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We derive analytically the leading beyond-mean-field contributions to the zero-temperature equation of
state and to the fermionic quasiparticle residue and effective mass of a dilute Bose-Fermi mixture in two
dimensions. In the repulsive case, we perform quantum Monte Carlo simulations for two representative bosonic
concentrations and equal masses, extending a method for correcting finite-size effects in fermionic gases to
Bose-Fermi mixtures. We find good agreement between analytic expressions and numerical results for weak
interactions, while significant discrepancies appear in the regime close to mechanical instability, above which
we provide evidence of phase separation of the bosonic component.
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I. INTRODUCTION

Quantum mixtures have attracted considerable interest in
recent years. Thanks to their versatility and tunability they
turned out to be an ideal platform to test and develop new
physics [1]. In particular, Bose-Bose (BB) mixtures and
Fermi-Fermi (FF) mixtures have been studied in depth both
from a theoretical and experimental point of view, resulting in
a better understanding of important quantum phenomena such
as fermionic superfluidity and the BCS-BEC crossover in FF
mixtures [2,3] or self-bound quantum droplets in BB mixtures
[4,5].

Bose-Fermi (BF) mixtures have also been investigated,
although somewhat less extensively in the literature. Initial
theoretical studies of BF mixtures considered the problem of
instability (by collapse or phase separation) using mean-field
and perturbative approaches, emphasizing the need for a suf-
ficiently high repulsive interaction between bosons [6–8]. The
occurrence of instabilities was also confirmed experimentally
by the first realization of a nonresonant BF mixture [9]. Later,
with the development and refinement of more sophisticated
techniques such as optical lattices and Feshbach resonances
[10,11], the focus shifted to strongly interacting Bose-Fermi
systems. Indeed, the possibility to tune the interaction be-
tween bosons and fermions by varying an external magnetic
field has ensured different possible implementation scenarios.

The case of a Bose-Fermi mixture with a BF interaction
modulated by a Feshbach resonance has attracted particular
interest in the literature. Initial works studying this system in
the presence of a resonance focused on lattice models [12–14].
Subsequent works moved instead to the continuous case [15].

*g.bertaina@inrim.it
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In addition to the instability problem [16,17], the competition
between BF pairing and boson condensation in a Bose-Fermi
mixture across a broad Feshbach resonance was studied in
Refs. [18–20]. In particular, it was found that for weak at-
traction, at sufficiently low temperature, the bosons condense
while the fermions behave like a Fermi liquid. Instead, for
sufficiently strong attractions, bosons and fermions pair into
molecules. Parallel to theoretical studies, boson-fermion Fes-
hbach molecules were achieved also experimentally. The first
realizations were obtained in Hamburg [21] and in Boulder
[22] with 40K -87Rb mixtures. Later, the creation of Fesh-
bach molecules was achieved also with an isotopic 40K -41K
mixture [23], as well as with 23Na -6Li [24], 23Na -40K [25],
87Rb -40K [26], and 41K -6Li [27] heteronuclear BF mixtures.
Recently, 23Na -40K Feshbach molecules have been success-
fully transferred to the absolute molecular ground state and
cooled down to quantum degeneracy [28], while Ref. [29]
has investigated the same 23Na -40K mixture across the whole
broad Feshbach resonance between bosons and fermions, con-
firming theoretical predictions [20] about a universal behavior
of the condensate fraction and the occurrence of a quantum
phase transition.

Equally interesting is the case of repulsive Bose-Fermi
mixtures, which are characterized by both intra- and inter-
species repulsive interactions. The formation of Feshbach
molecules is here prohibited by the repulsive nature of the
interactions. However, the problem of instability persists: suf-
ficiently large repulsive boson-fermion interactions lead the
system towards phase separation [8,30–32].

The possibility of confining mixtures in lower dimensions
using optical potentials elicited interest in two-dimensional
(2D) mixtures. Besides the intrinsic interest of many-body
systems in reduced dimensionality, the presence of a confin-
ing potential offers a further knob to tune the effective 2D
interactions between the components of the mixture through
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a confinement-induced resonance [33–36]. Interestingly, it
has been shown in Ref. [37] that such a mechanism in two
dimensions could lead to the creation of collisionally stable
fermionic dimers made by one boson and one fermion, with a
strong p-wave mutual attraction that could support a p-wave
superfluid of dimers. Besides this recent important result,
relatively few theoretical studies have been conducted on 2D
BF mixtures [38–43].

This motivates the present paper, in which we present a
combined effort of a (second-order) perturbative study and
numerical nonperturbative quantum Monte Carlo (QMC) sim-
ulations of repulsive 2D Bose-Fermi mixtures, investigating
the regime of validity of perturbation theory and the onset of
phase separation.

Our main results are: (i) The derivation of the fermionic
effective mass at the perturbative level and with a QMC esti-
mation employing a finite-size extrapolation method; (ii) The
detailed analysis of the equation of state, with varying BF
repulsion and bosonic concentration, for which we observe
good agreement between perturbative and QMC results up to
the predicted onset of phase separation; (iii) The study of this
onset from a stability condition viewpoint, and by inspection
of QMC pair correlation functions.

The paper is organized as follows. In Sec. II we develop the
perturbative theory up to second order, deriving an expansion
for the chemical potentials and equation of state, the effective
mass, and the stability condition. In Sec. III we describe the
Monte Carlo methods that we used, including a finite-size
correction scheme for BF mixtures, and report our results
for the effective mass, the equation of state, and the bosonic
pair distribution function for different bosonic concentrations.
Finally, Sec. IV reports our conclusions. The Appendixes
provide further details on the perturbative expansion and the
QMC method.

II. PERTURBATIVE EXPANSION

We consider a 2D BF mixture with fermionic particle
density nF and bosonic particle density nB = xnF, where x
is the bosonic concentration. The atomic masses are mF and
mB = wmF, respectively, where we introduced the mass ratio
w. We are interested in developing a perturbative treatment
for Bose-Fermi mixtures. Previous perturbative works have
indeed studied Bose-Fermi mixtures only in three dimen-
sions [44,45] while only Fermi-Fermi [46–51] or Bose-Bose
systems [52–57] have been considered in two dimensions.
Our perturbative treatment will be valid for generic mass-
imbalanced mixtures, for both attractive and repulsive BF
interactions, while we will focus on the repulsive case with
equal masses (w = 1) in the QMC simulations.

A. Diluteness condition and expansion parameters

We assume the system to be dilute, such that the average
distance between any pair of particles of the mixture is much
larger than the range R of their interaction. Under this con-
dition, the boson-fermion and boson-boson interactions can
be parametrized in terms of the corresponding (2D) s-wave
scattering lengths aBF and aBB, while fermion-fermion inter-
actions can be altogether neglected since s-wave interactions

between identical fermions are forbidden by Fermi statistics
and direct p-wave (or higher angular momenta) interactions
are strongly suppressed.

Specifically, for a generic finite-range two-body inter-
action, the s-wave phase shift, which yields the dominant
contribution to the scattering amplitude at low relative mo-
menta k, has the following effective-range expansion in two
dimensions for k approaching zero (see, e.g., Refs. [58,59]):

cot δ0(k) = 2

π
ln(ka) + O(k2), (1)

where the length a appearing within the logarithm defines the
s-wave scattering length, and the constant finite terms in the
limit k → 0 have been included in its definition. With this
convention, the 2D scattering length of a hard-disk potential
of radius R is a = eγ R/2, where γ � 0.577216 is Euler-
Mascheroni constant, while, in the attractive case, the dimer
binding energy is −h̄2/(mra2), where mr is the reduced mass.
An alternative convention (used for example in Refs. [60–63])
would correspond to a = R for a hard-disk potential.

In the repulsive case, the scattering length a is of the same
order of the range R of interaction (for a strong barrier) or
even much smaller than R (for a weak barrier). The diluteness
condition then automatically implies that the gas parameters
nBa2

BB and nB,Fa2
BF are much smaller than 1. Actually, in

two dimensions, due to the logarithmic dependence of the
scattering amplitude on the relative momentum and energy,
it is convenient to describe boson-boson and boson-fermion
interactions in terms of the dimensionless coupling param-
eters gBF ≡ −1/ ln(kFaBF) and gBB ≡ −1/ ln(nBa2

BB), where
the Fermi momentum kF is related to the fermion density nF

by the equation nF = k2
F/(4π ).

For attractive BF interaction, the scattering length aBF co-
incides with the bound-state radius, and is not necessarily
related to the range R of the interaction (the range R can even
be vanishing in this case). Perturbation theory requires in this
case kFaBF � 1, corresponding to a weakly bound two-body
bound state with a large radius compared with the average in-
terparticle distance and implying that gBF = −1/ ln(kFaBF) is
small and negative. The BF system is thus dilute with respect
to the range (kFR � 1) but dense with respect to the bound
state radius (kFaBF � 1). These differences notwithstanding,
perturbation theory is formally identical in the two cases.

In both cases, our perturbative expansion is constructed by
considering gBF and gBB of the same order, say gBF = αBFg
and gBB = αBBg, where αBF and αBB are some numerical
constant, and taking the limit g → 0. We will be interested
in particular in deriving a perturbative expansion to second
order in the small parameter g. For brevity, in the rest of this
section we set h̄ = 1.

B. Many-body T matrix

The basic building block of perturbation theory for a dilute
Bose-Fermi mixture is the generalization to the many-body
system of the two-body T matrix. The many-body T matrix
�( p̄1, p̄2; p̄3, p̄4) can be interpreted as a generalized scattering
amplitude in the medium, accounting for the influence of
the other particles in the scattering processes. In terms of
Feynman’s diagrams, it is the sum of ladder diagrams (see
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FIG. 1. Feynman diagrams for the boson-fermion many-body
T matrix �( p̄1, p̄2; p̄3, p̄4). Full lines correspond to bare fermion
Green’s functions G0

F, dotted lines to bare bosonic Green’s functions
G0

B, dashed lines to boson-fermions interactions U , while the blue
box indicates the boson-fermion many-body T matrix �. Arrows
indicate the flow of momentum, which is conserved at each vertex
(indicated by a dot).

Fig. 1) and, in two dimensions, it corresponds to the following
integral equation:

�( p̄1, p̄2; p̄3, p̄4)

= V (p3 − p1) + i
∫

d p̄

(2π )3
V (p − p1)

× G0
B( p̄)G0

F( p̄1 + p̄2 − p̄)�( p̄, p̄1 + p̄2 − p̄; p̄3, p̄4).

(2)

Here, overbarred quantities indicate (2 + 1) vectors: p̄ =
(p, p0), where p is a momentum variable and p0 is a fre-
quency; V (q) = ∫ d2re−iq·rV (r) is the Fourier transform of
the interaction potential V (r) between bosons and fermions at
distance r, while the bare boson and fermion Green’s func-
tions at zero temperature are given by

G0
B( p̄) = 1

p0 − p2/2mB + μB + iη
(3)

G0
F( p̄) = 1

p0 − p2/2mF + iη sgn(k − kF)
, (4)

where η is an infinitesimal positive quantity and μB is the
boson chemical potential. Translational invariance and the
instantaneous nature of the interaction potential imply that
the many-body T matrix � depends on three momenta and
one frequency. In particular, by defining P̄ = p̄1 + p̄2 = p̄3 +
p̄4, k = (p1 − p2)/2, k′ = (p3 − p4)/2, and integrating over
the frequency p0 in Eq. (2), one obtains

�(k′, k; P̄) = V (k′ − k) +
∫

dp
(2π )2

V (k − p)

× �(|P/2 − p| − kF)�(k′, p; P̄)

P0 − (P/2−p)2

2mF
− (P/2+p)2

2mB
+ μB + iη

. (5)

For vanishing densities, such that kF → 0, the above equa-
tion reduces to the integral equation for the two-body T
matrix T 2B(k′, k; z) of the quantum theory of scattering [cf.
Eq. (A8) of Appendix A] calculated at z = P0 − P2/2M +
μB + iη, where M = mB + mF, and the reduced mass mr =
mBmF/(mB + mF).

The on-shell two-body t matrix, t (k′, k), is instead ob-
tained by calculating T2B(k′, k, z) for z = k2/2m + iη, such
that

t (k′, k) = V (k′ − k) +
∫

dp
(2π )2

2mr V (k′ − p)t (p, k)

k2 − p2 + iη
. (6)

In analogy with the 3D case, the similarity in the structure of
Eqs. (5) and (6) allows one to replace V with t in the integral

FIG. 2. Feynman diagrams for the fermionic irreducible self-
energy to order g2. Full lines correspond to bare fermion Green’s
functions G0

F, dotted lines to bare bosonic Green’s functions, zigzag
lines correspond to factors

√
n0, where n0 is the condensate density,

to be identified with the boson density nB for consistency to order g2

equation (5) (see, e.g., Refs. [44,64]), yielding:

�(k′, k; P̄) = t (k′, k) +
∫

dp
(2π )2

t (k′, p)�(p, k; P̄)

×
⎡
⎣ �(|P/2 − p| − kF)

P0 − (P/2−p)2

2mF
− (P/2+p)2

2mB
+ μB + iη

− 2mr

k2 − p2+iη

⎤
⎦,

(7)

which is the starting point for our perturbative calculations.
In particular, a perturbative expansion in the small parameter
gBF (see Appendix B for details) shows that to second order
in gBF the many-body T matrix � depends only on the total
three-momentum P̄, then yielding �(k′, k; P̄) = �(P̄) with

�(P̄) = πgBF

mr

[
1 + gBF

2
F� (P̄)

]
+ o
(
g2

BF

)
, (8)

where the dimensionless function F� (P̄) is defined by
Eqs. (B12) and (B13) of Appendix B. Note that the expansion
(8) is valid both in the repulsive (gBF > 0) and attractive
(gBF < 0) cases. Equation (8) clearly shows that � is the basic
building block of the perturbative expansion with respect to
the boson-fermion coupling parameter gBF.

C. Fermionic self-energy and chemical potential

To second order in the small parameter g, only the two dia-
grams shown in Fig. 2 contribute to the irreducible fermionic
self-energy 	F(k, ω). It is indeed clear from Eq. (8) that
diagrams containing three or more � would contribute only
to order g3 or higher. In the same way, diagrams obtained by
replacing in the first diagram of Fig. 2 the two condensate
factors with a bosonic line dressed by self-energy insertions
(including anomalous terms) contribute only higher-order
terms in the small parameter g, apart for a term of order
gBFgBB originating from the condensate depletion induced by
the boson-boson interaction. This term is automatically taken
into account by replacing n0 with nB in the diagrams of Fig. 2.
Note further that the diagram obtained by the second diagram
of Fig. 2 by replacing the dotted line with two condensate
insertions is reducible and thus does not contribute to the
irreducible self-energy.

In order to calculate perturbatively the fermionic chemical
potential μF, as well as the quasiparticle residue Z (kF) and
fermionic effective mass m∗, we need 	F(k, ω) in a neigh-
borhood of (kF, εF), where εF = k2

F/2mF = 2πnF/mF is the
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Fermi energy in the absence of interactions. In this region, the self-energy 	F(k, ω) is given by (see Appendix C for details):

	F(k, ω) = πnBgBF

mr
+ πnBg2

BF

2mr

{
ln

(
(w + 1)2 + A(w + 1) − 2κ2

(w + 1)2
− iη +

√
1 + 2A

w + 1
− 4κ2 − A2

(w + 1)2
− iη

)
− ln 2

+ w + 1

w − 1
ln

B(w − 1) − (w − 1)2 + 2κ2 − (w − 1)
√

(w − 1 − B)2 − 4κ2 − iη

2κ2

}
, (9)

where A ≡ κ2 − νw, B ≡ κ2 + νw, ν ≡ ω/εF, and κ ≡ k/kF.
The chemical potential μF is most easily obtained from

the self-energy 	F(k, ω) by using Luttinger’s theorem [65],
which connects the fermionic chemical potential to the real
part of the self-energy calculated at the Fermi momentum kF

and frequency ω = μF:

μF = εF + Re	F(k = kF, ω = μF). (10)

By noticing that the self-energy (9) depends on the frequency
only through the term proportional to g2

BF and that μF = εF +
O(gBF), one sees that, neglecting terms of order higher than
g2

BF, Eq. (10) can be replaced with

μF = εF + Re	F(k = kF, ω = εF). (11)

By setting in (9) κ = 1 and ν = 1 (such that A = 1 − w and
B = 1 + w), one obtains

	F(kF, εF) = πnBgBF

mr

+ πnBg2
BF

2mr

[
ln

w

(w + 1)2
+ w + 1

w − 1
ln w

]
,

(12)

yielding

μF

εF
= 1 + w + 1

2w
x gBF

(
1 + gBF ln

w
w

w−1

w + 1

)
, (13)

where x = nB/nF and we used mr = mFw/(w + 1). For equal
masses, by taking the limit w → 1, Eq. (13) reduces to

μF

εF
= 1 + x gBF

(
1 + gBF ln

e

2

)
. (14)

D. Ground-state energy and bosonic chemical potential

The ground-state energy per unit volume E = E/V can be
obtained by integrating the chemical potential μF over the
fermion density from 0 to nF:

E =
∫ nF

0
μF(n′

F) dn′
F + EB, (15)

where EB is the ground-state energy per unit volume of the
boson component in the absence of fermions. We make the
dependence of μF on nF in Eq. (13) more explicit

μF = εF(nF) + c1gBF(nF) + c2g2
BF(nF), (16)

where gBF = −1/ ln(kFaBF) depends on nF via kF = √
4πnF

and

c1 = πnB(w + 1)

mF w
, c2 = c1

2
ln

w
w

w−1

w + 1
.

Integration by parts of the terms depending on gBF in Eq. (16)
yields ∫

gBF dnF = nFgBF − 1

2

∫
g2

BF dnF (17)∫
g2

BF dnF = nFg2
BF −

∫
g3

BF dnF = nFg2
BF + o

(
g2

BF

)
. (18)

Neglecting terms of order higher than g2
BF, we thus obtain

E = εFnF

2
+ εFnB(w + 1)

2w

[
gBF + g2

BF ln
w

w
w−1√

e(w + 1)

]
+ EB.

(19)
We emphasize that, according to our expansion, Eq. (19) is
valid to order g2, that is, neglecting terms of order higher than
two in gBF, gBB, or their combinations. Under this assumption,
terms involving simultaneously gBF and gBB do not contribute
to E .

In the mass-balanced case mB = mF ≡ m on which we will
focus in our QMC simulations, Eq. (19) reduces to

E = εFnF

2
+ εFnB

(
gBF − g2

BF ln
2√
e

)
+ EB. (20)

We will verify, in particular, the validity of the term propor-
tional to g2

BF in Eq. (20), which is the contribution to the
equation of state derived by our perturbative calculation.

Concerning instead the bosonic term EB, an accurate per-
turbative expansion has been obtained in Ref. [57], and
verified with QMC calculations shortly after Ref. [60]. Its
expression is

EB = 2πn2
B/mB

L + lnL + CE
1 + lnL+CE

2
L

, (21)

where CE
1 = − ln π − 2γ − 1/2, CE

2 � −0.05 and L =
g−1

BB − ln 4 + 2γ with our convention for the scattering length.
Neglecting terms of order higher than g2

BB, consistently with
the order g2 of our perturbative calculation, the above equa-
tion reads

EB = 2πn2
B

mB
gBB[1 + gBB ln gBB + gBB ln(4π

√
e)]. (22)

Coming back to expression (19) for the ground-state en-
ergy of the Bose-Fermi mixture, differentiation with respect
to nB yields immediately the bosonic chemical potential

μB = εF
w + 1

2w

[
gBF + g2

BF ln
w

w
w−1√

e(w + 1)

]
+ μ0

B, (23)

where μ0
B = ∂EB/∂nB is the boson chemical potential in the

absence of fermions. Neglecting terms of order higher than
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g2
BB, it is given by

μ0
B = 4πnB

mB
gBB[1 + gBB ln gBB + gBB ln(4π )]. (24)

For equal masses, Eq. (23) reduces to

μB = εF

(
gBF − g2

BF ln
2√
e

)
+ μ0

B. (25)

E. Quasiparticle residue

The quasiparticle residue is obtained by the relation:

Z (kF) =
[

1 − ∂

∂ω
Re	F(kF, ω)

]−1

ω=μF

. (26)

Since μF = εF + O(gBF) and the self-energy (9) depends on
the frequency only through the term proportional to g2

BF, one
would be tempted to evaluate the derivative with respect to ω

in the above equation for ω = εF. Such a derivative is, how-
ever, divergent as ω → εF, and so it is important to evaluate it
at μF rather than εF.

Indeed, by setting κ = 1 (corresponding to k = kF) in
Eq. (9), and analyzing separately the behavior of Re	F(kF, ω)
for ω → ε+

F and ω → ε−
F one obtains the following asymp-

totic behavior for ∂Re	F (kF,ω)
∂ω

when ω → εF (corresponding to
ν → 1):

∂Re	F(kF, ω)

∂ω

∣∣∣∣∣
ω�εF

� πnBg2
BF

2mrεF

(
w + 1

w
− w + 1

2
√

w|ν − 1|
)

,

(27)
which clearly shows that ∂Re	F(kF, ω)/∂ω diverges as
1/

√|ω − εF| for ω → εF.
By inserting expression (13) for μF in Eq. (27) and neglect-

ing terms o(g2
BF), we obtain

Z (kF) =
[

1 − πnBg2
BF

2mrεF

(
w + 1

w
− w + 1

2
√

w|ν − 1|
)]−1

ω=μF

�
[

1 − πnBg2
BF

2mrεF

w + 1

w

(
1 − 1

2

√
wmrεF

πnB|gBF|
)]−1

� 1 −
√

2

8

(w + 1)3/2

w
|gBF|3/2√x+ 1

4

(
w + 1

w

)2

g2
BFx,

(28)

where in the last line we have used mr = mFw/(w + 1)
and mFεF = 2πnF. Note that due to the divergence of
∂Re	F(kF, ω)/∂ω for ω → εF, the leading term in the expan-
sion for Z (kF) is proportional to |gBF|3/2 rather than g2

BF, as
one would get in the absence of such a divergence (and as it
occurs, e.g., in a Fermi-Fermi system [46,48]).

Mathematically, this diverging derivative originates from
the presence of a Fermi step function in the integral over
momentum yielding the second-order term for 	F. In a Fermi-
Fermi system this divergence is smeared by a further integral
over momentum and frequency, which is absent in the BF mix-
ture because a fermionic line with arbitrary momentum and
frequency is replaced with a condensate line with vanishing
momentum and frequency.

F. Effective mass

The effective mass is obtained by the relation:

mF

m∗ =
[

1 + mF

kF

∂Re	F(k, εF)

∂k

]
k=kF

Z (kF). (29)

By setting ν = 1 in Eq. (9) and taking the derivative with
respect k of Re	F(k, εF), one obtains

∂Re	F(k, εF)

∂k

∣∣∣∣∣
k=kF

= −πnBg2
BF

2mrkF

2

w
, (30)

such that, by inserting Eqs. (30) and (28) in Eq. (29):

mF

m∗ =
[

1 − w + 1

4w2
g2

BFx

]

×
[

1−
√

2

8

(w+1)3/2

w
|gBF|3/2√x+ 1

4

(
w+ 1

w

)2

g2
BFx

]

=1 −
√

2

8

(w + 1)3/2

w
|gBF|3/2√x + w + 1

4w
g2

BFx, (31)

which, for equal masses (w = 1), reads:

m

m∗ = 1 −
√

x

2
|gBF|3/2 + x

2
g2

BF. (32)

Note again that the leading term in the expansion for m∗ is
proportional to |gBF|3/2 rather than g2

BF, a behavior, which is
directly inherited from the quasiparticle residue Z (kF).

G. Mechanical stability

Mechanical stability requires the compressibility matrix
∂ni/∂μ j (with i = B, F) or, equivalently, its inverse ∂μi/∂n j ,
to be positive definite [6]. It corresponds to

∂μi

∂ni
� 0, (33)

and

∂μF

∂nF

∂μB

∂nB
− ∂μF

∂nB

∂μB

∂nF
� 0. (34)

The second inequality, using the symmetry of the compress-
ibility matrix, reads

∂μF

∂nF

∂μB

∂nB
�
(

∂μF

∂nB

)2

, (35)

which, when satisfied, makes the inequality (33) to be re-
spected automatically in both cases (i = B, F) when it is
verified for just one of them. One has (always neglecting
higher-order terms)

∂μF

∂nF
= 2π

mF

(
1 + w + 1

4w
xg2

BF

)
(36)

∂μF

∂nB
= 2π

mF

w + 1

2w
gBF

(
1 + gBF ln

w
w

w−1

w + 1

)
(37)

∂μB

∂nB
= 4π

mB
gBB[1 + gBB ln gBB + gBB ln(4πe)]. (38)

One sees that ∂μF/∂nF > 0 always. We thus need to satisfy
only (35) for the stability of the Bose-Fermi mixture. When
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using Eqs. (36)−(38), it reads

gBB[1 + gBB ln(4πegBB)] �
(w + 1)2g2

BF

(
1+gBF ln w

w
w−1

w+1

)2
8w
(
1 + w+1

4w
xg2

BF

) ,

(39)

which, for equal masses, reduces to

gBB[1 + gBB ln(4πegBB)] � g2
BF

(
1 + gBF ln e

2

)2
2 + xg2

BF

. (40)

The condition (39) can be simplified if one keeps only the
leading-order terms, corresponding to a mean-field treatment
of the BB and BF interaction. At this level of approximation
one obtains

gBB � (w + 1)2

8w
g2

BF, (41)

which, for equal masses, reduces to

gBB � 1
2 g2

BF. (42)

The condition for stability (41) is the counterpart for a 2D
Bose-Fermi mixture of the analogous condition for stability
in three dimensions obtained in Ref. [6], which can be written
as

kFaBB � (w + 1)2

2πw
(kFaBF)2. (43)

Both condition (41) in two dimensions and condition (43) in
three dimensions can be interpreted as the requirement that
the direct BB repulsion overcomes the effective attraction be-
tween bosons induced by interactions with fermions, in such
a way that the overall effective interaction between bosons
remains repulsive [66]:

TBB + T 2
BF

(
− ∂n(0)

F

∂μ
(0)
F

)
> 0. (44)

Here TBB and TBF are the leading-order expression in the
weak-coupling limit of the T matrices for BB and BF inter-
actions, and are given by

TBB = 4πgBB

mBB
, TBF = πgBF

mr
(45)

in two dimensions and by

TBB = 4πaBB

mBB
, TBF = 2πaBF

mr
(46)

in three dimensions, while ∂n(0)
F

∂μ
(0)
F

is the compressibility of the

ideal Fermi gas, which is given by

∂n(0)
F

∂μ
(0)
F

= 2π

mF
(47)

in two dimensions and by

∂n(0)
F

∂μ
(0)
F

= mFkF

2π2
(48)

in three dimensions. It is straightforward to verify that con-
ditions (41) and (43) are obtained from condition (44) when
Eqs. (45), (47) or (46), (48) are used, respectively.

III. QUANTUM MONTE CARLO

A. Method

To determine the ground-state properties of a repulsive
2D Bose-Fermi mixture, we employ two different QMC
techniques: variational Monte Carlo (VMC) and diffusion
Monte Carlo (DMC). The VMC method stems from the
application of Monte Carlo integration to the evaluation of
quantum expectation values in chosen and suitably optimized
variational trial wave functions ψT , and it is designed to
be directly applied to both bosonic and fermionic systems
[67,68]. Diffusion Monte Carlo is instead a more sophisticated
technique that allows for a stochastic solution of the many-
body Schrödinger equation in imaginary time. It is in principle
an exact method for bosonic systems, but in the presence
of fermions the sign problem arises. We use the standard
fixed-node approximation, which consists in imposing that
the nodal surface of the true many-body wave function is the
same as the one of the trial wave function ψT employed in
our VMC simulations [69]. Thus, both techniques provide an
upper bound to the true ground-state energy [70], which can
be lowered by variationally optimizing ψT .

The considered system is described by an effective low-
energy Hamiltonian, which is set to reproduce the scattering
lengths of the full atomic problem. Its expression is the
following:

H = − h̄2

2mF

NF∑
i=1

∇2
i − h̄2

2mB

NB∑
i′=1

∇2
i′

+
NF,NB∑
i,i′=1

VBF(rii′ ) +
NB∑

i′< j′
VBB(ri′ j′ ), (49)

where i, j, . . . and i′, j′, . . . label, respectively, fermions and
bosons, NF and NB are their numbers, and rkl is the distance
between particles k and l . The short-range fermion-fermion
interaction can be neglected at low energies due to the Pauli
exclusion principle, while the specific form of the interac-
tion potentials, VBF(r) and VBB(r), is irrelevant in the dilute
regime of interest for ultracold gases. In particular, we assume
a soft-disk potential for both interactions: VBB(r) = V 0

BB for
r < RBB and zero elsewhere, and similarly for VBF(r), and
parametrize the strength of the interactions V 0

BB and V 0
BF in

terms of their respective scattering lengths, according to the
relation aP/(eγ RP/2) = exp {−I0(ζPRP)/[ζPRPI1(ζPRP)]} [71]
where the subscript P indicates the BB or BF pair, ζ 2

P =
2mPV 0

P /h̄2, mP is the reduced mass of the P pair and In is the
modified Bessel function of order n. In this work, we tune both
V 0

BB and V 0
BF so that the right-hand side of the former relation

is equal to 1/2. The results for the observables depend only on
the scattering lengths, provided that the bare radii of the model
potentials, RBB and RBF, are negligible when compared to the
densities of the two components: nFR2

BF � 1 and nBR2
BB � 1.

For the BB radius, we have set nBR2
BB = xnFR2

BB = 10−6x.
The value of nFR2

BF changes according to gBF and is smaller
than 10−3 in the homogeneous phase.

Simulations are carried out in a square box of area L2 =
NF/nF with periodic boundary conditions (PBC), with a num-
ber of fermions up to NF = 81 and a number of bosons NB <

NF depending on the targeted bosonic concentration x. The
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sizes of our simulation boxes are quite large, as compared to
the relevant kinetic length scale k−1

F , since kFL = (4πNF)1/2

which is ∼25 for NF = 49 or ∼32 for NF = 81. We focus
on the case of equal masses, thus mB = mF = m. We use
a Jastrow-Slater trial wave function, which turned out to
be a good ansatz in the three-dimensional case [20,72,73].
Thus, ψT (R) is given by the product of two terms: �S (R)
and �A(R). �S (R) is a function of the particle coordinates
R = (r1, . . . , rNF , r1′ , . . . , rNB ), which is symmetric upon ex-
change of any two fermions or two bosons, and contains
information regarding the boson-boson and the boson-fermion
correlations. In the Jastrow form, this term reads as �S (R) =∏

i,i′ fBF(ri,i′ )
∏

i′< j′ fBB(ri′ j′ ), where the functions f describe
the two-body correlations and are solutions of the two-body
problem with suitable boundary conditions. In particular, PBC
require null first derivative of f at distance r = L/2. For this
reason, we introduce two variational parameters R̄BB � L/2
and R̄BF � L/2, to be optimized, that allow one to parametrize
the distance at which the two-body Jastrow correlations go to
a constant, with null first derivative [16,71]. See Appendix D
for the explicit form of Jastrow correlations. The second term,
�A(R), satisfies the fermionic antisymmetry condition and
determines the nodal surface of ψT . In particular, we use
a Slater determinant made of single-particle orbitals in the
form of plane waves exp (ik · ri ), whose wave vectors are
k = (nx, ny)2π/L, where nx and ny are integer numbers. As
customary, these wave vectors are chosen so as to fill closed
shells, which are closed with respect to mirror and discrete
rotational symmetries, in order to reduce finite-size effects
[74]. The optimized ψT is then obtained by choosing the
pairs of parameters R̄BB and R̄BF so as to minimize the VMC
ground-state energy.

B. Finite-size analysis

In order to make simulations computationally affordable,
it is necessary to limit the study to systems with a relatively
small number of particles. This implies inaccuracies in the
QMC results, due to finite-size effects, with respect to the
thermodynamic limit. To reduce them, we extend a finite-size
correction originally developed in the case of Fermi mix-
tures [75–77] to the case of Bose-Fermi mixtures. We assume
that the finite-size correction related to the purely bosonic
component is negligible, since we focus on relatively small
bosonic concentrations, and the fermionic finite-size effects
are presumably much more relevant due to shell effects.

We consider that the fermions do indirectly interact via
the mediation of bosons. This allows us to use Landau Fermi
liquid theory to elaborate an extrapolation scheme to the
thermodynamic limit. In this approach, we assume that the
main finite-size correction is analogous to the one of a non-
interacting Fermi system, which is a purely kinetic energy
contribution, introducing the equation:

ε(nF, NF, NB) = ε∞(nF, x) − b�t (nF, NF), (50)

where ε(nF, NF, NB) and ε∞(nF, x) are the energies per
fermion of the finite system with PBC and of the in-
finite system with the same fermion density nF = NF/L2

and boson concentration x = nB/nF = NB/NF, respectively,
while �t (nF, NF) =∑k h̄2|k|2/(2mFNF) − εF/2 is the energy

difference per fermion between a system of NF noninteract-
ing fermions in the same square box with PBC (the sum is
restricted to the wave vectors considered in the Slater deter-
minant) and the infinite system with the same fermion density
nF, which is easily tabulated [74]. The parameter b can be
identified as the inverse of the effective mass m/m∗ and can
be determined by fitting the QMC data obtained for different
values of NF, in analogy with the Fermi mixture case [75–77].
Notice that, since interaction in this Fermi liquid is mediated
by bosons, the term ε∞(nF, x) depends both on the fermionic
density nF and on the bosonic concentration x. Unfortunately,
it is not possible to perform simulations with different NF and
NB, which vary discretely, while keeping constant x. Thus,
simulations with different NF also correspond to different x,
which we are not free to consider as an independent vari-
able. This prompts us to expand ε∞(nF, x) around a reference
bosonic concentration xi in terms of the variation x − xi. We
therefore introduce the following scaling equation:

ε(nF, NF, NB) = εF

2
+ εB(nB)x + εi + ci(x − xi )

− bi�t (nF, NF), (51)

where the first term is the contribution of a gas of noninter-
acting fermions in the thermodynamic limit, while εB(nB) =
EB/nB is the energy per boson of the corresponding interact-
ing system of bosons in the absence of fermions, for which
we can use the accurate equation of state [60] given by
expression (21). Since we assume that finite-size effects of
the purely bosonic contribution are negligible with respect to
the fermionic ones, the energy per boson εB is also taken in
the thermodynamic limit. The remaining parameters εi, ci,
and bi are obtained by fitting QMC results and model the
residual correlation energy in the vicinity of x � xi. The above
functional form is not the only possible choice for correcting
for finite-size effects. In fact, we tested alternative expansions,
for example by introducing contributions explicitly depending
on inverse powers of NF, and we realized that the parameter
bi is quite stable with respect to the different fitted functional
forms, while Eq. (51) allows us to obtain reasonable values
for the reduced χ -square. Nevertheless, in consideration of
this variability in compatible fitting models, we have increased
the uncertainty bars for bi at the level of 10−3, for interactions
gBF � 0.25.

We fitted the above scaling equation to VMC data, obtain-
ing the effective mass and thus a finite-size correction for each
considered BF interaction value, that we applied to correct
VMC and DMC results using the expression ε∞(nF, x) =
ε(nF, NF, NB) + bi�t (nF, NF). See Appendix E for an ex-
ample of such a fitting procedure. For some test case we
applied the same fitting technique also to DMC data, and
observed that the resulting effective masses were compatible.
We attribute this to a prominent role of the nodal surface
in determining the effective mass. Previous studies on the
electron gas indeed showed an important role of backflow
correlations in the Slater determinant [76,78]. In the context of
BF mixtures, this suggests a relevant future research direction,
together with the comparison to other effective-mass calcula-
tion approaches within QMC methods, such as the evaluation
of imaginary-time diffusion of quasiparticles [79], the explicit
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FIG. 3. Inverse effective mass m/m∗ as a function of the BF
coupling parameter for two different bosonic concentrations x1 �
0.245 and x2 � 0.490 and bosonic repulsion gBB � 5.9 × 10−2 and
6.2 × 10−2, respectively. The dashed (red) line and the dot-dashed
(blue) curve represent the perturbative prediction Eq. (32) using x1

and x2, respectively, while the symbols are the result of the finite-size
correction procedure from VMC data.

simulation of finite-momentum wave functions [80], or the
methodology recently introduced in Ref. [81] based on the
calculation of the static self-energy.

C. Results

In this work, we focus on two reference bosonic concen-
trations x1 = 12/49 � 0.245 and x2 = 24/49 � 0.490, which
represent mixtures with small and high bosonic densities,
respectively. The results for the effective masses are shown
in Fig. 3. They are obtained from the fitting scheme de-
scribed in Sec. III B, using numbers of fermions NF =
21, 29, 37, 45, 49, 61, 69, 81 (which correspond to closed
shells for two dimensions, as discussed in Sec. III) and num-
bers of bosons chosen so as to get concentrations close to the
two reference concentrations x1 and x2, respectively. In the
low interaction regime, the QMC results for both concentra-
tions barely differ from the noninteracting value m∗ = m. For
increasing interaction, although the QMC results qualitatively
follow Eq. (32), some discrepancy between the perturbative
predictions and the QMC points is manifest. This might be
due to a not sufficiently accurate nodal surface, which could
be improved by introducing backflow correlations. For gBF �
0.35 the disagreement is even more evident. This could be
related both to the deficiency of perturbation theory in the
strongly interacting regime, and to the limits of our extrapo-
lation scheme for strong BF interactions, where, presumably,
fermions can no longer be described with Fermi liquid theory.
In fact, in such regime phase separation is expected, and the
homogeneous Fermi liquid is at best only a metastable state.

We now discuss the zero-temperature equation of state for
the two considered bosonic concentrations. When comparing
the perturbative prediction (19) for the ground-state energy
with our QMC results, we find it convenient to consider the
energy per fermion ε = E/NF = E/nF. In addition, to better

FIG. 4. Zero-temperature equation of state for the bosonic con-
centration x1 � 0.245 and bosonic repulsion gBB � 5.9 × 10−2, from
VMC (empty circles) and DMC (filled squares). The energy per
fermion, minus the mean-field term, is plotted as a function of the
BF coupling parameter. The solid (red) line represents the theoretical
predictions obtained in Sec. II. The vertical dash-dotted line indicates
the boundary for phase separation at the mean-field level, Eq. (42),
while the vertical dashed line refers to the beyond-mean-field sta-
bility condition (40). Inset: total energy per fermion. Error bars are
smaller than symbol size.

visualize the contribution of the term proportional to g2
BF in

the perturbative expansion, we write ε = εMF + �ε where the
mean-field term

εMF ≡ εF(1/2 + gBFx) + EB/nF, (52)

includes the noninteracting ground-state energy of the Fermi
component, its mean-field correction due to interaction with
bosons, as well the ground-state energy of the boson compo-
nent in the absence of interaction with fermions (all divided
by NF). With this definition, our perturbative expression (20)
yields for the term �ε = ε − εMF the expression

�ε = −εFx g2
BF ln

2√
e

(53)

to order g2.
Our QMC results for the beyond mean-field correction

ε − εMF, in units of the Fermi energy εF, are shown in Figs. 4–
5, together with the perturbative prediction (53). The shown
VMC and DMC results are obtained by applying, for each
gBF, the finite-size error correction described in Sec. III B to
simulations with NF = 49. This fermion number is chosen
because its finite-size correction entails one of the small-
est kinetic energy biases �t (nF, NF = 49). Furthermore, the
DMC energies are the result of proper time-step and walker
population analyses. The QMC results are in agreement with
the analytic perturbative predictions for small BF interaction
values. In particular, for the smaller bosonic concentration
x1, DMC results agree with the perturbative expansion for
gBF � 0.3 while in the case of x2 agreement is found only
for gBF � 0.2. We also indicate the perturbative stability con-
ditions of the mixture (42) with vertical lines: dot-dashed
for the mean-field condition of Eq. (42), and dashed for the

053302-8



QUANTUM MONTE CARLO AND PERTURBATIVE STUDY OF … PHYSICAL REVIEW A 109, 053302 (2024)

FIG. 5. Same as in Fig. 4, but for bosonic concentration x2 �
0.490 and bosonic repulsion gBB � 6.2 × 10−2.

second-order condition of Eq. (40). For stronger interactions,
at the perturbative level the mixtures lose their homogeneity.
Consequently, one would expect that this regime can no longer
be efficiently simulated with a translationally invariant and
isotropic Jastrow-Slater wave function, such the one that we
employ. This is the reason why we do not perform DMC
simulations for gBF > 0.4. Notice, however, that the VMC
trial wave function still yields stable results, even after this
coupling value, possibly describing a metastable state adia-
batically connected to the uniform phase.

The instability predicted by the perturbative results was
indeed experienced during our DMC simulations, as we now
describe by performing a qualitative analysis of the BB pair
distribution function g(2)

BB(r). The results are shown in Figs. 6–
7, for two different bosonic concentrations. VMC and DMC
results are compared with each other, for different values of
the BF coupling.

FIG. 6. BB pair distribution function for the bosonic concen-
tration x1 = 12/49, with varying BF coupling parameter gBF, and
bosonic repulsion gBB � 5.9 × 10−2, as a function of the dimension-
less distance kFr. Symbols: DMC results. Lines: VMC results.

FIG. 7. Same as in Fig. 6, but for the bosonic concentration x2 =
24/49 and bosonic repulsion gBB � 6.2 × 10−2.

Since the DMC estimator for pair distribution functions is
not pure but mixed, meaning that it is affected by the used
trial wave function, usually an extrapolation from the VMC
and DMC results is performed, which is valid when their
differences are small, or the forward walking technique is
used [82]. Here, instead, we use the discrepancies between
the DMC and VMC results as an indication of how suited the
employed trial wave function is to describe the true ground
state. For both concentrations, and small BF interactions,
the BB repulsion suppresses the probability of finding two
bosons close to each other. By increasing the distance, the
probability density increases until it reaches a plateau value,
corresponding to a homogeneous system. This behavior is,
in fact, observed for gBF � 0.35. For stronger BF repulsion,
the shape of the BB pair distribution function starts to change
drastically, presenting a peak for distances less than 1/kF and a
probability density that decreases for larger distances. Indeed,
if the BF repulsion is strong enough, the presence of an effec-
tive attraction between the bosons is expected, thus leading to
the formation of bosonic clusters. This behavior is much more
evident in the DMC results, where the system has evolved
towards the true ground state containing the bosonic clusters.
Here, the very large discrepancy between the VMC and the
mixed DMC estimators points to a state that is significantly
different from the employed Jastrow wave function, which is
translationally invariant and isotropic, since it includes only
factors that depend on relative distances. In this inhomoge-
neous regime, one must be aware that finite-size effects might
be significant. The main difference between the two consid-
ered boson concentrations is in the prominence of the cluster
peaks, which highlights that the higher the concentration the
stronger the effect.

To further analyze the clustering behavior of the system, in
Fig. 8 we also report the FF and BF pair distribution functions,
respectively, g(2)

FF (r) and g(2)
BF(r), for the strong BF repulsion

gBF � 0.87, by simulating NF = 49 fermions and NB = 24
bosons, corresponding to concentration x2. The BB pair dis-
tribution function shows typical clustering phenomenology, as
discussed above. g(2)

FF (r) is instead very similar to the non-
interacting case, which is expected, since fermions are the

053302-9



JACOPO D’ALBERTO et al. PHYSICAL REVIEW A 109, 053302 (2024)

FIG. 8. BB, FF, and BF pair distribution functions as a function
of distance, for NF = 49, NB = 24 particles, and interaction param-
eters gBF � 8.7 × 10−1, gBB � 6.2 × 10−2. Symbols: DMC results.
Lines: VMC results.

majority species in this mixture and their compressibility is
limited by Fermi pressure. Still, the mixed DMC estimator of
g(2)

FF (r) manifests slightly enhanced oscillations compared with
the VMC one. Another convincing hint of clustering comes
from the shape of the mixed DMC estimator of g(2)

BF(r). A
shift in probability towards greater distances between bosons
and fermions can be observed, which is further evidence of
a reduced uniformity of these two components. All these
considerations qualitatively confirm the presence of phase
separation for strong BF repulsion.

IV. CONCLUSIONS

In this work we filled a gap in the theory of 2D dilute BF
mixtures by deriving the leading beyond-mean-field contri-
butions to the equation of state, as well as to the fermionic
quasiparticle residue and effective mass. For equal masses,
and in the repulsive case we have performed QMC sim-
ulations, extending to BF mixtures a procedure to correct
finite-size effects, which was previously used for Fermi-Fermi
systems. Our QMC results validate the beyond-mean-field
perturbative expansion for the equation of state up to moderate
BF repulsion, depending on the bosonic concentration.

The perturbative expansion for the quasiparticle residue
and effective mass contains a nonanalytic term in the BF
coupling (proportional to |gBF|3/2) that is absent in the cor-
responding expansion for a two-component Fermi system
[46,48] and which originates from the presence of a con-
densate in the BF mixture. For the effective mass, we have
attempted comparison with the effective mass extracted from
our procedure to correct finite-size effects of QMC simula-
tions, finding in this case only qualitative agreement. Future
work will be devoted to increasing the accuracy of the effec-
tive mass from QMC simulations of Bose-Fermi mixtures.

We also investigated the onset of phase separation in
repulsive BF mixtures, as predicted by perturbative the-
ory and demonstrated by clustering in the nonperturbative
bosonic pair distribution function. While the two results

are in qualitative agreement, further work is needed, aim-
ing at quantitatively characterizing the transition from the
nonperturbative energetic point of view. This will require a
systematic evaluation of the QMC equation of state for differ-
ent bosonic concentrations in the uniform phase, in order to
evaluate a fully nonperturbative stability condition.

Another important research direction will be the verifica-
tion of the universality of the QMC results, which are here
based on a single soft-disk potential, whose effective range
could become relevant in the strongly repulsive regime. In
particular, while with our model potential we have nFR2

BF �
10−3 before the onset of phase separation, deep in the phase-
separated state results can depend on the chosen repulsive
model. This is also a regime where in a real atomic system
effective repulsion is accompanied by the possible presence of
bound states of the full interatomic potential, so that the com-
petition between the phase-separated state and the molecular
instability has to be investigated (a problem analogous to the
stability of itinerant ferromagnetism in Fermi mixtures [83]).
Nevertheless, the good agreement between the perturbative
and DMC results for the equation of state up to the predicted
perturbative phase-separation coupling hints at a negligible
role of nonuniversal effects in the uniform phase.

Data for reproducing the figures are available online [84].
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APPENDIX A: QUANTUM SCATTERING THEORY
IN TWO DIMENSIONS: MAIN EQUATIONS

We report here the main equations from quantum scattering
theory in two dimensions since the 2D case is less standard
than the 3D one and notations and definitions are scattered in
the literature (and sometimes differ from author to author).
The scattering amplitude f (k, k′) from the incoming wave
vector k to the outgoing wave vector k′ is defined from the
asymptotic behavior of the stationary scattering wave function
ψ+

k (r) at large distance r from the potential center:

ψ+
k (r) =

r→∞ exp(ik · r) + f (k, k′)√
r

exp[i(kr + π/4)], (A1)

where k′ = kr/r for elastic scattering (see, e.g., Ref. [58]).
With this definition, the differential cross section, like in three
dimensions, is given by

σ (k, θ ) = | f (k, k′)|2, (A2)
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where θ is the angle between k and k′ The 2D partial-wave
expansion reads

f (k, k′) =
√

2

πk

+∞∑
l=−∞

eiδl (k) sin δl (k)eilθ (A3)

=
√

2

πk

+∞∑
l=−∞

eilθ

cot δl (k) − i
. (A4)

At low energies cot δl (k) ∝ k−2l for l �= 0, while (see, e.g.,
Refs. [58,59])

cot δ0(k) =
k→0

2

π
ln(ka) + O(k2). (A5)

We then see that, like in three dimensions, the s-wave scatter-
ing dominates at low energies, so that

f (k′, k) =
k→0

√
π

2k

1

ln(ka) − iπ/2
. (A6)

The scattering amplitude can be connected to the on-shell two-
body T matrix t (k′, k), defined by the equation

t (k′, k) = T 2B(k′, k; z = εk + iη). (A7)

Here, the (off-shell) two-body T matrix T 2B(k′, k; z) is de-
fined as the solution of the Lippmann-Schwinger equation

T 2B(k′, k; z)=V (k′ − k)+
∫

d2 p

(2π )2

V (k′ − p)

z − εp
T 2B(p, k; z),

(A8)
where εp = h̄2 p2/(2mr ), mr is the reduced mass, z is in gen-
eral a complex energy, and V (q) = ∫ d2xe−iq·xV (x) is the
Fourier transform of the scattering potential V (x). In two
dimensions, the connection between f (k′, k) and t (k′, k) is
given by the relation [58]

f (k, k′) = − mr

h̄2
√

2πk
t (k′, k). (A9)

Note that, while for the scattering amplitude f (k, k′) as de-
fined by Eq. (A1) one has |k| = |k′|, for the t matrix t (k′, k)
one has in general |k| �= |k′|.

When both momenta tend to zero, one has [46,52]

t (k′, k) =
k,k′→0

−π h̄2

mr

1

ln(ka) − iπ/2
, (A10)

which is the fundamental equation to construct the perturba-
tive expansion of the many-body T matrix for a dilute BF
mixture.

APPENDIX B: PERTURBATIVE EXPANSION OF THE
MANY-BODY T MATRIX

In this Appendix we derive an expansion for the many-
body T matrix � describing the interaction between bosons
and fermions to second order in the 2D gas parameter gBF.
For convenience, we set h̄ = 1.

The relevant momenta in our dilute system are of the order
of the Fermi momentum kF, which is small in comparison with
the momentum scale 1/R set by the range of the BF inter-
action. We can thus use the low-momenta expression (A10)
for the on-shell two-body t matrix. Moreover, by introducing
the dimensionless momentum variable κ = k/kF and using the
perturbative assumption |gBF| � 1, one has

t (k′, k) = − π

mr

1

ln(κkFaBF) − iπ/2
(B1)

� π

mr
gBF[1 + gBF(ln κ − iπ/2)], (B2)

where we have used that ln(kFaBF) is the dominant term in the
denominator (for both attractive and repulsive cases).

Recalling Eq. (7) for the many-body T matrix �, and
expanding it to second order in gBF, one obtains

�(k; P̄) = π

mr
gBF

⎡
⎣1 + gBF

(
ln κ − i

π

2

)
+
(

π

mr
gBF

)∫
dp

(2π )2

⎛
⎝ �(|P/2 − p| − kF)

P0 − (P/2−p)2

2mF
− (P/2+p)2

2mB
+ iη

− 1

k2/2mr − p2/2mr + iη

⎞
⎠
⎤
⎦,

(B3)

where μB has been set to zero within the integral on the left-hand side of Eq. (B3), consistently with the order g2 of our
calculations. We observe that, since the two-body t matrix at low energy depends only on the (magnitude) of the incoming
momentum k, the many-body T matrix does not depend on the outgoing relative momentum k′. A change of variable P/2 − p →
−p followed by a transformation to polar coordinates yields

�(k; P̄) = πgBF

mr

[
1 + gBF

(
ln κ − i

π

2
+
∫ ∞

0
d p̃

p̃

p̃2 − κ2 − iη
−
∫ ∞

1
d p̃
∫ π

0

dθ

π

(w + 1) p̃

p̃2(w + 1) + P̃2 − P̃0w − iη + 2P̃ p̃ cos θ

)]
.

(B4)

where we have introduced the dimensionless variables p̃ = p/kF, P̃ = P/kF, ν = ω/εF, and P̃0 = P0/εF.
Integration over the angle yields ∫ π

0

dθ

π

1

z + C cos θ
= sgn(Rez)√

z2 − C2
, (B5)

with Imz �= 0 and C real. In the present case

Rez = p̃2(w + 1) + P̃2 − P̃0w. (B6)
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One thus gets

�(k; P̄) = πgBF

mr

{
1 + gBF

[
ln κ − i

π

2
+
∫ ∞

0
d p̃

(
p̃

p̃2 − κ2 − iη
− �( p̃ − 1)sgn( p̃2a + c′))ap̃√

a2 p̃4 + 2bp̃2 + c2

)]}
, (B7)

where

a = w + 1

b = P̃2(w − 1) − P̃0(w2 + w) − iη ≡ b′ − iη

c = P̃2 − P̃0w − iη ≡ c′ − iη. (B8)

Using ∫
p̃

p̃2 − κ2 − iη
d p̃ = 1

2
ln( p̃2 − κ2 − iη) (B9)

∫
ap̃√

a2 p̃4 + 2bp̃2 + c2
d p̃ = 1

2
ln

(
p̃2 + b

a2
+
√

p̃4 + 2bp̃2 + c2

a2

)
(B10)

one notices that the dependence of �(k; P̄) on the relative momentum k disappears, then yielding �(k; P̄) = �(P̄) with

�(P̄) = πgBF

mr

[
1 + gBF

2
F� (P̄)

]
, (B11)

where

F� (P̄) = − ln 2 + ln

(
1 + b′

a2
− iη +

√
1 + 2b′ + c′2

a2
− iη

)
if

P̃0w − P̃2

w + 1
< 1 (B12)

while

F� (P̄) = − ln 2 − ln

(
1 + b

a2
+
√

1 + 2b + c2

a2

)
+ 2 ln

(
p̃2

s + b

a2
+
√

p̃4
s + 2bp̃2

s + c2

a2

)
if

P̃0w − P̃2

w + 1
> 1 (B13)

and we have defined p̃2
s = P̃0w−P̃2

w+1 .

APPENDIX C: PERTURBATIVE EXPANSION OF THE
FERMIONIC SELF-ENERGY

The two Feynman diagrams of Fig. 2 yield two different
contributions to the self-energy:

	F(k̄) = 	
(I)
F (k̄) + 	

(II)
F (k̄) (C1)

with

	
(I)
F (k̄) = n0�(k̄) (C2)

	
(II)
F (k̄) = in0

∫
dp

(2π )2

∫
d p0

2π
G0

B( p̄)G0
F(k̄ + p̄)�(k̄ + p̄)2,

(C3)

where we have defined k̄ ≡ (k, ω). Let us consider the two
terms separately. For the first term, Eq. (B11) for � yields

	
(I)
F (k̄) = nB

πgBF

mr

[
1 + gBF

2
F� (k̄)

]
, (C4)

where, consistently with the order of the expansion, we have
replaced n0 with nB.

The function F� (k̄) is determined by the expressions (B12)
or (B13) (with P̄ replaced by k̄) depending whether the

condition

νw − κ2

w + 1
< 1 (C5)

is verified or not (where for convenience we have introduced
the dimensionless variables ν = ω/εF and κ = k/kF).

In order to obtain the chemical potential μF, the fermion
effective mass m∗ at kF, and the quasiparticle weight Z (kF), it
is sufficient to know the self-energy 	F(k, ω) close to kF and
for frequencies in a neighborhood of the energy shell ν = κ2.
In this case, F� (k̄) is always determined by expression (B12).
Indeed, exactly on shell (ν = κ2) the condition (C5) reads

κ2(1 − w) + 1 + w > 0, (C6)

which, for w � 1 is always verified, while for w > 1 it is
verified for

κ2 <
1 + w

w − 1
, (C7)

thus always including a neighborhood of κ = 1. More gen-
erally, even off the energy shell, setting ν = κ2 + ε, the
condition (C5) reads

κ2(1 − w) + 1 + w > εw. (C8)

For w � 1, the condition (C8) is verified for all κ if ε < 1 +
1
w

, so it is valid in an extended neighborhood of the energy
shell ν = κ2. For w > 1, it can be proven that the condition
(C8) is certainly verified for κ <

√
1 + 1/w and ε < 1

w
,
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implying that there is always a finite neighborhood of (κ = 1, ν = 1) where the condition (C8) is verified.
By using Eq. (B12) for F� (k̄) we thus obtain

	
(I)
F (k̄) = πnBgBF

mr
+ πnBg2

BF

2mr

⎡
⎣ln

⎛
⎝ (w + 1)2 + A(w + 1) − 2κ2

(w + 1)2
− iη +

√
1 + 2A

w + 1
− 4κ2 − A2

(w + 1)2
− iη

⎞
⎠− ln 2

⎤
⎦, (C9)

where A = κ2 − νw.
For the term 	

(II)
F (k̄) as given by Eq. (C3), after integrating over the frequency p0, replacing n0 with nB, and �2 with

(πgBF/mr )2 one gets

	
(II)
F (k̄) = −nB

(
πgBF

mr

)2 ∫ dp
(2π )2

�(kF − |k + p|)
−ω + (k+p)2

2mF
− p2

2mB
+ iη

. (C10)

After the shift k + p → p, and introducing dimensionless variables:

	
(II)
F (k̄) = nB

2mr
g2

BF

∫ 1

0
d p̃
∫ 2π

0
dθ

(w + 1) p̃

νw − p̃2(w − 1) + κ2 − 2 p̃κ cos(θ ) + iη
. (C11)

The integral over θ is solved by using Eq. (B5), yielding:

	
(II)
F (k̄) = nB

2mr
g2

BF

∫ 1

0
d p̃

sgn(D)2π (w + 1) p̃√
D2 − (2 p̃κ )2 − sgn(D) iη

(C12)

with

D = νw − p̃2(w − 1) + κ2. (C13)

For w � 1, D is always positive in the range of integration for ν > −κ2/w, a condition that is certainly verified in an extended
neighborhood of ν = κ2. For w > 1, on the energy shell ν = κ2, D is always positive if κ2 > (w − 1)/(1 + w), which is always
verified in a neighborhood of κ = 1. More generally, even off the energy shell, one can verify that there is a neighborhood of
κ = 1 and ν = 1 where D is always positive within the range of integration. For the calculation of the physical quantities of
interest in this work, we can then replace sgn(D) with 1 in Eq. (C12) for all values of w and proceed with the calculation of the
integral over p̃. By defining B = κ2 + νw, one has

	
(II)
F (k̄) = g2

BF
nB(w + 1)

2mr

∫ 1

0
d p̃

2π p̃√
a2 p̃4 + 2bp̃2 + c

, (C14)

where a = w − 1, b = −B(w − 1) − 2κ2, c = B2 − iη. The integral over p̃ is solved by using Eq. (B10), yielding

	
(II)
F (k̄) = g2

BF
πnB

2mr

w + 1

w − 1
{ln[B(w − 1) − (w − 1)2 + 2κ2 − (w − 1)

√
(w − 1 − B)2 − 4κ2 − iη] − ln(2κ2)}. (C15)

By summing (C12) and (C15) one finally obtains Eq. (9) of the main text for 	F(k̄).
Finally, we report the expression of the self-energy for the specific case of equal masses mF = mB = m, which is obtained by

taking the limit w → 1 from the general expression (9)

	F(k̄) = 2πnBgBF

m
+ πnBg2

BF

m

{
ln
(

1 − ν

2
− iη +

√
1 − ν + (k2 − ν)2/4 − iη

)
− ln 2 + k2 + ν −

√
(k2 + ν)2 − 4k2 − iη

k2

}
.

(C16)

APPENDIX D: TRIAL WAVE FUNCTION

For completeness, in this Appendix we report details re-
garding the employed trial or guiding wave function. The
Jastrow factor has a standard form [71] that is similar to
the starting point of the lowest-order constrained variational
(LOCV) approximation [16]. The two-body correlations
fP(r), where P = BF, BB, and r is the relative distance be-
tween the particles in a P pair, are the solutions of the 2D two-
body radial Schrödinger equation [−(h̄2/2mP)r−1∂r (r∂r ) +
VP(r) − εP] fP(r) = 0, with the boundary conditions fP(R̄P) =
1 and f ′

P(R̄P) = 0. The variational parameters R̄P play the role
of healing lengths taking care of the effects of many-body

physics on two-body correlations. The explicit form of the
functions is

fP(r) =

⎧⎪⎨
⎪⎩

C0I0(z̄Pr) r < RP

C1J0(zPr) + C2Y0(zPr) RP � r < R̄P

1 r � R̄P

, (D1)

where C0 = [C1J0(zPRP) + C2Y0(zPRP)]/I0(z̄PRP), C1 = A
cos δ, C2 = −A sin δ, A = [J0(zPR̄P) cos δ − Y0(zPR̄P)
sin δ]−1, tan δ = J1(zPR̄P)/Y1(zPR̄P), and Jn, Yn, and In

are, respectively, the order n Bessel functions of first
and second kind, and the modified Bessel function
of first kind. Continuity and boundary conditions
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FIG. 9. Energy per fermion, in units of εF, as a function of the
NB/NF ratio, around the reference bosonic concentration x1 � 0.245,
for gBF � 5.4 × 10−1. Empty squares: raw VMC results. Filled cir-
cles: finite-size corrected VMC results from Eq. (E1), employing the
fitted inverse effective mass. Empty diamonds: finite-size corrected
VMC results from Eq. (E1), employing the bare fermionic mass.
Solid line: thermodynamic limit of the VMC equation of state in the
vicinity of x1, Eq. (E2).

determine the effective two-body energy εP via
[zPJ1(zPRP) + βJ0(zPRP)]/[zPY1(zPRP) + βY0(zPRP)] = tan δ,

where β = z̄PI1(z̄PRP)/I0(z̄PRP), z̄P =
√

ζ 2
P − z2

P and

z2
P = 2mPεP/h̄2. ζP is fixed by the scattering length as

described in the main text.

APPENDIX E: FIT OF THE EFFECTIVE MASS

In Fig. 9, we provide an example of the fitting procedure
described in Sec. III B, which aims at estimating the effective
masses reported in Fig. 3, and thus at providing the main

ingredient for the finite-size correction of VMC and DMC
results reported in Figs. 4–5. In particular, we focus on the
reference concentration x1 � 0.245 and the coupling gBF �
5.4 × 10−1.

We first use the model of Eq. (51) to fit the VMC results
(empty squares) for different NF and NB, corresponding to
concentrations x = NB/NF, with x � x1, see horizontal axis.
The fit yields the parameters ε1, c1, and b1. Summing the
kinetic energy correction b1�t to both sides of Eq. (51) then
brings to two possible estimates of the VMC energy in the
thermodynamic limit:

ε∞(nF, NB/NF) = ε(nF, NF, NB) + b1�t (nF, NF) (E1)

ε̄∞(nF, x) = εF

2
+ εB(nB)x + ε1 + c1(x − x1). (E2)

Equation (E1) amounts to adding the kinetic energy cor-
rection, depending on the fitted inverse effective mass, to each
specific VMC result with NF fermions (filled circles in figure).
Here, the advantage is that the only needed parameter for the
correction is the fitted inverse effective mass b1, while the
values of �t are tabulated. We employ this same correction
also for DMC simulations with the same particle numbers,
having observed that an analogous fitting procedure for DMC
(not shown) yields a consistent value for b1.

Alternatively, Eq. (E2) provides the thermodynamic limit
of the VMC equation of state for generic x close to x1 (solid
line), which is valuable for considering concentrations not
corresponding to specific NB/NF ratios. However, the ε1, c1

fitted values are only consistent with VMC. Providing a simi-
lar expression for DMC would require applying an analogous
fitting procedure to DMC simulations, which are much more
computationally expensive than VMC calculations.

In the figure, we also show the VMC results with a bare
finite-size correction (empty diamonds), given by Eq. (E1) in
which we set b1 = 1. It is apparent that employing the fitted b1

yields a much better consistency between the corrected results
(filled circles) and the thermodynamic limit equation of state
for VMC (solid line).
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