears that the
highest model superimposition (TM-score median
value >0.6) includes proteins with length ranging
from about 150 to 650 residues.
Benchmarking AlphaFold2/ESMFold models
on the corresponding PDB structures

In this section, we consider models of AlphaFold2
and ESMFold of 2,404 non redundant proteins
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Table 1 Overview of model quality comparison in Alpha&ESMhFolds.

ESMFold

AlphaFold2 #of high quality residues in the protein (%) [0%, 25%) [25%, 50%) [50%, 75%) [75%, 100%]

[0%, 25%) 5717

(1, 0.21, 31)*

465

(0, 0.32, 15)*

164

(0, 0.41, 23)*

62

(1, 0.52, 17)*

[25%, 50%) 3132

(4, 0.28, 49)*

3391

(2, 0.36, 101)*

1203

(4, 0.45, 143)*

157

(4, 0.62, 87)*

[50%, 75%) 1302

(6, 0.35, 89)*

1946

(27, 0.47, 390)*

�6477

(111, 0.58, 2996)*

�2841

(136, 0.69, 1940)*

[75%, 100%] 421

(23, 0.36, 47)*

514

(36, 0.55, 211)*

�2597

(310, 0.72, 1901)*

�12553

(2235, 0.86, 11182)*

Squared and round brackets indicate closed and open endpoints, respectively.

Per residue confidence is set to local pLDDT > 70.2 #Intervals of percentage high-quality residues in the protein. Proteins with a

direct PDB structure are 2,900 (Table S1).
* Values among brackets are: (1) number of proteins with PDB, (2) median model-vs-model of TM-score values in the set, (3)

number of proteins for which model-vs-model TM-score > 0.6.
� Cells with the highest number of PDBs (92.3%). The total number of models is twofold the number of human proteins (42,942).
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endowed with PDB structure covering at least 70%
of the sequence, and present in SwissProt
(Table S1). For sake of scoring the methods on
the same protein, we performed a side-by-side
Figure 1. Scatter plot of ESMFold against AlphaFold2 TM
PDB chains (2,404). Colour codes are according to the met
Methods, 2.2). Most of the proteins (1,973 out of 2,404 protei
two parallel dashed lines, with a TM-score difference <0.1 t

4

comparison of AlphaFold2 and ESMFold models
and obtained the scatter plot of Figure 1. Here, we
group data by considering the TM-score difference
of both models with respect to the corresponding
-scores of the models with respect to the corresponding
hods adopted for structure determination (Materials and
ns, 81%) are included in the highlighted region inside the
o the corresponding PDB chains.
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PDB structure and colour code according to the
different methods adopted for structural
determination (Green: NMR; Orange: EM; Blue:
Xray after crystallization; see Materials and
Methods, 2.2). Each dot represents a protein for
which AlphaFold2 and ESMFold TM-scores are
computed against the corresponding PDB chain
structure. For most of the proteins (1,973 out of
2,404 proteins (81%), included in the highlighted
region), the performance of the two methods is
highly similar, with an absolute value of the
difference between TM-scores towards the
experimental structure equal or lower than 0.1.
Considering the TM-score threshold of 0.6, 133
AlphaFold2 models are better than ESMFold
ones, and 8 ESMFold models are better than
AlphaFold2 ones, confirming that AlphaFold2 is
overall performing better than ESMFold.
The relevance of structural information on
model building

Finally, we consider the whole set of proteins
(42,942), 2,900 of which have direct PDB chains.
The remaining set of proteins (42,042) is aligned
towards PDB by constraining 50% sequence
identity over 70% of alignment coverage (see
Materials and Methods, 2.1). The remaining
human sequences can be clustered according to
three possible cases: (i) proteins with human
templates; (ii) proteins with templates external to
our human database; (iii) proteins without
templates. In Figure 2, we plot the distribution of
Figure 2. The distribution of TM-scores between AlphaFo
function of the TM score value. The green distribution consid
distribution includes proteins (3,732) with a human PDB tem
a different source (5,736). The red distribution considers
(according to our PDB coverage criteria, see Materials and

5

TM-score values of models with a directly
associated PDB structure (in green) and of the
three different groups of proteins as described
above (blue, orange, and red, respectively). It
appears that, when structural information is
available, the model-vs-model TM-scores are
higher (TM-score > 0.6). When structural
information is lacking (red bars), TM-score values
shift towards lower figures, peaking around 0.25–
0.30. Results indicate that about 68% of the
models (for 30,574 proteins) diverge (with a TM-
score below 0.6) when structural information is
absent. Overall, 23,720 proteins (of which only
12% retain structural information) have models
with a TM-score < 0.6.
Web Server Description

In Alpha&ESMhFolds, AlphaFold2 and ESMFold
models of human proteins with details on statistics
and links to relevant materials are available
through a web application, accessible at https://
alpha-esmhfolds.biocomp.unibo.it/.
From the home page of the web server, it is

possible to query the model database either by
UniProt accession or using a valid protein
sequence in FASTA format. In the former case,
the accession is searched against the database
and, if present, all data for the entry are shown. In
the latter case, the query sequence is aligned
against all the sequences present in our database
using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.
cgi), by considering an E-value threshold of 10-3,
ld2 and ESMFold models of each protein is plotted as a
ers proteins endowed with a direct PDB (2,900). The blue
plate; the orange one, proteins with PDB templates from
proteins (30,574) for which no template is available
Methods).

https://alpha-esmhfolds.biocomp.unibo.it/
https://alpha-esmhfolds.biocomp.unibo.it/
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and a list of possible entries is returned, each one
with a link to access the corresponding file in
UniProt/PDB. If a perfect match is found, the
corresponding entry will be the only one displayed.
Considering UniProt as a reference database, by
constraining a global sequence identity of the
query to the targets of at least 50% with an
alignment coverage of at least 70%, a list
containing the 10 best hits is displayed. When no
significant hit fulfilling the constraints is found, a
list is generated with at most 10 targets which
share an identity lower than 50% with the query
and a warning message is displayed. When no
target is found, the page shows an error message
prompting the user to return to the home page.
Alternatively, from the search page, it is possible

to query the database by adopting different
criteria. Entries can be filtered based on the gene
name and TM-scores between the ESMFold and
AlphaFold2 models. Additionally, results can be
restricted to only proteins endowed with a PDB
structure, in which case a specific PDB accession
can be searched, or thresholds for the TM-scores
between the PDB and each model can be
selected. The results of the query are displayed in
a tabular format, providing links to access the
page of each specific entry as well as the
possibility to download the full list.
For all entries in the model database, the result

page shows at the top a table that contains
general information on the selected protein,
including links to the corresponding UniProt page
and, if available, to the 3D structure in PDB. If no
PDB structure is available, but the sequence is
highly similar (sequence identity �80% and
coverage �70%) to an entry endowed with an
experimental structure, a cross-link to the putative
template is shown. The complete list of
information can be downloaded in JSON format
(at the web server buttons are highlighted).
For each modelled human protein, a tab displays

the comparison between the AlphaFold2 and
ESMFold computed structures. The tab includes:
(i) The sequence alignment obtained from the
superimposition of the two structural models
(Supplementary Figure 3A). Residues are colour
coded according to the model confidence
(pLDDT); a green bar highlights residues which
correctly match at the same positions; (ii) The
graphical structure superimposition of the two
models (Supplementary Figure 3B). Two different
colours are adopted to distinguish ESMFold
models (green) and AlphaFold2 models (purple).
The graphical viewer is our implementation of
PDBe Mol* and can be similarly interacted with
(see original documentation at https://molstar.org/
viewer-docs; some operations are not available in
our viewer). Additionally, residues shown in the
sequence alignment can be clicked to zoom in on
the corresponding position; (iii) Model quality
6

statistics and Alignment statistics (Supplementary
Figure 3C), which include the number of residues
with pLDDT greater than given thresholds (>50,
70 and 90, respectively) and different scoring
values (TM-score, RMSD, GDT), to represent the
level of agreement between the two predicted
models. The individual models (PDB format), the
superimposed models (PDB format) and the
sequence alignments (fasta-like format including
the two gapped sequences) are available for
download (https://alpha-esmhfolds.biocomp.unibo.
it/, see the Help page).
When an entry is endowed with a PDB chain

whose coverage to sequence is greater than 70%,
two similar tabs show the comparison between the
experimental structure and each predicted model
(Supplementary Figure 3D). In the graphical
viewer, PDB chains are coloured in white.
We supply a help page, including four examples

derived from Table1. Specifically, we show two
proteins (P07902 and Q96P20) with high-quality
models (derived from proteins clustered in the
bottom-right cell of Table 1 with more than 75% of
residues with pLDDT > 70). Both proteins are
endowed with high-coverage 3D structures and
Alpha&ESMhFolds provides the model-to-model
and the models-to-structure superimpositions. In
the case of P07902, the two models superimpose
well (TM-score = 0.9) and both agree with the
experimental structure (TM-score = 0.92 and TM-
score = 0.97 for ESMFold and AlphaFold2,
respectively). Conversely, the models of Q96P20
poorly superimpose (TM-score = 0.58);
comparison with the experimental structure shows
that ESMFold is better performing than
AlphaFold2 (TM-score = 0.73 and TM-
score = 0.57, respectively). Furthermore, we show
other two proteins (Q9HD87 and Q9NVL8) with
low-quality models (derived from the top-left cell in
Table 1 with less than 25% of residues with
pLDDT > 70). No structure is available for the two
proteins and Alpha&ESMhFolds provides the
model-to-model superimpositions. In the case of
Q9HD87, the two models superimpose well (TM-
score = 0.72, among the 31 proteins within
brackets, out of the total 5,717); in the case of
Q9NVL8, the models largely diverge (TM-
score = 0.2).
Regular updates are foreseen every six months

following major releases of UniProt.
Conclusions and Perspectives

Alpha&ESMhFolds is a novel database which
handle, for a given human protein sequence, both
AlphaFold2 and ESMFold models. This allows a
direct comparison of the two models, and their
superimposition to the PDB structure when
available.

https://molstar.org/viewer-docs
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Recently, at CASP 15, it has been demonstrated
on a small data set, including some 100 targets from
different organisms, that AlphaFold2 and methods
based on AlphaFold2 are outperforming methods
based on pLMs and embedding procedures like
ESMFold. Here we focus on a large fraction of the
human reference proteome (42,942 proteins), to
realize on a much larger scale which of the two
methods is more reliable. As previously
discussed,2,19 AlphaFold2 is trained with transform-
ers on a precomputed information including for a
protein sequence, multiple sequence alignments,
correlated mutations in the family and contact maps
of family templates. On the other hand,
ESMFold5,19 takes as input embedded sequences
relying on a pLMwhich carries along the information
derived from billions of sequences, and some
selected structures from the PDB and from Alpha-
Fold2 models (included to reach a suited structural
level of information).5 In the prediction phase Alpha-
Fold2 searches for templates in the protein family of
a given sequence, whereas ESMFold takes as input
the sequence embedding. It is therefore not surpris-
ing that AlphaFold2 computes better models than
ESMFold when structural information is present
for the family and deteriorates when little informa-
tion is available.4 Model statistics in our database
support the expected conclusion, considering the
data shown in Figure 1 and derived by comparing
both models with 2,404 human PDB structures. It
is noticeable that 81% of the models are superim-
posable with their associated PDB chains with a
TM-score difference <0.1. This indicates that, as
anticipated5,20, embeddings carry along evolution-
ary and structural information.
What is really interesting is that models computed

with both methods overlap to a good extent (TM
score > 0.6) for 45% of the protein set. This is so
particularly when structural information is
somehow available (Figure 2). However, 55% of
the human protein set models diverge (TM
score < 0.6) at decreasing structural content
information. Which is the most reliable model in
this region? The question is open, as much as the
question of how protein flexibility can affect the
whole scenario21. More structural data are neces-
sary to solve these issues. For the time being, each
superimposition per se allows a direct view of mod-
elling and is open for further investigation.
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