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The Multiple Knapsack Assignment Problem is a strongly NP-hard combinatorial optimisation problem, 
with several applications. We show that an upper bound for the problem, due to Kataoka and Yamada, 
can be computed in linear time. We then show that some bounds due to Martello and Monaci dominate 
the Kataoka-Yamada bound. Finally, we define an even stronger bound, which turns out to be particularly 
effective when the number of knapsacks is not a multiple of the number of item classes.
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1. Introduction

Knapsack Problems form a fundamental family of combinatorial 
optimisation problems, and there is a huge literature on them (see 
[5,8] for detailed surveys). Here, we focus on the Multiple Knapsack 
Assignment Problem (MKAP), introduced by Kataoka and Yamada 
[4].

In the MKAP, we have a set M of knapsacks and a set N of 
items. Each knapsack i ∈ M has a capacity ci . Each item j ∈ N has a 
profit p j and a weight w j . Moreover, the set N is partitioned into 
r subsets or classes, which we call N1, . . . , Nr . Items from a given 
class can only be placed into a given knapsack if that knapsack 
has been “assigned” to that class. Each knapsack can be assigned 
to at most one class, but there is no restriction on the number 
of knapsacks assigned to any given class. The total weight of the 
items placed in any given knapsack must not exceed the capacity 
of that knapsack. The task is to assign each knapsack to a class, 
and place some items into each knapsack, in order to maximise 
the total profit.

The MKAP has applications in the purchasing of goods and their 
subsequent transportation by air, rail or water [3,4,7]. It is also 
strongly NP-hard. Indeed, it reduces to the multiple knapsack prob-
lem (MKP) when r = 1, and the MKP was proven to be strongly 
NP-hard in [11].

To our knowledge, there have only been four papers on the 
MKAP [3,4,6,7]. Here, we are primarily interested in Kataoka and 
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Yamada [4] and Martello and Monaci [7], which present efficiently 
computable upper bounds for the MKAP.

We make four contributions. First, we show that the Kataoka-
Yamada bound can be computed in linear time. Second, we show 
that the Martello-Monaci bounds dominate the Kataoka-Yamada 
bound. Third, we define an even stronger bound, and show that it 
can be computed in pseudo-polynomial time. Finally, we present 
the results of some computational experiments. Interestingly, it 
turns out that our bound is most useful when m is not a multi-
ple of r.

The paper has a simple structure. Section 2 is a brief literature 
review. Section 3 contains the analysis of the existing bounds, and 
Section 4 presents the new bound. Section 5 gives the computa-
tional results, and Section 6 contains some concluding remarks.

Throughout the paper, we assume that the ci and w j are pos-
itive integers. We assume that M = {1, . . . , m} and N = {1, . . . , n}, 
and we write R = {1, . . . , r}. We assume without loss of general-
ity that m and r are smaller than n. We let C denote 

∑
i∈M ci . 

For each k ∈ R , we let nk , P (k) and W (k) denote |Nk|, ∑ j∈Nk
p j

and 
∑

j∈Nk
w j , respectively. We also let cmax denote the maximum 

of c1, . . . , cm and Wmax denote the maximum of W (1), . . . , W (r). 
Finally, LP and DP stand for “linear program” and “dynamic pro-
gramming”, respectively.

2. Literature review

We now give a brief review of the relevant literature. Subsec-
tion 2.1 recalls some results on the standard knapsack problem. 
Subsection 2.2 summarises the main papers on the MKAP, and 
Subsection 2.3 describes the existing upper-bounding procedures 
in detail.
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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2.1. The knapsack problem

When m = r = 1, the MKAP reduces to the classical 0-1 knap-
sack problem (KP). The KP can be formulated as the following 0-1 
LP:

max

{∑
j∈N

p jx j :
∑
j∈N

w jx j ≤ c, x ∈ {0,1}n

}
.

The KP is NP-hard, but it can be solved in O (nc) time using the 
DP algorithm of Bellman [2]. Moreover, the continuous relaxation 
of the 0-1 LP can be solved in O (n) time [1].

2.2. The MKAP

Kataoka and Yamada [4] gave the following 0-1 LP formulation 
of the MKAP. For i ∈ M and j ∈ N , the binary variable xij takes the 
value 1 if and only if item j is placed in knapsack i. For i ∈ M
and k ∈ R , the binary variable yik takes the value 1 if and only if 
knapsack i is assigned to class k. The 0-1 LP is then:

max
∑

j∈N p j
∑

i∈M xij (1)

s.t.
∑

j∈Nk
w jxi j ≤ ci yik (i ∈ M, k ∈ R) (2)∑

i∈M xij ≤ 1 ( j ∈ N) (3)∑
k∈R yik ≤ 1 (i ∈ M) (4)

x ∈ {0,1}mn, y ∈ {0,1}mr . (5)

The interpretation of the objective and constraints is straightfor-
ward.

Kataoka and Yamada provided a fast algorithm for solving the 
continuous relaxation of the 0-1 LP, along with a constructive 
heuristic. Lalla-Ruiz and Voß [6] presented a genetic algorithm for 
the MKAP. Dimitrov et al. [3] described an application of the MKAP 
in which all knapsacks have the same capacity. They designed an 
effective heuristic for this special case. Finally, Martello and Monaci 
[7] described an effective upper-bounding procedure based on sur-
rogate relaxation. They also introduced a constructive heuristic and 
a metaheuristic.

2.3. Upper bounds for the MKAP

Let U K Y denote the upper bound that one obtains by solving 
the continuous relaxation of the 0-1 LP (1)-(5). Kataoka and Ya-
mada provided a fast algorithm for computing U K Y . The idea is as 
follows. For each k ∈ R , define the following function:

zk(α) = max

⎧⎨
⎩

∑
j∈Nk

p jx j :
∑
j∈Nk

w jx j ≤ α, x ∈ [0,1]nk

⎫⎬
⎭ , (6)

where the domain of α is the closed interval [0, C]. It is easy to 
show that

U K Y = max

{∑
k∈R

zk
(
uk

) :
∑
k∈R

uk ≤ C, u ∈ [0, C]r

}
. (7)

Kataoka and Yamada show that one can compute all of the func-
tions zk in O (n log n) time. They also show that (7) is a continuous 
optimisation problem with a separable, non-decreasing and con-
cave objective function. Such problems can be solved efficiently, to 
any desired accuracy, with any of several available algorithms (see 
the survey [9]).

Martello and Monaci [7] point out that we can get a different 
upper bound by solving a “surrogate” KP of the form:
2

max

⎧⎨
⎩

∑
j∈N

p j x̃ j :
∑
j∈N

w j x̃ j ≤ C, x̃ ∈ {0,1}n

⎫⎬
⎭ . (8)

This KP can be solved in O (nC) time by DP. We will let U MM de-
note the resulting upper bound.

Martello and Monaci also mention that one can sometimes de-
crease the knapsack capacities, without losing any feasible solu-
tions. For i ∈ M and k ∈ R , define

c̄ik = max

⎧⎨
⎩

∑
j∈S

w j :
∑
j∈S

w j ≤ ci, S ⊆ Nk

⎫⎬
⎭ .

By definition, if knapsack i is assigned to class k, then the total 
weight of the items packed into knapsack i cannot exceed c̄ik . From 
this it follows that, for each i ∈ M , we can replace ci with

c̄i = max
k∈R

{
c̄ik

}
.

This in turn implies that, in the surrogate KP, we can replace C
with C̄ = ∑

i∈M c̄i . The c̄ik values can be computed in O
(
ncmax

)
time via DP. We will let U−

MM denote the resulting upper bound.

3. On the existing bounds

We begin by analysing the existing bounds. Subsections 3.1 and 
3.2 concern the Kataoka-Yamada and Martello-Monaci bounds, re-
spectively. Throughout this section, when we say “the LP relax-
ation”, we mean the continuous relaxation of the 0-1 LP (1)-(5).

3.1. On the Kataoka-Yamada bound

Our first result concerns U K Y :

Theorem 1. U K Y is equal to

max

{∑
j∈N

p j x̃ j :
∑
j∈N

w j x̃ j ≤ C, x̃ ∈ [0,1]n

}
. (9)

Proof. First, we show that, given any feasible solution to the LP re-
laxation, we can construct a feasible solution to (9) with the same 
profit. So, let (x∗, y∗) be a solution to the LP relaxation. We con-
struct a vector x̃∗ ∈ [0, 1]n by setting

x̃∗
j =

∑
i∈M

x∗
i j ( j ∈ N).

The fact that x̃∗ has the same profit as (x∗, y∗) is trivial. To see 
that x̃∗ is feasible for (9), note that:∑
j∈N

w j x̃
∗
j =

∑
i∈M

∑
j∈N

w jx
∗
i j ≤

∑
i∈M

ci

∑
k∈R

y∗
ik ≤

∑
i∈M

ci = C,

where the first inequality comes from (2) and the second comes 
from (4).

We now show that, given any feasible solution to (9), we can
construct a feasible solution to the LP relaxation with the same 
profit. Let x̃∗ ∈ [0, 1]n be a feasible solution to (9). We construct a 
pair (x∗, y∗) as follows. We define

uk =
∑
j∈Nk

w j x̃
∗
j (k ∈ R).

We then set x∗
i j to ci x̃∗

j /C for all i and j, and we set y∗
ik to uk/C

for all i and k. Note that, by construction, 
∑

i∈M x∗ = x̃∗ ≤ 1 for 
i j j
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Fig. 1. Function zk (narrow lines) and z−
k (thick lines).

all j ∈ N . Thus, x∗ satisfies (3), and it has the same profit as x̃∗ . 
To see that (x∗, y∗) satisfies (2), note that the left-hand side of (2)
evaluates to ukci/C , and so does the right-hand side. Finally, to see 
that y∗ satisfies (4), note that the sum of the uk over all k ∈ R
cannot exceed C . �

The above theorem has the following useful corollary.

Corollary 1. U MM ≤ U K Y .

Proof. The problem (9) is a relaxation of the surrogate KP (8), 
obtained by replacing the binary condition x ∈ {0, 1}n with the 
weaker condition x ∈ [0, 1]n . �

Thus, the Kataoka-Yamada bound is in general weaker than the 
Martello-Monaci bounds. The Kataoka-Yamada bound does how-
ever have one thing in its favour:

Corollary 2. U K Y can be computed in O (n) time, along with a vector x̃∗
that solves (9).

Proof. As mentioned in Subsection 2.1, the continuous relaxation 
of a KP can be solved in O (n) time. Moreover, computing C takes 
only O (m) time, and we are assuming that m ≤ n. �

We remark that the technique described in the proof of Theo-
rem 1 enables one to convert the vector x̃∗ into an optimal pair 
(x∗, y∗) if desired. In this way, one can obtain an explicit optimal 
solution of the LP relaxation in O (nm) time.

3.2. On the Martello-Monaci bounds

For what follows, we will find it useful to have alternative char-
acterisations of U MM and U−

MM . To this end, we define the follow-
ing function for each class k ∈ R:

z−
k (α) = max

⎧⎨
⎩

∑
j∈Nk

p jx j :
∑
j∈Nk

w jx j ≤ α, x ∈ {0,1}nk

⎫⎬
⎭ , (10)

where, as before, the domain of α is [0, C]. Comparing (10) with 
(6), we see that z−

k (α) ≤ zk(α) for all k and α. Moreover, by defini-
tion, the z−

k are piecewise-constant and discontinuous in general. 
To make this clear, we give a small example.

Example: Suppose that m = 3 and c = (10, 10, 14). Also suppose 
that, for some k ∈ R , we have Nk = {1, 2, 3, 4}, w1 = 4, w2 = 5, 
w3 = 7, w4 = 8, p1 = 6, p2 = 4, p3 = 7 and p4 = 5. We have 
C = 34, W (k) = 24 and P (k) = 22. The functions zk and z−

k are 
sketched in Fig. 1. �

We have the following result:
3

Proposition 1.

U MM = max

{∑
k∈R

z−
k (uk) :

∑
k∈R

uk ≤ C, u ∈ [0, C]r

}
. (11)

Proof. We begin by showing that, given an optimal solution to 
(11), we can find a feasible solution to (8) that has the same profit. 
So, let u∗ ∈ [0, C]r be an optimal solution to (11). From the defini-
tion of the functions z−

k , it follows that, for each k ∈ R , there exists 
a set of items Sk ⊆ Nk whose total profit is z−

k (u∗
k ) and whose to-

tal weight does not exceed u∗
k . We construct a vector x̃∗ ∈ {0, 1}n

by setting x̃∗
j to 1 if and only if j ∈ Sk for some k ∈ R . The profit of 

this solution is

∑
k∈R

∑
j∈Nk

p j x̃
∗
j =

∑
k∈R

⎛
⎝∑

j∈Sk

p j

⎞
⎠ =

∑
k∈R

z−
k

(
u∗

k

) = U MM .

We also have:

∑
k∈R

∑
j∈Nk

w j x̃
∗
j =

∑
k∈R

⎛
⎝∑

j∈Sk

w j

⎞
⎠ ≤

∑
k∈R

u∗
k ≤ C .

Thus, the weight of x̃∗ does not exceed C , as required. The proof 
in the reverse direction is similar. �

In exactly the same way, one can show that

U−
MM = max

{∑
k∈R

z−
k (uk) :

∑
k∈R

uk ≤ C̄, u ∈ [0, C]r

}
. (12)

4. The new bound and how to compute it

In this section, we present a new upper bound for the MKAP. 
Subsection 4.1 defines the bound and shows that it dominates 
U−

MM . Subsections 4.2 and 4.3 are concerned with how to com-
pute the bound efficiently.

4.1. The new bound

Recall that the variable uk represents the total amount of capac-
ity allocated to class k. Recall also that we can reduce the knapsack 
capacities from ci to c̄i , without losing any feasible MKAP solu-
tions. From these two facts it follows that we can restrict each of 
the uk variables to the following domain:

� =
{

q ∈Z+ : q =
∑
i∈M ′

c̄i for some M ′ ⊆ M

}
.

To make this definition clear, we use the same example as in Sub-
section 3.2.

Example (cont.): One can check that c̄1 = c̄2 = 4 + 5 = 9 and c̄3 =
5 + 8 = 13. Thus, c̄ = (9, 9, 13) and � = {0, 9, 13, 18, 22, 31}. Fig. 2
shows the function z−

k , but with the domain [0, C] replaced with 
the (much) smaller domain �. �

Our new upper bound for the MKAP, then, is as follows:

U GL = max

{∑
k∈R

z−
k (uk) :

∑
k∈R

uk ≤ C̄, u ∈ �r

}
. (13)

We have the following result:

Theorem 2. U GL ≤ U− , and this inequality can be strict.
MM
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Fig. 2. Function z−
k after restricting α to take values in �.

Proof. The fact that U GL ≤ U−
MM follows immediately from a com-

parison of (13) and (12). To show that the inequality can be strict, 
consider an MKAP instance with m = 2, n = 6, r = 3, c1 = c2 = 3, 
N1 = {1, 2}, N2 = {3, 4}, N3 = {5, 6}, p1 = p3 = p5 = 10, p2 =
p4 = p6 = 1, w1 = w3 = w5 = 2 and w2 = w4 = w6 = 1. One 
can check that there are three optimal solutions with a profit of 
10 + 1 + 10 + 1 = 22. The optimal solution to (11), on the other 
hand, has a profit of 10 + 10 + 10 = 30. So U MM = 30. More-
over, we have c̄ = c and C̄ = C for this instance, so U−

MM = 30 as 
well. Now observe that � = {0, 3, 6}. Moreover, we have z−

k (3) =
z−

k (6) = 10 +1 = 11 for k = 1, 2, 3. Thus, to obtain an optimal solu-
tion to (13), one must set two of the uk variables to 3, and set the 
remaining uk variable to 0. This gives U GL = 11 + 11 = 22, which 
is optimal. �
4.2. Computing the new bound

We now show how to compute U GL in pseudo-polynomial time. 
The first step is to compute the reduced knapsack capacities c̄i . As 
mentioned in Subsection 2.3, this can be done by DP in O

(
ncmax

)
time. (With some care, one can implement the DP so that it takes 
only O

(
cmax

)
space. We omit details for brevity.)

The next step is to use DP to compute and store the function z−
k

for all k ∈ R . Note that we only need to compute z−
k (α) explicitly 

for α = 0, . . . , W (k), since z−
k (α) = P (k) for larger values of α. To 

do this for a given k, we use Algorithm 1. One can check that, for 
a given k, the algorithm runs in O

(
nk W (k)

)
time and O

(
W (k)

)
space. Moreover, storing the functions themselves takes O

(
rWmax

)
space.

Algorithm 1: Computing the z−
k values for a given k.

input : class k ∈ R , profit p j and weight w j for each j ∈ Nk

1 Compute W (k);
2 Create a 1-dimensional integer array Z of dimension W (k) + 1;
3 for α = 0, . . . , W (k) do
4 Set Z [α] to 0;
5 end
6 for t = 1, . . . , nk do
7 Let P and W be the profit and weight of the tth item in Nk;
8 for α = W (k), W (k) − 1, . . . , W do
9 if Z [α − W ] + P > Z [α] then

10 Set Z [α] to Z [α − W ] + P ;
11 end
12 end
13 end
14 for α = 0, . . . , W (k) do
15 Set z−

k (α) to Z [α];
16 end

output : z−
k (α) for α = 0, . . . , W (k)
4

The next step is to use DP to compute the set �. To do this, 
we use Algorithm 2. One can check that B(q) will be set to ‘true’ 
during the course of the algorithm if and only if q ∈ �. One can 
also check that the algorithm runs in O

(
mC̄

)
time and O

(
C̄
)

space.

Algorithm 2: Computing the set �.
input : number of knapsacks m, reduced knapsack capacities c̄1, . . . , ̄cm

1 Compute C̄ ;
2 Create a 1-dimensional Boolean array B of dimension C̄ + 1;
3 Set B(0) to true and set � to ∅;
4 for q = 1, . . . , ̄C do
5 Set B(q) to false;
6 end
7 for i = 1, . . . , m do
8 for q = C̄, ̄C − 1, . . . , ̄ci do
9 if B[q − c̄i ] = true then

10 Set B[q] to true;
11 end
12 end
13 end
14 Let � = {

q : B[q] = true
}

;
output : the set �

Finally, once we have computed the functions z−
k and the set 

�, we have to solve (13) itself. To do this, we use DP yet again, 
as shown in Algorithm 3. In this algorithm, P [t][q] represents the 
maximum total profit that can be obtained from the first t item 
classes, under the assumption that the total capacity allocated to 
those classes does not exceed q.

Algorithm 3: Solving the relaxation (13).
input : number of classes r , class weights W (k),

total effective capacity C̄ , array containing the elements of �,
values z−

k (α) for k ∈ R and α = 0, . . . , W (k)

1 Create a 2-dimensional integer array P of dimension r + 1 by C̄ + 1;
2 for t = 0, . . . , r do
3 for q = 0, . . . , ̄C do
4 Set P [t][q] to 0;
5 end
6 end
7 for t = 1, . . . , r do
8 for q = 0, . . . , ̄C do
9 for each s ∈ � such that q + s ≤ C̄ do

10 if P [t − 1][q] + z−
t (s) > P [t][q + s] then

11 Set P [t][q + s] to P [t − 1][q] + z−
t (s);

12 end
13 end
14 end
15 end
16 Set U GL to P

[
r
][

C̄
]
;

output : Upper bound U GL

One can check that Algorithm 3 runs in O
(
r C̄2

)
time. Although 

it has a pseudo-polynomial running time, we have found that Algo-
rithm 3 is in practice much slower than the algorithms mentioned 
above.

4.3. Speeding up the procedure

To speed up Algorithm 3, we need one additional piece of no-
tation. For a given k ∈ R , we let Lk denote the least element of �
that is not less than W (k). So, for example, if � = {0, 7, 9, 16} and 
W (k) = 8, then Lk = 9. Note that, for any given k, the number of 
elements of � that do not exceed Lk is at most W (k) + 1.

We propose to compute the Lk values immediately after run-
ning Algorithm 2, as follows. We store the elements of � in an 
array, in increasing order of value. Then, for any given k ∈ R , we 
can compute Lk in O

(
log C̄

)
time, by binary search.
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Now, by definition, z−
k (α) = P (k) for all α ≥ Lk . Thus, when 

solving (13), we can assume that uk ≤ Lk for all k. Thus, we can 
speed up Algorithm 3 by changing line 9 to “for each s ∈ � such 
that q + s ≤ C̄ and s ≤ Lt ”. The effect of this change is that no more 
than W (k) + 1 values of s need to be considered for any given t
and q. From this it follows that the running time of Algorithm 3
decreases to O

(
T C̄

)
, where T is the total weight of the items. We 

have found this running time to be acceptable in practice.

5. Computational results

In this section, we give some computational results. Subsection 
5.1 describes the test instances that we used, and Subsections 5.2
and 5.3 give results for some old and new instances, respectively.

We remark that all our procedures were coded in C++ and 
compiled with g++ 11.3.0. The experiments were performed 
on a VM running on a 2.30 GHz Intel Xeon Gold 5218 CPU with 
256Gb RAM, under Ubuntu 22.4. To solve the 0-1 KP (8) and 
its tightened version (with C̄ in place of C ), we simply used 
the mixed-integer optimizer of CPLEX v.22.10. (We could have 
solved the 0-1 KPs faster using a dedicated algorithm, such as
MINKNAP [10], but CPLEX was fast enough for our purposes. In-
deed, it solved all of the 0-1 KPs in less than one second.)

5.1. Test instances

Kataoka and Yamada [4] constructed some MKAP instances 
with random profits, weights and knapsack capacities. In these 
instances, the weights are random integers distributed uniformly 
between 1 and 1000. Their ‘small’ instances have m ∈ {10, 20}, 
n ∈ {20, 40, 60}, and r ∈ {2, 5}, whereas their ‘large’ instances have 
m ∈ {200, 400, 800}, n ∈ {4000, 8000}, and r ∈ {50, 100}. There is 
also a fourth parameter, which controls the degree of correlation 
between the profits and weights. The parameter takes three val-
ues: uncorrelated, weakly correlated and strongly correlated. We 
omit details, for brevity.

There are 10 instances for each combination of parameters, 
making a total of 360 small instances and 360 large instances. In 
all of these instances, nk = n/r for all k ∈ R , and the knapsack ca-
pacities are uniformly distributed between 0 and W /m, where W
is the sum of the weights. (This means that the expected value of 
C is W /2.)

With the help of CPLEX, we were able to obtain the optimal 
solution values for the instances with n ∈ {20, 40}. Most of the 
larger instances, however, could not be solved to optimality within 
our chosen time limit (1200 seconds). Moreover, even for the in-
stances with n = 40, we had to adjust the tolerances in CPLEX to 
obtain the true optimal values.

Some more MKAP instances were created by Martello and 
Monaci [7]. We omit the details, however, since we were unable 
to find optimal solution values for most of them.

In all of the above-mentioned instances, m is a multiple of r. 
For reasons which will become clear, we created some new in-
stances that do not have this restriction. The profits and weights 
in our instances were created using the procedure from [4], but 
the instances have m ∈ {5, 15}, n ∈ {50, 100} and r = 10. We set 
the cardinality of each class to n/r, as in [4], but we set the capac-
ity of each knapsack to W /2m. We created ten random instances 
for each value of m and n, and each value of the correlation pa-
rameter, making 120 instances in total.

5.2. Results for some small Kataoka-Yamada instances

As mentioned above, we were able to obtain the optimal solu-
tion values for the instances with n ∈ {20, 40}. For each of those 
instances, we computed the four upper bounds U K Y , U MM , U−
MM
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and U GL , and recorded the running times. We also computed the 
gap between each bound and the optimum, expressed as a per-
centage of the optimum.

The results for n = 20 and n = 40 are shown in Tables 1 and 2, 
respectively. The first three columns show the instance type. The 
next four columns report the average percentage gaps for each of 
the four bounds. The last two columns report the average com-
puting time, in seconds, for U−

MM and U GL . (The times for the 
other two bounds are not reported, since they were less than one-
hundredth of a second in every case.) Each figure is the average 
over the ten instances of the given type.

As one would expect from the theoretical results, U K Y ≥
U MM ≥ U−

MM ≥ U GL in all cases. The difference between U K Y and 
U MM is more marked when n = 40, whereas the difference be-
tween U MM and U−

MM is more marked when n = 20. Moreover, all 
bounds perform extremely poorly when n = m = 20.

We also see that, for these instances, U GL is only a little better 
than U−

MM . It also takes a bit longer to compute, but the running 
times are well under a second for all instances.

5.3. Results for new instances

Now, recall that our new instances have n ∈ {50, 100}, m ∈
{5, 15} and r = 10. Table 3 reports the average percentage gaps 
and times for these instances. As before, each figure is the average 
over ten random instances.

The picture here is strikingly different to what we saw in the 
previous subsection. The new bound, U GL , is much stronger than 
all of the other bounds, and it is even equal to the optimal value 
for all of the instances with m = 5.

The explanation for this phenomenon is as follows. When all 
item profits and weights are selected independently at random 
from the same distribution, the solution to the LP relaxation tends 
to “share out” the available capacity roughly equally among the 
r classes. The same is true for the Martello-Monaci KP relaxation 
(with or without reduction of the knapsack capacities). This be-
haviour is fine when m is a multiple of r, but unrealistic in other 
cases. Our bounding procedure avoids this weakness, by insisting 
that the amount of capacity allocated to each class belongs to the 
set �.

6. Conclusion

We have analysed some existing upper-bounding procedures for 
the MKAP, and proposed a new one. The new procedure turns out 
to be most useful when the number of knapsacks is not a multiple 
of the number of item classes.

As well as being another small step forward in exact algorithms 
for the MKAP, our work suggests that one must take care when 
constructing collections of benchmark instances for combinatorial 
optimisation problems. Indeed, we have seen that a small change 
in the instance parameters can lead to a huge change in the rela-
tive performance of different bounding procedures.
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Table 1
Average percentage gaps and times for the KY instances with n = 20.

% gaps time (s)

Correlation m r KY MM MM− GL MM− GL

None 10 2 8.89 7.37 5.76 5.76 0.007 0.018
10 5 10.68 9.14 7.06 6.01 0.006 0.031
20 2 79.74 77.23 67.42 67.42 0.007 0.056
20 5 79.74 77.23 62.84 62.29 0.008 0.013

Weak 10 2 11.14 9.76 7.27 7.21 0.011 0.016
10 5 13.85 12.42 8.39 7.03 0.011 0.026
20 2 110.13 107.62 90.75 90.75 0.011 0.050
20 5 110.13 107.62 85.76 85.10 0.010 0.092

Strong 10 2 11.79 10.49 7.07 7.03 0.019 0.016
10 5 14.22 12.90 6.09 5.14 0.012 0.023
20 2 99.87 97.55 79.36 79.36 0.010 0.056
20 5 99.87 97.55 73.62 73.57 0.010 0.115

Table 2
Average percentage gaps and times for the KY instances with n = 40.

% gaps time (s)

Correlation m r KY MM MM− GL MM− GL

None 10 2 1.22 0.69 0.62 0.58 0.008 0.039
10 5 2.81 2.27 2.03 1.60 0.008 0.088
20 2 6.86 6.33 5.87 5.87 0.008 0.231
20 5 7.37 6.83 5.92 5.92 0.009 0.678

Weak 10 2 1.13 0.75 0.58 0.57 0.008 0.040
10 5 3.32 2.93 2.61 2.06 0.006 0.086
20 2 7.49 7.02 6.37 6.37 0.008 0.304
20 5 8.49 8.01 6.67 6.63 0.006 0.714

Strong 10 2 1.20 0.59 0.27 0.26 0.009 0.034
10 5 2.75 2.13 1.63 1.23 0.009 0.091
20 2 4.50 3.73 3.31 3.31 0.011 0.293
20 5 5.27 4.51 3.34 3.34 0.010 0.702

Table 3
Average percentage gaps and times for new instances.

% gaps time (s)

Correlation n m KY MM MM− GL MM− GL

None 50 5 42.47 42.03 41.63 0.00 0.012 0.005
50 15 18.22 17.82 17.28 5.05 0.011 0.09
100 5 48.96 48.78 48.73 0.00 0.009 0.011
100 15 5.52 5.38 5.38 0.22 0.011 0.012

Weak 50 5 28.10 27.81 27.06 0.00 0.014 0.006
50 15 19.33 19.07 18.42 7.09 0.013 0.009
100 5 25.09 25.01 24.93 0.00 0.011 0.018
100 15 5.28 5.22 5.21 0.53 0.012 0.014

Strong 50 5 19.60 18.82 17.91 0.00 0.015 0.005
50 15 14.45 13.72 12.98 4.79 0.011 0.008
100 5 15.89 15.53 15.50 0.00 0.010 0.014
100 15 3.65 3.33 3.33 0.27 0.012 0.016
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