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A B S T R A C T 

The Jeans equations do not form a closed system, and to solve them a parametrization relating the velocity moments is often 

adopted. For axisymmetric models, a phenomenological choice (the ‘ b -ansatz’) is widely used for the relation between the 
vertical ( σ 2 

z ) and radial ( σ 2 
R 

) components of the velocity dispersion tensor, thus breaking their identity present in two-integral 
systems. Ho we ver, the way in which the ansatz affects the resulting kinematical fields can be quite complicated, so that the 
analysis of these fields is usually performed only after numerically computing them. We present here a general procedure to study 

the properties of the ansatz-dependent fields v 2 ϕ , � = v 2 ϕ − σ 2 
z and � R 

= v 2 ϕ − σ 2 
R 

. Specifically, the effects of the b -ansatz can be 
determined before solving the Jeans equations once the behaviour o v er the ( R , z)-plane of three easy-to-build ansatz-independent 
functions is known. The procedure also constrains the ansatz to exclude unphysical results (as a ne gativ e v 2 ϕ ). The method is 
illustrated by discussing the cases of three well-known galaxy models: the Miyamoto & Nagai and Satoh discs, and the Binney 

logarithmic halo, for which the regions and the constraints on the ansatz values can be determined analytically; a two-component 
(Miyamoto & Nagai plus logarithmic halo) model is also discussed. 

Key words: galaxies: elliptical and lenticular, cD – galaxies: kinematics and dynamics – galaxies: structure. 
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 I N T RO D U C T I O N  

he Jeans equations (hereafter JEs) are one of the standard tools
or the modelling of stellar systems (e.g. Binney & Tremaine
008 , hereafter BT08 ; see also Ciotti 2021 , hereafter C21 ) and
o extract information from observations (e.g. Scott et al. 2015 ;
appellari 2016 ; Li et al. 2016 ; Zhu et al. 2023 ). Ho we ver, the

Es are moments of the more fundamental Boltzmann equation,
nd in the collisionless limit they suffer in general from a ‘closure
roblem’. Their closure can be obtained by assuming a (more or
ess moti v ated) dependence of the phase-space distribution function
hereafter DF) on the available integrals of motion. Alternatively,
ome relation between the velocity moments (usually between the
elocity dispersion tensor components) can be imposed through some
henomenological ‘ansatz’. This latter approach is not as elegant and
hysically sound as deriving all the model properties from the DF,
oupled with the Poisson equation and asking for self-consistency
e.g. King 1963 ; Stiavelli & Bertin 1985 ; Bertin & Varri 2008 ), or
sing a DF built from actions (e.g. Binney 2010 ; see also Posti et al.
015 ; Binney & Vasiliev 2023 ), or reconstructing the DF numerically
ith the Schwarzschild orbital superposition method (Schwarzschild
979 ; see also, e.g. Statler 1987 ; Cappellari et al. 2007 ; Thomas et al.
009 ). Ho we ver, the methods mentioned above are not al w ays well
uited for exploratory works because in general the solution of the
elf-consistency problem requires non-trivial numerical work. 
 E-mail: leonardo.dedeo2@unibo.it 
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An important advantage of using the JEs is that the stellar density
istribution of the model can be chosen at the beginning to be in good
greement with the observational data (e.g. by using specific density
rofiles or by multicomponent modelling), and that the closure ansatz
uarantees some direct control on the resulting kinematics. Of course,
he problem of the existence of a non-negative DF for the obtained
odel remains in general open. 
In this work, we address two aspects worth a thorough investi-

ation, both related to how a widely used closure ansatz (the b -
nsatz; Cappellari 2008 ) affects the solutions of the JEs: the first is
o formalize a general procedure, to be applied before solving the
quations, to determine the constraints on this ansatz, as for example
hose coming from the request of positivity of v 2 ϕ , thus a v oiding
epeated and time-consuming numerical tests. The second is to gain
ome qualitative understanding of its effects on the kinematical fields,
efore their construction. Moreo v er, as a widely used decomposition
f v 2 ϕ (e.g. that proposed by Satoh 1980 , and its variants) requires the
ositivity of certain functions, we also determine the conditions for
ts applicability. 

The paper is organized as follows: in Sections 2 and 3 , after
e vie wing the JEs for two-integral axisymmetric systems, the general
olutions with the b -ansatz, relating the vertical ( σ 2 

z ) and the radial
 σ 2 

R ) velocity dispersions, are derived, and cast in a form suitable
or the successiv e inv estigation. In Section 4 , we determine the
onstraints on the ansatz to assure the positivity of v 2 ϕ and to use
he Satoh decomposition and its generalizations. In Sections 5 and 6 ,
e apply the procedure to some well-known galaxy models, for
hich a fully analytical treatment is possible: the Miyamoto &
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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agai and Satoh discs, and the Binney logarithmic halo. A more 
ealistic two-component model, made by a stellar Miyamoto & Nagai 
isc embedded in a dark matter Binney halo, is also discussed. In
ection 7 , the main results are summarized. 

 T WO - I N T E G R A L  SYSTEMS  

s is well known, the JEs for an axisymmetric stellar system
escribed by a two-integral DF f = f ( E , J z ), where E and J z are
espectively the orbital energy and the axial angular momentum, are 
 

 

 

 

 

 

 

 

 

∂ ρ∗σ 2 
z 

∂ z 
= −ρ∗

∂ � 

∂ z 
, 

∂ ρ∗σ 2 
z 

∂ R 

− ρ∗� 

R 

= −ρ∗
∂ � 

∂ R 

, � ≡ v 2 ϕ − σ 2 
z , 

(1) 

see e.g. BT08 ; C21): ρ∗( R , z) and � ( R , z) are the stellar density
istribution and the total (e.g. stars, plus dark matter) gravitational 
otential. Standard cylindrical coordinates are used, σ 2 

z is the vertical 
elocity dispersion, and a bar over a symbol indicates the average 
 v er v elocity in phase space. In particular, v 2 ϕ = v ϕ 

2 + σ 2 
ϕ , where v ϕ 

s the streaming velocity field in the azimuthal direction, and σ 2 
ϕ is

he azimuthal velocity dispersion. Finally, the only non-vanishing 
rdered velocity field is v ϕ , while v R = v z = 0; moreover, σ 2 

R = 

2 
z , and all the mixed components of the velocity dispersion tensor
anish. 

The solutions of equation ( 1 ) with null boundary conditions at
nfinity are 
 

 

 

 

 

 

 

 

 

ρ∗σ 2 
z = 

∫ ∞ 

z 

ρ∗
∂ � 

∂ z ′ 
d z ′ , 

ρ∗� 

R 

= 

∂ ρ∗σ 2 
z 

∂ R 

+ ρ∗
∂ � 

∂ R 

= [ ρ∗, � ] , 

(2) 

here 

[ ρ∗, � ] ≡
∫ ∞ 

z 

(
∂ ρ∗
∂ R 

∂ � 

∂ z ′ 
− ∂ ρ∗

∂ z ′ 
∂ � 

∂ R 

)
d z ′ , (3) 

s a commutator-like operator (see e.g. Barnab ̀e et al. 2006 ; see
lso C21 and references therein). From the second of equation (),
 can be obtained by differentiation of ρ∗σ 2 

z or by integration of
he commutator, as in equation ( 3 ). This latter approach is to be
referred, as it usually reveals important properties of the solutions 
hat are not apparent in the first approach based on differentiation: 
or example, it is immediate to show that the commutator vanishes 
or a spherical density ρ∗( r ) in a spherical total potential � ( r ) and
hat, in the case of ellipsoidal densities in ellipsoidal potentials, the 
ommutator is e verywhere positi ve (negati ve) when the density shape 
s flatter (rounder) than the potential (see e.g. C21). Of course, when
sing the commutator for the computation of � , the radial deri v ati ve
f ρ∗σ 2 

z is obtained as a byproduct: 

 ≡ ∂ ρ∗σ 2 
z 

∂ R 

= [ ρ∗, � ] − ρ∗
∂ � 

∂ R 

, (4) 

n identity we will use in the following. Once σ 2 
z and � are known,

ne has 

 

2 
ϕ = � + σ 2 

z = 

[ Rρ∗, � ] 

ρ∗
, (5) 

here the second identity involving again a commutator can be easily 
ro v ed from equations ( 2 ) and ( 3 ). 
Notice that a model with v 2 ϕ < 0 somewhere is certainly physically 

nconsistent, but v 2 ϕ ≥ 0 everywhere is not a sufficient condition for 
onsistency: as is well known, there are models with ‘acceptable’ 
olutions of the JEs and a ne gativ e (unphysical) DF (see e.g. Ciotti &
ellegrini 1992 ; see also Chapter 14 in C21, and references therein).

.1 The Satoh k -decomposition 

or axisymmetric models with � ≥ 0 everywhere, Satoh ( 1980 )
ntroduced the widely used k -decomposition of v 2 ϕ : 

 ϕ = k 
√ 

� , σ 2 
ϕ = σ 2 

z + (1 − k 2 ) �, (6) 

here k is constant with 0 ≤ k 2 ≤ 1. If k = 0, then v ϕ = 0 and no
et rotation is present, while, if k 2 = 1, then σ 2 

ϕ = σ 2 
z and the system

s an isotropic rotator. Moreo v er, if � = 0 (as for spherical models),
hen no ordered rotation is possible, and the system is isotropic
ndependently of k . 

As shown in Ciotti & Pellegrini ( 1996 ), the original Satoh decom-
osition can be easily generalized to assume a spatially dependent 
 ( R , z), provided that 

 

2 ( R, z) ≤ k 2 M 

( R, z) ≡ v 2 ϕ 

� 

, (7) 

here the upper limit k 2 M 

corresponds to maximally rotating models 
ith no net velocity dispersion in the azimuthal direction, and is

hen obtained from equation ( 6 ) imposing σ 2 
ϕ = 0 everywhere; in

his case, the density flattening is fully supported by the streaming
elocity field v ϕ . Of course, k is not required to be positive, thus
llowing the modelling of counter-rotating structures with ne gativ e 
 ϕ (see e.g. Negri, Pellegrini & Ciotti 2013 ). 

In Appendix A1 , we discuss the most general decomposition for
 

2 
ϕ , which holds also for models with � < 0. 

 M O R E  G E N E R A L  SYSTEMS  

aving assessed the classical case of two-integral axisymmetric 
ystems, we now turn to the focus of the paper, i.e. the study of
he properties of the kinematical fields associated with more general 
nsatz distinguishing between σ 2 

z and σ 2 
R , and so implicitly based on 

 DF with a third integral in addition to E and J z . If the third integral
s an even function of v z and v R , the first of equation ( 1 ) remains
nchanged, while the second becomes (Cappellari 2008 ; C21): 

∂ ρ∗σ 2 
R 

∂ R 

− ρ∗� R 

R 

= −ρ∗
∂ � 

∂ R 

, � R ≡ v 2 ϕ − σ 2 
R . (8) 

Notice that, in addition to σ 2 
z , all quantities depending on ρ∗ and

 , such as the commutator [ ρ∗, � ] and the function D in equation
 4 ), remain the same as in the two-integral case. 

Different ansatz can be introduced to solve equation ( 8 ), which is
ndependent of the vertical velocity dispersion, and contains the two 
nknown functions v 2 ϕ and σ 2 

R . In the following, we study in detail
he ‘ b -ansatz’, relating σ 2 

R with σ 2 
z . Introduced by Cappellari ( 2008 ),

t was adopted for the Jeans Anisotropic Modelling method (JAM; 
ee also Cappellari 2020 ), which is widely used to reproduce the
roperties of observed galaxies (e.g. Cappellari et al. 2013 ; Zhu et al.
016 ; Loubser et al. 2020 ; Nitschai et al. 2021 ; Surti et al. 2024 ). This
olution of the JEs, implying the alignment of the velocity ellipsoid
ith the cylindrical coordinates, was presented as an efficient 
odelling able to capture the main properties of the velocity ellipsoid

nferred from e xtensiv e three-inte gral Schwarzschild’s modelling 
f integral-field stellar kinematics, under the mass-follows-light 
ypothesis (Cappellari 2008 ). The main moti v ation for the adoption
f the ‘ b -ansatz’, in fact, is that it allows to model adequately
MNRAS 530, 1796–1811 (2024) 
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he observations, in particular the integral-field spectroscopy of
xisymmetric galaxies classified as regular rotators and stellar discs
see sections 2.3 and 2.4 of Cappellari 2008 ; Cappellari 2016 ). Of
ourse, on the theoretical side, the b -ansatz is not the only one
ossible, and in Appendix A2 we present the ‘ μ-ansatz’, leading
o a nice closure of equation ( 8 ). 

.1 The b -ansatz 

n the ‘ b -ansatz’, the unknown σ 2 
R is linked to σ 2 

z through the choice
f the function b( R, z) ≥ 0, as 

2 
R = b( R, z) σ 2 

z . (9) 

When b = 0, the system has no radial velocity dispersion, while b
 1 gives the two-integral case. 
Inserting equation ( 9 ) into equation ( 8 ), recalling the definition of
 in equation ( 4 ), and solving for � R , we obtain 

ρ∗� R 

R 

− ρ∗σ 2 
z 

∂ b 

∂ R 

= bD + ρ∗
∂ � 

∂ R 

= 

b [ ρ∗, � ] + (1 − b) ρ∗
∂ � 

∂ R 

, (10) 

here in the last expression we have used again equation ( 4 ). Note
ow b multiplies functions that are independent of the adopted ansatz.
Once � R is known, if we restrict to a b function that depends only

n z (or to a constant b , a special case commonly used), ∂ b/ ∂ R = 0
n the l.h.s. of equation ( 10 ), and 

 

2 
ϕ = � R + bσ 2 

z = bB + R 

∂ � 

∂ R 

= 

b 
[ Rρ∗, � ] 

ρ∗
+ (1 − b) R 

∂ � 

∂ R 

, (11) 

here from equation ( 4 ) 

 ≡ R D 

ρ∗
+ σ 2 

z = 

[ Rρ∗, � ] 

ρ∗
− R 

∂ � 

∂ R 

. (12) 

Only b ( z) functions leading to v 2 ϕ ≥ 0 everywhere are physically
cceptable, and Section 4.1 deals with this request. 

Finally, from equation ( 11 ), we obtain: 

 = v 2 ϕ − σ 2 
z = � R + ( b − 1) σ 2 

z = bB + C, (13) 

here from equations ( 4 ) and ( 12 ) 

 ≡ R 

∂ � 

∂ R 

− σ 2 
z = 

R [ ρ∗, � ] 

ρ∗
− B. (14) 

From equation ( 13 ), if � R ≥ 0 and b ( z) ≥ 1, then � ≥ 0, and if
 R < 0 and b ( z) ≤ 1, then � < 0. A complete discussion on the

onditions for the positivity of � R and � is given in Sections 4.2 and
.3 . Notice that the values of � in the b -ansatz are not the same of
he two-integral case, because, with the introduction of the ansatz,

2 
z remains unaltered, but v 2 ϕ changes. Also important, the functions
 , B , and C are ansatz-independent. 
Models with � R ≥ 0 allow for a k -decomposition of v 2 ϕ similar to

hat in equation ( 6 ), i.e. (Cappellari 2008 ): 

 ϕ = k 
√ 

� R , σ 2 
ϕ = σ 2 

R + (1 − k 2 ) � R . (15) 

Whenever k 2 < 1, one has σ 2 
ϕ > σ 2 

R , i.e. the orbital anisotropy is
angential; radial anisotropy ( σ 2 

ϕ < σ 2 
R ) requires k 2 > 1. Of course,

he decomposition in equation ( 6 ) can also be applied, where now �

s given in equation ( 13 ), provided that � ≥ 0 everywhere. 
NRAS 530, 1796–1811 (2024) 
A different decomposition for the azimuthal motions can be given
y choosing the parameter γ , introduced in Cappellari et al. ( 2007 ): 

= 1 − σ 2 
ϕ 

σ 2 
R 

, v ϕ 
2 = � R + γ σ 2 

R , (16) 

here clearly 

− � R 

σ 2 
R 

≤ γ ≤ 1 , (17) 

ith the first inequality required for v ϕ 2 ≥ 0. Positive γ values corre-
pond to radial anisotropy, while γ < 0 gives tangential anisotropy; in
wo-integral systems, γ = 0 corresponds to the isotropic case. Notice
hat, from equation ( 17 ), γ can be either positive or negative if � R 

 0; instead, if � R < 0, γ cannot be taken ne gativ e, i.e. the v elocity
ispersion tensor can only be radially anisotropic. In Section 7 , some
ndings based on the use of this decomposition to interpret recent
bservations (Wang, Cappellari & Peng 2021 ) are discussed in light
f our analysis. 

 PHYSI CAL  C O N S T R A I N T S  O N  T H E  ANS ATZ  

quation ( 8 ) can be solved only with the introduction of some closure,
s those presented in Section 3.1 or Appendix A2 . Ho we ver, arbitrary
nsatz functions can lead to unphysical solutions of the JEs, such as
e gativ e values of v 2 ϕ . Therefore, it would be useful to know in
dvance (i.e. before solving the equations) what constraints must
e imposed on the ansatz function in order to a v oid unphysical
olutions, and also how specific choices of the ansatz functions
ffect the properties of the solutions in different regions of space.
his section is dedicated to these problems. 
In practice, being σ 2 

z ≥ 0 independent of the ansatz, the positivity
f σ 2 

R is guaranteed by equation ( 9 ); therefore, we focus on the
ositivity of v 2 ϕ only. Information on the sign of � and � R is also
ele v ant for the modelling because, although not directly related to
odel consistency, their positivity is needed to apply a decomposition

f v 2 ϕ as those in equations ( 6 ) and ( 15 ). 
In the following, we restrict for simplicity to models with

 �/ ∂ R ≥ 0 everywhere (the most common situation), and we limit
o consider b = b ( z); finally, we indicate with P = ( R , z) a generic
oint in the ( R , z)-plane. 

.1 Positivity of v 2 ϕ : the B region 

e discuss here the positivity of v 2 ϕ , a condition necessary to model
onsistency. Introducing the sets 

 

± = { ( R, z) : B ≷ 0 } , B 

0 = { ( R, z) : B = 0 } , (18) 

quation ( 11 ) shows that, independently of b ( z), v 2 ϕ ≥ 0 o v er the
egion B 

+ 0 = B 

+ ∪ B 

0 . Instead, the behaviour of B over B 

−
onstrains the possible choices of b ( z), as we now describe. We
ndicate with Pr ( B 

±) the projection of B 

± on the z-axis, and with
 

±
z = 

{
R : B ≷ 0 , z ∈ Pr ( B 

±) 
}

the radial section at fixed z of B 

±
see Fig. 1 for a qualitative illustration). As we restrict to systems
ith a reflection symmetry about the equatorial plane, without loss
f generality, in the following we limit the discussion to z ≥ 0. From
quation ( 11 ), the condition v 2 ϕ ≥ 0 o v er B 

− is guaranteed pro vided
hat, at each z ∈ Pr ( B 

−), 

( z) ≤ b M 

( z) ≡ min 
B 

−
z 

R 

| B| 
∂ � 

∂ R 

= min 
B 

−
z 

( 

1 + 

R [ ρ∗, � ] + ρ∗σ 2 
z 

ρ∗| B| 

) 

, z ∈ Pr ( B 

−) , (19) 
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Figure 1. Cartoon of a fictitious B 

− region (red), together with its projection 
on the z-axis Pr ( B 

−), a radial section B 

−
z (red dashed line), and its 

complement B 

+ 
z (green dashed line). From equation ( 18 ), B 

+ ∪ B 

− ∪ B 

0 

fully co v ers the ( R , z)-plane. 
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here the last equality has been obtained using equation ( 14 ). Notice
hat the independence of b from R implies that the upper limit b M 

( z),
etermined o v er B 

−
z , applies also to points in the complementary

ection B 

+ 

z : therefore, the function b M 

( z) provides a constraint over
he whole rectangular strip defined by R ≥ 0 and z ∈ Pr ( B 

−). From
ow on, we will refer to this region as ‘the strip Pr ( B 

−)’. In the
pecial case of a constant b , the condition in equation ( 19 ) reduces
o b ≤ b M 

, where b M 

is the minimum of b M 

( z). 

.2 Positivity of � R : the D region 

s seen in Section 3.1 , the necessary condition to apply the k -
ecomposition to v 2 ϕ is to have � R ≥ 0 or � ≥ 0. Introducing the
ets 

 

± = { ( R, z) : D ≷ 0 } , D 

0 = { ( R, z) : D = 0 } , (20) 

here D is defined in equation ( 4 ), the first of equation ( 10 ) (where
o w ∂ b/ ∂ R = 0) sho ws that, independently of b ( z), � R ≥ 0 o v er
he region D 

+ 0 = D 

+ ∪ D 

0 . Instead, the condition � R ≥ 0 over D 

−

equires 

( z) ≤ b 0 ( z) ≡ min 
D 

−
z 

ρ∗
| D| 

∂ � 

∂ R 

= 

= min 
D 

−
z 

(
1 + 

[ ρ∗, � ] 

| D| 
)

, z ∈ Pr ( D 

−) , (21) 

here Pr ( D 

±) is the projection of D 

± on the z-axis, D 

±
z = 

R : D ≷ 0 , z ∈ Pr ( D 

±) 
}

, and the last equality follows from equa- 
ion ( 4 ). Due to the independence of b from R , the condition in
quation ( 21 ) must be verified over the whole strip Pr ( D 

−). In the
pecial case of a constant b , then � R ≥ 0 for b ≤ b 0 , where b 0 is the
inimum of b 0 ( z). 
Notice that from Theorem B.1 the strip Pr ( B 

−) is contained in the
trip Pr ( D 

−), and in this common region b 0 ( z) ≤ b M 

( z), as pro v ed in
heorem B.4. 
.3 Positivity of � : the C region 

he determination of the positivity of � as a function of b ( z) is more
omplicated, depending on the sign of both the B and C functions in
quation ( 13 ). As done abo v e, we introduce the sets 

 

± = { ( R, z) : C ≷ 0 } , C 

0 = { ( R, z) : C = 0 } , (22) 

nd C 

±
z = 

{
R : C ≷ 0 , z ∈ Pr ( C 

±) 
}

; also, C 

+ 0 = C 

+ ∪ C 

0 . The sign 
f � at a point P depends on its position in the ( R , z)-plane, as
ollows: 

(i) � ≥ 0 independently of b ( z) o v er B 

+ 0 ∩ C 

+ 0 . Moreo v er, � ≥
 o v er B 

+ ∩ C 

− for 

( z) ≥ b 1 ( z) ≡ max 
B 

+ 
z ∩ C 

−
z 

| C| 
B 

= max 
B 

+ 
z ∩ C 

−
z 

(
1 − R [ ρ∗, � ] 

ρ∗B 

)
, z ∈ Pr ( B 

+ ∩ C 

−) , (23) 

nd o v er B 

− ∩ C 

+ for 

( z) ≤ b 2 ( z) ≡ min 
B 

−
z ∩ C 

+ 
z 

C 

| B| 

= min 
B 

−
z ∩ C 

+ 
z 

(
1 + 

R [ ρ∗, � ] 

ρ∗| B| 
)

, z ∈ Pr ( B 

− ∩ C 

+ ) . (24) 

(ii) � < 0 independently of b ( z) o v er ( B 

− ∩ C 

−) ∪ ( B 

0 ∩ C 

−) ∪
 B 

− ∩ C 

0 ). 1 Moreo v er, � < 0 o v er B 

+ ∩ C 

− for b ( z) < b 1 ( z), and
 v er B 

− ∩ C 

+ for b ( z) > b 2 ( z). 

For a spatially constant b , the previous inequalities hold replacing
 1 ( z) and b 2 ( z) with b 1 and b 2 , which are respectively the maximum
f b 1 ( z), and the minimum of b 2 ( z). 
Summarizing, independently of b ( z), v 2 ϕ ≥ 0 o v er B 

+ 0 , � R ≥ 0
 v er D 

+ 0 , and � ≥ 0 o v er B 

+ 0 ∩ C 

+ 0 , and � < 0 o v er ( B 

− ∩
 

−) ∪ ( B 

0 ∩ C 

−) ∪ ( B 

− ∩ C 

0 ). Instead, equations ( 19 ), ( 21 ), ( 23 ),
nd ( 24 ) set the constraints on b ( z) required for the positivity of v 2 ϕ 

 v er B 

−, � R o v er D 

−, and � o v er the intersection re gions B 

+ ∩ C 

−

nd B 

− ∩ C 

+ . 

.4 Some general considerations 

he properties of the kinematical fields resulting from a given 
hoice for b ( z) are determined by the relations between the ansatz-
ndependent regions B 

±, C 

± and D 

± and the functions defined over 
hem. Each region is made by two disjoint parts fully co v ering the
 R , z)-plane, thus the determination of just B 

−, C 

− and D 

− suffices
or investigating a given model. In Appendix B , some general results
bout the relative positions of the regions and the constraints on b ( z)
re presented. In particular, it is shown that B 

− is al w ays contained
n D 

−. Moreo v er, if [ ρ∗, � ] > 0 o v er the whole ( R , z)-plane (as
or oblate self-gravitating models), then B 

− ⊆ C 

+ and C 

− ⊆ B 

+ ; 
f [ ρ∗, � ] = 0 everywhere (as in spherically symmetric models),
hen B 

− = C 

+ , B 

+ = C 

−, and D 

−0 coincides with the whole ( R ,
)-plane; if [ ρ∗, � ] < 0 (as for prolate self-gravitating models),
hen B 

+ ⊆ C 

−, C 

+ ⊆ B 

−, and D 

− coincides with the whole ( R ,
)-plane. Finally, from Theorems B.5 and B.7, it follows that for
odels with [ ρ∗, � ] ≥ 0 everywhere (a quite common situation), one
MNRAS 530, 1796–1811 (2024) 
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Figure 2. Scheme representing the behaviour, as a function of b , of the 
kinematical fields v 2 ϕ , � R , and � o v er the regions B 

±, C 

±, and D 

±, for a 
model with [ ρ, � ] > 0. Each row refers to the indicated region; arrows point 
upwards if the field is increasing, and downwards if the field is decreasing for 
increasing b ; black arrows indicate a positive value, and red arrows a ne gativ e 
one. For b > b M 

, the model is unphysical. 
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as 
 

 

 

b 1 ( z) ≤ 1 , ∀ z ∈ Pr ( C 

−) , 

1 ≤ b 0 ( z) ≤ b 2 ( z) ≤ b M 

( z) , ∀ z ∈ Pr ( B 

−) . 
(25) 

In this case, from the considerations abo v e, B 

− and C 

− are
isjoint, but this does not mean that the two projections in equation
 25 ) are disjoint too: actually, they may coincide with the z-axis. In
he special case of [ ρ∗, � ] = 0 everywhere, in equation ( 25 ) we
ould have b 1 = b 0 = b 2 = 1. 
We conclude with an example of the qualitative effects of an

ncrease of b (for simplicity assumed as spatially constant) on σ 2 
R , v 

2 
ϕ ,

 R , and � , in the various regions. Suppose a given model is assigned,
nd the regions B 

±, C 

±, and D 

± have been determined; furthermore,
uppose [ ρ∗, � ] ≥ 0 everywhere, so that equation ( 25 ) holds. We start
onsidering the case of b = 0 (i.e. σ 2 

R = 0 everywhere): as 0 is smaller
han b 0 and b M 

, then v 2 ϕ and � R are positive everywhere, while �
 0 somewhere in C 

− (because 0 < b 1 ), and � ≥ 0 everywhere in
 

+ (because 0 < b 2 ). For increasing b , σ 2 
R increases everywhere,

 

2 
ϕ decreases o v er B 

− and increases o v er B 

+ , while � R decreases
 v er D 

− and increases o v er D 

+ . As B 

− ⊆ D 

−, o v er B 

− one has
hat � R decreases because v 2 ϕ decreases and σ 2 

R increases; o v er the
emaining part of D 

− (i.e. B 

+ ∩ D 

−), instead, � R decreases, and
o σ 2 

R increases more than v 2 ϕ . Increasing further b abo v e b 1 , �
ecomes positive over C 

−, then when b > b 0 , � R becomes ne gativ e
omewhere o v er D 

−, and for b > b 2 , � becomes ne gativ e somewhere
 v er B 

−; finally, for b > b M 

, v 2 ϕ < 0 somewhere in B 

−, and the model
ecomes unphysical. These behaviours are summarized in the table in
ig. 2 . 

 O N E - C O M P O N E N T  M O D E L S  

n light of the results in Section 4 , we now explore the be-
aviour of some well-known galaxy models that allow for an
lmost complete analytical treatment, i.e. the Miyamoto & Na-
ai ( 1975 ) (hereafter MN) disc, the Satoh ( 1980 ) disc, and the
inney logarithmic halo ( BT08 ). In Section 6 , we then con-
NRAS 530, 1796–1811 (2024) 
ider the case of the two-component model made by a stel-
ar MN disc embedded in a dark matter Binney logarithmic
alo. 

.1 The Miyamoto & Nagai disc 

he potential–density pair of the MN disc of total mass M ∗, and scale
engths a ∗ and b ∗, can be written as 
 

 

 

 

 

 

 

 

 

 

 

� ∗ = −GM ∗
b ∗ξ

, ξ ≡
√ 

R 

2 + ( s + ζ ) 2 , 

ρ∗ = 

M ∗
b 3 ∗

sξ 2 + 3 ζ ( s + ζ ) 2 

4 πζ 3 ξ 5 
, 

(26) 

here ζ ≡ √ 

1 + z 2 , and s ≡ a ∗/ b ∗ measures the flattening of the
isc. For a ∗ = 0, the MN model reduces to the Plummer ( 1911 )
phere, and for b ∗ = 0 to the razor-thin Kuzmin disc (Kuzmin 1956 ,
oomre 1963 ). In the formulae abo v e and in this section, R and z are
ssumed to be normalized to b ∗ �= 0. 

From equations ( 2 ) and ( 3 ), we have: 

∗σ 2 
z = 

GM 

2 
∗

b 4 ∗

( s + ζ ) 2 

8 πζ 2 ξ 6 
, [ ρ∗, � ∗] = 

GM 

2 
∗

b 5 ∗

sR 

4 πζ 3 ξ 6 
. (27) 

In particular, [ ρ∗, � ∗] ≥ 0 e verywhere, v anishing in the spherical
ase ( s = 0): therefore, equation ( 25 ) and the considerations made
t the end of Section 4 apply. For reference, in the top panels of Fig.
 , we show the 2D maps of the ansatz-independent fields σ 2 

z , R [ ρ∗,
 ∗]/ ρ∗ (i.e. the � field in the two-integral case), and R ∂ �/ ∂ R, for
 disc flattening of s = 1. 

The first task to explore the model behaviour is the identifi-
ation of the B , C , and D regions. Quite remarkably, equation
 27 ) allows for an analytical expression of the B , C , and D
unctions: 

 

− = 

{ 

( R, z) : 
√ 

5 R − ( s + ζ ) > 0 
} 

, (28) 

.e. B 

− is the portion of the ( R , z)-plane at the right of the
yperbola B 

0 with v erte x R = (1 + s) / 
√ 

5 on the equatorial
lane, and asymptotes z = ±√ 

5 R, so that Pr ( B 

−) coincides with
he z-axis. In the top panels of Fig. 4 , the red line shows
 

0 for three representative values of s . Moreo v er, the radial
eri v ati ve of the first of equation ( 27 ) shows that D < 0 o v er
he whole space, and D = 0 for R = 0, i.e. D 

0 coincides
ith the z-axis; therefore, Pr ( D 

−) coincides with the z-axis, and
 

+ is empty . Finally , from the second of equation ( 13 ), we
et 

 

− = 

{ 

( R, z) : 2 sR 

4 + ( s + ζ ) 2 (2 s + 5 ζ ) R 

2 −

( s + ζ ) 4 ζ < 0 
} 

. (29) 

The biquadratic in R abo v e has a positive discriminant, and a
ermanence and a variation of signs in the coefficients: it fol-
ows that C 

− is the portion of the ( R , z)-plane contained be-
ween the z-axis and the (positive) square root of the (positive)
olution of the biquadratic. We do not report here the expres-
ion for C 

0 , which ho we ver can be determined without difficulty;
r ( C 

−) coincides with the z-axis. In the top panels of Fig. 4 ,
he green line shows C 

0 for three representative values of s .
gain from Fig. 4 , it is apparent that B 

− ⊆ C 

+ and C 

− ⊆ B 

+ ,
s expected from the general discussion in Section 4 ; notice
lso how the separation between B 

− and C 

− (i.e. the region
 

+ ∩ C 

+ ) becomes larger as s increases. Moreo v er, in the spherical
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Figure 3. Maps in the ( R , z)-plane of σ 2 
z (left column), R [ ρ, � ]/ ρ (central column), and R ∂ �/ ∂ R (right column) for the MN disc with s = 1 (top row), for 

the Binney logarithmic halo with q = 0.75 (central row), and for the MN stellar disc ( s = 1) in a dominant ( � = � h ) and spherical ( q = 1) Binney logarithmic 
dark matter halo with b h = 2. The fields are in units of v 2 h for the Binney halo, and of GM ∗/ b ∗ for the other two models. Black solid lines show equally spaced 
isodensity contours. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/2/1796/7645472 by U
niversita di Bologna user on 12 Septem

ber 2024
MNRAS 530, 1796–1811 (2024) 



1802 L. De Deo, L. Ciotti, and S. Pellegrini 

M

Figure 4. The ansatz-independent regions B , C , and D of the MN disc (top panels) for different values of s , and of the Binney logarithmic halo (bottom panels) 
for dif ferent v alues of q ; both models become flatter from left to right. Red and green areas correspond to the B 

− and C 

− re gions, respectiv ely, while heavy red 
and green lines are the B 

0 and C 

0 sets. Except for the Binney model with q = 0.75, where D 

− lies below the D 

0 line (dashed), for all the other cases D 

− fully 
co v ers the ( R , z)-plane, with D 

0 coinciding with the z-axis. For all models, Pr ( B 

−) and Pr ( C 

−) coincide with the z-axis, and as [ ρ, � ] ≥ 0 everywhere, from 

Theorem B.2, we have B 

− ∩ C 

+ = B 

− and C 

− ∩ B 

+ = C 

−. 
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ase ( s = 0) we would obtain B 

0 = C 

0 , B 

− = C 

+ and B 

+ =
 

−. 
We now determine the constraints on b ( z) for the positivity of

 

2 
ϕ , � R , and � . Remarkably, all the computations in equations
 19 ), ( 21 ), ( 23 ), and ( 24 ) can be carried out explicitly, and we
btain 

 M 

( z) = 

6 

5 
+ 

14 s + 4 
√ 

s ( 6 s + 15 ζ ) 

25 ζ
, (30) 

 0 ( z) = 1 + 

s 

3 ζ
, (31) 

 1 ( z) = 1 , b 2 ( z) = 1 + 

(14 + 4 
√ 

6 ) s 

25 ζ
. (32) 

In the top left panel of Fig. 5 , we show the four functions for s
 1, where the chain of inequalities in equation ( 25 ) is apparent,

onsidering that for the MN disc Pr ( B 

−) and Pr ( C 

−) both coincide
ith the z-axis. If one restricts to b functions independent of z, we
ave 

 = b 1 = b 0 = b 2 < b M 

= 

6 

5 
, (33) 

ndependent of s : in particular, this holds for the spherical case (the
lummer sphere). 
NRAS 530, 1796–1811 (2024) 
Fig. 6 illustrates the behaviour of v 2 ϕ , � R and � for the MN
isc with s = 1, and for three values of b , i.e. b = 0.5, 1, 2. The
dopted values map three different kinematical configurations, as can
e seen from equation ( 33 ). For b = 0.5, v 2 ϕ and � R are everywhere
ositive, while � is expected to be negative over some region in
 

+ ∩ C 

− = C 

−, being 0.5 < b 1 , and positiv e o v er B 

− ∩ C 

+ = B 

−,
eing 0.5 < b 2 . This is nicely confirmed by the three left panels in Fig.
 , where white regions indicate ne gativ e values of the fields. The three
entral panels correspond to b = 1, i.e. to the two-integral solutions
see also the three top panels in Fig. 3 ). The fields in this case are
 verywhere positi ve, in agreement with the general discussion and
quation ( 33 ). Note how the increase of b from 0.5 to 1 produces the
xpected changes summarized in Fig. 2 , i.e. v 2 ϕ decreases over B 

−

nd increases o v er B 

+ , � R decreases ev erywhere being D 

− for this
odel coincident with the ( R , z)-plane, and � behaves qualitatively

s v 2 ϕ , becoming non-ne gativ e o v er C 

− because 1 = b 1 . Finally,
he three right panels of Fig. 6 correspond to the unphysical model
ith b > b M 

, and a large region in the v 2 ϕ map becomes white:
ncreasing further b would increase the size of the white region up
o the whole B 

−. Ho we ver, v 2 ϕ continues to increase in B 

+ . As 2
 b 0 , � R is now ne gativ e o v er a large portion of the ( R , z)-plane

nd, increasing further b , � R would become ne gativ e ev erywhere.
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Figure 5. Profiles of b 1 ( z), b 0 ( z), b 2 ( z), and b M 

( z) for the MN disc with s = 1 (top-left panel), the Satoh disc with s = 1 (top-right panel), the Binney logarithmic 
halo with q = 0.75 (bottom-left panel), and the two-component MN disc with s = 1 in a dominant ( � = � h ), spherical ( q = 1) Binney logarithmic halo with 
b h = 2 (bottom-right panel). The z-values are normalized to b h for the Binney model, and to b ∗ for the other models. Because for these models [ ρ, � ] ≥ 0 
everywhere, it follows that b 1 ( z) ≤ b 2 ( z) ≤ b 0 ( z) ≤ b M 

( z) for all z, as discussed in Section 4 . 
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inally, the ne gativ e re gion of � has now switched to the B 

− region,
eing 2 > b 2 . Interestingly, the shape and the position of the white
egion of v 2 ϕ resemble those where the numerically e v aluated v 2 ϕ for
he similar model of the Satoh disc with b = 4/3 (Cappellari 2020 ,
g. 10) goes to zero. 

.2 The Satoh disc 

he potential–density pair of the Satoh ( 1980 ) disc of total mass M ∗,
nd scale lengths a ∗ and b ∗, can be written as 
 

 

 

 

 

 

 

 

 

 

 

� ∗ = −GM ∗
b ∗ξ

, ξ ≡
√ 

R 

2 + ( s + ζ ) 2 − 1 , 

ρ∗ = 

M ∗
b 3 ∗

s ξ 2 + 3 s ζ ( s + 2 ζ ) 

4 πζ 3 ξ 5 
, 

(34) 

here again ζ ≡ √ 

1 + z 2 , s ≡ a ∗/ b ∗ measures the flattening of the
isc, and all lengths are assumed to be normalized to b ∗ �= 0 as
hroughout the Section. Notice that, at variance with the MN model, 
he spherical limit of the Satoh model ( s = 0) reduces to the point

ass case of no practical interest. From equations ( 2 ) and ( 3 ), one
as 

∗σ 2 
z = 

GM 

2 
∗

b 4 

s( s + 2 ζ ) 

8 πζ 2 ξ 6 
, [ ρ∗, � ∗] = 

GM 

2 
∗

b 5 

sR 

4 πζ 3 ξ 6 
. (35) 
∗ ∗
Similarly to the MN disc, [ ρ∗, � ∗] ≥ 0 everywhere, and also the
aps of σ 2 

z , [ ρ∗, � ] and R ∂ �/ ∂ R are very similar to those of the
N model in Fig. 3 , and thus are not shown. 
The B , C and D regions can be determined analytically. In 

articular, we have 

 

− = 

{
( R, z) : 5 R 

2 − ( s + ζ ) 2 + 1 > 0 
}

, (36) 

o that B 

− is the portion of the ( R , z)-plane to the right of the
urv e B 

0 with v erte x coordinates z = 0 and R = 

√ 

s( s + 2) / 5 , and
symptotes z = ±√ 

5 R; Pr ( B 

−) coincides with the z-axis. The radial
eri v ati ve of the first of equation ( 35 ) shows that D < 0 everywhere,
xcept for the z-axis, where D = 0; therefore, as for the MN disc,
r ( D 

−) coincides with the z-axis, and the set D 

+ is empty . Finally ,
rom the second of equation ( 13 ), 

 

− = 

{ 

( R, z) : 2 R 

4 + R 

2 (12 ζ 2 + 9 sζ + 2 s 2 − 2) 

− ( ζ + s + 1 ) ( ζ + s − 1)( s + 2 ζ ) ζ < 0 
} 

, (37) 

nd again, similarly to the MN disc, the resulting expression is a
iquadratic with two real solutions. From the fact that ζ ≥ 1, the
oefficients present a permanence and a variation of their sign: 
herefore, C 

− is the region between the z-axis and the (positive) 
quare root of the (positive) solution of the biquadratic. The explicit
xpression of C 

0 can be obtained without difficulty; we just notice 
hat, as for the MN disc, Pr ( C 

−) coincides with the z-axis. Again, all
MNRAS 530, 1796–1811 (2024) 



1804 L. De Deo, L. Ciotti, and S. Pellegrini 
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Figure 6. Maps in the ( R , z)-plane of v 2 ϕ (top row), � R (central row), and � (bottom row) in units of GM ∗/ b ∗ for the MN disc with s = 1 and constant b = 0.5 
(left column), b = 1 (central column), and b = 2 (right column). Black solid lines show equally spaced isodensity contours of the stellar distribution. The red 
and green lines show, respectively, the B 

0 and C 

0 curves, while D 

0 coincides with the z-axis. White regions correspond to negative values of the fields. 
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2 This case e x emplifies that σ 2 
z ≥ 0 and v 2 ϕ ≥ 0 are only necessary conditions 

for the model consistency, while σ 2 
z < 0 or v 2 ϕ < 0 are sufficient to pro v e the 

model inconsistency. 
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he results summarized in Section 4 about the relative position of the
egions apply, i.e. B 

− ⊆ D 

−, and B 

− ∩ C 

+ = B 

−, B 

+ ∩ C 

− = C 

−. 
The limitations on b ( z) for the positivity of v 2 ϕ , � R and � can all

e obtained analytically. From equations ( 19 ), ( 21 ), ( 23 ), and ( 24 ), 

 M 

( z) = 

6 

5 
+ 

14 ζ 2 
∗ + 2 ζ∗

√ 

24 ζ 2 ∗ + 60 ζ ( s + 2 ζ ) 

25 ζ ( s + 2 ζ ) 
, (38) 

 0 ( z) = 1 + 

ζ 2 
∗

3 ζ ( s + 2 ζ ) 
, (39) 

 1 ( z) = 1 , b 2 ( z) = 1 + 

(14 + 4 
√ 

6 ) ζ 2 
∗

25 ζ ( s + 2 ζ ) 
, (40) 

here ζ∗ ≡
√ 

( s + ζ ) 2 − 1 . In the top right panel of Fig. 5 , we show
he four functions abo v e for s = 1; again, they fulfil the inequalities
n equation ( 25 ), considering that Pr ( B 

−) and Pr ( C 

−) both coincide
ith the z-axis. For a spatially constant b , we have 

 1 = 1 < b 0 = 

7 

6 
< b 2 = 

32 + 2 
√ 

6 

25 
< b M 

= 

49 

25 
, (41) 

ndependently of s . 
We do not show the analogous of Fig. 6 , due to the close similarity,

or sufficiently flat models, with the MN case, so that all comments
ade for the MN disc apply. The only noticeable difference is that

ow b 1 �= b 0 �= b 2 , while for the MN disc they are the same [see
quation ( 33 )]. 

.3 The Binney logarithmic halo 

he potential–density pair of the Binney logarithmic halo ( BT08 )
f asymptotic circular velocity v h , scale length b h , and potential
attening q is 
 

 

 

 

 

 

 

 

 

 

 

 

 

� h = 

v 2 h 

2 
ln 

(
1 + R 

2 + 

z 2 

q 2 

)
, 

ρh = 

v 2 h 

4 πGb 2 h 

1 + 2 q 2 + R 

2 + 

(
2 − q −2 

)
z 2 

q 2 
(
1 + R 

2 + q −2 z 2 
)2 , 

(42) 

here throughout this Section the lengths are assumed normalized to 
 h �= 0. As well known, for q < 1 / 

√ 

2 , ρh becomes ne gativ e on the
-axis. The dynamical properties of this model are given by Evans 
 1993 ) (see also Evans 1994 and Evans & de Zeeuw 1994 for the
roperties of the larger family of the so-called power-law models); 
ere we just use equations ( 2 ) and ( 3 ) to obtain 
 

 

 

 

 

 

 

 

 

 

 

ρh σ
2 
z = 

v 4 h 

Gb 2 h 

q 4 R 

2 + (2 q 2 − 1) z 2 + 2 q 4 

8 π ( q 2 R 

2 + z 2 + q 2 ) 2 
, 

[ ρh , � h ] = 

v 4 h 

Gb 3 h 

q 2 (1 − q 2 ) R 

4 π ( q 2 R 

2 + z 2 + q 2 ) 2 
, 

(43) 

o that σ 2 
z ≥ 0 for q ≥ 1 / 

√ 

2 . Moreo v er, [ ρh , � h ] ≥ 0 for 1 / 
√ 

2 ≤
 < 1, it vanishes for q = 1 (the spherical limit), and it is ≤0 for q
 1. We finally notice that, in the two-integral case, 

h v 2 ϕ = 

v 4 h 

Gb 2 h 

q 2 (2 − q 2 ) R 

2 + (2 q 2 − 1) z 2 − 2 q 4 

8 π ( q 2 R 

2 + z 2 + q 2 ) 2 
, (44) 

howing that v 2 ϕ becomes ne gativ e for q > 

√ 

2 , and the models are
ence inconsistent. Actually, Evans ( 1993 ) pro v ed that the two-
nte gral DF becomes ne gativ e for q � 1.08 so that models with
 . 08 � q ≤ √ 

2 do not exist 2 although they have non-negative σ 2 
z 

nd v 2 ϕ . From now on, we consider models with 1 / 
√ 

2 ≤ q ≤ 1, so
hat [ ρh , � h ] ≥ 0 everywhere: in the central panels of Fig. 3 , the 2D

aps of σ 2 
z , [ ρh , � h ], and R ∂ �/ ∂ R are shown for q = 0.75. 

As for the two previous models, the B , C and D regions can be
etermined in a fully analytical way. We notice ho we ver that for q �
 the Binney halo is qualitatively different from a disc, resembling a
pheroid; therefore, we expect some important differences compared 
o the previously discussed cases. From equation ( 43 ), we have 

 

− = 

{ 

( R, z) : q 6 R 

4 + 3 q 2 ( q 2 z 2 − z 2 + q 4 ) R 

2 

− ( q 2 + z 2 )(2 q 2 z 2 − z 2 + 2 q 4 ) > 0 
} 

. (45) 

With some work, it can be pro v ed that the discriminant of the
iquadratic is strictly positive independently of q ; moreo v er, for q ≥
 / 
√ 

2 , the last term in equation ( 45 ) is ne gativ e, so that a permanence
nd a variation of the sign of its coefficients are present. We conclude
hat B 

0 is the (positive) square root of the (positive) solution, and
 

− is the region of the ( R , z)-plane to the right of B 

0 . As for the
revious models, Pr ( B 

−) coincides with the z-axis; for simplicity, 
e do not report the explicit expression of B 

0 here, but we show it
s the red line in the bottom panels of Fig. 4 , for three representative
alues of q . The properties of the D region are more complicated
ompared to the previous cases: in fact, while for q ≥ √ 

2 / 3 , D < 0
 verywhere (v anishing on the z-axis) and thus D 

− fully co v ers the
 R , z)-plane, for q < 

√ 

2 / 3 

 

− = 

{
( R, z) : z − q 2 

√ 

3 + R 

2 √ 

2 − 3 q 2 
< 0 

}
, (46) 

nd the D 

+ region now exists: for example, in the bottom right panel
f Fig. 4 , the dashed line shows D 

0 for q = 0.75, and D 

+ is the part of
he plane abo v e it. Notice how, independently of q , Pr ( D 

−) coincides
ith the z-axis. Finally, from equation ( 13 ), 

 

− = 

{ 

( R, z) : q 4 (2 − q 2 ) R 

4 + q 2 ( q 2 z 2 − z 2 + q 4 

+ 2 q 2 ) R 

2 − ( q 2 + z 2 )(2 q 2 z 2 − z 2 + 2 q 4 ) < 0 
} 

, (47) 

here, in the considered range of 1 / 
√ 

2 ≤ q ≤ 1, the discriminant of
he biquadratic is positive, and the coefficients present a permanence 
nd a variation of the sign. Therefore, C 

0 is the (positive) square root
f the (positive) solution, and C 

− is the region between the z-axis and
 

0 ; Pr ( C 

−) coincides with the z-axis. In the bottom panels of Fig. 4 ,
he green line shows C 

0 for three representati ve v alues of q . It is also
pparent how B 

− ⊆ D 

−, B 

− ∩ C 

+ = B 

− and B 

+ ∩ C 

− = C 

−, as 
xpected from the general discussion; similarly to the MN model, 
otice that the B 

+ ∩ C 

+ region becomes larger as q decreases, i.e.
or more flattened systems. Again, in the spherical case ( q = 1) we
ould obtain B 

0 = C 

0 , B 

− = C 

+ and B 

+ = C 

−. 
We now determine the constraints on b ( z) from the request of

ositivity for v 2 ϕ , � R and � . From equation ( 19 ), with 1 / 
√ 

2 ≤ q ≤
, 

 M 

( z) = 

2 

q 2 
, z ≥ z M 

( q) ≡ q 2 
√ 

1 − q 2 √ 

q 4 − 2 q 2 + 3 / 2 
, (48) 
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hile for z ≤ z M 

, b M 

( z) is a complicated function monotonically
ecreasing from 2/ q 2 to the minimum 

 M 

(0) = 

14 + 12 q 2 + 8 
√ 

2 + q 2 − 2 q 4 

17 q 2 
, (49) 

eached on the equatorial plane; in the spherical case ( q = 1), b M 

( z)
 2 for all z. From equation (21), 

 0 ( z) = 

1 

q 2 
, z ≥ z 0 ( q) ≡ q 2 √ 

1 − q 2 
, (50) 

nd for z ≤ z 0 , b 0 ( z) is a complicated function monotonically
ecreasing from 1/ q 2 to the minimum 

 0 (0) = 

2 

3 
+ 

1 

3 q 2 
, (51) 

eached again on the equatorial plane; in the spherical case, b 0 ( z) =
 for all z, as expected from the general discussion. Finally, from
quations ( 23 ) and ( 24 ), b 1 ( z) = 1, and 

 2 ( z) = 

2 

q 2 
− 1 , z ≥ z 2 ( q) ≡

√ 

2 q 2 √ 

3 − 2 q 2 
, (52) 

hile for z ≤ z 2 , b 2 ( z) is again a complicated function which
ecreases monotonically, reaching its minimum 

 2 (0) = 

14 + 8 
√ 

2 + (3 − 8 
√ 

2 ) q 2 

17 q 2 
, (53) 

n the equatorial plane; in the spherical case, b 2 ( z) = 1. In the bottom-
eft panel of Fig. 5 , we show the four b ( z) functions described abo v e
or the representative case of q = 0.75: the chain of inequalities in
quation ( 25 ) is apparent, even though the profiles qualitatively differ
rom those of the two disc cases. In particular, if one restricts to the
onstant b case, we have b 1 = 1 ≤ b 0 (0) ≤ b 2 (0) < b M 

(0). 
Fig. 7 shows the 2D maps of v 2 ϕ , � R and � for the Binney

ogarithmic halo with q = 0.75 and for three values of b , i.e. b = 0.5,
, 3.75. The adopted values of b allow to illustrate three representative
inematical behaviours. When b = 0.5, we expect v 2 ϕ and � R to be
 verywhere positi ve, while a negative � is expected over some region
n C 

−, being 0.5 < b 1 = 1, and positiv e o v er B 

−, being 0.5 < b 2 �
.16. This is nicely confirmed by the three left panels, where white
egions indicate negative values. The three central panels correspond
o b = 1, i.e. to the two-integral solutions, and complement the three
iddle panels in Fig. 3 . The fields for b = 1 case are everywhere

ositive, in agreement with the general discussion and equations ( 49 ),
 51 ) and ( 53 ). The increase of b from 0.5 to 1 produces, as expected,
hat v 2 ϕ decreases o v er B 

− and increases o v er B 

+ , � R decreases

 v er D 

− and increases o v er D 

+ , and � behav es qualitativ ely as v 2 ϕ ,
ecoming non-ne gativ e o v er C 

− because 1 = b 1 . Finally, the three
ight panels correspond to the unphysical model with b > b M 

� 3.33,
nd a portion of B 

− is already white; compared to the disc models,
his region is more confined near the equatorial plane. Increasing
urther b would extend the white region to cover the whole B 

−,
hile v 2 ϕ would continue increasing in B 

+ . As 3.75 > b 0 � 1.26, � R 

s no w negati ve over a large portion of D 

− and, increasing further
 , � R would become ne gativ e o v er the whole D 

− re gion, i.e. below
he yellow line. At variance with discs, however, � R would remain
ositive and increase above the line. Finally, the negative region of
 has now switched to the B 

− region, being 3.75 > b 2 . 
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 A  T WO - C O M P O N E N T  M O D E L :  T H E  

I YA MOTO  &  NAG A I  DISC  IN  A  BI NNEY  

O G A R I T H M I C  H A L O  

e now study whether and how the presence of a dark matter (DM)
alo changes the conclusions obtained for one-component models. In
articular, we consider the two-component model made by a stellar
N disc embedded in a DM Binney logarithmic halo. We adopt this
odel because σ 2 

z and the commutator for the stellar distribution
an be given in closed form for arbitrary values of s and q (Smet,
osacki & Ciotti 2015 , hereafter S15); the resulting expressions
re ho we ver suf ficiently complicated to exclude the possibility of
 simple analytical study of the B , C , and D regions, which are
etermined in a numerical way starting from the analytical formulae
n S15. 

By using the normalizations adopted for the MN model, i.e. b ∗ for
engths and GM ∗/ b ∗ for potentials, the dimensionless total potential
s 

 = � ∗ + R � h , R ≡ v 2 h b ∗
GM ∗

, (54) 

n which � ∗ = −1/ ξ , as given in equation ( 26 ), and from equation
 42 ) the dimensionless halo potential is 

 h = 

1 

2 
ln 

(
1 + 

R 

2 

b 2 h 

+ 

z 2 

q 2 b 2 h 

)
, (55) 

here b h is the scale length of the halo now in units of b ∗, i.e.
 dimensionless parameter. For R = 0, the model reduces to the
elf-gravitating MN disc, while for R � 1 we obtain the ‘halo-
ominated’ case, in practice equi v alent to considering � = � h in
he JEs. Notice that, at sufficiently large r = 

√ 

R 

2 + z 2 , the model
s al w ays halo-dominated, independently of the value of R . 

In the two-integral case, σ 2 
z of the stellar distribution can be

btained by adding equations ( 10 ) and ( 17 ) of S15, while [ ρ∗, � ]
an be obtained from equation ( 27 ) of S15. It can be shown that,
hile σ 2 

z ≥ 0 regardless of the model parameters, the sign of [ ρ∗, � ]
epends on the value of q , and if q < 1, there are regions at large r
here [ ρ∗, � ] < 0. Instead, if q ≥ 1, then [ ρ∗, � ] ≥ 0 everywhere.
e notice that an asymptotic analysis of the solutions of the JEs

hows that, independently of s and R , v 2 ϕ becomes ne gativ e at large

istances from the origin for q � 0.85; instead, for q � 0.85, v 2 ϕ ≥ 0
verywhere. 

As we expect that the halo-dominated models are the most different
ompared to the one-component MN disc, in the following we focus
n these models, and for simplicity, we consider a spherical ( q =
) halo. In the three bottom panels of Fig. 3 , we show the maps of
2 
z , [ ρ∗, � ] and R ∂ �/ ∂ R for a halo-dominated MN disc with s =
, and b h = 2. By comparison with the MN panels in the figure, it
s apparent that the main effect of the halo is to produce an increase
f σ 2 

z , and of the commutator at large radii near the equatorial plane,
s e xpected giv en the flat rotation curv e of the halo at large radii.
nstead, in the more central regions, the self-gravitating effects of
he disc are not visible because the gravitational field of the disc is
e glected ev erywhere in the presented model. 
Ho we ver, e ven though the gravitational potential is dominated by

he halo, the disc density distribution enters the B , C , and D functions,
o we expect that the B , C , and D regions, whose determination now
ust be carried out numerically, are not coincident with those of the
inney halo (see Section 5.3 ). Indeed, now the B and C regions are
ore similar to those of the MN disc, and D 

− coincides with the ( R ,
)-plane, with D = 0 on the z-axis. 
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Figure 7. Maps in the ( R , z)-plane of v 2 ϕ (top ro w), � R (central ro w), and � (bottom row) in units of v 2 h , for the Binney logarithmic halo with q = 0.75 and 
constant b = 0.5 (left column), b = 1 (central column), and b = 2 (right column). Black solid lines show equally spaced isodensity contours of the stellar 
distribution. The red, green, and black dashed lines show, respectively, the B 

0 , C 

0 , and D 

0 curves. White regions correspond to negative values of the fields. 
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Due to the numerical determination of the B , C and D regions, also 
he various constraints on the b values had to be found numerically. In
he bottom-right panel of Fig. 5 , we show the four b ( z) constraints for
he halo-dominated model with q = 1, s = 1 and b h = 2. Reassuringly,
MNRAS 530, 1796–1811 (2024) 
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M

Figure 8. Maps in the ( R , z)-plane of v 2 ϕ (top ro w), � R (central ro w), and � (bottom row) in units of GM ∗/ b ∗ for the MN disc with s = 1 in a dominant ( � 

= � h ), spherical ( q = 1) Binney logarithmic halo with b h = 2, and constant b = 0.5 (left column), b = 1 (central column), and b = 2 (right column). Black 
solid lines show equally spaced isodensity contours of the stellar distribution. The red and green lines sho w, respecti v ely, the B 

0 and C 

0 curv es. White re gions 
correspond to ne gativ e values of the fields. 
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he y obe y the inequality in equation ( 25 ), being the commutator
ositi ve e verywhere. For the constant b case, they can be obtained
nalytically through an asymptotic analysis, and we found that b 1 = 

 0 = b 2 = 1, and b M 

= 5/4. 
Fig. 8 shows the 2D maps of v 2 ϕ , � R and � for the same q = 1, s
 1 and b h = 2, and for b = 0.5, 1, 2 (as in Fig. 6 for the MN disc).
he main result is that the fields are more similar to those of the one-
omponent MN disc in Fig. 6 than to those of the one-component
inney model in Fig. 7 , even though the MN disc is halo-dominated.
herefore, we conclude that under the b -ansatz a DM halo does not
lter appreciably the qualitative behaviour of the kinematical fields 
f the disc, even when the halo is very massive. 

 SUMMARY  A N D  C O N C L U S I O N S  

nless a specific functional form of the phase-space DF is assumed, 
he JEs do not form a closed system of equations, and to solve them
 choice must be made for the link between the velocity moments.
n this work, we considered the JEs of axisymmetric systems with 
hree unknowns ( σ 2 

z , σ
2 
R , and v 2 ϕ ), and focused on the choice of σ 2 

R =
( R, z) σ 2 

z (the ‘ b -ansatz’, where b is a positive function), introduced
n Cappellari ( 2008 ) and widely used in the dynamical modelling
f stellar systems. After recalling the JEs in cylindrical coordinates, 
nd the expressions for the ansatz-independent quantities σ 2 

z and [ ρ∗, 
 ], and the associated functions B , C , and D defined o v er the ( R ,

)-plane, we investigated the behaviour of the kinematical quantities 
hat depend on b as follows: 

(i) We first gave the general expressions, as a function of b 
nd of the ansatz-independent quantities, for v 2 ϕ and the related 

unctions � = v 2 ϕ − σ 2 
z and � R = v 2 ϕ − σ 2 

R , which enter the Satoh 

 1980 ) decomposition of v 2 ϕ to derive the ordered rotational velocity 
 ϕ . These general expressions are fundamental to investigate the 
ositivity of v 2 ϕ , required for the model consistency, and of � and
 R , necessary for the Satoh ( 1980 ) decomposition and its variants.
hese general expressions also allow to predict, before solving the 
Es, the trends of v 2 ϕ , � and � R as a function of b throughout the
alaxy, thus a v oiding a time-consuming numerical exploration of the 
arameter space in the modelling. 
(ii) For systems with ∂ �/ ∂ R ≥ 0 everywhere (the common sit- 

ation), and b = b ( z), we discussed the positivity problem in full
enerality: we first showed how to determine the ansatz-independent 
egions of the ( R , z)-plane where negativity is possible, i.e. B 

− for
 

2 
ϕ , D 

− for � R and a more complicate intersection of B 

± and C 

± for
 . Then, we showed how to determine the limiting values of b ( z)

hat guarantee positive kinematical fields over these regions: b ( z) ≤
 M 

( z) for v 2 ϕ ≥ 0, b ( z) ≤ b 0 ( z) for � R ≥ 0, and b 1 ( z) ≤ b ( z) ≤ b 2 ( z)
or � ≥ 0. In the common case of [ ρ∗, � ] ≥ 0 everywhere (as for
blate self-gravitating systems), one has b 1 ( z) ≤ 1 for z ∈ Pr ( C 

−),
nd 1 ≤ b 0 ( z) ≤ b 2 ( z) ≤ b M 

( z) for z ∈ Pr ( B 

−). 
(iii) In particular, for systems with [ ρ∗, � ] ≥ 0, we showed that

s b increases, in addition to the trivial fact that σ 2 
R = bσ 2 

z increases,

 

2 
ϕ and � decrease o v er B 

− and increase o v er B 

+ , and � R decreases
 v er D 

− and increases o v er D 

+ . 

After the general analysis of the problem and the setup of the
rocedure to investigate the kinematical properties of a model as 
 function of b , we illustrated the method with three widely used
alaxy models: the Miyamoto & Nagai and Satoh discs, and the 
inney logarithmic halo. In doing so, we obtained the following 

esults: 
(i) The shape of the B 

±, C 

± and D 

± regions and the limits 
n b ( z) can all be obtained analytically. For the two discs, D 

−

the region where ∂ ρ∗σ 2 
z / ∂ R < 0) coincides with the ( R , z)-plane,

ndependently of the disc flattening; for the Binney halo, instead, 
here is a critical value of the potential flattening such that for flatter
otentials the region D 

+ appears, bounded by a curve containing the 
-axis. For all the models, B 

− and C 

− are also bounded by hyperbola- 
ike curves but contain the R -axis. Concerning the limits on b ( z), for
ll the models Pr ( B 

−) = Pr ( C 

−) = Pr ( D 

−) coincide with the z-axis,
nd b 1 ( z) ≤ 1 ≤ b 0 ( z) ≤ b 2 ( z) ≤ b M 

( z). 
(ii) With the aid of two-dimensional maps, we illustrated how the 

inematical fields change o v er the galaxy by changing b , assumed
patially constant. The results are in agreement with the general 
onsiderations, both for their trend with b , and for the regions
here they become negative, confirming the utility of the preliminary 

nalysis. 
(iii) We finally applied the procedure to the two-component model 
ade by a stellar MN disc embedded in a dominant, spherical dark
atter Binney halo; in this case, the investigation has been carried out

umerically. The dark halo does not alter appreciably the qualitative 
rend of the kinematical fields of the stellar disc as a function of b ,
ven when the halo is very massive. 

A final comment is worth on the relation between σ 2 
ϕ and σ 2 

R as
 function of b and γ , the other parameter that measures the orbital
nisotropy, with positive values corresponding to radial anisotropy, 
nd ne gativ e ones to tangential anisotropy [see equations ( 16 ) and
 17 )]. As noticed in Section 3.1 , γ is necessarily positive where
 R < 0; where � R > 0, instead, γ can be positive ( k 2 > 1 in

he Satoh decomposition) or ne gativ e ( k 2 < 1). Allowing for b and
as free parameters in the JAM method, the stellar kinematics 

f regular rotators in the ATLAS 

3D survey could be successfully 
odelled (e.g. Cappellari 2016 ). It turned out that on average b > 1

nd γ ≈ 0, within about one ef fecti ve radius; a limit was also found
n the orbital anisotropy, of β = 1 − 1 /b � 0 . 7 εintr , where εintr is
he intrinsic flattening of the galaxy. This limit had first been found
ith the Schwarzschild orbit superposition method for the galaxies 
f the SAURON surv e y (Cappellari et al. 2007 ), and thereafter has
een often shown in the ( V / σ , ε), and ( λR , ε) diagrams of larger
amples of regular rotators, until those of the MaNGA survey (e.g.
ang et al. 2020 ). In a recent work, Wang et al. ( 2021 ) investigated

he origin of this limit: with the JAM modeling, they built mock
amples of axisymmetric galaxies with a velocity dispersion ellipsoid 
ppropriate to reproduce the observed fast rotators ( γ ≈ 0), and with
he mass-follows-light hypothesis. They found an upper limit on β
y excluding values producing a negative v ϕ 2 over a non-negligible 
egion of the galaxy, clearly an unphysical solution. Our analysis can
rovide an interpretation for the existence of this limit. In fact, from
quation ( 16 ), the request of positivity for v ϕ 2 with γ ≈ 0 translates
nto the request of � R � 0, and then of b � b 0 . Interestingly, for the

ass models considered in this work, b 0 increases with the flattening
see equations ( 31 ), ( 39 ), ( 50 ), and ( 51 )], in agreement with the trend
hown by the maximum values estimated for β (of βmax ∼ 0.7 εintr ). 
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PPENDIX  A :  T H E  MOST  G E N E R A L  v 2 ϕ 

E C O M P O S I T I O N ,  A N D  A N  A LT E R NAT I V E  

NSATZ  F O R  T H E  R A D I A L  J E  

1 The λ-decomposition for v 2 ϕ 

nce the necessary condition v 2 ϕ ≥ 0 is satisfied by the solution of

quation ( 8 ), a choice is required to decompose v 2 ϕ in its streaming
 ϕ 

2 and dispersion σ 2 
ϕ components. By construction, the Satoh

ecomposition presented in Sections 2.1 and 3.1 requires � (or � R )
0. Clearly, if � (or � R ) is ne gativ e o v er some re gion of the ( R ,

)-plane, a generalized Satoh decomposition can be applied just by
mposing k ( R , z) = 0 o v er this region. Ho we ver, this decomposition
NRAS 530, 1796–1811 (2024) 
s quite ‘rigid’, leading necessarily to v ϕ = 0 and σ 2 
ϕ = v 2 ϕ there. It

s therefore useful to provide the most general decomposition of a
ositive v 2 ϕ : we refer to this as the λ-decomposition. It is simple to
ealize that all the decompositions are of the form 

 ϕ = λ

√ 

v 2 ϕ , σ 2 
ϕ = (1 − λ2 ) v 2 ϕ , (A1) 

here in full generality 0 ≤ λ2 ( R , z) ≤ 1, with ne gativ e values
f λ corresponding to regions of ‘counter-rotation’. Two limit cases
re possible: λ = 0 corresponds to no net rotation in the azimuthal
irection, and λ2 = 1 corresponds to a maximally rotating model.
he value of λ corresponding to the isotropic rotator is obtained by

mposing σ 2 
ϕ = σ 2 

z from the second of equation ( A1 ), so that 

2 
I ( R , z) ≡ � 

v 2 ϕ 

, (A2) 

here � = v 2 ϕ − σ 2 
z ≥ 0 for isotropy given by the second of equation

 1 ). 
Of course, being the λ-decomposition the most general possible,

ny other decomposition of v 2 ϕ must be related to it. For example, if
 ≥ 0 and the Satoh decomposition is hence possible, the following

elation between λ and k holds: 

= k 

√ 

� 

v 2 ϕ 

. (A3) 

This sho ws ho w, except for the non-rotating case, a spatially
onstant k does not necessarily correspond to a spatially constant
, and vice versa. 

2 The μ-ansatz for � R 

s discussed in Section 3 , an ansatz is required to solve the radial
E, and the consequences of assuming the b -ansatz are discussed in
his work. We consider here a second family of ansatz (‘ μ-ansatz’) in
hich priority is given to the relation between � R and the unknown
2 
R , so that: 

 R = μσ 2 
R , v 2 ϕ = (1 + μ) σ 2 

R , (A4) 

ith the obvious constraint that μ( R , z) ≥ −1. Given this choice, it is
ossible to solve in closed form the radial JE and obtain σ 2 

R . In fact,
ombining equations ( 8 ) and ( A4 ) leads to a linear, non-homogeneous
ifferential equation prone to an explicit solution, similar to that for
nisotropic spherically symmetric systems (Binney & Mamon 1982 ;
21). Assuming a vanishing radial ‘pressure’ at infinity, the solution
f the equation reads 

∗σ 2 
R = 

∫ ∞ 

R 

ρ∗( u, z) 
∂ � ( u, z) 

∂ u 

e −g ( u,R ,z) d u, (A5) 

here 

 ( u, R , z) ≡
∫ R 

u 

μ( v, z) 

v 
d v, (A6) 

nd so, if μ is independent of R , 

∗σ 2 
R = 

1 

R 

μ

∫ ∞ 

R 

ρ( u, z) 
∂ � ( u, z) 

∂ u 

u 

μd u. (A7) 

Quite obviously, once the JEs are solved, each adopted ansatz can
e expressed in terms of the others. For example, the μ function
ssociated with a b -ansatz is given by 

= 

� R 

bσ 2 
z 

, (A8) 
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urther reducing to μ = �/σz in the two-integral case, when b = 1
nd � R = � . Of course, if one adopts the μ-ansatz, the equi v alent
 is just given by equation ( 9 ), where now σ 2 

R is computed as in
quation ( A5 ). 

An important advantage of using the μ-ansatz should be noticed. 
rom equation ( A5 ), it follows that σ 2 

R ≥ 0 for realistic potentials
ith ∂ �/ ∂ R ≥ 0. Therefore, the condition μ ≥ 1 in the second 
f equation ( A4 ) automatically assures the positivity of σ 2 

R and 
f v 2 ϕ , without the need for complicated analytical or numerical 
hecks. Therefore, the combination of the μ-ansatz with the gen- 
ralized Satoh k -decomposition, or better with the most general λ-
ecomposition, allows for a relatively simple and flexible closure of 
he JEs. 

PPENDIX  B:  R E L AT I O N S  BETWEEN  T H E  

E G I O N S  B 

±,  C 

±,  D 

±,  A N D  BETWEEN  T H E  

IMITING  VA LUES  F O R  b 

ome general results about the B , C , and D regions of axisymmetric 
ystems described by the JEs in Section 3 , with ∂ �/ ∂ R ≥ 0
verywhere, and restricting to b = b ( z), are proved. 

1 The ansatz-independent sets 

he following ansatz-independent sets, based on the sign of the 
ommutator, are important for the following discussion: 

± = { ( R, z) : [ ρ∗, � ] ≷ 0 } , 
�0 = { ( R, z) : [ ρ∗, � ] = 0 } ; (B1) 

e also define �±0 = �±∪ �0 . 

HEOREM B.1. For all systems, B 

− ⊆ D 

− and �− ⊆ D 

−. 

roof. Let P = ( R, z) ∈ B 

−. From the first of equation ( 12 ) and
iven σ 2 

z ≥ 0, then P ∈ D 

−, and the first inclusion is pro v ed. Let
 = ( R , z) ∈ �−. From equation ( 4 ) and given ∂ �/ ∂ R ≥ 0, then
 ∈ D 

−, and the second inclusion is pro v ed. From the pro v ed results,
t immediately follows that D 

+ 0 ⊆ B 

+ 0 and D 

+ 0 ⊆ �+ 0 . �

HEOREM B.2. If B 

− ⊆ �+ 0 , then B 

− ⊆ C 

+ . If C 

− ⊆ �+ 0 , then 
 

− ⊆ B 

+ . 

roof. Let P = ( R, z) ∈ B 

−, and [ ρ∗, � ] ≥ 0 there. From the second
f equation ( 13 ), with B < 0 and [ ρ∗, � ] ≥ 0, then P ∈ C 

+ , and the
rst part the theorem follows immediately if [ ρ∗, � ] ≥ 0 for all points

n B 

−. The second part is pro v ed similarly by considering C < 0 in
quation ( 13 ). �

HEOREM B.3. If B 

+ 0 ⊆ �−, then B 

+ 0 ⊂ C 

−. If C 

+ 0 ⊆ �−, then 
 

+ 0 ⊂ B 

−. 

roof. Let P = ( R, z) ∈ B 

+ , and [ ρ∗, � ] < 0 there. From the second
f equation ( 13 ), with B ≥ 0 and [ ρ∗, � ] < 0, then P ∈ C 

−, and the
rst part the theorem follows immediately if [ ρ∗, � ] < 0 for all points

n B 

+ 0 . The second part is pro v ed similarly by considering C ≥ 0 in
quation ( 13 ). �
2 Relations between the limits for b 
2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
HEOREM B.4. For all systems, b 0 ( z) ≤ b M 

( z) over the rectangular
trip R ≥ 0 and z ∈ Pr ( B 

−) . 

roof. From equation ( 19 ), b M 

( z) is defined over the strip in the ( R ,
)-plane with z ∈ Pr ( B 

−), and from equation ( 21 ), b 0 ( z) is defined
 v er the strip with z ∈ Pr ( D 

−). From Theorem B.1, B 

− ⊆ D 

−, so
hat b 0 ( z) is certainly defined for z ∈ Pr ( B 

−). Over B 

−, both B
nd D are ne gativ e, so that from the first of equation ( 12 ), | B| =
 | D | /ρ∗ − σ 2 

z ≤ R | D | /ρ∗. It follows that the minimum in the first
f equation ( 19 ) o v er B 

−
z is larger than the minimum obtained when

 B | is replaced by R | D | / ρ∗, and in turn this minimum is larger than that
 v aluated o v er the wider set D 

−
z ⊇ B 

−
z : from the first of equation

 21 ), this last minimum is the value of b 0 ( z) for points with z ∈
r ( B 

−), concluding the proof. �

HEOREM B.5. Let C 

− ⊆ �+ 0 , then b 1 ( z) ≤ 1 over the rectangular
trip R ≥ 0 and z ∈ Pr ( C 

−) . 

roof . F or assumption C 

− ⊆ �+ 0 , so that from Theorem B.2 B 

+ ∩
 

− = C 

−, and from equation ( 23 ) with [ ρ∗, � ] ≥ 0, b 1 ( z) ≤ 1 for
 ∈ Pr ( C 

−). �

HEOREM B.6. Let B 

− ⊆ �+ 0 , then b 2 ( z) ≥ 1 and b 0 ( z) ≤
 2 ( z) ≤ b M 

( z) over the rectangular strip R ≥ 0 and z ∈ Pr ( B 

−) . 

roof. From equation ( 24 ) and Theorem B.2, b 2 ( z) is defined over
 

− ∩ C 

+ = B 

−, and from the assumed positivity of [ ρ∗, � ] o v er
 

−, it follows that b 2 ( z) ≥ 1, for z ∈ Pr ( B 

−). Moreo v er, from
heorem B.4, the functions b 2 ( z), b 0 ( z ), and b M 

( z ) are all defined
or points with z ∈ Pr ( B 

−). Again from equation ( 24 ), using the
nequality | B | ≤ R | D | / ρ∗ (see the proof of Theorem B.4), and finally
rom the positivity of the commutator o v er B 

−, it follows that b 2 ( z)
s larger than the minimum of the function appearing in the second
f equation ( 21 ), now computed o v er B 

−. As B 

− ⊆ D 

− from
heorem B.1, extending this minimum over D 

− further decreases 
ts value, proving that b 2 ( z) ≥ b 0 ( z ). b M 

( z ) ≥ b 2 ( z ) follows by
omparison between equations ( 19 ) and ( 24 ), where B 

− ∩ C 

+ = B 

−

nd σ 2 
z ≥ 0. Notice that b 0 ( z) can be larger or lower than 1 depending

n the sign of [ ρ∗, � ] o v er the region D 

− ∩ B 

+ , for z ∈ Pr ( B 

−). �

HEOREM B.7. Let D 

− ⊆ �+ 0 , then b 0 ( z) ≥ 1 over the rectangular
trip R ≥ 0 and z ∈ Pr ( D 

−) , and 1 ≤ b 0 ( z) ≤ b 2 ( z ) ≤ b M 

( z ) over the
trip z ∈ Pr ( B 

−) ⊆ Pr ( D 

−) . 

roof. By assumption D 

− ⊆ �+ 0 , so that from equation ( 21 ) b 0 ( z)
1 for z ∈ Pr ( D 

−). The second part of the theorem descends im-
ediately from the inequality just pro v ed and Theorem B.6, because

rom Theorem B.1, B 

− ⊆ D 

− ( ⊆ �+ 0 by assumption). Notice how 

trengthening the hypothesis of Theorem B.6 (i.e. B 

− ⊆ �+ 0 ) to 
hat of the present case ( D 

− ⊆ �+ 0 ) allows to establish whether
 0 ( z) is larger or smaller than unity, then resolving the indeterminacy
entioned at the end of the proof of Theorem B.6. �
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