
28 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Andreozzi M., Frangioni A., Galli L., Stea G., Zippo R. (2022). A MILP approach to DRAM access worst-case
analysis. COMPUTERS & OPERATIONS RESEARCH, 143, 1-15 [10.1016/j.cor.2022.105774].

Published Version:

A MILP approach to DRAM access worst-case analysis

Published:
DOI: http://doi.org/10.1016/j.cor.2022.105774

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/983178 since: 2024-09-14

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.cor.2022.105774
https://hdl.handle.net/11585/983178


A MILP Approach to DRAM Access

Worst-Case Analysis

Matteo Andreozzi ∗ Antonio Frangioni † Laura Galli † Giovanni Stea ‡

Raffaele Zippo ‡§

Abstract

The Dynamic Random Access Memory (DRAM) is among the major points of contention
in multi-core systems. We consider a challenging optimization problem arising in worst-
case performance analysis of systems architectures: computing the worst-case delay (WCD)
experienced when accessing the DRAM due to the interference of contending requests. The
WCD is a crucial input for micro-architectural design of systems with reliable end-to-end
performance guarantees, which is required in many applications, such as when strict real-
time requirements must be imposed. The problem can be modeled as a mixed integer linear
program (MILP), for which standard MILP software struggles to solve even small instances.
Using a combination of upper and lower scenario bounding, we show how to solve realistic
instances in a matter of few minutes. A novel ingredient of our approach, with respect to
other WCD analysis techniques, is the possibility of computing the exact WCD rather than
an upper bound, as well as providing the corresponding scenario, which represents crucial
information for future memory design improvements.

Keywords: mixed integer linear programming; worst-case analysis; scheduling; network-
calculus

1 Introduction

With the advent of Industry 4.0, cyber-physical applications, such as self-driving cars, au-
tonomous robots, etc., are expected to enjoy widespread use. These applications have real-time
constraints, and missing deadlines may result in harm to humans and/or damage to property.
At the same time, systems architecture will continue to employ resource sharing by multiple
masters, for cost reasons. This makes it important to be able to bound the interference suffered
because of resource sharing, so as to be able to provide worst-case performance bounds, chiefly
a Worst-Case end-to-end Delay (WCD). Computing the WCD requires one to analyze single
components in a system architecture (e.g., the shared interconnection network, the DRAM,
etc.) and to provide composable worst-case guarantees for each of them. Network Calculus [1] is
a framework for composable worst-case analysis, which is based on the concept of service curve,
capturing the worst-case service obtained by a flow traversing a shared element. Composable
worst-case guarantees allow one to perform end-to-end analysis, and end-to-end guarantees (e.g.,
between a sensor and an actuator) are the important parameters in a Service Level Agreement
for critical services (see, e.g., [2], [3], [4]).

∗ARM Ltd. Global Headquarters, 110 Fulbourn Road, CB1 9NJ, Cambridge, UK. E-mail:
matteo.andreozzi@arm.com

†Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy. E-mail:
{antonio.frangioni, laura.galli}@unipi.it

‡Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
E-mail: giovanni.stea@unipi.it, raffaele.zippo@phd.unipi.it

§Dipartimento di Ingegneria dell’Informazione, Università di Firenze, Via di S. Marta 3, 50139 Firenze, Italy.
E-mail: raffaele.zippo@unifi.it

1



One of the main points of contention in a shared system architecture is the Dynamic Random
Access Memory (DRAM). Modern DRAM is organized in a hierarchical structure, which is the
result of a series of trade-offs between power consumption, access time, and throughput. The
DRAM is managed by a DRAM controller, that serializes incoming requests (reads or writes)
and issues commands to the memory chip(s) in order for these to be fulfilled. Common off-
the-shelf (COTS) DRAM chips are often managed by a First-Ready-First-Come-First-Served
(FR-FCFS) controller. The latter stores all reads and all writes, respectively, in two separate
queues, and alternates between draining each queue, with an eye to minimizing the overhead
of bus switching. While reads and writes are normally served FCFS, some of them may jump
right at the front of the queue (so-called “hits”) when doing so proves more efficient from a
throughput perspective. In between serving requests, a controller has to periodically schedule
refresh operations to preserve the memory content.

This paper analyzes the DRAM controller in order to find the WCD that a read request
undergoes. Read queues are in fact on the critical path, i.e., the master issuing them is blocked
until they get a response (whereas a master does not need to block after a write request, which
can therefore be delayed). We set out to compute that delay as a function of the position in the
read queue of said request. The set of points pn, tnq, where tn is the worst-case delay when the
read queue consists of n requests, forms a service curve for the DRAM controller. We model
the above worst-case problem as a mixed integer linear programming (MILP) problem.

We begin our analysis by modelling all the possible DRAM sequences of requests as “ex-
ecution paths” in a Finite State Machine (FSM). The execution paths represent all possible
schedules that may be executed starting from the DRAM initial state and reaching the state
corresponding to the request under analysis being served. The FSM-digraph yields a “natural”
MILP model for our problem.

However, standard MILP software is unable to solve even small instances of our problem
in reasonable computing times. To circumvent this issue, we exploit our problem knowledge to
compute lower and upper bounds on the worst-case delay, which we use to improve the running
time by several orders of magnitude. Interestingly, this is done by leveraging the very insight
produced by optimal solutions to sample problems. The latter allow us to identify scenarios
that yield large delays, which we use to construct relatively tight upper and lower bounds.
This makes it possible to solve instances of realistic size to proven optimality in a matter of
few minutes. Our approach allows DRAM vendors to compute provable worst-case guarantees
for their products, and system engineers to use these guarantees in an end-to-end perspective,
towards predictability of systems.

Other works in the past have dealt with the problem of worst-case analysis of DRAM access
latencies. Some devise predictable-latency controllers or analyze existing, but simplified ones
(see, e.g., [5]), whereas others use knowledge of the task set run by the masters, to infer upper
bounds on the worst-case delay (see, e.g., [6]). Our approach has some distinctive advantages
over the latter. First, to the best of our knowledge, it is the first one to provide exact worst-case
delays, rather than upper bounds. Second, it does so under looser hypotheses, i.e., without any
assumption on the underlying task set. Third, it is the first one that reports guarantees in the
composable form of a service curve, which allows our results to be used in conjunction with
similar works for end-to-end analysis.

The paper is structured as follows. Section 2 discusses the related work. In Sections 3 and 4
we describe the system model and the corresponding FSM, respectively. In Section 5 we present
a MILP model, while Section 6 is devoted to the scenario bounding technique. The results of
some extensive computational experiments are given in Section 7. Some concluding remarks
are made in Section 8.

2



2 Related Works

Several works in the literature have addressed memory command scheduling and the temporal
analysis thereof, often in the context of real-time systems. Some of these works are concerned
with designing new, predictable DRAM controllers. Predictability is enforced by imposing
constraints on the behaviour of the controller, e.g., about which master accesses which DRAM
bank(s). A comparative evaluation of such works can be found in survey [5]. The authors of [7],
for example, present a novel memory controller design, amenable to worst-case analysis, which
capitalizes the open-row policy. This controller relies on statically partitioning the available
main memory among possible requestors and disabling reordering of requests to avoid starvation.

Other studies, instead, analyse existing controllers, assuming that the tasks contending for
memory access are known, and that they can be modeled according to standard frameworks
used in real-time systems. For example, [6] describes the worst-case memory interference among
a set of tasks scheduled according to fixed priorities, when the DRAM controller employs the
FR-FCFS DRAM policy. Our analysis makes considerably fewer architectural assumptions on
the tasks, their scheduling, their memory access request timing, the presence of caches, etc.,
thus being far more general. Moreover, the timing analysis in [6] does not consider memory
refreshes, which are said to have the impact of a constant offset on the WCD. In our analysis,
we show that refresh timers may instead interplay with the write arrival curve, resulting in
non-constant increase to the WCD.

In [8, 9] the memory is modelled as a black-box system, where each memory request takes
a constant service time; the scheduler is either Round-Robin (RR) or First-Come First-Serve
(FCFS), which are different from those that are most often found in COTS system, i.e., FR-
FCFS. In [8], CPU cores are allowed to issue multiple memory requests in parallel, giving a
more realistic representation of modern COTS memory systems. The study evaluates the WCD
suffered by a read request given that all the memory banks have their queues full, hence it
considers both intra-bank and inter-bank interference delay. However, it does not allow one to
derive the queueing delay of a request from the backlog.

The authors in [10] propose a method for characterizing the worst-case interference for a
memory request in a FR-FCFS controller, which blends two different approaches, namely job-
driven and request-driven. The first approach requires one to know the characteristics of the
competing jobs and the number of outstanding requests, while the second one computes the
worst-case for a single request, and then multiplies it by the number of outstanding requests. It is
argued therein that either approach may yield a tighter bound, depending on the circumstances,
hence the rationale in composing them into a unified framework.

Regarding our own previous contributions, position paper [2] discusses the importance of
predictability in automotive systems, and proposes various research directions to approach it.
It reports some upper and lower bounds on the WCD of DRAM access, obtained with heuristic
algorithms. Finally, [11] reports some initial thoughts about modelling the DRAM system as
a FSM, as well as the idea of computing lower and upper bounds. However, no algorithm is
explained, and no optimization method is described. The service curves obtained therein are
computed using the upper bounds shown in Section 6, whereas the lower bounds are obtained
via simulation, and are considerably worse than those described herein.

2.1 Our Contribution

To the best of our knowledge, this is the first study that computes exact (i.e., achievable)
worst-case delays, rather than only upper bounds, using mathematical optimization techniques.

The main difference between our work and the ones discussed above is the level of gen-
erality. All the above works posit a precise system model and put several constraints on the
set of tasks accessing the DRAM: at the very least a maximum number, or a per-task re-
source/period/deadline characterization. In some cases, a specific task scheduling algorithm is

3



also envisaged. Our work does not require the above assumptions: the effect of competing traf-
fic manifests itself via an overall maximum write bandwidth (i.e., the slope of the leaky-bucket
characterization) and burst, and in the backlog that the request under study finds ahead in the
read queue (as well as possible overtaking hits arriving later).

This also makes our work composable, whereas others are not. Indeed, the extra hypotheses
required by the other studies only hold assuming that the stream of memory requests originated
by the tasks verifies the stated constraints right at the arrival at the memory controller, i.e., if
the network connecting the masters and the DRAM does not introduce any distortion due to
resource contention; in practice, it would need to have constant delay and infinite capacity. This
is false in current systems, in particular within wormhole-switching networks where blocking
effects introduce severe jitter. Conversely, our approach allows the memory controller to be
modeled as a service curve, and therefore be composed with those obtained by modelling the
underlying network elements (see, e.g. [1]), ultimately making it possible to perform end-to-end
analysis. The need for end-to-end analysis of complex systems is made clear in [2, 11].

We end up remarking that our work might seem to fail considering multiple banks, which
would allow some parallelism; however, our assumption is easily justified by the worst-case
setting, i.e., intra-bank interference being larger than, or equal to, inter-bank interference in all
cases. Now, either one knows which task(s) access which bank(s), but this requires additional
hypotheses on the task structure—which we steer clear of—or one does not, in which case the
worst-case scenario is when all requests address the same bank, thus maximizing the interference
of the one under study.

3 System Model and problem definition

In this Section we describe our assumptions to calculate the WCD and the main features of the
DRAM system considered. As will become clear later, the order by which requests are served,
as well as the numerical relations between timing parameters, can heavily impact on the WCD.
Searching for the WCD scenario means evaluating all possible schedule combinations. This
combinatorial aspect suggests to use mathematical optimization techniques to calculate DRAM
WCD.

As already outlined in Section 1, there is a fundamental difference between reads and writes:
read requests block the program that issues them until a response is received, hence are on the
“critical path” and must be answered as soon as possible. On the other hand, writes are non-
blocking, hence they can be deferred to maximize efficiency. This implies that our primary
concern is the worst-case delay experienced by read requests. More precisely, we define the
DRAM WCD problem as follows:

Definition 1 (DRAM WCD) Given a queue of N read requests, compute the WCD of the
N th read, a.k.a. request under analysis.

In other words, assuming a backlog of N ´ 1 read operations, and starting from the time t0
of arrival of the N th read request in the queue, our goal is to calculate the largest delay that
the request under analysis can experience before being served by the DRAM system. Note that
time is measured in system clock cycles.

The system under study, pictured in Figure 1, is composed of a DRAM controller and a
DRAM device, consisting of one or more banks. Read and write requests arrive at the controller,
which schedules them, together with periodic refreshes, according to its policy. The controller
interfaces with the DRAM banks by issuing sequences of commands directed to them, each
having specific timing constraints. We describe the controller first, and then the DRAM device.

4



Master device 

e.g. CPU

DRAM Controller

Read requests

Command 

scheduler

Write requests

Write 

queue

DRAM 

refreshes

Read misses

Read hits DRAM bank

Row buffer

Memory cells

Command bus

Data bus

Figure 1: Overview of the System Model.

3.1 DRAM controller

A FR-FCFS DRAM controller maintains one queue for reads and one for writes. Arriving reads
(writes) usually queue FIFO in their respective queue, except if they target an open row of the
DRAM bank, in which case serving them requires fewer commands and less time. Therefore, in
the interest of efficiency, these requests (called read/write hits) are allowed to jump the queue;
they are, in fact, “ready” to be served.

COTS FR-FCFS DRAM controllers employ a watermark policy to switch between reads
and writes. As a default, the read queue is drained (since reads need faster response), and a
controller only switches to serving writes when the backlog of the write queue is larger than
the watermark. This is because switching from one queue to another requires switching the
direction on the data bus, which takes time and therefore reduces throughput.

Controller assumptions. We make the following assumptions on the DRAM controller:

1. Open-page row policy. When a request is completed, the corresponding row is left “open”
in the row buffer. As we will see later, this means that subsequent requests targeting
the same row (row hits) can be served faster. On the other hand, requests targeting a
different row (row misses) will incur an additional latency, i.e., the time required to switch
the row loaded in the row buffer. This choice makes FR-FCFS scheduling more efficient,
but complicates the analysis.

2. First-Ready First-Come First-Serve (FR-FCFS) arbitration policy. Since row hits have
strict priority over misses in the respective queue, we need a bound on the number of
overtakes to avoid starvation and have a bounded WCD. We therefore assume that the
controller allows a maximum of Ncap row hit overtakes.

3. Watermark write-read switch policy. When more than Whigh write requests are back-
logged, the controller switches to write requests and serves at least Nwd of them. Next,
the controller switches back to read requests and keeps executing them until the water-
mark condition is triggered again. Note that this allows at least one read request to be
served between two batches of writes, even if the arrival rate of write request is unbounded.

5



4. Priority of refresh requests. Refresh operations rewrite the memory content (which would
otherwise decay over time). They are supposed to occur periodically. However, read/write
operations are atomic, hence cannot be interrupted. We consider two different policies
that the controller can implement for scheduling refreshes, namely refresh with and without
priority. The former forces the controller to schedule a refresh operation as soon as the
refresh timer expires; the latter (aka blind scheduling), instead, schedules the refresh at
any time after the timer expires.

5. Single-bank (no parallelism). A single DRAM controller can control several DRAM banks,
and commands to different banks can be issued in parallel. Schemes exist in the literature
to assign banks to computing tasks, so as to minimize the interference of different tasks
(see Section 2). Clearly, multi-bank parallelism reduces the delays of queued requests.
Since this work is concerned with finding the WCD, we assume that the DRAM controller
manages a single bank, and do away with all the parallelism opportunities.

WCD assumptions. In order to simplify the problem, and without loss of generality, we make
some further assumptions by considering conditions that would trivially reduce the WCD, and
should therefore be excluded from our analysis. We assume that:

6. all N requests in the queue are targeted to the same bank, so that commands need to be
serialized;

7. all the N read requests are row misses;

8. all write requests are row misses too, since write hits would cause less interference.

Write arrival rate assumptions. Because of the watermark-based queue switching policy,
the WCD of a read request will be influenced by how many writes can be served before the N th

read. If the arrival rate of write requests is unbounded, we can easily envisage a scenario in
which, periodically, a burst of Nwd writes follows a single read. Computing the WCD in this
scenario is relatively easy (the alert reader can do it with pen and paper, without resorting
to mathematical programming), but it may be pessimistic, for several reasons. First, masters
do not send infinite batches of writes all the time; second, rate-limiters can be (and often
are) employed at the entrance of a shared system (e.g., the interconnection network connecting
the masters to the DRAM controller) to limit the amount of requests sent by a single (e.g.,
misbehaving) master; third, the interconnection network itself acts as a rate limiter, in that
the write bandwidth of a master cannot exceed the network bandwidth along the path from
that master to the controller. Therefore, the WCD computed assuming that the write queue is
always above the watermark would be pessimistic. We can, however, capture the above three
effects by assuming that the process feeding the write queue is upper bounded. A simple, yet
effective way to model this is to state that the arrivals at the write queue are shaped by a token
bucket shaper, shown in Figure 2, with arbitrary but known parameters burst b and rate r. The
burst parameter b (the vertical offset) models the fact that a number of concurrent requests
may arrive near-simultaneously (e.g., originating from different masters). The rate parameter
r (the slope of the line) is the aggregate average rate of the masters that are using the DRAM.
The fact that a process Qptq is upper bounded by a token bucket shaper with a shaping curve
αpτq “ b ` r ¨ τ , τ ą 0, implies that Qpt ` τq ď αpτq ` Qptq @τ . In other words, the only
legitimate processes are those that never intersect the shaping curve. Besides being a useful
model for an aggregate traffic process, a token bucket shaper can be practically implemented in
hardware (all it takes is a buffer and a timer). The token bucket constraint is called an arrival
curve in Network Calculus. The above model allows us to represent physical limitations of the
write arrival rate without requiring modelling of the tasks themselves. From now on, we denote

6



Requests

Figure 2: Example of token bucket shaper, taken from [11]. The traffic process Rptq is always
below the arrival curve αptq and its translations along Rptq.

Figure 3: Graph model for a DRAM bank

with αW pτq the token-bucket arrival curve that upper bounds the process that feeds the write
queue.

Initial-state assumptions. Finally, the WCD is affected by the DRAM “status” at t0, in-
cluding the operation being served at t0 and the size of the write backlog, for which we assume
the following:

9. One cycle before the arrival of the request under analysis (i.e., at t0 ´1) a read miss M0 is
issued. This means that said read miss is not counted in the backlog, but we still count in
its maximum interference. We also assume that M0 opens a row different from all other
rows targeted by the reads in the backlog. As we show later on, this leads to a delay of
tRC cycles before any command can be executed.

10. Since the arrival process of write requests is bounded by the arrival curve αW ptq, the
(initial) state of the write backlog affects the WCD. Therefore, we assume that when the
N th read arrives the write backlog has length Whigh ´ 1, i.e., only one write request is
required to trigger the first switch to serving writes. This is w.l.o.g.; indeed, if the WCD
requires a batch to be served at the very beginning, then only one write request is needed,
otherwise it is enough to have a zero arrival rate for a while.

3.2 DRAM commands and timing constraints

A DRAM device can be modeled as a 3-dimensional matrix of memory units organized in banks,
rows and columns. As already stated, without loss of generality we focus on a single bank. A
DRAM bank is a stateful entity, meaning that the operations (i.e., commands) allowed at any
time depend on its state. At a first level of approximation, a DRAM bank can be modeled via
the graph shown in Figure 3, where commands issued by the controller trigger transitions. This
simplified view allows us to focus on high-level operations, without the added burden of timing
parameters and constraints. These will be discussed later in this section.

The starting point is the idle state, where each cell of the bank is storing data and no
operation is ongoing. When data needs to be read from a bank, an entire row needs to be sensed
and read into an internal row buffer/sense amplifier. This process is called bank activation: the
ACT command is issued to load the data and the row is opened. Once the row is open, RD (read)

7



and WR (write) commands can be used on it. Before a different row can be read or written, the
bitlines that enable sensing and reading data from the DRAM cells need to be precharged, i.e.,
the row must be closed with a PRE command. This command writes back the data to the bank
cells, bringing the device back to its idle state. Memory access is subject to different latencies
depending on the DRAM state:

• access to an open row (aka row hit) does not incur the precharge and activation latencies;

• access to a closed row (aka row miss with conflict) incurs both the precharge and the
activation latencies, since that the controller uses the open-row policy, i.e., it leaves rows
open as long as possible;

• access to a bank in the idle state incurs only the activation latency.

Therefore, a memory controller will favour schedules that maximize sequences of row hits. The
open row policy of the controller means that the PRE command is delayed as much as possible
after an operation, to leave the door open for future row hits. Periodically, the controller
schedules refresh (REF) commands. These can only be sent when the bank is in the idle state,
i.e., no row is open.

The interface between the controller and the DRAM bank includes a command bus and
a data bus. The two can transport information simultaneously. A DRAM bank has timing
constraints on when each command can be received, that must be satisfied to ensure correct
operation. These constraints are embodied in a set of timing parameters, which are reported
in the Joint Electron Device Engineering Council (JEDEC) standards (e.g., [?], for DDR4).
We need to describe all the timing parameters that are relevant to our model (a subset of a
much larger set thereof). In doing so, we will not use the JEDEC lexicon which, stemming from
electronics, can be rather obscure to the non initiated. Rather, we will use the following intuitive
notation: τx is the duration of command x, and τxy is the minimum spacing between commands
x and y, which may be larger than τx ` τy due to physical constraints. In the Appendix, we
report a table with the definition of all our symbols, as well as with the corresponding JEDEC
names. The latter are taken from the naming conventions of the DDR4 DRAM [?], probably
the most widespread at the moment of writing. However, the model reported here also applies
to other DRAM technologies (e.g., LPDDR, DDR5, etc.). The only difficulty for the interested
reader is that, with a different technology, a timing parameter bearing the same JEDEC name
may have a slightly different definition, hence a tedious, yet straightforward re-mapping may
be necessary. All times are reported as number of clock cycles, hence are integers.

We begin with the timing constraints related to single commands:

• ACT takes τA cycles;

• PRE takes τP cycles;

• RD takes τR cycles;

• WR takes τW cycles;

• REF takes τF cycles.

Note that the two column-level commands (RD and WR) have the same duration, τR “ τW “ τC
(C for ”column”). Row-level commands (ACT and PRE) are generally more expensive than
column-level commands, and the REF command is by far the most expensive. However, timing
constraints can affect the sequence of commands. For instance, there is a minimum spacing
between:

• the ACT command and the successive PRE command, τAP . In today’s architectures, τAP is
usually between τA ` τC and τA ` 2 ¨ τC ;

8



A 

C 

T

R 

D

P 

R 

E

Command

Bank

Data bus

Figure 4: Example of the assumption on τAP .

• a RD and a PRE command, τRP .

Finally, we have timing constraints affecting the data bus, or that start from the latter and
affect the command bus:

• τD is the duration of the data transfer on the data bus for a single read/write command.

• τWR is the time it takes for the data bus to switch from the write direction to the read
one, during which that bus is unusable.

• τDP is the minimum number of clocks between completion of a write operation (i.e., the
end of τD) and the next PRE command.

In this work, we assume that τAP ą τA ` maxtτC , τRP u. This assumption means that τAP is
an active constraint in a command schedule, affecting the last read hit before a row is closed.
This is exemplified in Figure 4. This assumption is verified by a large number of today’s DRAM
technologies, and allows us to simplify the analysis. The method described in the following can
still be used even if this assumption is not met, via minor modifications which we leave to the
interested reader.

The above timing constraints introduce additional delays. In fact, the full cost of a read
miss operation is TR “ τAP ` τP , i.e. the minimum time between two successive ACTs. How-
ever, within that time interval, a “gap” (called read precharge bubble) may appear between the
completion of the read operation and the first clock in which the PRE command can be issued
again. As usual in the systems analysis literature, the term “bubble” indicates here a delay in
one operation caused by having to wait for the completion of another. In highly constrained
systems, say a pipeline, this delay may propagate to the subsequent operations, materially im-
pacting the final performances, and it is therefore one of the crucial aspects in the analysis.
While different types of bubbles exist in a DRAM (cf. [?]), precharge bubbles are the only ones
of interest here. During a read precharge bubble, the bank can accommodate read hits, but not
read misses. Consider the example represented in Figure 5, where two different access patterns
are depicted. Both schedules consider the timings of five read requests, which result in three row
misses (M˛) and two row hits (H˛), but their sequence is different (MHH-M-M and MH-MH-M).
To facilitate the comparison, a black arrow marks the point at which the last read miss request
starts execution.

Pattern MHH-M-M (Figure 5 - above) This pattern has two row hits served back-to-back
(˛˛˛˛). After the first miss, the two hits being back-to-back allows for maximum utilization
of the data bus (if we ignore the small “gap” due to τR ą τD). As the two hits are served,
when transitioning to the following miss, we only lose 1 clock cycle due to τRP . Then, two
consecutive misses are served; due to the τAP constraint, the PRE command of the second
miss is delayed.

9



A 

C 

T

R 

D

R 

D

P 

R 

E

A 

C 

T

R 

D

R 

D

◇ ◆ ◆ ◇

P 

R 

E

Command

Bank

Data bus

A 

C 

T

R 

D

R 

D

P 

R 

E

A 

C 

T

R 

D

◇ ◆ ◇

P 

R 

E

Command

Bank

Data bus

R 

D

◆

Figure 5: Timings of five reads with access pattern MHH-M-M (above) and MH-MH-M (below).

Pattern MH-MH-M (Figure 5 - below) Here the two row hits are split between the row misses
(˛ ˛ ˛˛). This pattern executes faster than the previous one (as highlighted by the black
arrow) due to the way each row hit “fits in” the previous row miss delay. Indeed, the two
execution of the two row hits does not add any delay, because their τR and τRP timings fall
within the τAP time constraint of the previous row misses. Interestingly, their execution
appears to be “for free”, since serving pattern MH-MH-M takes exactly the same time as
serving pattern MMM would, i.e., 3 ¨ TR.

The above example clearly shows that the same set of operations (read/write hits/misses)
will have a different duration depending on their sequence. Indeed, the same operation can
have a different impact depending on its position in the schedule. This phenomenon affects the
WCD.

We therefore need to count how many read hits can fit into a read precharge bubble. These
hits, basically, come for free as far as delay computation is concerned. The interval that starts
after a read miss, and ends when the next PRE command can be executed, has a length TRPB “

τAP ´ pτA ` τRq. The number of read hits that fit entirely within it is equal to

N inner
HR “

Z

TRPB ´ τRP

τR
` 1

^

.

After N inner
HR read hits, some time may be still be left to the end of the read precharge bubble,

but not enough to serve another read hit. This means that another read hit scheduled right after
the batch of N inner

HR would come at a reduced cost with respect to τR. We therefore define as NHR

the number of read hits that can occupy the read precharge bubble, fully or partially. It is either
NHR “ N inner

HR , if TRPB is a multiple of τR (hence TRPB “ N inner
HR ¨ τR), or NHR “ N inner

HR ` 1,
otherwise.

Similar considerations apply to cycles of write requests, which in turn may create write
precharge bubbles. In general, the parameters involved in write operations are analogous to
those presented for reads, but their values can be different. In fact, τWP , which, analogously to

10



τRP , indicates the time between a WR command and the following PRE, is such that τA ` τWP ą

τAP , which results in a longer delay to the next PRE for misses involving writes, instead of
reads. For this reason, we define τWAP “ maxtτAP , τA ` τWP u. The full cost of a write miss
is therefore and TW “ τWAP ` τP , where TW ě TR typically holds. Similarly, we denote by
TWPB “ τWAP ´ pτA ` τW ` τD ` τWRq the write to precharge bubble time, i.e., the delay after
a write miss before another PRE command can be executed (during which a read hit can be
executed). The number of read hits that fit entirely within a write precharge bubble is

N inner
HW “

Z

TWPB ´ τRP

τR
` 1

^

.

The number NHW of read hits that can occupy the write precharge bubble, fully or partially, is
either NHW “ N inner

HW , if TWPB “ N inner
HW ¨ τW , or NHW “ N inner

HW ` 1, otherwise.
Finally, we discuss the impact of refreshes and the scheduling of REF commands. Refresh

requests queue up every τFF , which is orders of magnitudes longer that the other timing pa-
rameters described so far. While this reduces the impact of refreshes on the average delay, it
does not mean that refreshes can be neglected when computing the WCD. It is important to
remark that, while refresh operations cannot be arbitrarily spaced (without incurring the risk
of losing data), some jitter with respect to a perfectly periodic scheduling can be tolerated.
For this reason, we consider two refresh policies: priority and blind scheduling. With priority
scheduling, the controller schedules a pending refresh request right after the ongoing (read or
write) operation, to minimize the jitter. With blind scheduling, we assume that the controller
does schedule all the pending refresh requests, but make no hypotheses as to when exactly. The
rationale behind this is that, by removing a constraint, it leads to higher WCDs, thus yielding
results that hold for any scheduling policy.

4 FSM Model

As already pointed out, the number of cycles required to execute a given DRAM schedule
depends on both the required commands and their sequence. This combinatorial aspect implies
that computing the WCD requires to (hopefully, implicitly) enumerate all feasible schedules to
find the one maximizing the corresponding delay. In this section, we show how to model the
DRAM schedules as execution paths in a FSM, see Figure 6. Recall that our WCD is the delay
of the N th read. Therefore, we need to describe all possible schedules that can be executed
from the initial state S (i.e., marking the arrival of the N th read in the queue) to a final state
MN (i.e., the N th read is served).

A state is a description of the status of the DRAM system that is waiting to execute a
transition. A transition is a set of actions to be executed when an event is received (i.e., a
command from the memory controller). More precisely, the DRAM FSM is a weighted digraph
GFSM “ pV,Aq, in which a state (node) X P V corresponds to the completion of command X,
and a transition (arc) pX,Y q P A models the execution of command Y after command X. The
cost of the transition cXY represents the number of cycles required to complete command Y
after X, up to the point when the DRAM is ready to receive another command. In other words,
each transition X Ñ Y models the execution of command Y until the system reaches state Y
corresponding to:

• expiration of time τD, if command Y is the N th read miss (i.e., up to completion of the
request under analysis);

• expiration of time τR, if command Y is a read hit (i.e., up to the point when another read
hit can be executed);

• expiration of any timing constraint that delays the execution of the following command
(i.e., when a PRE can be executed), in all the other cases.

11



4.1 States

The FSM graph GFSM models all possible DRAM system evolutions as execution paths from the
arrival of the N th read in the queue (origin node S), to the N th read being served (destination
node MN ). The graph has a different node for each read hit, read miss, write miss and refresh
operation.

S,M0: these two initial states include a dummy source state S, and the read miss M0 executing
before the arrival of the request under analysis.

Mi pi “ 1 . . . N): states of type M represent the N read misses that have to be served. In
particular, MN is the destination state and we are not interested in what happens after
MN .

HR
i pi “ 1 . . . NHR): states of type HR correspond to read hits within read precharge bubbles.

Up to N inner
HR can fit entirely into the precharge bubble at a null cost. If NHR “ N inner

HR `1,
then another read hit can be included at a cost ă τR.

HW
i pi “ 1 . . . NHW ): states of typeHW correspond to read hits within write precharge bubbles.

Up to N inner
HW can fit entirely into the precharge bubble at a null cost. If NHW “ N inner

HW `1,
then another read hit can be included at a cost ă τR.

Hi pi “ Nhl . . . Ncapq: states of type H correspond to ordinary (i.e., out-of-bubble) read hits
with transition cost τR. The number of H nodes depends on the Ncap parameter, which
also includes in-bubble hits of type HR and HW . The lowest index that an out-of-bubble
read hit can take in a feasible schedule is Nhl “ mintNHR , NHW u ` 1.

Wi pi “ 1 . . . NW q: states of type W correspond to write batches. Each write batch consists Nwd

write misses back to back. The scheduling of subsequent write batches is regulated by the
length of the write queue, which is fed by an arrival process that can be bounded by the
write arrival curve αw. We assume knowledge of an upper bound NW on the total number
of W states that can be reached before MN ; in Section 6 we discuss how to compute NW

in an efficient way.

Ri pi “ 1 . . . NRq: states of type R correspond to refresh cycles. The execution of a refresh cycle
costs τF , and the distance between two refresh cycles is regulated by the refresh period
τFF . We assume knowledge of an upper bound NR on the total number of R states that
can be reached before MN ; in Section 6 we will show how to compute NR in an efficient
way.

Note that, on one hand, we need to distinguish read hits between those that are served within
a precharge bubble (i.e., HR and HW nodes) from ordinary hits (i.e., H nodes), since the
corresponding transitions have different costs. On the other hand, from the point of view of
the DRAM controller, in-bubble and out-of-bubble read hits are indistinguishable and the cap
Ncap is enforced on all of them. As a consequence, the indexing of out-of-bubble hits depends
on the number of in-bubble hits as well as on the cap: the lowest index Nhl represents the first
hit that can be executed outside a precharge bubble, while the highest index Ncap is the last
read hit allowed (including the ones that were previously executed inside a precharge bubble).

All the parameters that regulate the number of states for each type of operation (and their
exact calculation) are described in the Appendix.

4.2 Transitions

We now describe in detail the possible FSM state transitions (i.e., arcs of the GFSM graph) and
the corresponding costs. To this end, we recall the distinction between hit and non-hit states
in our model, that is:

12



• a hit state represent the execution of a read hit, up to the expiration of timing τR;

• a non-hit state represents the execution of a read miss, a write batch or a refresh, up to the
expiration of any timing constraint that delays the execution of the following command
(i.e., when a PRE can be executed).

We will use X to generically refer to a state of the latter category.

S Ñ M0: the first (mandatory) FSM transition represents the initial delay TR ´ 1 induced by
the read miss M0, whose execution is assumed to start one cycle before the arrival of the
request under analysis.

X Ñ Mi p0 ă i ă Nq: this type of transition represents the execution of a read miss in the
queue (excluding the request under analysis). The transition cost is τAP ` τP “ TR and
requires:

• closing the currently open row with a PRE command;

• opening another row and executing a RD command;

• waiting until the row can be closed again.

X Ñ MN : with this last FSM transition we consider the command MN to be completed when
the data transfer along the bus is finished. Therefore the cost is TMN

“ τP `τA `τR `τD.

X Ñ Wi: executing a write batch Wi means executing Nwd write misses. Each write miss
behaves like a read miss, except from the length TW , which may be larger than TR,
according to the dominance between τAP and τWP . Similarly to read misses, we consider
the execution to finish when a PRE can be issued, thus also the last write takes TW cycles.
Therefore, the cost of such transition is LW “ Nwd TW . Note that X cannot be a node
of type W due to the write-read switch policy that forces write batches to alternate with
read requests.

X Ñ Ri: the length of a refresh cycle is specified by the τF parameter.

X1 Ñ H̄i Ñ X2: special attention must be paid when considering the cost of read hits, because
it depends on the effect of precharge bubbles (i.e., H̄i can be of type H, HR or HW ):

• If the read hit is inside a precharge bubble (H̄i is either of type HR or HW ), the
cost of transition X1 Ñ H̄i is already contained in the “wait-for-precharge” delay
accounted for by state X1. Thus, the first transition X1 Ñ H̄i has 0 cost. Also, if
state X2 needs precharge, the waiting cost for the PRE command to be issued has
already been considered in X1, so no adjustment is needed to the usual cost of X2.
For instance, the transition H̄i Ñ Mj , where H̄i is a read hit inside a precharge
bubble and Mj is a read miss, costs TR. Note that X2 can be another red hit inside
the bubble (if NHR and NHW ą 1), in which case the cost of the second transition is
again 0.

• If the read hit is outside the precharge bubble (H̄i is of type H), then its cost is
larger than 0. For the first transition X1 Ñ Hi, we consider the cost to be up to the
point when another read hit (RD command) can be executed, so the cost is τR. For
the second transition Hi Ñ X2, the cost depends on the state X2:

– if X2 is another hit, then the RD command can be immediately executed and the
cost is again τR;

– if X2 is not a hit, then a PRE command is needed, therefore a delay of τRP ´ τR
must be added to the usual cost of X2. For instance, Hi Ñ Mj , where Hi is a
read hit outside the precharge bubble and Mj is a read miss, costs τRP ´τR`TR.

13



• If the read hit is partially contained in a precharge bubble, the cost of the first
transition should account only for the part outside the bubble, namely:

– if X1 is a read miss, the cost is τR ´ pTRPB ´ N inner
HR ¨ τRq;

– if X1 is a write miss, the cost is τR ´ pTWPB ´ N inner
HW ¨ τRq.

The second transition H̄i Ñ X2 follows the rules already presented for the case of
read hits outside the precharge bubble.

4.3 Execution paths

A feasible FSM execution path p has the following properties:

• p is a simple path in GFSM. Since in a feasible schedule, bubble hits HR and HW can
follow any state of type M and W , respectively, a path might need to visit the same
in-bubble read hit nodes multiple times (i.e., once after each state of type M and W ).
To ensure that all feasible paths are simple, we replicate HR and HW nodes for each
read miss and write batch state, respectively. For instance, M1 Ñ HR

1 and M2 Ñ HR
1

becomes M1 Ñ HR
1,1 and M2 Ñ HR

1,2, where node HR
1 is removed and substituted by two

nodes HR
1,1 and HR

1,2, one copy for each miss operation M1 and M2, respectively. Note,
however, that the resulting graph GFSM is not acyclic, thus additional MILP constraints
will be needed to avoid cycles, as shown in Section 5.

• The “cap” constraint requires p to visit at most Ncap read hits nodes.

• In a feasible path p, a node Xi can only be visited if the previous node of the same type
Xi´1 has already been visited. This guarantees that visits to states of the same class are
“naturally ordered”.

• In a feasible schedule, refresh operations must be performed to preserve DRAM memory
bank information. We consider a refresh timer with fixed period tREFI and two policies:
blind scheduling and priority scheduling. The timing of the R nodes visited in a feasible
path p must meet the scheduling policy considered.

• A feasible path p must guarantee the correct spacing between write batches, depending
on the assumptions on the arrival curve αW that bounds the write arrival process.

The resulting GFSM graph can be used to solve the DRAM WCD problem by looking for the
longest feasible (simple) pS,MN q path in it. To better understand the construction of the GFSM

graph, we use the FSM DRAM example, represented in Figure 6.

Example 1 Figure 6 represents a GFSM graph corresponding to a DRAM FSM with the following
parameters:

• N “ 2 (number of read misses in the queue);

• Ncap “ 3 (max number of read hits that can be served);

• N inner
HR “ 1, N inner

HW “ 0;

• NHR “ 2, NHW “ 1;

• NW “ 5 (max number of write batches);

• NR “ 1 (max number of refresh cycles).

M2 is the final state (i.e., the request under analysis). Note that in this example the last in-
bubble read hits are only partially included in the corresponding bubbles: NHR “ N inner

HR ` 1
and NHW “ N inner

HW ` 1. Also, note that each in-bubble read hit node HR
i , H

W
i is replicated,

respectively, for each read miss Mj and write batch Wj operation: HR
i,j, HR

i,j (as explained
above).

14



 

 

 

 

◈

◇ ◇

◈

◈

◇

Figure 6: An example of FSM with N “ 2, Ncap “ 3, NHR “ 2, NHW “ 1, N inner
HR “ 1,

N inner
HW “ 0.

15



5 MILP Model

In this Section we derive a MILP model for the DRAM WCD problem starting from the FSM
digraph GFSM “ pV,Aq described in the previous section.

5.1 Variables and objective

We start by introducing two types of variables:

• Binary variables xij for pi, jq P A to select the transition arcs in the GFSM graph, i.e., to
define a pS,MN q path.

• Continuous variables ti ě 0 for i P V to count the clock cycles required to execute a given
schedule, i.e., to compute the cost of the selected pS,MSq path. More precisely, variable
ti associated to (state) node i P V represents the (cycle) time at which command i is
executed in the schedule corresponding to the path selected by the xij variables. Since
time is measured in CPU cycles, t variables are bound to be integer.

Determining the WCD corresponds to calculating the longest simple (feasible) pS,MN q path
in GFSM. Note that the length of the path is given by the value of the tMN

variable, i.e., the
(cycle) time at which the last FSM state MN is executed. Hence, we look for a simple (feasible)
pS,MN q path maximizing tMN

, the objective is just:

max tMN
(1)

While these variables form the “backbone” of our model, some other auxiliary variables will
have to be introduced later on in the context of modelling certain specific conditions.

5.2 Constraints

Flow conservation: To describe a path in GFSM from origin S to destination MN we use the
standard flow conservation constraints:

ÿ

pi,jqPδ`piq

xij ´
ÿ

pj,iqPδ´piq

xji “

$

’

&

’

%

`1 if i “ S

´1 if i “ MN

0 otherwise

i P V (2)

where δ`piq and δ`piq denote the set of outgoing and incoming arcs of node i.

Time propagation: Assuming tS “ t0 “ 0, to represent the correct execution cycle time for
each node in the path requires enforceing time propagation constraints xij “ 1 ùñ tj “

ti ` cij :

ti ` cij ´ p1 ´ xijq∆ ď tj ď ti ` cij ` p1 ´ xijq∆ pi, jq P A (3)

where ∆ represents a sufficiently large coefficient of a standard “big-M” formulation, whose
calculation is discussed in Section 6. Note that, by prohibiting cycles, these constraints
also guarantee the selected path to be simple.

Hit overtakes: We assume at most Ncap row hit overtakes to take place in a feasible schedule.
Denoting by H̄ the set of all hit states in the graph, this constraint can be expressed as
visiting at most Ncap hit nodes in a path:

ř

iPH̄

ř

aPδ´piq xa ď Ncap. (4)

16



State sequence: A transition to node Xi is allowed only if the previous node of the same type
Xi´1 has been visited in the sequence. In some cases, this is guaranteed by the graph
structure, while in other cases additional constraints are needed:

• States of type HR and HW form “chains” of nodes either attached to a read miss
or a write miss. In these chains, a transition to a node of index i can either start
from a node of index i´ 1 of the same type or from the miss node that triggered the
bubble hits. Thus, the ordering is guaranteed by the graph structure.

• States of type H, M , W and R, instead, need additional constraints:

tHi ě tHi´1 i “ Nhl ` 1, . . . , Ncap (5)

tMi ě tMi´1 i “ 2, . . . , N (6)

tWi ě tWi´1 i “ 2, . . . , NW (7)

tRi ě tRi´1 i “ 2, . . . , NR (8)
ř

aPδ´pHiq
xa ě

ř

aPδ´pHi´1q xa i “ Nhl ` 1, . . . , Ncap (9)
ř

aPδ´pMiq
xa ě

ř

aPδ´pMi´1q xa i “ 2, . . . , N (10)
ř

aPδ´pWiq
xa ě

ř

aPδ´pWi´1q xa i “ 2, . . . , NW (11)
ř

aPδ´pRiq
xa ě

ř

aPδ´pRi´1q xa i “ 2, . . . , NR (12)

The combination of constraints (5)–(8) and (9)–(12) enforces a FSM path to visit
each node type in sequence.

Refresh scheduling: We consider a refresh timer with fixed period τFF represented by an
integer variable tT imer P t0, . . . , τFF ´ 1u, and we need to ensure that the timing of the
R nodes in the path meets the refresh scheduling policy rules considered. Denoting by
tQRi

“ tT imer ` pi ´ 1q τFF the cycle time at which the i-th refresh request is enqueued:

• Blind scheduling allows to execute a REF command any time after the corresponding
refresh request has arrived, which corresponds to adding the constraints

tRi ě tQRi
i “ 1, . . . , NR. (13)

• Priority Scheduling forces a REF command after the ongoing operation terminates.
For each transition (i.e., arc in the graph) and for each R node we need to ensure
that the following logical condition is satisfied:

xX,Y “ 1

tX ă tQRi

tY ě tQRi

,

/

.

/

-

ùñ xY,Ri “ 1

Introducing auxiliary indicator variables y1
X,Y,Ri

and y2
X,Y,Ri

, one for each arc a “

pX,Y q P A and node Ri, i P t1, . . . NRu, the condition can be expressed by

y1
X,Y,Ri

ě ptQRi
´ tX ´ 1q{∆

y2
X,Y,Ri

ě ptY ´ tQRi
q{∆

xY,Ri ě xX,Y ` y1
X,Y,Ri

` y2
X,Y,Ri

´ 2

(14)

where ∆, again, represents a sufficiently large coefficient of a standard “big-M” for-
mulation, whose calculation is discussed in Section 6.

17



Write batch spacing: The controller is expected to schedule a write batch when the corre-
sponding backlog size reaches the watermark level Whigh. The execution of a write batch
removes Nwd requests from the backlog. We consider both the unbounded case, and that
of a (bounded) arrival curve αW ptq for the write batch requests.

The unbounded case assumes that, whenever the controller checks for the next request to
be scheduled, the write queue is always above the watermark level Whigh. Since the bus
direction is switched after any write batch, a write batch operation cannot follow another
write batch operation. On one hand, this is guaranteed by the fact that transition arcs
Wi Ñ Wi`1 are not allowed in the GFSM graph. On the other hand, we need additional
constraints to avoid the sequence Wi Ñ R Ñ Wi`1:

xWi,Rj ` xRj ,Wi`1 ď 1 i “ 1, . . . , NW ´ 1, j “ 1, . . . , NR (15)

The bounded case assumes knowledge of an arrival curve αW ptq and a backlog of size
Whigh ´ 1 at t0. Let the variable tQWi

be the enqueue time of the i-th write batch Wi,
i.e., the time the watermark is reached. Once enqueued, a write-batch may have to wait
before being scheduled for different reasons:

• there is another operation already being executed;

• the current operation is a write, hence we must wait that a read is executed first;

• the current operation is a refresh, the previous was a write, and we are excluding
W Ñ R Ñ W sequences.

We therefore add, for all Wi, the constraint

tWi ě tQWi
` LW (16)

However, we still have to ensure that the enqueue times tQWi
are feasible w.r.t. the arrival

curve αW . To do so, we pair t0 with each tQWi
, and each tQWi

with each tQWj
with j ą i. For

each of these pairs we will add a constraint that the arrival curve property is maintained.
This can be done considering the inverse of the arrival curve function

α´1
W pnq “ inft t | αW pt ¨ Cq ě n u

which gives the minimum time (measured in clock cycles of length C) for n write requests
to arrive. We can then express the required constraints for the pairs pt0, t

Q
Wi

q as

tQWi
ě α´1

W pWhigh ` pi ´ 1q ¨ Nwd ´ pWhigh ´ 1qq (17)

and for the pairs ptQWi
, tQWj

q as

tQWj
ě tQWi

` α´1
W ppj ´ iq ¨ Nwdq (18)

6 Bounding Approaches

The performance of the MILP approach can be considerably improved by devising lower and
upper bounds on the WCD.

The lower bounds are calculated by constructing feasible schedules that, under certain as-
sumptions, would result in a WCD. The lower bound is therefore associated with a feasible
solution that is provided to the MILP solver as a mip starts, also known as “warm starts”,
allowing the user to provide the solver with an advanced starting point for MIP optimization.
The solver installs it as the incumbent solution, which allows it to more effectively eliminate

18



portions of the search space, thus resulting in a smaller branch-and-bound tree and ultimately
improving performance.

A valid upper bound, in general, can be obtained via relaxation. Instead of relaxing the
MILP model, our upper bound on WCD is computed “directly” on the FSM, using an iterative
procedure that combines different worst-case conditions. The upper bound can then be used
to estimate the maximum number of write batches NW and refreshes NR, as well as to tighten
the value of the various “big-M” constants ∆, that the model entails (see constraints (3) and
(14)), thereby improving the quality of the continuous relaxation and ultimately reducing the
exploration of the enumeration tree.

6.1 Lower bounds

In the following, we describe how we obtained two of the most effective lower bounds, namely
“patterns” that produce feasible schedules with large WCD. The two patterns are called Max
write rate and Single hit series.

Max write rate: this pattern assumes that the write arrival process follows the αW profile,
i.e., it is the maximum allowed at any time. In other words, one has Qptq “ αW ptq. The
schedule is constructed by repeating the following command sequence until the request
under analysis is served:

• IF refresh timer expired Ñ schedule a refresh.

• IF more than Whigh writes in the queue AND last operation ‰ write batch Ñ schedule
a write batch.

• IF less than Ncap read hits performed Ñ schedule a read hit.

• ELSE Ñ schedule a read miss.

Intuitively, one can expect that maximizing the arrival process will generate a scenario
with a large delay. However, a write batch may interrupt a read hit series, which could
reduce the delay, as explained in Section 3.2.

Single hit series: this pattern attempts to improve on the previous one by delaying a write
batch until the read hit series is completed. The schedule is constructed by repeating the
following command sequence until the request under analysis is served:

• IF refresh timer expired Ñ schedule a refresh.

• IF more than Whigh writes in the queue AND last operation ‰ write batch AND no
read hit series can be continued Ñ schedule a write batch.

• IF less than Ncap read hits performed Ñ schedule a read hit.

• ELSE Ñ schedule a read miss.

If both patterns schedule the same number of write batches by the time the request under
analysis is served, it can be proved that the “Single-hit-series” pattern yields a larger delay.
However, the “Single-hit-series” pattern may actually schedule fewer write batches than the
“Max-write-rate” one, in which case dominance is no longer guaranteed.

It should be remarked that the identification of such patterns was in part a by-product of
the MILP model itself. Indeed, by examining the optimal solutions produced by early imple-
mentations of the MILP model, we were able to find useful sequences yielding large delays. In
other words, a positive feedback loop, whereby an automated tool provided actionable insights,
which in turn were used to further improve the tool itself.

19



6.2 Upper bounds

To compute the upper bound we devised an iterative algorithm that combines the delays due to
the N read misses with three worst-case conditions, namely: maximum number of write batches,
maximum number of refreshes, and a single (uninterrupted) read-hit series.

Read misses: We consider the request under analysis to be served when the data transfer
along the bus is completed, i.e., tMN

“ τP ` τA ` τR ` τD. For the preceding N ´ 1
read misses, the delay cost is given by TR cycles, i.e., the minimum spacing between two
consecutive PRE commands. Thus, the total delay for the read misses is pN ´1qTR ` tMN

.

Write batches: Each write is a miss and requires tRCW clocks. Writes are served in batches of
Nwd operations, that are triggered when the backlog reaches the watermark level Whigh.
To calculate the corresponding delay we need to know the number of batches that are
served before the request under analysis. If the write arrival process is unbounded, the
write backlog will always be ą Whigh and a write batch will be scheduled after each
read. In this case, each read command will be followed by a write batch resulting in
N ` Ncap write batches, hence, a delay of pN ` NcapqTW cycles. If, instead, the arrival
process is bounded by αW , we need to find the maximum number of write requests that
can arrive before the request under analysis is served. This number can be computed as
follows. Denoting by δi the current upper bound estimate for the WCD, the corresponding
number of write requests ni

WR is αW pδiq ` Whigh ´ 1, from which we can compute the

number of write batches ni
W “ t

ni
WR

Whigh
u. Then, the upper bound estimate is updated

δi`1 “ δi `ni
W LW , and can be used again to compute the corresponding number of write

batches ni`1
W . The process is iterated until the value becomes constant or nk

W “ N `Ncap

is reached.

Refreshes: The maximum number of refreshes can be computed in a similar way using an
iterative process. Denoting again by δi the current upper bound estimate to the WCD, the
corresponding number of refreshes ni

R is given by r δ
τFF

s. Then, the upper bound estimate

is updated δi`1 “ δi`ni
R τF and can be used again to compute the corresponding number

of refreshes ni`1
R . The process is iterated until the value becomes constant.

Read hits: As a worst-case scenario we consider a single read-hit series that is scheduled after
the shortest precharge bubble, yielding a delay of Ncap τR ´ mintTRPB, TWPBu cycles.

To combine these delays, we use once angain an iterative approach. We start with an initial
estimate δ0 of the upper bound that only considers the read operations, with the exception of
the request under analysis:

δ0 “ TR ´ 1 ` pN ´ 1qTR ` ppNcap ´ 1q τR ` τRP ´ mintTRPB, TWPBuq .

Then, δi (with i “ 0 at the first iteration) is used to compute the corresponding number of
write batches and refreshes

ni
W “

Z

αwpδiq ` Whigh ´ 1

Whigh

^

, ni
R “

R

δi
τFF

V

.

Finally, the delay is updated accordingly

δi`1 “ δi ` ni
W ¨ LW ` ni

R ¨ τF

and the process is iterated with the new value δi`1, until δk becomes constant yielding the final
upper bound ∆ “ δk ` tMN

. As a byproduct of this iterative algorithm, the final values nk
W and

20



Parameter JEDEC name Value (ns)

τR, τW tCL 14.16

τA tRCD 14.16

τP tRP 14.16

τF tRFC 350

τAP tRAS 32

τFF tREFI 7800

τWR tWTR 5

τRP tRTP 7.5

τD tBurst 3.332

τDP tWR 15

C tCK 0.833

Table 1: Parameters for a DDR4 @2400 MHz

nk
R are valid upper bounds on the number of write batches and refreshes that may be scheduled,

hence we use them to set NW and NR in the final model.
It is important to remark that the upper bound algorithm described above can be run with

or without assuming a specific arrival curve αW for the write requests, yielding different ∆, NW

and NR, hence different models:

“Tight” vs. “lax” FSM: We say the FSM is tight if αW is used to bound the number of
nodes NW and NR when constructing GFSM, otherwise the FSM is lax.

“Tight” vs. “lax” ∆: The upper bound ∆ is used as a “big-M” coefficient in the MILP
model, we say that the “big-M” are tight (lax) if αW was (not) used to compute ∆.

“Tailored” ∆: In time-propagation constraints (3) one can try to compute a smaller ∆ by
considering the specific type of transition. For example, consider the time propagation
constraint associated to transition MNs´1 Ñ MNs :

tMNs´1
`cMNs´1,MNs

´p1´xMNs´1,MNs
q∆ ď tMNs

ď tMNs´1
`cMNs´1,MNs

`p1´xMNs´1,MNs
q∆

The right value of ∆ can be computed by using any upper bound on the maximum
possible value of tMNs

(since tMNs´1
ă tMNs

anyway). While the upper bound on the
WCD is clearly such, when Ns ă N a tighter upper bound on tMNs

can be computed by
running the above upper-bound algorithm assuming Ns pă Nq read misses. We can apply
this process to all time propagation constraints for transitions between M or HR nodes.
When we do this, we say that the “big-M” are tailored, otherwise they are non-tailored.

7 Computational Results

In this section we present some computational results for the proposed approach. As a test bench
we took real data about current DDR4 memory @2400 MHz, whose parameters are reported in
Table 1. We also report the JEDEC names of the parameters, for ease of reference.
We consider 64 instaces obtained as follows:

• N between 1 and 16: the number of read misses (in the queue) to serve;

• write-rate (WR) between 4 and 7: the rate of incoming write requests, measured in Gbps
(each request is 512 bits of data).

21



configuration FSM ∆ tailored ∆s mip starts

LL nTM nMP lax lax no no

TL TM MP tight lax yes yes

LT nTM nMP lax tight no no

TT TM MP tight tight yes yes

Table 2: Configurations tested

Lax ∆ Tight ∆

LL nTM nMP TL TM MP LT nTM nMP TT TM MP

N time gap # time gap # time gap # time gap #

1 – 7.1024 0 151.29 7.1216 3 151.16 0.0020 3 150.83 0.0020 3

2 – 6.3401 0 451.97 6.2132 1 165.44 0.0009 3 150.58 0.0009 3

3 – 6.5851 0 – 6.5841 0 150.51 0.0003 3 150.46 0.0003 3

4 – 6.1360 0 – 6.1360 0 151.26 0.0003 3 164.86 0.0003 3

5 – 6.3526 0 – 6.3494 0 26.54 0.0000 4 15.73 0.0000 4

6 – 6.5565 0 – 6.5565 0 60.96 0.0000 4 41.61 0.0000 4

7 – 6.8822 0 – 6.8699 0 36.60 0.0000 4 37.62 0.0000 4

8 – 6.9164 0 – 6.9086 0 97.13 0.0000 4 98.75 0.0000 4

9 – 7.0970 0 – 7.0917 0 177.39 0.0003 3 119.52 0.0000 4

10 – 7.2783 0 – 7.2681 0 169.97 0.0000 4 232.94 0.0000 4

11 – 6.3739 0 – 6.3710 0 187.21 0.0005 3 204.01 0.0001 3

12 – 6.2858 0 – 6.2823 0 309.88 0.0268 2 302.31 0.0267 3

13 – 6.0193 0 – 6.0113 0 270.30 0.0003 3 300.15 0.0004 2

14 – 6.2430 0 – 6.2420 0 341.21 0.0007 2 83.42 0.0000 4

15 – 6.3974 0 – 6.3823 0 365.36 0.0005 2 204.31 0.0000 4

16 – 5.9456 0 – 5.8696 0 381.46 0.0242 2 327.14 0.0002 3

Table 3: Computational results grouped by N , time limit 600 seconds

All parameters have been suggested and validated by experts of the field. The service
curves provided by our model have been found to be useful in the analysis and design of COTS
FR-FCFS DRAM controllers [11], but the details of such studies are outside the scope of this
present paper. Rather, we focus our analysis on the behaviour of our MILP model in terms
of efficiency and effectiveness of the solution process, and in particular on the impact of the
improvements discussed in Section 6. To do so we discuss the results of four configurations,
which vary in how the bounds are used in the MILP approach, as described in Table 2.

We tested all 16 possible configurations, but for the sake of conciseness we only report results
of four configurations, which we found to be the most significant ones. The computational results
on the 64 instances of our test bench (16 Ns ˆ 4 write rates) are shown in Table 3 and Table 4;
in the former we group the results by N and in the latter by write rate, as doing so highlights
some interesting trends about how the model scales with the fundamental parameters of the
underlying system. Each instance was solved with the general-purpose, off-the-shelf, state-of-
the-art MIP solver Cplex 12.10 run on a Virtual Machine with 48 Intel Xeon Gold 5120 virtual
cores @ 2.20 GHz and 23 GiB of RAM. The solver was ran on opportunistic parallel mode, which
by default used up to 32 threads, feasibility MIP emphasis, polish-after time set to 60 seconds
and with a time limit of 600 seconds. In the tables, columns “time” report the average running
time in seconds (“–” if all the instances terminated by time limit), columns “gap” report the
average mip gap at termination, and columns “#” report the number of instances that were
solved with default relative accuracy 1e-6 within the time limit.

22



Lax ∆ Tight ∆

LL nTM nMP TL TM MP LT nTM nMP TT TM MP

WR time gap # time gap # time gap # time gap #

4 – 10.2418 0 525.56 10.2062 2 67.46 0.0001 15 0.84 0.0000 16

5 – 7.7226 0 562.60 7.7203 1 62.71 0.0000 16 79.35 0.0000 16

6 – 5.4814 0 562.84 5.4774 1 178.63 0.0005 13 134.42 0.0002 15

7 – 2.6821 0 – 2.6605 0 451.79 0.0136 5 431.44 0.0075 8

Table 4: Computational results grouped by write-rate, time limit 600 seconds

The results clearly show how crucial the bound tightening techniques of Section 6 are for our
MILP model, and in particular the computation of a “tight” bound ∆ on the WCD. When ∆
is “lax”, no amount of improvement in the other parameters (the size of the FSM, the “tailored
big-M” coefficients on the other constraints, and the “mip starts”) is enough to significantly
change the behaviour of the model (save for very small values of N), which within the time
limit is not capable to solve the problem with any reasonable accuracy. However, tightening
∆ suddenly and dramatically changes the outcome, with the model solving most instances to
optimality, and anyway providing very accurate solutions within the (pretty reasonable) time
limit. With a “tight” ∆, the other improvements have a minor but generally positive impact,
especially as N grows. Somewhat surprisingly, Table 3 shows a pretty limited impact of N—
which significantly impacts the size of the FSM and therefore of the model—on the overall
efficiency of the approach, which bodes well for the ability to apply it for a large number of
misses to serve (with 16 considered already sufficient for most practical purposes). However,
Table 4 shows that other aspects of the underlying system can have a significant impact. In
particular, increasing the write-rate seems to negatively impact our “champion” models with
“tight” ∆, although somewhat surprisingly having the opposite effect on the gap of the “lax”
ones. Yet, the results show that for reasonable values of the input parameters our model is
capable of finding very accurate estimates of the WCD in very reasonable time.

It should be remarked that our approach provides not only the WCD, that can be used
to define service curves for existing DRAM controller and therefore be the basis for further
analyses, but also feasible solutions (schedules) that realise them (possibly within a very minor
gap). These have so far only been obtained by heuristic reasoning, which may well have missed
some sources of delay in the context of a complex system like the one under study. In fact, our
experience (see Section 6) is precisely that applying the model allowed us to gather precious
insights on the behaviour of the system that were not obvious at the beginning of the study.
While we used these to further improve the efficiency of the approach, the same information
may provide system designers with important clues about which design decisions can lead to
unexpectedly large WCD, and help in designing better next-generation DRAM controllers, more
suited for application with tight worst-case requirements.

8 Conclusions

This work opens up an entirely new research direction, proving—to the best of our knowledge,
for the first time—that mathematical optimization techniques and off-the-shelf MIP solvers can
successfully compute tight estimates of the service curve of complex components like a DRAM
controller. Indeed, a significant benefit of our approach is that of providing composable worst-
case guarantees, in the form of a Network Calculus service curve, which allows our DRAM
analysis to be reused as a building block in end-to-end analysis of multicore architectures.
This is a crucial step for developing end-to-end performance guarantees for today’s extremely
complex systems, wherein a system-on-chip can require many interacting components whose
complete characterization is highly nontrivial—yet necessary, all the more so as these systems

23



become increasingly crucial in many advanced user-facing applications in telecommunications,
automotive, robotics, and many other fields.

As often happens, general-purpose tools cannot just be applied in a näıve way: deep knowl-
edge of the underlying problem is necessary to build a successful approach, in our case under
the form of upper and lower bounds on the WCD that can be used to strengthen the model.
Tight collaboration between experts in optimization techniques and experts of the underlying
application domain is therefore crucial for the success of such a project. When this is achieved,
results that can be of immediate use to practitioners in the field, and be integrated in existing
tools for, say, system-on-chip design, can be readily obtained. On the other hand, tackling
challenging practical problems is also instrumental for the development of mathematical opti-
mization methodologies. The models in this paper can be classified as constrained shortest path
ones, a widely used and studies class of problems, but with highly nontrivial and characteristic
constraints. Hence, the paper may be inspirational to optimization experts to delve into this
class of problems that are both practically relevant and methodologically challenging. We there-
fore hope that the precedent set by this work will encourage other researchers to pursue this
line of inter-disciplinary approach, that may yield significant benefits both for the performance
evaluation community and the mathematical optimization one.

9 Acknowledgements

We are indebted to the anonymous Reviewers and the Associate Editor in charge of handling
this paper for numerous insightful remarks that have contributed to significantly improving the
presentation of our results. Work partially supported by the Italian Ministry of Education and
Research (MIUR) in the framework of the CrossLab project (Departments of Excellence). The
authors gratefully acknowledge partial financial support from the University of Pisa, under the
project “Analisi di reti complesse: dalla teoria alle applicazioni” (grant PRA 2020 61).

References

[1] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet, volume 2050 of Lecture Notes in Computer Science.
Springer, 2001.

[2] Falk Rehm, Jorg Seitter, Jan-Peter Larsson, Selma Saidi, Giovanni Stea, Raffaele Zippo,
Dirk Ziegenbein, Matteo Andreozzi, and Arne Hamann. The road towards predictable
automotive high-performance platforms. In 25th Design, Automation and Test in Europe
Conference DATE 2021, Grenoble, France, February 1-5, 2021, 2021.

[3] Rakesh Kumar, Monowar Hasan, Smruti Padhy, Konstantin Evchenko, Lavanya Pira-
manayagam, Sibin Mohan, and Rakesh B. Bobba. End-to-end network delay guarantees
for real-time systems using sdn. In 2017 IEEE Real-Time Systems Symposium (RTSS),
pages 231–242, 2017.

[4] Nassima Benammar, Frédéric Ridouard, Henri Bauer, and Pascal Richard. Forward end-to-
end delay for afdx networks. IEEE Transactions on Industrial Informatics, 14(3):858–865,
2018.

[5] Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren D. Patel. A comparative study
of predictable DRAM controllers. ACM Trans. Embed. Comput. Syst., 17(2):53:1–53:23,
2018.

24



[6] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding
memory interference delay in cots-based multi-core systems. In 2014 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 145–154, 2014.

[7] Zheng Pei Wu, Rodolfo Pellizzoni, and Danlu Guo. A composable worst case latency
analysis for multi-rank DRAM devices under open row policy. Real Time Syst., 52(6):761–
807, 2016.

[8] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access control in multi-
processor for real-time systems with mixed criticality. In 2012 24th Euromicro Conference
on Real-Time Systems, pages 299–308, 2012.

[9] R. Pellizzoni, A. Schranzhofer, Jian-Jia Chen, M. Caccamo, and L. Thiele. Worst case
delay analysis for memory interference in multicore systems. In 2010 Design, Automation
Test in Europe Conference Exhibition (DATE 2010), pages 741–746, 2010.

[10] Mohamed Hassan and Rodolfo Pellizzoni. Analysis of Memory-Contention in Heteroge-
neous COTS MPSoCs. In Marcus Völp, editor, 32nd Euromicro Conference on Real-Time
Systems (ECRTS 2020), volume 165 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 23:1–23:24, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik.

[11] Matteo Andreozzi, Frances Conboy, Giovanni Stea, and Raffaele Zippo. Heterogeneous
systems modelling with adaptive traffic profiles and its application to worst-case analysis
of a DRAM controller. In 44th IEEE Annual Computers, Software, and Applications
Conference, COMPSAC 2020, Madrid, Spain, July 13-17, 2020, pages 79–86. IEEE, 2020.

25



Appendix

Parameters of DRAM WCD problem belong to three classes

• Module: parameters of the underlaying DRAM module.

• Controller: parameters of the memory controller that schedules commands for the DRAM.

• Problem: other than the mentioned N , this includes other external environment factors
such as the arrival profile αW ptq for write requests.

DRAM Module parameters

The main parameters for the DRAM are listed in Table 5, that reports the symbols used in this
paper, a description of their meaning, and their name according to the JEDEC lexicon, where
available. We make reference to the DDR4 DRAM description [?].

DRAM Controller parameters

The type of DRAM memory controller assumed in this work is based on a FRFCFS policy,
with a limit to the number of overtakes to avoid starvation. A watermark policy is used for
switches between read and write requests. The main parameters for such a controller are the
following.

• Ncap: Maximum number for read request overtakes that can happen.

• Whigh: High watermark level for write requests backlog.

• Wlow: Low watermark level for write requests backlog.

• Nwd: Minimum amount of writes per direction switch.

From these, we can derive the time LW required to serve a write batch of Nwd writes. We
assume all of them to be write misses, hence it is

LW “ Nwd ¨ TW

Problem parameters

• N : the number of read requests enqueued at time t0.

• αw: the arrival curve for the write requests.

26



Symbol Explanation [JEDEC symbol and name, when defined]

Duration of memory commands

τR Duration of the RD command. [tCL, Column access (CAS) latency].

τW Duration of the WR command. [tCL, Column access (CAS) latency].

τA Duration of the ACT command. [tRCD, Row Address (RAS) to CAS latency].

τP Duration of the PRE command. [tRP , Row Precharge Time].

τF Duration of the REF command. [tRFC, Refresh Cycle Time].

Physical constraints on memory command timing

τAP Minimum spacing between an ACT and a PRE. [tRAS, Row Active Time]

τFF Interval between two REF commands rtREFI, Refresh Interval]

τWR Minimum spacing between a WR and a RD. [tWTR, Write-to-Read Command
Delay].

τRP Minimum spacing between a RD and a PRE. [tRTP , Read-to-Precharge Delay].

τD Duration of the data transfer on the data bus [tBurst].

τDP Minimum spacing between the end of a WR data transfer and the next PRE
command. [tWR, Write Recovery Time].

Relevant parameters derived from the above

τWP Minimum spacing between a WR and a PRE. τWP “ τW ` τD ` τDP

[tWTP , Write-to-Precharge Delay].

TR Duration of an entire read miss cycle. TR “ τAP ` τP
[tRC, Read Row Cycle Time].

TRPB Duration of a read precharge bubble. TRPB “ τAP ´ pτA ` τRq

rtRPB, Read Precharge Bubble].

N inner
HR Number of read hits that fit entirely in a read precharge bubble. N inner

HR “
Y

TRPB´τRP
τR

` 1
]

NHR Number of read hits that fit entirely or partially in a read precharge bubble.

NHR “

"

N inner
HR if TRPB “ N inner

HR ¨ τR
N inner

HR ` 1 otherwise

τWAP Minimum spacing between an ACT and a PRE, when the operation executed
is a WR. τWAP “ maxpτAP , τA ` τWP q

[tRASW , Write Row Active Time].

TW Duration of an entire write miss cycle. It is: TW “ τWAP ` τP
[tRCW , Write Row Cycle Time].

TWPB Duration of a write precharge bubble. TWPB “ τWAP ´ pτA ` τW ` τD ` τWRq

rtWPB, Write Precharge Bubble].

N inner
HW Number of read hits that fit entirely in a write precharge bubble. N inner

HW “
Y

TWPB´τRP
τR

` 1
]

NHW Number of read hits that fit entirely or partially in a write precharge bubble.

NHW “

"

N inner
HW if TWPB “ N inner

HW ¨ τR
N inner

HW ` 1 otherwise

Table 5: Definition of DRAM parameters

27


