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A B S T R A C T

We introduce spectral-based convolutional operators embedded within Generalized Graph Neural Networks
(G-GNNs). These operators enable deep learning on graphs through a learnable, energy-driven evolution
process. This approach empowers us to impose specific properties on the graph convolutional kernel directly
derived from the corresponding variational formulations. Our model incorporates both parameterized and non-
parameterized graph Laplacian-based energies within the generalized graph convolutional layer to address
features like smoothness, sharpness, and compact support. By making appropriate choices within our G-GNN
framework, we pave the way for designing novel paradigms for 3D shape representation, reconstruction, and
processing, while also enabling effective feature embeddings for intrinsic neural fields.
1. Introduction

Beyond the popular interpretation of a Neural Network (NN) as a
black magic box which can be used to enter data and get a solution
back, the scientific challenge turns towards the interpretation of NN
as an abstract machine which creates a nonlinear mapping between an
𝑛-dimensional input data space and a 𝑝-dimensional output space, with
𝑛 usually much larger than 𝑝. The different type of input data allows
us to categorize them in a simplistic way the NN into Convolutional
Neural Networks (CNN), Multilayer Perceptron (MLP), and Graph Neu-
ral Network (GNN). CNNs operate on a regular Euclidean data like
images (2D grids) and texts (1D sequences) are mainly known for their
role in image and video processing, and their architecture is based
on three main computational layers: the convolutional layer/Pooling
layer/Fully-connected layer. MLPs deal with tabular data (as signal
samples) and consist of units and connections. Each unit has an ac-
tivation, and each link between two units has a weight. The units
are organized in layers and distinguished among input/hidden/output
units. GNNs play pivotal roles in tackling irregularly structured data
(e.g. graphs and polygonal meshes) and usually present a layer struc-
ture with input/hidden/output layers. Extending deep neural models
to non-Euclidean domains, which is generally referred to as geometric
deep learning, has been an emerging research area [1].

These three classes of neural networks share a common goal: to
learn the underlying relationships or mappings between data by ad-
justing their internal network parameters. To achieve this, learning
algorithms minimize the error of a context-aware model.

The impressive results achieved by CNN in many fields of image
processing are due to an efficient architecture for extracting statistically
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significant patterns in large-scale, high-dimensional data sets. CNNs
make use of convolutional filters to extract localized spatial features
of the input data. These convolutional filters, learnt from the data,
have compact support and are translation invariant, i.e. they are able
to recognize identical features regardless of their spatial position. A
convolution is applied to the input data to filter the information and
produce a processed feature map. Let 𝑥𝓁 represent a feature map at
layer 𝓁, 𝐴 and 𝛩 are small square grids representing the neighboring
connections, and the corresponding weights, respectively, then the
convoluted feature map at layer 𝓁 + 1 reads as

𝑥𝓁+1 = 𝐴 ⊙ 𝛩 𝑥𝓁 , (1)

where ⊙ denotes the Hadamard product. Similarly, to collectively
aggregate information from graph structure, GNNs use appropriate
graph convolutional operators which take into account the structure
of the underlying mesh/graph. The general Message Passing Neural
Network framework for GNNs (see [2]), typically composes a feature
transformation (weight matrix 𝛩) with a feature aggregation as follows

𝑥𝓁+1 = aggregation(transformation(𝑥𝓁)), (2)

and its convolutional flavor (see [3,4]) reads as

𝑥𝓁+1 = 𝐴𝑥𝓁 𝛩. (3)

The node features 𝑥𝓁 are updated by aggregating the transformed node
features, via the graph adjacency map 𝐴.
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We propose a class of Generalized Graph Convolution (GGC) op-
erators which generalize and extend the classic operator (3), and are
defined as nonlinear maps

𝑥𝓁+1 = GGC(𝑥𝓁 ;𝐴,𝛩), (4)

obtained by solving an energy-minimization problem. This allows to
impose properties, such as sharpness, sparsity, and smoothness, which
directly derive from the associated variational formulation. In our
model, the GGC combines parameterized graph Laplacian-based ener-
gies, where the parameters are learned from data. This new definition
of learned convolution combines the advantages of spatial connections
of the underlying data structure, with the spectral representation of
the graph, characterized by the graph Laplacian which intrinsically
represents the graph structure itself.

Although generalizable to graph-structured input data, the GGC
and the associated Generalized Graph Neural Network (G-GNN) here
presented will focus on data meshes which represent piecewise-linear
approximations of two-manifolds embedded in R3. Polygonal meshes
implicitly include a graph structure and represent the de facto standard
explicit surface representations. The success of neural approaches to
geometry processing has been evidenced both through their ability to
represent complex geometries as well as their utility in end-to-end 3D
shape learning, reconstruction, understanding and many other tasks.
In particular, intrinsic neural field networks, introduced in [5], are
emerging as a new 3D shape representation paradigm. They general-
ized neural fields on manifolds and their feature embedding is based
on spectral properties of the Laplace–Beltrami operator (LBO). Being
independent of the extrinsic Euclidean embedding, they inherit the
favorable properties of intrinsic representations, such as the invariance
under rigid and isometric deformations and reparametrization.

In this geometry processing context, we propose a G-GNN with ap-
propriate GGC layers to approximate the LBO spectra of a given mesh,
by using a tailor-made loss function in the spirit of the Physics-Informed
Neural Networks (PINNs). The result is a shape-aware LBO-based fea-
ture embedding which can improve the performance of intrinsic neural
fields.

Moreover, in order to validate the presented G-GNN framework,
we propose GGC derived from several energy combinations which give
rise to G-GNNs shape representation, reconstruction and denoising by
exploiting the optimal mix of high/low-frequency information that the
eigendecomposition of the graph Laplacian provides.

To summarize, the main contributions of this paper are:

• we present generalized graph convolutions (GGC) which are
spectral-based convolution operators derived from a learnable
energy-driven evolution process;

• we proposed a GGC embedding in a Generalized Graph Neural
Network (G-GNN) which performs deep learning on graphs and,
in particular, on polygonal meshes;

• we applied G-GNN as a learnable framework for solving geom-
etry processing problems such as spectral mesh decomposition,
compressed-mode mesh decomposition, feature embeddings for
intrinsic neural fields as well as mesh denoising.

The paper is organized as follows. In Section 2 we introduce pre-
liminary background on discrete manifolds and discrete operators on
polygonal meshes, and depict the notations used in this paper. In
Section 3 we review the eigendecomposition of the graph Laplacian
and its applicability to shape analysis. The structure of the proposed
Generalized GNN is described in Section 4 and its functionalities as
minimization of (learnable) energies are discussed in Section 5. In
Section 6 we characterize G-GNN as a new paradigm for object rep-
resentation and manipulation. Finally, in Section 8 we provide results
on the application of G-GNN to shape reconstruction, Laplacian eigen-
decomposition, shape-based feature embedding, and mesh denoising.
2

Conclusions are drawn in Section 9.
1.1. Related work: convolution on graphs via energies

Graph Neural Networks (GNNs) represent a popular class of neural
networks operating on graphs [6,7] and more recently on polygonal
meshes [8–10]. Recent literature on GNN classifies the graph convo-
lutional neural networks into two categories. The first one refers to
the definition of convolution on graphs based on the spectral graph
theory, the other category exploits a spatial domain convolution [6,11],
which directly carries out the convolution operations on graphs. In the
former the learnable parameters belong to the spectral domain, while
in the latter they are defined in the spatial domain. Some popular
convolution operators on spectral domain include the Spectral GNN
(SGNN) [12], the Chebyshev neural network (ChebNet) [4], the Graph
Convolutional Network (GCN) [3] and the 𝑝-Laplacian based graph
neural networks (𝑝GNNs) [13]. Unified approaches to the definition
of convolutional operators on graphs have been proposed in [14],
where the authors made the convolutional operators descend from the
discretization of the Beltrami flow, and in [15] where the proposed
elastic graph convolution follows a 𝓁1- and 𝓁2-based graph smoothing.
An in-depth introduction to the theory of physics-inspired convolution
on graphs has been presented in [16] where GNNs are derived from a
class of energy functionals to obtain smoothing and sharpening effects
on the features. This allowed for a generalization of GNN architectures
thus providing a powerful paradigm to design new GNNs.

Our G-GNN proposal extends the approach in [15], by considering
a wider set of energies, and the gradient-flow framework in [16] by
using a more flexible GNN architecture with different channel mixing
strategies.

2. Preliminary: differential operators on discrete manifolds

A large field of computer graphics and vision concerns the process-
ing of 3D shapes, mathematically described as two-manifolds embedded
in R3. Polygonal meshes represent discrete approximations of two-
manifolds and extrinsically embed the object shape into Euclidean
space by declaring the connectivity between the 3D coordinates explic-
itly. The most common two-manifold approximation is the triangular
mesh, a polygonal mesh composed of triangular faces. A key role in
shape analysis is taken by the Laplace Beltrami differential operator,
with corresponding discrete Laplacian on meshes.

In Section 2.1 we introduce notations used in this paper, Section 2.2
and Section 2.3 revisit the discrete LBO and its matrix representation,
respectively.

2.1. Meshes and graphs

A polygonal mesh (or discrete manifold) is a triplet of finite sets
𝑋 = ( ,  ,  ), where, denoted by 𝑛𝑣 = # and 𝑛𝑒 = # , the geometry is
defined by the set of vertices  = { 𝑣𝑖 }

𝑛𝑣
𝑖=1, with vertex coordinates 𝑣 =

(𝑥, 𝑦, 𝑧) ∈ R3, ∀𝑣 ∈  . The mesh topology is defined by the set of edges
and faces:  ⊆  ×  = {(𝑖, 𝑗), ∀𝑖, 𝑗 = 1,… , 𝑛𝑣}, indices to the vertices
that define the edges;  ⊆  ×  ×  = {(𝑖, 𝑗, 𝑘), ∀𝑖, 𝑗, 𝑘 = 1,… , 𝑛𝑣},
indices to the vertices that make up the flat facets. The index set of
vertex neighbors 𝑣𝑗 of a vertex 𝑣𝑖 is denoted by  (𝑖) = {𝑗 ∶ (𝑖, 𝑗) ∈ }.

The definition of polygonal mesh implicitly includes a graph struc-
ture consisting of ( , ), which naturally leads to the definition of the
adjacency matrix of a mesh as the adjacency matrix of its underlying
undirected graph.

The adjacency matrix 𝐴̄ ∈ R𝑛𝑣×𝑛𝑣 defined on a mesh 𝑋 is a symmetric
matrix of elements defined on edges (𝑖, 𝑗) as
{

𝑤̄𝑖,𝑗 > 0 if (𝑖, 𝑗) ∈ 
𝑤̄𝑖,𝑗 = 0 otherwise .

The degree matrix 𝐷̄ ∈ R𝑛𝑣×𝑛𝑣 associated with the adjacency matrix
𝐴̄ is the diagonal matrix whose elements are the weighted sum on the
connecting edges:

𝐷̄ = 𝑑𝑖𝑎𝑔(𝑑1,… , 𝑑𝑛𝑣 ), 𝑑𝑖 =
∑

𝑤̄𝑖,𝑗 , ∀𝑖 = 1,… , 𝑛𝑣. (5)

𝑗∈ (𝑖)
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On graphs, the weights of the adjacency matrix are equal to 1 for each
edge and zero otherwise so that each diagonal entry of the 𝐷̄ matrix is
equal to the valence of the corresponding node. On triangular meshes,
the weights are usually defined by the so-called cotangent formula, as
follows

𝑤̄𝑖,𝑗 ∶=
1
2
(𝑐𝑜𝑡𝛼𝑖,𝑗 + 𝑐𝑜𝑡𝛽𝑖,𝑗 ), ∀ (𝑖, 𝑗) ∈  , (6)

where 𝛼𝑖,𝑗 and 𝛽𝑖,𝑗 are the two opposite angles to the shared edge (𝑖, 𝑗),
ee [17].

In the following the matrix 𝐴̄ is considered in its normalized form

= 𝐷̄−1∕2𝐴̄𝐷̄−1∕2, (7)

with elements 𝑤𝑖𝑗 =
𝑤̄𝑖𝑗

∑

𝑗∈ (𝑖) 𝑤̄𝑖𝑗
, then ∑

𝑗∈ (𝑖)𝑤𝑖𝑗 = 1, and 𝐷 = 𝐼𝑛𝑣 , the
identity matrix.

2.2. The discrete Laplace–Beltrami operator

In order to generalize the LBO on discrete manifolds, i.e. polygonal
meshes, we introduce some preliminary definitions such as the gradient
and divergence operators defined on the vertices and edges of the mesh,
respectively.

Let 𝑋 = ( ,  ,  ) be a polygonal mesh, we define the following
function spaces:

2() = {𝑓 ∶  → R, 𝑣𝑖 ↦ 𝑓𝑖}, 2() = {𝐹 ∶  → R, (𝑖, 𝑗) ↦ 𝐹𝑖,𝑗}.

Let 𝑓 ∈ 2(), 𝐹 ∈ 2() be real-valued functions defined on the
vertices and edges of 𝑋, respectively, we denote as 𝑓𝑖 and 𝐹𝑖,𝑗 the scalar
values corresponding to the vertex 𝑣𝑖 ∈  and the edge (𝑖, 𝑗) ∈  , with
2() ≅ R𝑛𝑣 , 𝑓 = (𝑓𝑖), 𝑖 = 1,… , 𝑛𝑣, 2() ≅ R𝑛𝑒 , 𝐹 = (𝐹𝑖,𝑗 ), (𝑖, 𝑗) ∈  .

The mesh gradient operator ∇𝑋 ∶ 2() → 2(), at the edge
(𝑖, 𝑗) ∈  , is defined as

(∇𝑋𝑓 )𝑖,𝑗 ∶=
{ √

𝑤𝑖,𝑗 (𝑓𝑖 − 𝑓𝑗 ) if (𝑖, 𝑗) ∈  ,
0 otherwise,

(8)

which represents the directional derivative of 𝑓 at 𝑣𝑖 with respect to the
direction defined by the edge (𝑖, 𝑗), and 𝑤𝑖,𝑗 is the weight associated to
the edge in the adjacency matrix 𝐴.

The vector of directional derivatives (mesh gradient) at the vertex
𝑣𝑖 ∈  is then defined as

(∇𝑋𝑓 )𝑖 ∶= {(∇𝑋𝑓 )𝑖,𝑗 , ∀𝑗 ∶ (𝑖, 𝑗) ∈ } ∈ R# (𝑖). (9)

Given the functions 𝑓 ∈ 2() and 𝐹 ∈ 2() on 𝑋. The mesh
divergence operator, div ∶ 2() → 2(), at the vertex 𝑣𝑖 ∈  is the
adjoint of the mesh gradient, it satisfies < ∇𝑓, 𝑔 >=< 𝑓, 𝑑𝑖𝑣(𝑔) >, and
is defined as

(div𝐹 )𝑖 ∶=
∑

(𝑖,𝑗)∈

√

𝑤𝑖,𝑗 (𝐹𝑖,𝑗 − 𝐹𝑗,𝑖). (10)

The discrete LBO on meshes is then defined by combining the two
Eqs. (8) and (10).

Let 𝑓 ∈ 2() be a function on the vertices 𝑉 , the mesh Laplacian
operator 𝛥𝑋 ∶ 2() → 2() at the vertex 𝑣𝑖 is defined as

(𝛥𝑋𝑓 )𝑖 ∶=
1
2
(div (∇𝑋𝑓 ))𝑖 =

∑

(𝑖,𝑗)∈
𝑤𝑖,𝑗 (𝑓𝑖 − 𝑓𝑗 ). (11)

When the adjacent matrix is normalized, then formula (11) can be
rewritten as

(𝛥𝑋𝑓 )𝑖 = (𝑓𝑖 −
∑

(𝑖,𝑗)∈
𝑤𝑖,𝑗𝑓𝑗 ), (12)

which captures the intuitive geometric interpretation of the Laplacian
as the difference between the local average of a function around a point
and the value of the function at the point itself. The mesh Laplacian
can be generalized to the mesh p-Laplacian (𝑝 ∈ (1,∞)), defined at 𝑣𝑖 as
follows

(𝛥𝑝𝑓 )𝑖 ∶=
1
2
(div (‖∇𝑋𝑓‖𝑝−2∇𝑋𝑓 ))𝑖 =

∑

𝑤
𝑝
2−1
𝑖,𝑗 |𝑓𝑖 − 𝑓𝑗 |

𝑝−2 (𝑓𝑖 − 𝑓𝑗 ),
3

(𝑖,𝑗)∈ 𝛷
(13)

where ‖ ⋅ ‖𝑝−2 is element-wise, i.e.

‖(∇𝑋𝑓 )𝑖‖𝑝−2 = (‖(∇𝑋𝑓 )𝑖,1‖𝑝−2, ‖(∇𝑋𝑓 )𝑖,2‖𝑝−2,… , ‖(∇𝑋𝑓 )𝑖,# (𝑖)‖
𝑝−2).

In general, the p-Laplacian is a nonlinear operator, which implies
𝛥𝑝(𝛼𝑓 ) ≠ 𝛼𝛥𝑝(𝑓 ), for 𝛼 ∈ R, and for 𝑝 = 2 the ordinary mesh Laplacian
is recovered.

2.3. Laplacian matrix representation

Given a polygonal mesh 𝑋 = ( ,  ,  ), the mesh Laplacian operator
(11) can be represented by the symmetric 𝑛𝑣×𝑛𝑣 unnormalized Laplacian
matrix

𝐿̄ = 𝐷̄ − 𝐴̄, (14)

where 𝐴̄ and 𝐷̄ are the adjacency matrix and the degree matrix,
respectively. By applying to the adjacency matrix the normalization
strategies adopted in (7) we get the normalized Laplacian defined as

𝐿 = 𝐷̄−1∕2𝐿̄𝐷̄−1∕2 = 𝐼 − 𝐷̄−1∕2𝐴̄𝐷̄−1∕2 = 𝐼 − 𝐴. (15)

Given a function 𝑓 ∈ 2(), sampled on the vertices of the mesh 𝑋,
the matrix–vector product 𝐿𝑓 approximates 𝛥𝑋𝑓 , the Laplacian applied
to a function 𝑓 .

Remark 1. The mesh Laplacian operator (11) on unstructured meshes
is more commonly represented as 𝐿̃ = 𝐵−1𝐿, where 𝐵 is the diagonal
matrix whose entries are the areas of the Voronoi regions (per-vertex
area) around the mesh vertices defined as

(𝐵)𝑖,𝑖 = 𝑎𝑟𝑒𝑎(𝑣𝑖) =
1
3

∑

𝑗,𝑘∶(𝑖,𝑗,𝑘)∈
𝑎𝑖,𝑗,𝑘, (16)

where 𝑎𝑖,𝑗,𝑘 ∶=
√

𝑠𝑖,𝑗,𝑘(𝑠𝑖,𝑗,𝑘 − 𝓁𝑖,𝑗 )(𝑠𝑖,𝑗,𝑘 − 𝓁𝑗,𝑘)(𝑠𝑖,𝑗,𝑘 − 𝓁𝑖,𝑘) is the area of
triangle (𝑖, 𝑗, 𝑘) ∈  given by the Heron formula, 𝓁𝑖,𝑗 ∶= ‖𝑣𝑖 − 𝑣𝑗‖2 is
the edge length and 𝑠𝑖,𝑗,𝑘 ∶=

1
2 (𝓁𝑖,𝑗 + 𝓁𝑗,𝑘 + 𝓁𝑘,𝑖) is the semi-perimeter of

riangle (𝑖, 𝑗, 𝑘).
The Laplacian matrix 𝐿, with weights defined as in (6), and the

iagonal matrix 𝐵 as in (16), correspond to the stiffness and lumped
ass matrices of the linear FEM Laplacian 𝐿̃, respectively. It can be
roved that the discrete LBO, defined in (11) for a triangular mesh
, converges to the continuous LBO of the underlying manifold, when

he mesh is infinitely refined, see [18]. The product matrix 𝐵−1𝐿 is
ymmetric only for diagonal matrix 𝐵.

. Spectral analysis on meshes

In Riemannian geometry, it is common to use the orthogonal eigen-
asis of the Laplacian to define an analogy of the Fourier transform
n general domains. Analogously, in the discrete setting, by exploiting
he eigendecomposition of the mesh Laplacian matrix, we can perform
pectral analysis of data measured and thus generalize the Fourier
nalysis in the Euclidean domain.

As an appropriate discrete representation of the Laplace operator
n Riemannian manifolds, the normalized Laplacian matrix 𝐿 on a
esh 𝑋, defined in (15) with cotangent weights (6), is real symmetric
ositive semidefinite. Analogously to the continuous case 𝐿 admits
igendecomposition on a compact domain (see [19,20]), which reads as

= 𝛷𝛬𝛷𝑇 , (17)

here 𝛬 is a diagonal matrix of real, non-negative eigenvalues 𝜆𝑖 ∈ R,

= diag(𝜆1,… , 𝜆𝑛𝑣 ), 0 = 𝜆1 ≤ ⋯ ≤ 𝜆𝑛𝑣 , (18)

nd 𝛷 is a matrix of corresponding orthonormal eigenvectors
= (𝜙1,… , 𝜙𝑛𝑣 ), (19)
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such that 𝐿𝜙𝑖 = 𝜆𝑖𝜙𝑖, ∀𝑖 = 1,… , 𝑛𝑣, 𝜙𝑖 ∈ R𝑛𝑣 . The first constant
igenfunction 𝜙1 has associated eigenvalue 𝜆1 = 0.

It can be shown that the eigenfunction 𝜙𝑖 is a critical point of the
ayleigh quotient defined as

(𝐿,𝜙𝑖) =
< 𝐿𝜙𝑖, 𝜙𝑖 >
< 𝜙𝑖, 𝜙𝑖 >

. (20)

here 𝑅(𝐿,𝜙𝑖) is the corresponding eigenvalue 𝜆𝑖. Note that the quo-
ient is constant under scaling, i.e. 𝑅(𝐿, 𝛼𝜙𝑖) = 𝑅(𝐿,𝜙) for any non-zero
∈ R.

Given the decomposition (17) of 𝐿, if the mesh Laplacian is weighted
y the area (eventually diagonal) matrix 𝐵, that is 𝐿̃ = 𝐵−1𝐿, then the

generalized eigendecomposition of (𝐿̃, 𝐵−1) reads as

̃𝛷 = 𝐵−1𝛷𝛬. (21)

he eigenvectors are orthonormal with respect to the 𝐵-scalar product;
.e., < 𝜙𝑖, 𝜙𝑗 >𝐵= 𝜙𝑇𝑖 𝐵𝜙𝑗 = 𝛿𝑖𝑗 , and satisfy the identity 𝐿̃𝜙𝑖 =
𝑖𝐵−1𝜙𝑖,∀𝑖. The generalized Rayleigh quotient is

(𝐿̃, 𝐵−1, 𝜙𝑖) =
< 𝐿̃𝜙𝑖, 𝜙𝑖 >
< 𝐵−1𝜙𝑖, 𝜙𝑖 >

. (22)

It is also useful to see that (21) is conceptually equivalent to a ‘‘regular’’
eigendecomposition 𝐵𝐿̃𝛷 = 𝛷𝛬 on the matrix 𝐿.

Eigenvalues and eigenvectors computations are known to be ex-
tremely computationally intensive for large-scale meshes. Efficient nu-
merical computation of the eigenvectors of the mesh Laplacian matrix
involves the generalization of the Dirichlet energy on a discrete domain,
defined as 𝐸𝐷𝑖𝑟(𝜙) ∶= ∑

𝑖 ‖(∇𝑋𝜙)𝑖‖2 = 𝑡𝑟(𝜙𝑇 𝛥𝑋𝜙), where 𝑡𝑟(⋅) denotes
trace of a matrix. Given the mesh 𝑋 = ( ,  ,  ), to compute the 𝐾
lowest eigenpairs, the eigendecomposition problem can be recast as an
optimization problem requiring the minimization of the total energy
subject to orthonormality conditions

𝛷∗ = argmin
𝛷∈R𝑛𝑣×𝐾

𝑡𝑟(𝛷𝑇 𝛥𝑋𝛷), s.t. 𝛷𝑇𝛷 = 𝐼. (23)

We will denote by 𝛷𝐾 ∈ R𝑛𝑣×𝐾 , 𝐾 < 𝑛𝑣, the solution of (23);
the columns of 𝛷𝐾 represent the first 𝐾 eigenvectors of 𝛥𝑋 and the
diagonal elements of 𝛬 the corresponding 𝐾 eigenvalues. It is easy to
observe that by applying the first-order optimality conditions for the
Lagrangian function associated to Eq. (23), yields to the eigenvalue
problem 𝛥𝑋𝛷 = 𝛷𝛬.

When 𝛥𝑋 is instead discretized by 𝐿̃ then the solution to the prob-
lem (23), obtained by imposing in (23) the B-orthogonality constraint
𝛷𝑇𝐵𝛷 = 𝐼 , satisfies the eigendecomposition (21).

The discrete Laplacian eigenfunctions are dense and have global
spatial support (i.e., they are null only at some isolated points). Com-
pressed Modes (CM), introduced in [21], are instead spatially sparse
orthogonal eigenfunctions (𝜓1,… , 𝜓𝑛𝑣 ) of the mesh Laplacian. In [22]
the authors aimed at computing the 𝐾 lowest of them by solving the
variational problem

𝛹∗ = argmin
𝛹∈R𝑛𝑣×𝐾

𝑛𝑣
∑

𝑙=1

(

⟨𝜓𝑙 , 𝛥𝑋𝜓𝑙⟩ +
1
𝜇
‖𝜓𝑙‖

𝑝
𝑝

)

𝑠.𝑡. 𝛹𝑇𝛹 = 𝐼. (24)

In (24) the first term of the sum enforces 𝛹 to be eigenfunctions of the
Laplacian, while the constraint imposes orthonormality. The additional
𝓁𝑝-norm, with 0 < 𝑝 ≤ 1, is used to achieve spatial sparsity. Such
functions verify local support and completeness.

The mesh Laplacian eigenfunctions are the smoothest functions in
the sense of the Dirichlet energy. In particular, they can be interpreted
as a generalization of the functions of the standard Fourier basis, and its
eigenvalues are referred to as graph frequencies. Low frequencies corre-
spond to the smallest eigenvalues. These frequencies represent smooth,
slowly varying functions and encode macroscopic shape information.
Conversely, high frequencies correspond to the largest eigenvalues.
These eigenfunctions typically exhibit rapid oscillations and capture
4

microscopic details of the shape. The role of the graph Fourier trans-
form is taken by 𝛷𝑇 , and that of the inverse graph Fourier transform is
assumed by 𝛷.

In addition, the eigenfunctions
{

𝜙𝑖
}𝑛𝑣
𝑖=1 form an orthonormal basis of

2(), and thus allow us to expand any function living on 2(), while
he Laplacian eigenvalues encode intrinsic geometric information of the
omain. Then any function 𝑓 ∈ 2() defined at the vertices of 𝑋 can
e represented as a linear combination of the eigenbasis as

=
𝑛𝑣
∑

𝑖=1
< 𝑓, 𝜙𝑖 > 𝜙𝑖 = 𝛷𝑛𝑣𝛷

𝑇
𝑛𝑣
𝑓, (25)

here < 𝑓, 𝜙𝑖 > is the spectral coefficient obtained as a projection of
he function 𝑓 along the direction of the 𝑖th eigenvector 𝜙𝑖. The above
xpression represents a transform from the original function 𝑓 in terms
f the new basis composed by the eigenvectors of 𝐿.

We consider now the problem of constructing a low-dimensional
epresentation for data lying on a high-dimensional space. To this
nd, we can apply the spectral transform as a shape approximation
f a 3D object, by considering the expansion of the 𝑥, 𝑦, 𝑧 ∈ 2()

coordinate functions of the mesh. For a mesh with 𝑛𝑣 vertices, they are
represented by a matrix 𝑀 ∈ R𝑛𝑣×3 whose columns specify the 𝑥, 𝑦, and
𝑧 coordinates of the mesh vertices. Low-dimensional representations of
a shape can be achieved by keeping only the leading spectral transform
coefficients (both low-frequency and high-frequency components) and
discarding the remaining ones. Given the coordinate functions 𝑀 as-
sociated with the mesh 𝑋, we denote by 𝑋(𝐾) the mesh reconstructed
y using only the 𝐾 ≤ 𝑛𝑣 leading coefficients which is characterized by
he vertex coordinates

(𝐾) =
𝐾
∑

𝑖=1
< 𝑀,𝜙𝑖 > 𝜙𝑖 = 𝛷𝐾𝛷

𝑇
𝐾𝑀. (26)

This represents a sort of compression of the surface geometry since only
𝐾 out of 𝑛𝑣 coefficients need to be stored to approximate the original
shape. We can quantify the information loss by measuring the Shape
Recovery (SR) error defined as

𝑆𝑅(𝑀,𝑀 (𝑘)) ∶= 1
𝑛𝑣

‖𝑀 −𝑀 (𝐾)
‖𝐹 = ‖

𝑛𝑣
∑

𝑖=𝐾+1
< 𝑀,𝜙𝑖 > 𝜙𝑖‖2

=

√

√

√

√

𝑛𝑣
∑

𝑖=𝐾+1
< 𝑀,𝜙𝑖 >2. (27)

4. Extending graph neural networks with GGC layers

Graph neural networks have been proposed to process data not orga-
nized on regular lattices, best represented by graph data structures, de-
signed as a generalization of CNNs on regular grids. GNNs have shown
great capacity in learning representations mainly for graphs [23], and,
more recently, also for unstructured polygonal 3D meshes [10,24].
GNN-based mesh processing methods typically involve encoding the
mesh as a graph, where each vertex represents a node and each
edge represents a connection between two nodes. GNNs process mesh
data acting on the features assigned to their nodes taking into ac-
count the structure of the underlying mesh through appropriate mesh
convolutional operators.

Given a 3D mesh 𝑋 = ( ,  ,  ) with 𝑛𝑣 nodes, at each node 𝑖
is associated a 𝑛𝑓 -dimensional feature vector 𝑥𝑖. We denote by 𝑥 ∈
R𝑛𝑣×𝑛𝑓 , 𝑥 = [𝑥1, 𝑥2,… , 𝑥𝑛𝑣 ]

𝑇 the node embedding matrix representing
the feature map of the mesh 𝑋. The features can represent geometric
coordinates of the vertices as well as additional properties such as
colors, normals, and so on.

We propose a Generalized-Graph Neural Network (G-GNN) to lever-
age the inherent suitability of GNNs for mesh representation while
incorporating a node embedding strategy based on an energy-driven
feature propagation process. A G-GNN is a graph convolutional network
(GCN), built for a fixed mesh, where at each node the classical graph
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Fig. 1. The general design pipeline for a G-GNN architecture.
Table 1
Non-parametric (left) and parametric (right) energy terms.

Non-Parametric energy Parametric energy

𝐸𝐷𝑖𝑟(𝑥) ∶= 1
2

∑

(𝑖,𝑗)∈ ‖(∇𝑋𝑥)𝑖,𝑗‖2𝐹 𝐸𝐷𝑖𝑟
𝛩 (𝑥) ∶= 1

2

∑

(𝑖,𝑗)∈ ‖𝑊 (∇𝑋𝑥)𝑖,𝑗‖2𝐹

𝐸𝑓𝑖𝑑 (𝑥; 𝑦) ∶= 1
2
‖𝑥 − 𝑦‖2𝐹 𝐸𝑓𝑖𝑑

𝛩 (𝑥; 𝑦) ∶= 1
2
‖(𝑥 − 𝑦)𝑊 ‖

2
𝐹

𝐸𝑇𝑉 𝑝(𝑥) ∶=
∑

(𝑖,𝑗)∈ ‖(∇𝑋𝑥)𝑖,𝑗‖
𝑝
𝐹 𝐸𝑇𝑉 𝑝

𝛩 (𝑥) ∶=
∑

(𝑖,𝑗)∈ ‖𝑊 (∇𝑋𝑥)𝑖,𝑗‖
𝑝
𝐹

𝐸𝓁𝑝 (𝑥) ∶= ‖𝑥‖𝑝𝑝 𝐸𝓁𝑝
𝛩 (𝑥) ∶= ‖𝑥𝑊 ‖

𝑝
𝑝

convolution (3) is replaced with a Generalized Graph Convolution (4)
which embeds graph Laplacian-based algorithms.

A G-GNN, from a mathematical point of view, learns a nonlinear
mapping 𝐹 that, applied to a low-dimensional (𝑑) input 𝑥0 ∈ R𝑛𝑣×𝑑 ,
working in the feature space, produces the output features 𝑥̂ ∈ R𝑛𝑣×𝑛𝑜𝑢𝑡 .
The mapping 𝐹 is the composition of 𝑀 + 2 functions

𝐹 (𝑥0, 𝛩) = 𝐷𝐸𝐶𝛩𝑓 ◦𝐺𝐺𝐶𝛩𝑀 ◦𝐺𝐺𝐶𝛩𝑀−1
◦… ◦𝐺𝐺𝐶𝛩1

◦𝐸𝑁𝐶(𝑥0, 𝛩𝑖), (28)

each parameterized by a set of trainable weights 𝛩 used for feature
transformation, where 𝐸𝑁𝐶 ∶ R𝑛𝑣×𝑑 → R𝑛𝑣×𝑛𝑓 , 𝐺𝐺𝐶 ∶ R𝑛𝑣×𝑛𝑓 →
R𝑛𝑣×𝑛𝑓 , 𝐷𝐸𝐶 ∶ R𝑛𝑣×𝑛𝑓 → R𝑛𝑣×𝑛𝑜𝑢𝑡 .

The architecture of the proposed G-GNN is shown in Fig. 1. The
encoder (ENC) and decoder (DEC) blocks that enclose the 𝑀 hidden
layers allow to transformation of the data in the appropriate feature
dimensional space 𝑛𝑓 . Nonlinear activations could be added between
consecutive GGN layers. However, the present work does not consider
any activation in-between. The 𝑀 hidden GGC layers are represented
within the blue boxes in Fig. 1; the 𝑗th GGC layer is characterized by
learnable weights 𝛩𝑗 . The design of some specific GGC layers will be
described in Section 5. Finally the result 𝑥̂ of the mapping 𝐹 can be
interpreted as an energy evolution applied to initial data 𝑥0, as will be
described in detail in Section 5.

5. Evolution of G-GNN as minimization of a (learnable) energy

The evolution of a G-GNN can be represented as the minimization
of a (learnable) energy. In this section, we characterize GGC operators
which derive from the minimization of variational formulations, which
combine several (parametric) as well as nonparametric energy terms.
This will allow to impose of properties on the node features directly
derived from the associated energy terms. The advantages compared
to the classic algorithmic approaches of numerical optimization are
attributable to the integration of learnable parameters that weigh the
effect of the operators based on the conformation of the analyzed mesh.
5

Let 𝑋 = ( ,  ,  ) be a mesh and 𝐴 be its associated adjacency
matrix, 𝑥 ∈ R𝑛𝑣×𝑛𝑓 denotes a feature map. Table 1 reports the energy
terms that will be considered in the design of some GGC proposals.
We denoted by ‖𝑥‖2𝐹 = 𝑡𝑟(𝑥𝑇 𝑥) =< 𝑥, 𝑥 > the Frobenius norm of the

matrix 𝑥 ∈ R𝑚×𝑛, and by ‖𝑥‖𝑝 = (
∑𝑚
𝑖=1

∑𝑛
𝑗=1 |𝑥𝑖,𝑗 |

𝑝)
1
𝑝 the 𝑝-norm of a

matrix 𝑥. If we want to induce a smoothing or sharpening behavior
over the features, then we can resort to the non-negative discrete vector
Dirichlet energy 𝐸𝐷𝑖𝑟 (Table 1 - left panel first row) which can be
rewritten as 𝐸𝐷𝑖𝑟(𝑥) = 𝑡𝑟(𝑥𝑇 𝛥𝑋𝑥) and measures the smoothness of a
vector field on the mesh. Features are smooth if the Dirichlet energy is
small. A smoothness control is instead obtained by the generalization
of the Total Variation 𝑝-norm (Table 1 - left panel third row) with
appropriate parameter 𝑝 ∈ R, 𝑝 > 0, 𝐸𝑇𝑉𝑝 tunes the feature variation
over the entire mesh. These are considered internal energies since they
are related to the mesh topology. In contrast, the second and fourth
energy terms in Table 1 (left panel) represent external energies in the
feature space. These terms are independent of pairwise interactions.
Specifically, the energy term 𝐸𝑓𝑖𝑑 forces the optimal feature map 𝑥∗

to stay close to the available data 𝑦, while 𝐸𝓁𝑝 provides greater control
over feature regularization.

The right panel in Table 1 reports the correspondent learnable
energy terms. We can generalize the Dirichlet energy 𝐸𝐷𝑖𝑟𝛩 on the left
panel in Table 1 rewritten as 𝐸𝐷𝑖𝑟𝛩 (𝑥) = 𝑡𝑟(𝑊 𝑇 𝑥𝑇 𝛥𝑋𝑥𝑊 ), by weighting
the norm of the intrinsic gradient ∇𝑋 operator. We treat the elements
of 𝑊 as learnable weights which have the effect of magnification or
minification of the Laplacian frequencies. The relationship between 𝑊
and 𝛩 will be defined in the following results.

In the remainder of this section, we propose three different GGC
operators. These operators are derived by combining appropriate en-
ergy terms to achieve a specific behavior in the feature evolution of
the G-GNN. In particular, the smoothing GGC (S-GGC), the sparsity-
inducing (p-GGC) and the enhancing GGC (E-GGC). Each GGC operator
will characterize a different task of the (𝓁 + 1)th GGC layer of the
network by updating the features 𝑥𝓁 at the 𝓁th layer, associated with all
the vertices of the mesh, to produce the output feature matrix 𝑥𝓁+1. For
each GGC operator, we propose both a non-parametric energy-based
derivation, defined as

𝑥𝓁+1 = 𝐺𝐺𝐶(𝑥𝓁 ;𝐿)𝛩, (29)

and its associated parametric energy-based derivation,

𝑥𝓁+1 = 𝐺𝐺𝐶(𝑥𝓁 ;𝐿,𝛩), (30)

which imply the nonlinear integration of the weight matrix 𝑊 as a
posteriori transformation — non-parametric case (29) – or inside the
energy terms — parametric case (30).

The following results represent only some of the possible evolutions
of energies that can be induced in the mesh-based neural network. The
proposal would pave the way for new and promising characterizations
of G-GNN for mesh processing.

The proofs of the Propositions 5.1–5.6 are postponed to Appendix.
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Proposition 5.1. [Non-Parametric S-GGC] Let 𝐿 ∈ R𝑛𝑣×𝑛𝑣 be a normal-
ized graph Laplacian matrix, 𝛩 ∈ R𝑛𝑓×𝑛𝑓 matrix of learnable parameters,
nd 𝛼, 𝜆 ∈ R++. Then the non-parametric Smoothing Generalized Graph
onvolution operator at layer 𝓁 reads as
𝓁+1 = S-GGC(𝑥𝓁 ;𝐿)𝛩 , (31)

here S-GGC(𝑥𝓁 ;𝐿) = 𝑥𝐾 is obtained, starting from 𝑥0 = 𝑥𝓁 , by iterating
𝑘+1 = (𝐼 − 2𝛼𝐿 − 𝜆𝛼)𝑥𝑘, 𝑘 = 1,… , 𝐾. (32)

he sequence (𝑥𝑘)𝑘∈N, under the condition on the step-size 0 < 𝛼 < 2∕(𝜆 +
‖𝐿‖2) converges to the optimal minimizer of the energy functional

(𝑥) ∶= 𝜆
2
‖𝑥‖2𝐹 + 𝑡𝑟(𝑥𝑇𝐿𝑥). (33)

Remark 2. The S-GGC convolutional operator in (31) reduces to
the well-known forward-propagation operator GCN at the 𝓁th layer,
see [3], by replacing 𝐿 in (31)–(32) with its definition in (15)

𝑥𝓁+1 = (𝐼 − 2𝛼(𝐼 − 𝐴) − 𝜆𝛼)𝑥𝓁𝛩 (34)
= 𝐴𝑥𝓁𝛩, (35)

where we set 𝜆 = 0 and 𝛼 = 1∕2 in (35).

Proposition 5.2. [Parametric S-GGC] Let 𝐿 ∈ R𝑛𝑣×𝑛𝑣 be a normalized
graph Laplacian matrix, 𝛩 = {𝜃1, 𝜃2}, with 𝜃𝑖 ∈ R𝑛𝑓×𝑛𝑓 , 𝑖 = 1, 2, matrices
of learnable parameters, 𝑦 ∈ R𝑛𝑣×𝑛𝑓 is assigned and 𝛼, 𝜆 ∈ R++. Then the
arametric Smoothing Generalized Graph Convolution operator at layer 𝓁
eads as
𝓁+1 = S-GGC(𝑥𝓁 ;𝐿,𝛩) (36)

here S-GGC(𝑥𝓁 ;𝐿,𝛩) = 𝑥𝐾 is obtained starting from 𝑥0 = 𝑥𝓁 , by iterating

𝑘+1 = 𝑥𝑘 − 𝛼[𝜆(𝑥𝑘 − 𝑦)𝜃1 + 2𝐿𝑥𝑘𝜃2], 𝑘 = 1,… , 𝐾. (37)

The sequence (𝑥𝑘)𝑘∈N, under the condition on the step-size 0 < 𝛼 <
2∕(𝜆‖𝛩1‖2+2‖𝐿‖2‖𝛩2‖2) converges to the optimal minimizer of the energy
functional

𝐸𝛩(𝑥) ∶=
𝜆
2
‖(𝑥 − 𝑦)𝑊1‖

2
𝐹 + 𝑡𝑟(𝑊 𝑇

2 𝑥
𝑇𝐿𝑥𝑊2), (38)

with 𝜃∗ = 𝑊∗𝑊 𝑇
∗ .

In the following results, reported in Propositions 5.3 and 5.4, we
leverage the generalized soft-thresholding (GST) function, introduced
in [25] to solve the 𝓁𝑝-norm minimization problem, which is denoted
by 𝑇𝐺𝑆𝑇𝑝 (⋅) and defined as follows

𝑇𝐺𝑆𝑇𝑝 (𝑧; 𝛽) =

{

0 𝑖𝑓 |𝑧| ≤ 𝑠̂(𝛽)
𝑠𝑖𝑔𝑛(𝑧)𝑠∗ 𝑖𝑓 |𝑧| > 𝑠̂(𝛽),

(39)

where 𝑠̂(𝛽) is the thresholding value given by

̂(𝛽) = (2𝛽(1 − 𝑝))1∕(2−𝑝) + 𝛽𝑝 (2𝛽(1 − 𝑝))(𝑝−1)∕(2−𝑝) , (40)

and 𝑠∗ is the non-zero solution of the nonlinear equation

𝑠∗ − 𝑧 + 𝛽𝑝(𝑠∗)𝑝−1 = 0. (41)

Proposition 5.3. [Non-parametric p-GGC] Let 𝐿 ∈ R𝑛𝑣×𝑛𝑣 be a normal-
ized graph Laplacian matrix, 𝛩 ∈ R𝑛𝑓×𝑛𝑓 matrix of learnable parameters,
0 < 𝑝 ≤ 1 be assigned, and 𝛼, 𝜆 ∈ R++. Then the non-parametric p-
sparsity-inducing Generalized Graph Convolution operator at layer 𝓁 reads
as

𝑥𝓁+1 = p-GGC(𝑥𝓁 ;𝐿)𝛩 (42)

where p-GGC(𝑥𝓁 ;𝐿) = 𝑥𝐾 is obtained starting from 𝑥0 = 𝑥𝓁 , by iterating
𝑘+1 𝐺𝑆𝑇 𝑘
6

𝑥 = 𝑇𝑝 ((𝐼 − 2𝛼𝐿)𝑥 ; 𝛼𝜆) 𝑘 = 1,… , 𝐾. (43)
The sequence (𝑥𝑘)𝑘∈N generated from (43), under the condition on the step-
ize 0 < 𝛼 < 1∕‖𝐿‖2, converges to a local minimizer of the energy functional

𝐸(𝑥) ∶= 𝜆‖𝑥‖𝑝𝑝 + 𝑡𝑟(𝑥
𝑇𝐿𝑥). (44)

Proposition 5.4. [Parametric p-GGC] Let 𝐿 ∈ R𝑛𝑣×𝑛𝑣 be a normalized
graph Laplacian matrix, 𝛩 = {𝜃1, 𝜃2}, with 𝜃𝑖 ∈ R𝑛𝑓×𝑛𝑓 , 𝑖 = 1, 2, matrices
f learnable parameters, 0 < 𝑝 ≤ 1 is assigned and 𝛼, 𝜆 ∈ R++. Then the
arametric p-sparsity-inducing Generalized Graph Convolution operator at
ayer 𝓁 reads as

𝓁+1 = p-GGC(𝑥𝓁 ;𝐿,𝛩), (45)

where p-GGC(𝑥𝓁 ;𝐿,𝛩) = 𝑥𝐾 is obtained starting from 𝑥0 = 𝑥𝓁 , by iterating

𝑘+1 = 𝑇𝐺𝑆𝑇𝑝 (𝑥𝑘 − 2𝛼𝐿𝑥𝑘𝜃2; 𝜆𝛼𝑊1) 𝑘 = 1,… , 𝐾. (46)

The sequence (𝑥𝑘)𝑘∈N, under the condition on the step-size 0 < 𝛼 <
1∕(‖𝐿‖2‖𝜃2‖), converges to a minimizer of the energy functional

𝐸𝛩(𝑥) ∶= 𝜆‖𝑥𝑊1‖
𝑝 + 𝑡𝑟(𝑊 𝑇

2 𝑥
𝑇𝐿𝑥𝑊2) (47)

with 𝜃2 = 𝑊2𝑊 𝑇
2 , and 𝜃1 = 𝑊1 = 𝑑𝑖𝑎𝑔(𝑤1,… , 𝑤𝑛𝑓 ).

Proposition 5.5. [Non parametric E-GGC] Let 𝐿 ∈ R𝑛𝑣×𝑛𝑣 be a normal-
ized graph Laplacian matrix, 𝛩 ∈ R𝑛𝑓×𝑛𝑓 matrix of learnable parameters,
𝑦 ∈ R𝑛𝑓×𝑛𝑓 , 𝑝 > 1 and 𝜆 ∈ R++ be assigned. Then the non-parametric
Enhancing Generalized Graph Convolution operator at layer 𝓁 reads as

𝑥𝓁+1 = E-GGC(𝑥𝓁 ;𝐿)𝛩 (48)

where E-GGC(𝑥𝓁 ;𝐿) = 𝑥𝐾 is obtained starting from 𝑥0 = 𝑥𝓁 , by iterating

𝑥𝑘+1 = 𝐷−1(𝑀𝑥𝑘 + 𝜆𝑦), 𝑘 = 1,… , 𝐾, (49)

with matrices 𝑀 and 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1,… , 𝑑𝑛) defined by

(𝑀)𝑖𝑗 = (1 − 𝐿𝑖𝑗 )
𝑝
2
‖𝑥𝑖 − 𝑥𝑗‖𝑝−2 ∈ R, 𝑑𝑖 =

∑

𝑗∈ (𝑖)
𝑀𝑖𝑗 + 𝜆 ∈ R. (50)

The sequence (𝑥𝑘)𝑘∈N converges to a minimizer of the energy functional

(𝑥) ∶= 𝜆
2
‖𝑥 − 𝑦‖2𝐹 + 1

𝑝
∑

(𝑖,𝑗)∈
‖(∇𝑋𝑥)𝑖,𝑗‖

𝑝
𝐹 . (51)

Proposition 5.6. [Parametric E-GGC] Let 𝐿 ∈ R𝑛𝑣×𝑛𝑣 be a normalized
graph Laplacian matrix, 𝛩 = {𝜃1, 𝜃2}, with 𝜃𝑖 ∈ R𝑛𝑓×𝑛𝑓 , 𝑖 = 1, 2, diagonal
matrices of learnable parameters, with 𝜃1 = 𝑊1𝑊 𝑇

1 , and 𝜃2 = 𝑊2, 𝑝 > 1,
𝑦 ∈ R𝑛𝑓×𝑛𝑓 be assigned, and 𝜆 ∈ R++. Then the parametric Enhancing
Generalized Graph Convolution operator at layer 𝓁 reads as

𝑥𝓁+1 = E-GGC(𝑥𝓁 ;𝐿,𝛩) (52)

where E-GGC(𝑥𝓁 ;𝐿,𝛩) = 𝑥𝐾 is obtained starting from 𝑥0 = 𝑥𝓁 , by iterating

𝑥𝑘+1 = (𝑀𝑥𝑘𝜃2 + 𝜆𝑦𝜃1)−1, 𝑘 = 1,… , 𝐾, (53)

with 𝑀 ∈ R𝑛𝑓×𝑛𝑓 and  = 𝐷𝜃2 + 𝜆𝜃1 = 𝑑𝑖𝑎𝑔(𝑑𝑖(𝜃2)𝑖 + 𝜆(𝜃1)𝑖), matrices
defined by elements

𝑀𝑖,𝑗 = (1 − 𝐿𝑖𝑗 )
𝑝
2
‖𝑥𝑖 − 𝑥𝑗‖𝑝−2, 𝑑𝑖 =

∑

𝑗∈ (𝑖)
𝑀𝑖,𝑗 , (54)

respectively. The sequence (𝑥𝑘)𝑘∈N converges to a minimizer of the energy
functional

𝐸𝛩(𝑥) ∶=
𝜆
2
‖(𝑥 − 𝑦)𝑊1‖

2
𝐹 +

∑

‖𝑊2(∇𝑋𝑥)𝑖,𝑗‖
𝑝
𝐹 . (55)
(𝑖,𝑗)∈
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6. G-GNN as a new paradigm for object representation and manip-
ulation

In order to evaluate the performance of the proposed GGC operators,
presented in Propositions 5.1–5.6, we consider five different goals in
the context of 3D surface processing. According to the different GGC
involved, given a mesh 𝑋 = ( ,  ,  ) with the associated graph-
aplacian matrix 𝐿, we aim to present special G-GNNs with 𝑥0 = 𝑋,
s valid paradigms for 3D object representation, reconstruction, and
anipulation. In the remainder of this section, we introduce the five
ifferent goals, named TASKs, while in Section 8 we report the results
roduced for each of the tasks.

In particular, as a first task (denoted by TASK A), we apply G-GNN
ith smoothing GGC (S-GGC, 1 layer) to approximate 𝑁𝑒 eigenfunc-

ions of the eigendecomposition (𝛷,𝛬) of the graph-Laplacian 𝐿 =
𝑇𝛬𝛷 associated with the mesh 𝑋. The spectrum of the Laplace–
eltrami operator of any 2D or 3D manifold (surface or solid) contains

ntrinsic shape information called ‘Shape-DNA’, it represents a finger-
rint or signature of the object itself. It can be used to identify and
ompare objects like surfaces and solids independently of their repre-
entation, position and (if desired) independently of their size [26].
ASK A performs challenging computation of a good Shape-DNA for
n object represented by a polygonal mesh 𝑋.

The performance in approximating the eigendecomposition will be
ssessed by the following quantitative measures:

• Eigenfunctions Orthogonality Recovery (EOR) error

𝐸𝑂𝑅(𝑥̂) ∶= 1
𝑁𝑒

‖𝑥̂𝑇 𝑥̂ − 𝐼‖2𝐹 , (56)

• Eigenvalues Recovery (ER) error

𝐸𝑅(𝑥̂;𝐿) ∶= 1
𝑁𝑒

‖𝐿𝑥̂−𝑅(𝐿, 𝑥̂)𝑥̂‖2𝐹 = 1
𝑁𝑒

𝑁𝑒
∑

𝑗=1

(

𝐿𝑥̂𝑗 − < 𝐿𝑥̂𝑗 , 𝑥̂𝑗 >
< 𝑥̂𝑗 , 𝑥̂𝑗 >

𝑥̂𝑗
)

.

(57)

where 𝑅 is the Rayleigh quotient defined in (20), and with 𝑥̂𝑗 we
denote the 𝑗th column of the feature matrix 𝑥̂ ∈ R𝑛𝑣×𝑁𝑒 .

A deep learning solution of the eigenvalue problem for differential
operators is presented in [27]. However, it is limited to structured 1D
and 2D domains and realized by a fully connected network, thus not
directly applicable to 3D meshes.

A fundamental challenge in machine learning and pattern recog-
nition lies in developing effective representations for complex data.
The named TASK B consists of applying G-GNN with smoothing GGC
(S-GGC, 1 layer) to provide a shape preserving low-dimensional repre-
sentation for data lying on a high-dimensional space. This is achieved
by reconstructing the object shape using a small number of well-
representative eigenfunctions. It is indeed well known that using a
reduced number of eigenfunctions corresponding to the smallest eigen-
values allows the approximation of the object shape in an improved
manner as the number of eigenfunctions increases. Instead of the first
𝑁𝑒 eigenfunctions the proposed G-GNN will automatically select the
‘‘best’’ 𝑁𝑒 eigenfunctions, in the sense of best fitting of the given shape
which includes also local geometry of the input surface. To evaluate
the reconstruction accuracy we consider the SR error defined in (25),
which measures the mean square error between the original and the
mesh reconstructed through a low-dimension eigenbasis composed by
𝑁𝑒 approximated eigenfunctions. Drawing on the connection between
the graph Laplacian and the Laplace–Beltrami operator on manifolds,
several methods have been proposed for representing high-dimensional
data using eigendecomposition [28,29]. However, the computed Lapla-
cian eigenfunctions, regardless of whether they are calculated via their
connection to the heat equation or through variational methods, al-
ways correspond to the smallest eigenvalues. These first eigenfunctions
7

(associated with the smallest eigenvalues) do not capture the most
significant features that represent the shape and details of an object.

In TASK C, a G-GNN with sparsity GGC (p-GGC, 1 layer) is proposed
to approximate 𝑁𝑒 ≪ 𝑛𝑣 eigenfunctions of the 𝐿𝑝-Compressed Mode
eigendecomposition (𝛹,𝛬𝑝) of the graph-Laplacian 𝐿 associated with

given mesh 𝑋, defined by the optimization problem (24). We will
how how the parameter 0 < 𝑝 < 1 offers a useful control on the
idth of the compact support of the eigenfunctions, as theoretically
stablished in [22]. Unlike the variational method proposed in [22],
hich requires the tuning of several model parameters, the proposed
-GNN is automatic and more efficient in producing TASK C.

The objective of TASK D is to evaluate the performances of a G-
NN endowed with smoothing GGC (S-GGC, 1 layer) in providing
new intrinsic feature embedding of 𝑋 - as input to neural field

etworks [30]. In [5], the authors introduced the Intrinsic Neural Field
INF), a neural field 𝜃 ∶ 𝑋 → R𝑛𝑜𝑢𝑡 for the solution of inverse problems,
hat combines the advantages of neural fields with the intrinsic shape
epresentation properties of the Laplace–Beltrami operator. The idea
ehind the INFs is to replace the coordinate-based input of the MLP
eural network 𝑓𝜃 with a feature embedding 𝛾 ∶ 𝑋 → R𝑛𝑓 so that

𝜃(𝑣) = (𝑓𝜃 ⋅ 𝛾)(𝑣) = 𝑓𝜃(𝛾1(𝑣), 𝛾2(𝑣),… , 𝛾𝑛𝑓 (𝑣)).

he choice proposed in [5] of taking the first 𝑛𝑓 eigenfunctions 𝛷 of
he LBO spectrum as feature embedding 𝛾 allowed to overcome the
ifficulty of coordinate-based neural fields of learning high-frequency
unctions, so-called ‘‘spectral bias’’ phenomenon, which makes them
oorly suited for vision and graphics tasks. However, the weakness of
his LBO feature embedding is that it requires to compute all the 𝑛𝑣
igenfunctions by classical numerical methods and then ad hoc select
he most representative 𝑛𝑓 eigenfunctions for the given manifold, which
o not correspond to the first 𝑛𝑓 eigenfunctions. We aim to overcome
his problem by computing a shape-aware LBO feature embedding 𝛾(𝑣)
y means of a parametric G-GNN.

Tasks A-D are performed in a single instance modality, which means
hat a separate G-GNN is optimized for each object.

Finally, in TASK E, we validate the G-GNN framework for the solu-
ion of a classic surface processing problem as the 3D mesh denoising
hich consists of removing noise from corrupted 3D meshes while pre-

erving existing geometric features. At this aim, the G-GNN architecture
onsists of several E-GGC layers, and the samples of the training set
onsist of the same input mesh 𝑋, perturbed with different noise levels,
hich involves a unique graph Laplacian 𝐿 matrix. The noisy meshes ̃
ave been synthetically corrupted in the normal direction 𝑛 following
he degradation model

̃ =  + 𝑉 𝑛, (58)

here 𝑉 ∈ R𝑛𝑣×3 is Gaussian noise distributed with zero mean and
tandard deviation 𝜎 = 𝛾𝑛𝑙𝑒 where 𝑙𝑒 is the average edge length and
𝛾𝑛 ≥ 0 represents the noise level. For a detailed discussion on mesh
denoising approaches we refer the reader to [31]. Among the various
mesh denoising methods investigated, the variational methods were
found to be particularly effective because they can well preserve sharp
features while suppressing noise significantly [32,33]. However, they
involve the tuning of several regularization parameters, which leads
them to be neither efficient nor automatic. For what concerns the
methods based on GNN, interesting strategies have been presented
in [8–10,34]. All of them apply the GNN only for the solution of a sub-
task of the entire denoising pipeline. In [8,10] after a pre-processing, a
GNN is applied to predict a noise-reduced normal field and then a post-
processing phase produces a noise-reduced mesh via vertex updating
normal fields. In [9] the learning is both on the face normal and the
vertex dual domain of 3D mesh. In [34] a Laplacian smoothing is
applied to the input noised mesh, and then a GNN learns the vertex
displacement to be added to the smoothed mesh to obtain the output.
Using a naïve realization of the G-GNN proposal we will show how to

use it for an effective mesh denoiser task that could be further improved
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Table 2
Mesh datasets with 𝑛𝑣 vertices 𝑛𝑒 edges and 𝑛𝑡 triangles.
Mesh 𝑛𝑣 𝑛𝑒 𝑛𝑡
bunny1 152 450 300
bunny2 2503 7503 5001
cat 35 290 70 576 35 288
teddy 502 1500 1000
horse 152 194 300
hand 2500 7500 5000
bimba 7478 22 428 14 952
dragon 9602 28 800 19 200
fertility 8799 26 415 17 610

by exploiting a suitable mixture of the GGC layers, using the ad hoc
energies proposed.

Section 8 will delve into the details of the conducted tasks and
present the results, which serve as evidence for the effectiveness of the
proposed G-GNN.

7. Loss function and implementation details

For the addressed problems (TASKs A-E) the G-GNN weight param-
eters

𝛩 = {𝛩𝑖, 𝛩1, 𝛩2, 𝛩3,… , 𝛩𝑀 , 𝛩𝑓 }

are obtained by minimizing the following loss function

(𝛩; 𝑥̂) = 𝛾11(𝛩; 𝑥̂) + 𝛾22(𝛩; 𝑥̂) + 3(𝛩; 𝑥̂) (59)

where 𝑥̂ ∈ R𝑛𝑣×𝑛𝑜𝑢𝑡 is the G-GNN output as indicated in Fig. 1 and 𝛾1, 𝛾2
re hyperparameters which balance the loss terms and are tuned by a
ough grid search. The three components of the multiple loss (59) are
efined as follows

• 1(𝛩; 𝑥̂) = ‖𝑃 𝑥̂‖2𝐹 , where (𝑃 𝑥̂)𝑗 ∶= 𝐿(𝑥̂𝑗 ) + 𝑅(𝐿, 𝑥̂𝑗 )𝑥̂𝑗 with
𝑥̂ ∈ R𝑛𝑣×𝑁𝑒 , 𝑥̂𝑗 denoting the j𝑡ℎ column of 𝑥̂, and 𝑅(⋅) is the
Rayleigh quotient defined in (20). 1 penalizes deviations from
the eigenvalues of 𝐿.

• 2(𝛩; 𝑥̂) = ‖𝑥̂𝑇 𝑥̂ − 𝐼‖2𝐹 , pushes the orthonormality of distinct
eigenfunctions of 𝐿.

• 3(𝛩; 𝑥̂) = ‖̂ − ‖2𝐹 , where, according to (26), ̂ = 𝑥̂𝑥̂𝑇 with
𝑥̂ ∈ R𝑛𝑣×𝑁𝑒 for TASKs A-D, while ̂ = 𝑥̂ with 𝑥̂ ∈ R𝑛𝑣×3 and  = ̃
noisy mesh following (58), for TASK E. It forces the 3D shape
reconstruction produced by the G-GNN towards the given shape
 .

To avoid scale differences, a preliminary rescaling has been per-
formed to the set of vertices of each input mesh, to fit the mesh into a
bounding box centered at the origin, with edges of unit length.

We performed the associated network training and inference using
a machine equipped with an Nvidia Tesla V100 GPU and leveraging
Python 3.10.9, Pytorch 1.13.1, and Pytorch Geometric 2.3.0. The
training time depends on two factors: the dimensionality of the mesh
(𝑛𝑣) and the number of epochs the G-GNN is trained for. Interestingly,
the specific task itself did not seem to significantly impact the training
duration in our observations. In particular, for all meshes except the
cat mesh, we have run the G-GNN for a number of epochs between
3000 and 6000, having a duration of training lower than 15 min. When
𝑁𝑒 is small, such as 8 or 15, training takes even less than 5 min. Instead,
we need approximately 10,000 epochs to obtain good results for the
cat mesh in each of the tasks it is involved with a training time lower
than 45 min.

The ENC block in (28) employs the 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 , as activation func-
tion, with default 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 − 𝑠𝑙𝑜𝑝𝑒 = 0.01 with He weight initialization
from a uniform distribution [35], while neither the GGC layers nor
the DEC block employ any activation function and leverage the Xavier
8

weight initialization [36]. We used the Adam optimizer with default
parameters. In the experimental results, the hyperparameter 𝐾 of the
GC layer kernel, which represents the number of iterations for the
omputation of the GGC operator (see Propositions 5.1–5.6) is set to
e 𝐾 < 10.

. Experimental results

In this section, in order to show the effectiveness of the G-GNN
roposal, we show the results obtained in the various TASKs A-E
escribed in Section 6.

Details on the polygonal meshes used in the reported experiments
re summarized in Table 2.

.1. Task A: LBO eigendecomposition approximation

The objective of this task is to approximate 𝑁𝑒 eigenfunctions of the
igendecomposition (𝛷,𝛬) of the discrete Laplacian associated with the
at mesh, see Table 2.

The G-GNN with one parametric S-GGC layer (defined as in 5.2)
s applied in single instance modality, to compute 𝑁𝑒 = 15 features
̂ which approximate the eigenfunctions 𝛷15 ∈ R𝑛𝑣×15. In particular,
according to (37) in Proposition 5.2, the number of features are exactly
the number of eigenfunctions 𝑛𝑓 = 𝑁𝑒, neglecting 𝑦.

The computed eigenfunctions are illustrated in Fig. 3, by using false
colors on the mesh domain, blue for negative, and red for positive
values. For what concerns the accuracy errors defined in (57) and (56),
we obtain 𝐸𝑅 = 3.27 × 10−7 and 𝐸𝑂𝑅 = 2.83 × 10−5.

The corresponding eigenvalues, computed by leveraging the Rayleigh
quotient defined in (20), are shown in Fig. 2 as red diamonds, while the
blue dots indicate the first 15 eigenvalues of the discrete LBO, sorted
in ascending order, computed using standard Lancsoz bidiagonaliza-
tion iterative method [37,38]. We notice how the 15 eigenfunctions
carried out by the G-GNN over the 35,290 total eigenfunctions which
characterize the cat mesh, are associated with eigenvalues of varying
magnitude corresponding to both low frequencies (small values) and
higher frequencies (large values) associated with those essential global
and local geometry details such that the G-GNN retrieves a good shape
reconstruction.

However, although we enforce the model using a tailor-made loss
function to preserve orthogonality and eigendecomposition, a lim-
itation of the proposed approach is that this cannot be explicitly
guaranteed. Inevitably, the G-GNN produces features that only approxi-
mate the eigenfunctions, being however extremely useful as an intrinsic
shape paradigm in many geometry processing tasks.

8.2. Task B: 3D shape reconstruction

This task aims to reconstruct the object shape by using a small
number of eigenfunctions, 𝑁𝑒, from the eigendecomposition (𝛷,𝛬) of
the discrete Laplacian associated with the given object mesh.

The G-GNN with one parametric S-GGC layer is applied in single
instance modality, to compute the features 𝑥̂ ∈ R𝑛𝑣×𝑁𝑒 which ap-
proximate the eigenfunctions, and then reconstruct the mesh through
̃ = 𝑥̂𝑥̂𝑇 , see (25). We report in Table 4 some reconstructions of the
mesh models, bunny1, horse and teddy, obtained by progressively
increasing the number of spectral coefficients, i.e., by increasing 𝑁𝑒
from the second row to the fifth row: 𝑁𝑒 = 8, 𝑁𝑒 = 15, 𝑁𝑒 = 50%𝑛𝑣,
and 𝑁𝑒 = 𝑛𝑣, with 𝑛𝑣 reported in Table 2. Each column shows the
reconstructions obtained using the G-GNN with one parametric S-GGC
layer, on the left, while on the right the reconstructions achieved
by solving the variational eigendecomposition in (23), using simple
algebraic standard approach implemented in MATLAB. The Shape Re-
covery error SR, defined in (25), is reported below the reconstructed
meshes, distinguishing with 𝑆𝑅𝐿 the reconstruction errors due to the
application of the eigendecomposition in (23). As expected, the visual
quality of the reconstructions increases as the 𝑁 increases, whereas
𝑒
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Fig. 2. TASK A - First 15 eigenvalues of the graph Laplacian associated with the cat
mesh computed by the algorithm in [38] (blue dots, 𝜆𝑖 ∈ [10−4 , 4 × 10−3]) and by the
G-GNN network (red diamonds, 𝜆𝑖 ∈ [4 × 10−3 , 10−2]).

Table 3
TASK B - Comparison of the errors for the reconstruction of the mesh bunny1 using
𝑁𝑒 = 152 eigenfunctions applying G-GNN with a parametric and a non-parametric
S-GGC layer.

SR ER EOR

Non parametric S-GGC 9.84 × 10−05 1.94 × 10−03 6.57 × 10−03

Parametric S-GGC 1.11 × 10−04 2.20 × 10−03 9.46 × 10−05

the SR error decreases, for both the reconstruction methods. However,
the G-GNN-based reconstructions exhibit more shape details than those
obtained through the variational eigendecomposition, even for very
small values of 𝑁𝑒.

In Table 6, we show the reconstructions of the cat mesh us-
ing an increasing set of eigenfunctions, 𝑁𝑒 = {5, 15, 25, 35} out of
𝑛𝑣 = 35290. The quality of the reconstructions can be evaluated by
the 𝑆𝑅 values reported below each mesh. In Table 6 last column,
we report also the reconstructions obtained by the first 𝑁𝑒 eigen-
functions which are associated to the 𝑁𝑒 smallest eigenvalues. The
obtained poor reconstructions only capture the skeleton of the object.
A lot more eigenfunctions are needed to improve the accuracy of the
reconstruction and capture characteristic shape details.

In Table 3 we report a comparison between a G-GNN with a non-
parametric S-GGC layer and with a parametric S-GGC layer in com-
puting all the eigenfunctions of the graph Laplacian associated to the
mesh bunny1. The 𝑆𝑅 and 𝐸𝑅 errors are quite similar, while the
parametric S-GGC layer allows for a lower 𝐸𝑂𝑅 error with respect to
the non-parametric S-GGC. This can be attributed to the weights 𝜃1 in
(38) which allow to better induce the orthogonality of the computed
eigenfunctions.

8.3. Task C: LBO 𝐿𝑝 compressed mode (CM) approximation

The objective of this task is to approximate 𝑁𝑒 = 50 eigenfunctions
of the 𝐿𝑝-Compressed Mode eigendecomposition (𝛹,𝛬𝑝) of the discrete
Laplacian associated with bunny2 and hand meshes. The G-GNN
with one parametric p-GGC is applied in single instance modality with
several features 𝑛𝑓 = 𝑁𝑒, where we set 𝑝 = 0.1 for bunny2 mesh and
𝑝 = 0.5 for hand mesh. Table 5 reports, in the first two columns, the
original meshes and their reconstructions 𝑀 (50) according to (26), and
in the remaining columns 4 out of the 50 eigenfunctions for each mesh.
To highlight the local support of the eigenfunctions, a thresholded
9

colormap is used: eigenfunctions’ values below and above the threshold
have been gray-colored. We observe that the highest (red) and lowest
(blue) values of the eigenfunctions are localized on small portions on
the surface of the whole object, in regions characterizing the shape of
the object.

The parametric version of the G-GNN with the p-GGC layer is
preferred with respect to the non-parametric p-GGC layer. Even if we
get qualitatively similar reconstructions, the results from parametric p-
GGC layer present a lower error (𝐸𝑂𝑅 = 8.93 × 10−5) than the results
obtained by the non-parametric p-GGC layer (𝐸𝑂𝑅 = 1.12 × 10−3).

The shape reconstruction results shown in Table 5 represent the
best approximations of shape in a low-dimensional space using 𝐿𝑝-
CM eigenfunctions obtained by the G-GNN with one p-GNN layer. To
measure the performance of the proposed G-GNN, we reconstructed
the first 𝑁𝑒 = 50 𝐿𝑝-CM eigenfunctions using the variational formu-
lation of the problem (24), using the Alternating Direction Method
of Multipliers algorithm for the numerical minimization, as described
in [22]. The reconstructed meshes are shown in gray color in Table 5
second column. They are noticeably smoother and lack details, as we
expected since they are the first and not the best, so qualitatively the
resulting low-dimensional reconstructions are much worse, endorsed by
𝑆𝑅𝐿𝑝 = 2 × 10−3 for bunny and 𝑆𝑅𝐿𝑝 = 3 × 10−2 for hand.

8.4. Task D: Intrinsic representation

The objective of this task is to evaluate the performances of a G-GNN
equipped with an S-GGC operator, to provide a shape-aware feature
embedding useful for feeding intrinsic neural fields.

In [5] the INFs have been successfully applied to several graphics
applications, including the texture mapping task for a large-scale cat
mesh. Such a reconstruction consists of recovering the textured image
of the cat given a limited set of posed images. As detailed in [5],
the LBO feature embedding is obtained by computing the first 4096
eigenfunctions of the eigendecomposition (𝛷,𝛬) of the mesh Laplacian
by solving the generalized eigenvalue problem (21) using the algorithm
in [38]. Then, an ad hoc manual screening is performed to select only
1024 out of the 4096 computed eigenfunctions (specifically the inter-
vals 1 to 256, 1794 to 2304, 3841 to 4096) to include eigenfunctions
associated with information at varying scales, from macroscopic to
microscopic details of the mesh.

We propose an automatic procedure for the selection of the most
representative eigenfunctions by employing a G-GNN which provides
a certain number of approximated eigenfunctions that enable high-
fidelity representations and reconstructions.

In Table 6, we show some texture reconstructions along with the
associated 3D shape reconstructions, obtained for 𝑁𝑒 = {5, 15, 25, 35}.
In Table 6, left panel reports reconstructions obtained by employing
G-GNN, while the right panel illustrates reconstructions obtained by
computing the first 𝑁𝑒 eigenfunctions of the graph-Laplacian 𝐿 =
𝛷𝑇𝛬𝛷. After fitting the intrinsic neural field to the data, the texture
images generated from 200 novel viewpoints have been compared with
the ground-truth images for evaluation. The quality of the resulting
texture images has been assessed by the Peak Signal-to-Noise Ratio
(PSNR) measure and reported below the corresponding posed image.

We observe that for a given 𝑁𝑒, G-GNN allows not only a better
PSNR in the textured images but also lower reconstruction errors,
even for a small set of eigenfunctions 𝑁𝑒, such as 5 or 15, out of a
total of 35,290. This provides an automatic shape-aware LBO feature
embedding, essential to be able to apply the promising INFs with
large-scale meshes.
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Fig. 3. TASK A - approximation of 𝑁𝑒 = 15 eigenfunctions of the graph Laplacian associated to the cat mesh by applying a parametric smoothing GGC layer, shown as false
colored scalar field onto the original mesh.
8.5. Task E: mesh denosing

We present a vanilla unsupervised learning-based mesh denoising
method obtained by applying a G-GNN with non-parametric E-GGC
operators, with tuning of the parameter 𝑝 > 1.

We compared the G-GNN proposal with the GNN-based method
in [34], named DMP, using the open source code kindly provided
by the authors at https://github.com/astaka-pe/DeepMeshPrior, [and
with the TGV method based on Total Generalized Variation for Denois-
ing, named TGV, [33] using the executable code kindly provided by the
authors at https://github.com/LabZhengLiu/MeshTGV.

The proposed G-GNN consists of six non parametric E-GGC layers.
Our preliminary experiments showed that using more layers did not
necessarily lead to improved results, particularly when applying the
same GGC operators to each layer. This aligns with the general obser-
vation that GNN architectures often do not benefit significantly from a
large number of layers. In fact, a relatively small number of layers (less
than 10) can often be sufficient to achieve good accuracy.

We set the hyperparameters 𝛾1 = 𝛾2 = 0 in the loss function (59)
for this task, where ̂ is the set of denoised vertices of the mesh and
 is the set of corrupted vertices of the mesh. We applied the G-GNN
both in single instance modality (the network takes a single noisy mesh
as input data and directly outputs the denoised mesh without being
trained) and in multiple instances, using 100 meshes for training and
20 for testing. The total number of training meshes is constructed by
adding a different level of noise to the original uncorrupted meshes,
under the degradation model (58).

In Fig. 4 we illustrate the results for a few meshes from the dataset:
noise-free meshes in the first row together with their perturbed meshes
in the second row. The denoised meshes, obtained by G-GNN in single
instance modality with E-GGC layers, are reported, for fixed 𝜆 =
100 value, in the third row for 𝑝 = 1.1 and in the fourth row for
𝑝 = 1.8. For comparison, the sixth and seventh rows illustrate the
denoised meshes obtained using the single-instance DMP method pro-
posed in [34] and the TGV method proposed in [33], respectively. From
a visual inspection and the 𝑆𝑅 errors reported below each mesh, we
observe that the G-GNN reconstructions are more accurate and better
10
preserve the shape details. The single instance modality avoids the
training phase but requires a high number of epochs in order to achieve
an acceptable reconstruction accuracy. In case the denoise procedure
must be repeated for different corruptions of the same mesh, multiple
instance modality is preferred, which allows for a fast inference phase
after appropriate training with different corruptions. In Fig. 4, fifth
row, we show the denoised meshes obtained with G-GNN in multiple
instances with 𝑝 = 1.8 running for 50 epochs in the training phase,
instead of 2000 epochs needed in the single instance case. The proposed
unsupervised approach is fast and accurate, and it can be trained on
noisy data, without explicit correspondence between noisy and ground-
truth meshes and without knowledge of the noise level of corruption.
Future work will consider including p-GGC layers in the G-GNN vanilla
architecture here considered to face noise removal on objects with
sharp features.

9. Conclusion

We introduced Generalized Graph Convolutions in Graph Neural
Networks which are energy-driven graph convolutions derived from the
solution of different graph Laplacian-based variational regularization
problems. A selected set of possible energy-driven graph convolutions
have been presented, many more can be designed in future work. In
particular, we proposed both parametric and non-parametric forms of
S-GGC, which induces a smoothing behavior over the features, p-GGC,
to preserve sharpening, and E-GGC, to control enhancing by a real
positive parameter 𝑝.

We demonstrated their processing power successfully in several
graphics applications in geometry processing. Generalized GNNs have
been applied to 3D mesh denoising, shape reconstruction, and eigen-
decomposition, which is particularly useful to determine the ‘‘Shape-
DNA’’ of an object. We additionally employed a G-GNN as a new
shape-aware feature embedding to be used in intrinsic neural fields.
The presented results are promising and show how the proposed ap-
proach brings convenient synergies between the energy dictated by the
application context and the adaptation to specific data granted by the
learning approach.

https://github.com/astaka-pe/DeepMeshPrior
https://github.com/LabZhengLiu/MeshTGV
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Fig. 4. Task E - mesh denoiser on synthetically perturbed meshes (second row). Comparison among single instance (SI) G-GNN denoised meshes with 𝑝 = 1.1 (third row) and
𝑝 = 1.8 (fourth row), multiple instance (MI) G-GNN denoised meshes with 𝑝 = 1.8 (fifth row), DMP denoised meshes (sixth row), and TVG denoised meshes (seventh row).
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Table 4
TASK B - 3D shape reconstructions of meshes described in Table 2 obtained using an increasing number of eigenfunctions,
𝑁𝑒. In each column, on the left, the reconstructions obtained using the G-GNN with one parametric S-GGC layer, on the right,
those obtained using the variational eigendecomposition in (23). The SR errors are reported below the reconstructed meshes,
denoting by 𝑆𝑅𝐿 the reconstruction error for the eigendecomposition (23).
Future work will include a network adaptation to handle 𝐿̃ instead
of 𝐿, to encompass the area diagonal weight matrix. We expect to be
able to produce more accurate reconstructions while penalizing the
efficiency. Another future direction will consider the enlargement of the
training set by including several poses of the same mesh, which, sharing
the same graph-Laplacian 𝐿, could contribute towards an improvement
of the network performance. Furthermore, it is of interest to construct
G-GNN using a mixture of GGC layers derived from different energy
terms focusing on different features.
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Appendix

Proof of Proposition 5.1

Proof. The cost function in the optimization problem (33) is strictly
convex, bounded from below, and continuous. Hence by standard argu-
ments in convex analysis the optimization problem (33) has a unique
solution.
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Table 5
TASK C - Four out of the 𝑁𝑒 = 50 eigenfunctions of the 𝐿𝑝-compressed Mode eigendecomposition (𝛹,𝛬𝑝) of the discrete
Laplacian associated with bunny2 mesh — first row 𝑝 = 0.1 – and hand mesh — second row 𝑝 = 0.5. In the first column
the original meshes are reported, in the second column the reconstructed 𝐿𝑝-CM meshes using G-GNN with p-GGC layer – in
green – and the variational approach in [22] — in gray.
Table 6
TASK D - textured images obtained by using the shape-aware feature embedding provided by G-GNN (left panel), and by LBO
feature embedding (right panel). Each row represents a different number of eigenfunctions 𝑁𝑒 involved. The last columns of
each panel show the object reconstructions obtained for each subset of eigenfunctions.
13
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Since the energy in (33) is differentiable, we apply the gradient de-
scent method for its minimization. Considering that the partial gradient
of 𝐸(𝑥) with respect to 𝑥 is given by

𝜕𝐸
𝜕𝑥

(𝑥) =
𝜕𝑡𝑟(𝑥𝑇𝐿𝑥)

𝜕𝑥
+ 𝜆𝑥 = 2𝐿𝑥 + 𝜆𝑥, (A.1)

then the iteration (𝑘+1)th of the gradient descent method with step-size
> 0 updates 𝑥𝑘 as follows
𝑘+1 = 𝑥𝑘 − 𝛼(2𝐿𝑥𝑘 + 𝜆𝑥𝑘) = (𝐼 − 𝛼2𝐿 − 𝜆𝛼)𝑥𝑘, (A.2)

where 𝑥𝑘+1 converges to the minimizer of (33) when 0 < 𝛼 < 2∕𝐿𝐸 ,
with 𝐿𝐸 = 𝜆 + 2‖𝐿‖2 the Lipschitz constant of the energy 𝐸(𝑥). □

Proof of Proposition 5.2

Proof. The energy in (38) is differentiable,

𝜕𝐸𝛩
𝜕𝑥

(𝑥) = 1
2
𝜕‖(𝑥 − 𝑦)𝑊1‖

2

𝜕𝑥
+
𝜕𝐸𝐷𝑖𝑟𝛩 (𝑥)

𝜕𝑥
= 𝜆(𝑥 − 𝑦)𝜃1 + 2𝐿𝑥𝜃2. (A.3)

In fact
𝜕‖(𝑥 − 𝑦)𝑊1‖

2
𝐹

𝜕𝑥
=
𝜕𝑡𝑟(𝑊 𝑇

1 (𝑥 − 𝑦)𝑇 (𝑥 − 𝑦)𝑊1)
𝜕𝑥

(A.4)

=
𝜕𝑡𝑟(𝑊 𝑇

1 (𝑥)𝑇 𝑥𝑊1)
𝜕𝑥

− 2
𝜕𝑡𝑟(𝑊 𝑇

1 𝑦
𝑇 𝑥𝑊1)

𝜕𝑥
(A.5)

= 2𝑥𝑊1𝑊
𝑇
1 − 2𝑦𝑊1𝑊

𝑇
1 = 2(𝑥 − 𝑦)𝜃1

𝜕𝐸𝐷𝑖𝑟𝛩 (𝑥)
𝜕𝑥

=
𝜕𝑡𝑟(𝑊 𝑇

2 𝑥
𝑇𝐿𝑥𝑊2)

𝜕𝑥
= 2𝐿𝑥𝑊2𝑊

𝑇
2 = 2𝐿𝑥𝜃2. (A.6)

Then we can apply the gradient descent method which reads as (37)
and converges to a minimizer of functional energy (38) under standard
conditions on the 𝛼 step-size. □

Proof of Proposition 5.3

Proof. Let 𝑓 (𝑥) = 𝑡𝑟(𝑥𝑇𝐿𝑥) be a differentiable function with 𝜕𝑡𝑟(𝑥𝑇 𝐿𝑥)
𝜕𝑥 =

2𝐿𝑥, and 𝑔(𝑥) = 𝜆‖𝑥‖𝑝𝑝, be a non-differentiable, for 𝑝 ≤ 1, and non-
onvex function, for 𝑝 < 1. Then the minimization of the cost function
(𝑥) + 𝑔(𝑥) can be obtained by the proximal gradient algorithm, which

terates over 𝑛 as

𝑧𝑛 = 𝑥𝑛 − 2𝛼𝐿𝑥𝑛 (A.7)

𝑥𝑛+1 = arg min
𝑥∈R𝑛𝑣×𝑛𝑓

{1
2
‖𝑥 − 𝑧𝑛‖2 + 𝛼𝜆‖𝑥‖𝑝𝑝

}

, (A.8)

where the parameter 𝛼 > 0 is the step-size. The cost function in
(A.8) is separable and thus solvable by applying the generalized soft-
thresholding iterative algorithm to the solution of the following 𝑛𝑣 ×𝑛𝑓
independent 𝓁𝑝-norm minimization problems

∗
𝑖𝑙 = argmin

𝑠∈R

{

ℎ(𝑠) ∶= 1
2
(𝑥 − 𝑧𝑖𝑙)2 + 𝛼𝜆|𝑠|

𝑝
}

. (A.9)

For any 𝑧𝑖𝑙 ∈ (𝑠̂(𝛼𝜆),+∞), ℎ(𝑠) has one unique minimum 𝑥𝑛+1𝑖𝑙 = 𝑠⋆𝑖𝑙
which can be obtained for each component by solving 𝑠̄∗𝑖𝑙 = 𝑇𝐺𝑆𝑇𝑝 (𝑧𝑖𝑙;
𝜆), through (39)–(41).

Under standard assumptions on the step-size 𝛼 the proximal gradient
lgorithm converges to a local minimizer, see [39]. □

roof of Proposition 5.4

roof. Consider 𝑓 (𝑥) = 𝑡𝑟(𝑊 𝑇
2 𝑥

𝑇𝐿𝑥𝑊2) differentiable and 𝑔(𝑥) =
𝑥𝑊1‖

𝑝 not differentiable, for 𝑝 < 1. Then the minimization of the cost
unction 𝑓 (𝑥) + 𝑔(𝑥) is obtained by the proximal gradient algorithm,
hich iterates over 𝑛 as

𝑛 𝑛 𝑛
14

= 𝑥 − 2𝛼𝐿𝑥 𝜃2, (A.10)
𝑛+1 = arg min
𝑥∈R𝑛𝑣×𝑛𝑓

{1
2
‖𝑥 − 𝑧𝑛‖2 + 𝛼𝜆‖𝑥𝑊1‖

𝑝
𝑝

}

. (A.11)

he functional in (A.11) is separable and therefore we can solve 𝑛𝑣×𝑛𝑓
ndependent 𝓁𝑝-norm minimization scalar problems

∗
𝑖𝑙 = argmin

𝑠∈R

{

ℎ(𝑠) ∶= 1
2
(𝑠 − 𝑧𝑖𝑙)2 + 𝛼𝜆|𝑤𝑙|

𝑝
|𝑠|𝑝

}

(A.12)

here the weights 𝑤𝑙 define the matrix 𝑊1 and are constant for each
eature. Leveraging the Generalized Iterative Soft Thresholding [25]
perator 𝑇𝐺𝑆𝑇𝑝 , defined in (39)–(41), the solution of (A.12) read as

̄∗𝑖𝑙 = 𝑇𝐺𝑆𝑇𝑝 (𝑧𝑖𝑙; 𝛼𝜆|𝑤𝑙|
𝑝).

For any 𝑧𝑖𝑙 ∈ (𝑠̂(𝛼𝜆|𝑤𝑙|
𝑝),+∞), ℎ(𝑠) has one unique minimum which

an be obtained by solving the nonlinear Eq. (41). Under the standard
ssumptions 0 < 𝛼 < 1∕(‖𝐿‖2‖𝛩2‖2), the proximal gradient algorithm
onverges to a local minimizer, see [39]. □

roof of Proposition 5.5

roof. Since 𝑝 > 1, the functional 𝐸(𝑥) in (51) is differentiable and
onvex, the first-order optimality conditions for its minimization read
s
𝜕𝐸(𝑥)
𝜕𝑥

= 1
𝑝
𝜕𝐸𝑇𝑉𝑝 (𝑥)

𝜕𝑥
+ 𝜆𝐸𝑓𝑖𝑑 (𝑥; 𝑦) = 𝛥𝑝(𝑥) + 𝜆(𝑥 − 𝑦) = 0. (A.13)

he mesh p-Laplacian 𝛥𝑝(𝑓 ) is defined in (13) for scalar functions 𝑓 ,
nd can be defined for 𝑥 ∈ R𝑛𝑣×𝑛𝑓 as a matrix of dimension 𝑛𝑣×𝑛𝑓 with
𝑖th row (𝛥𝑝(𝑥))𝑖 ∈ R𝑛𝑓 (which corresponds to vertex 𝑣𝑖)

(𝛥𝑝(𝑥))𝑖 =
∑

(𝑖,𝑗)∈

√

𝑤𝑖,𝑗‖(∇𝑋𝑥)𝑖,𝑗‖
𝑝−2
𝐹 (∇𝑋𝑥)𝑖,𝑗

=
∑

(𝑖,𝑗)∈
‖

√

𝑤𝑖,𝑗 (𝑥𝑖 − 𝑥𝑗 )‖
𝑝−2
𝐹 𝑤𝑖,𝑗 (𝑥𝑖 − 𝑥𝑗 ).

For each node 𝑖, the nonlinear problem (A.13) is separable for all its
features, thus we have
∑

(𝑖,𝑗)∈
‖

√

𝑤𝑖,𝑗 (𝑥𝑖 − 𝑥𝑗 )‖𝑝−2𝑤𝑖,𝑗 (𝑥𝑖 − 𝑥𝑗 ) + 𝜆𝑥𝑖 = 𝜆𝑦𝑖. (A.14)

The nonlinear Eq. (A.14) can be linearized and then solved for 𝑥𝑖 by
applying the following iterative scheme over 𝑘:
(

∑

(𝑖,𝑗)∈
𝑤

𝑝
2
𝑖,𝑗‖𝑥

𝑘
𝑖 − 𝑥

𝑘
𝑗 ‖

𝑝−2 + 𝜆
)

𝑥𝑘+1𝑖 =
∑

(𝑖,𝑗)∈
𝑤

𝑝
2
𝑖,𝑗‖𝑥

𝑘
𝑖 − 𝑥

𝑘
𝑗 ‖

𝑝−2𝑥𝑘𝑗 + 𝜆𝑦𝑖.

(A.15)

et 𝑀 ∈ R𝑛𝑣×𝑛𝑣 and 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1,… , 𝑑𝑛𝑣 ) be matrices with elements
defined in (50), then Eq. (A.15) has the explicit solution form

𝑥𝑘+1𝑖 = 𝑑−1𝑖

[

∑

(𝑖,𝑗)∈
𝑀𝑘

𝑖,𝑗 𝑥
𝑘
𝑗 + 𝜆𝑦𝑖

]

, (A.16)

which takes the more compact form (49). The linearization strategy
here adopted extends the result for scalar functions in [40] which
proves the convergence to the minimizer of the scalar analogous to the
cost function (51). □

Proof of Proposition 5.6

Proof. The energy functional 𝐸𝛩(𝑥) with 𝑝 > 1 is convex and differen-
tiable, and we have

𝜕𝐸𝛩(𝑥) = 1 𝜕𝐸
𝑇𝑉𝑝
𝛩 (𝑥)

+ 𝜆(𝑥 − 𝑦)𝑊1𝑊
𝑇 = 𝛥𝑝(𝑥)𝜃2 + 𝜆(𝑥 − 𝑦)𝜃1, (A.17)
𝜕𝑥 𝑝 𝜕𝑥 1
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f

where for each node 𝑖th the weighted p-Laplacian is separable for each
eature

𝜕𝐸
𝑇𝑉𝑝
𝛩 (𝑥)
𝜕𝑥𝑖

= 𝑝
𝑛𝑣
∑

𝑗=1
‖

√

𝑤𝑖,𝑗 (𝑥𝑖 − 𝑥𝑗 )‖𝑝−2𝑤𝑖,𝑗 (𝑥𝑖 − 𝑥𝑗 )|𝑊2|
𝑝 (A.18)

= 𝑝
[

𝛥𝑝(𝑥𝑖)|(𝜃2)1|
𝑝,… , 𝛥𝑝(𝑥𝑖)|(𝜃2)𝑛𝑓 |

𝑝]. (A.19)

By imposing the optimality conditions for the minimization of the
energy 𝐸𝛩(𝑥), the global minimizer can be obtained by solving

𝛥𝑝(𝑥)𝜃2 + 𝜆(𝑥 − 𝑦)𝜃1 = 0. (A.20)

Let 𝑀 and 𝐷 = 𝑑𝑖𝑎𝑔(𝑑𝑖) be the matrices defined as in (54), then (A.20)
can be rewritten as

𝑥𝐷𝜃2 −𝑀𝑥𝜃2 + 𝜆𝑥𝜃1 − 𝜆𝑦𝜃1 = 0. (A.21)

An approximation for 𝑥 in (A.21) from an initial 𝑥0 is obtained by
iterating over 𝑘 as follows

𝑥𝑘+1(𝐷𝜃2 + 𝜆𝜃1) =𝑀𝑥𝑘𝜃2 + 𝜆𝑦𝜃1, (A.22)

where the second term of (A.21) is considered at the previous iteration
𝑘. Then (52) follows. The linearization strategy here adopted for the
nonlinear operator p-Laplacian extends the result for scalar functions
in [40] and introduces the weighted p-Laplacian; as in [40] the con-
vergence to the minimizer of the scalar analogous of the cost function
(55) follows. □
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