Supplementary information Orbital-overlap-driven hybridization in 3d-transition metal perovskite oxides LaMO₃ (M = Ti-Ni) and La₂CuO₄

Chun-Yu Liu,^{1,2,*} Lorenzo Celiberti,³ Régis Decker,¹ Kari Ruotsalainen,¹ Katarzyna Siewierska,¹ Maximilian Kusch,¹ Ru-Pan Wang,⁴ Dong Jik Kim,⁵ Israel Ibukun Olaniyan,^{5,6} Daniele Di Castro,^{7,8} Keisuke Tomiyasu,^{9, 10} Emma van der Minne,¹¹ Yorick A. Birkhölzer,¹¹ Ellen M. Kiens,¹¹ Iris C. G. van den Bosch,¹¹ Komal N. Patil, ¹² Christoph Baeumer,¹¹ Gertjan Koster,¹¹ Masoud Lazemi,¹² Frank M. F. de Groot,¹² Catherine Dubourdieu,^{5,6} Cesare Franchini,^{3,13} and Alexander Föhlisch^{1, 2, †}

¹Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany

²Institut für Physik und Astronomie, Universität Potsdam, 14476 Potsdam, Germany

³University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria

⁴Institute for Nanostructure and Solid State Physics, Hamburg University, 22761 Hamburg, Germany

⁵Institute Functional Oxides for Energy-Efficient IT, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany

⁶Freie Universität Berlin, Physical Chemistry, 14195 Berlin, Germany

⁷Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma Tor Vergata, Via del Politecnico 1, I-00133 Roma, Italy

⁸CNR-SPIN, Università di Roma Tor Vergata, Via del Politecnico 1, I-00133 Roma, Italy

⁹Department of Physics, Tohoku University, Sendai 980-8578, Japan

¹⁰Nissan ARC Limited, Natsushima-cho 1, Yokosuka 237-0061, Japan 11AFCA + Institute for Nanotoshaplan, University of Turneto Faculty of Coince and Technology, 26 B.O. Boy 217, 7500 AF

¹¹MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, 26 P.O. Box 217, 7500 AE Enschede, The Netherlands

¹²Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands ¹³Department of Physics and Astronomy 'Augusto Righi', Alma Mater Studiorum - Università di Bologna, Bologna, 40127 Italy

* chun-yu.liu@helmholtz-berlin.de

† alexander.foehlisch@helmholtz-berlin.de

Fig. S1. Strain and temperature effects on the La ${}^{3}D_{1}$ state observed with resonant inelastic X-ray scattering (RIXS). (a) RIXS spectra of LaCoO₃ single crystal and thin films on different substrates. STO = SrTiO₃ substrate (tensile strain), LAO = LaAlO₃ substrate (compressive strain). (b) RIXS spectra of LaMnO₃ at two temperatures. rt = room temperature.

Table S1. **Fitted result of all compounds.** The model fit is composed of two Voigt profiles representing RIXS ${}^{3}D_{1}$ and ${}^{3}D_{2}$ atomic terms. The gamma (γ , Lorentzian parameter) is fixed to the values from LaAlO₃ ($\gamma_{D1} = 0.103 \text{ eV}$, $\gamma_{D2} = 0.169 \text{ eV}$). The Gaussian parameters σ_{D1} and σ_{D2} , representing combined chemical broadening factors, are coupled. The energy separation of the two peaks is fixed to 0.212 eV. The two-Voigt peaks' intensity ratio is fixed to 1. The rest parameters are set free. The standard errors are evaluated based on best model fit with least-squares method.

$^{3}D_{1}$ center (eV)	$\sigma_{D1} (eV)$	$^{3}\text{D}_{2}$ center (eV)	$\sigma_{D2}(eV)$
18.798±0.003	0.268 ± 0.004	19.010±0.003	0.268 ± 0.004
18.818 ± 0.002	0.195 ± 0.004	19.030±0.002	0.195 ± 0.004
18.820 ± 0.003	0.175 ± 0.004	19.032±0.003	0.175 ± 0.004
18.835 ± 0.003	0.208 ± 0.004	19.047±0.003	0.208 ± 0.004
18.855 ± 0.002	0.215 ± 0.004	19.067±0.002	0.215 ± 0.004
18.876 ± 0.002	0.199 ± 0.003	19.088±0.002	0.199 ± 0.003
18.813±0.003	0.239 ± 0.004	19.025±0.003	0.239 ± 0.004
18.716±0.002	0.239 ± 0.003	18.928 ± 0.002	0.239 ± 0.003
18.956 ± 0.001	0.027 ± 0.003	19.168±0.001	0.027 ± 0.003
	$\begin{array}{r} {}^{3}\text{D}_{1} \ \text{center} \ (eV) \\ 18.798 {\pm} 0.003 \\ 18.818 {\pm} 0.002 \\ 18.820 {\pm} 0.003 \\ 18.835 {\pm} 0.003 \\ 18.855 {\pm} 0.002 \\ 18.876 {\pm} 0.002 \\ 18.813 {\pm} 0.003 \\ 18.716 {\pm} 0.002 \\ 18.956 {\pm} 0.001 \end{array}$	$\begin{array}{c c} {}^{3}D_{1}\ center\ (eV) & \sigma_{D1}\ (eV) \\ \hline 18.798\pm 0.003 & 0.268\pm 0.004 \\ 18.818\pm 0.002 & 0.195\pm 0.004 \\ 18.820\pm 0.003 & 0.175\pm 0.004 \\ 18.835\pm 0.003 & 0.208\pm 0.004 \\ 18.855\pm 0.002 & 0.215\pm 0.004 \\ 18.876\pm 0.002 & 0.199\pm 0.003 \\ 18.813\pm 0.003 & 0.239\pm 0.004 \\ 18.716\pm 0.002 & 0.239\pm 0.003 \\ 18.956\pm 0.001 & 0.027\pm 0.003 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$