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Background: The Liver Imaging Reporting and Data System (LI-RADS) assigns a risk category for hepatocellular carcinoma (HCC) 
to imaging observations. Establishing the contributions of major features can inform the diagnostic algorithm.

Purpose: To perform a systematic review and individual patient data meta-analysis to establish the probability of HCC for each LI-
RADS major feature using CT/MRI and contrast-enhanced US (CEUS) LI-RADS in patients at high risk for HCC.

Materials and Methods: Multiple databases (MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and Scopus) were 
searched for studies from January 2014 to September 2019 that evaluated the accuracy of CT, MRI, and CEUS for HCC detec-
tion using LI-RADS (CT/MRI LI-RADS, versions 2014, 2017, and 2018; CEUS LI-RADS, versions 2016 and 2017). Data were 
centralized. Clustering was addressed at the study and patient levels using mixed models. Adjusted odds ratios (ORs) with 95% 
CIs were determined for each major feature using multivariable stepwise logistic regression. Risk of bias was assessed using Quality 
Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) (PROSPERO protocol: CRD42020164486).

Results: A total of 32 studies were included, with 1170 CT observations, 3341 MRI observations, and 853 CEUS observations. At 
multivariable analysis of CT/MRI LI-RADS, all major features were associated with HCC, except threshold growth (OR, 1.6; 95% 
CI: 0.7, 3.6; P = .07). Nonperipheral washout (OR, 13.2; 95% CI: 9.0, 19.2; P = .01) and nonrim arterial phase hyperenhance-
ment (APHE) (OR, 10.3; 95% CI: 6.7, 15.6; P = .01) had stronger associations with HCC than enhancing capsule (OR, 2.4; 95% 
CI: 1.7, 3.5; P = .03). On CEUS images, APHE (OR, 7.3; 95% CI: 4.6, 11.5; P = .01), late and mild washout (OR, 4.1; 95% CI: 
2.6, 6.6; P = .01), and size of at least 20 mm (OR, 1.6; 95% CI: 1.04, 2.5; P = .04) were associated with HCC. Twenty-five studies 
(78%) had high risk of bias due to reporting ambiguity or study design flaws.

Conclusion: Most Liver Imaging Reporting and Data System major features had different independent associations with hepatocel-
lular carcinoma; for CT/MRI, arterial phase hyperenhancement and washout had the strongest associations, whereas threshold 
growth had no association.
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LI-RADS performance. The IPD meta-analyses use large and 
detailed data sets at the patient level to perform more complex 
subgroup analysis than can be achieved in any single study or 
by using meta-analysis of aggregate study-level data (6). These 
involve collecting and pooling de-identified primary patient 
data from authors of prior publications (7). The purpose of 
this systematic review and IPD meta-analysis was to establish 
the likelihood of HCC for each LI-RADS major feature using 
CT/MRI LI-RADS and CEUS LI-RADS in patients at high 
risk for HCC.

Materials and Methods
The study protocol was approved by the Ottawa Hospital Re-
search Ethics Board, is Health Insurance Portability and Ac-
countability Act compliant, and was registered on PROSPERO 
(CRD42020164486). Methodologic guidance was per best 
practice in diagnostic test accuracy systematic reviews (8,9). Re-
porting is in accordance with the Preferred Reporting Items for 
a Systematic Review and Meta-analysis of Diagnostic Test Ac-
curacy Studies and Individual Patient Data (10–14).

Eligibility Criteria
All CT, MRI, and CEUS studies reporting the percentage of 
HCC and overall malignancy for LI-RADS categories 1–5, tu-
mor in vein, and malignancy in patients at high risk of HCC 
(hepatic cirrhosis, chronic hepatitis B viral infection, current 
or prior HCC) were eligible for inclusion. The CT, MRI, and 
CEUS techniques were evaluated for each study to determine 
concordance with the LI-RADS technical imaging guidelines 
(15). All liver observations were required to have been catego-
rized using CT/MRI LI-RADS version 2014, 2017, or 2018 
or CEUS LI-RADS version 2016 or 2017 (16–20). A preferred 
reference standard was established to assess bias risk (Appendix 
E1 [online]).

Database Search and Study Selection
With the assistance of an experienced hospital librarian, we 
performed a search of the MEDLINE, Embase, Cochrane 
Central Register of Controlled Trials, and Scopus databases 
for studies from January 2014 to September 2019 that evalu-
ated the diagnostic accuracy of CT, MRI, or CEUS for HCC 
using LI-RADS (Appendix E2 [online]). The corresponding 
authors of each study identified for inclusion were contacted 
(Appendix E3 [online]).

Data Collection Process and Definitions for Data Extraction
Authors who did not respond to the invitation to collaborate 
were sent follow-up emails in an effort to maximize data set size. 
All authors agreeing to participate were sent a formal confiden-
tiality agreement explaining that data would be stored securely 
and only accessed by authorized coinvestigators with a copy of 
the data contribution form, data extraction sheet, data diction-
ary, and a list of frequently asked questions (Appendixes E4–E7 
[online]). The request for de-identified data included instruc-
tions to transfer data to an encrypted directory. On the basis of 
institutional policies, when necessary, data sharing agreements 
were obtained. Efforts were made to keep all collaborators in-

The Liver Imaging Reporting and Data System (LI-RADS) 
is used to assign a risk category of hepatocellular carcinoma 

(HCC) to liver observations at imaging in patients at high 
risk for HCC. LI-RADS algorithms have been developed for 
screening (US), diagnosis (CT/MRI and contrast-enhanced US 
[CEUS]), and after local-regional treatment assessment. The LI-
RADS framework aims to standardize reporting and data collec-
tion of imaging for HCC to enhance communication, reduce 
interobserver variability, and facilitate quality assurance and re-
search (1). LI-RADS is regularly updated to achieve these aims 
as new evidence emerges.

The CT/MRI diagnostic algorithm uses a combination of 
major features (size, nonrim arterial phase hyperenhancement 
[APHE], nonperipheral washout, enhancing capsule, and thresh-
old growth) to assign categories. Similarly, CEUS uses a combi-
nation of major features (size, nonrim APHE, and late and mild 
washout) to assign categories. In both diagnostic algorithms, 
each category reflects a relative probability of benignity, malig-
nancy in general, or HCC. Recent systematic reviews found that 
the percentage of HCC (equivalent to positive predictive value) 
differed for each CT/MRI LI-RADS category and increased as 
LI-RADS category increased (2–4). Limitations of these reviews 
include the lack of individual patient data (IPD) to determine 
the independent impact of each of the major imaging features 
on the final diagnosis of HCC. Therefore, it remains unclear if 
some major features increase the likelihood of HCC more than 
others, whether features should be assigned different weights, or 
if some major features are unnecessary and could be eliminated. 
Understanding the relative contributions of imaging features to 
system performance is important for continued development 
and improvement of LI-RADS, which could be achieved using 
IPD meta-analysis (5).

Given the many LI-RADS imaging features, it is challenging 
for a single study to achieve sufficient statistical power to ana-
lyze the impact of each imaging feature. An IPD meta-analysis 
would improve understanding of which imaging features drive 

Abbreviations
APHE = arterial phase hyperenhancement, CEUS = contrast-enhanced 
US, HCC = hepatocellular carcinoma, IPD = individual patient data,  
LI-RADS = Liver Imaging Reporting and Data System, OR = odds  
ratio, QUADAS = Quality Assessment of Diagnostic Accuracy Studies

Summary
Most CT/MRI and CEUS LI-RADS major features had independent 
associations with hepatocellular carcinoma; arterial phase hyperen-
hancement and washout had the strongest associations whereas, for 
CT/MRI, threshold growth had no association.

Key Results
 n In this meta-analysis of 32 studies with 1170 CT observations, 

3341 MRI observations, and 853 contrast-enhanced US (CEUS) 
observations, all CT/MRI Liver Imaging Reporting and Data 
Systems (LI-RADS) major features except threshold growth (odds 
ratio [OR], 1.6; P = .07) were independently associated with  
hepatocellular carcinoma (HCC).

 n On CEUS images, arterial phase enhancement (OR, 7.3; P = .01), 
late and mild washout (OR, 4.1; P = .01), and size of at least 20 
mm (OR, 1.6; P = .04) were associated with HCC.
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volved and informed of progress. IPD were not dis-
tributed elsewhere.

Risk of Bias and Applicability
A previously customized Quality Assessment of 
Diagnostic Accuracy Studies 2 (QUADAS-2) tool 
for application to LI-RADS in a prior study-level 
systematic review was modified to assess risk of 
bias for each data set (Appendix E8 [online]) (2).  
QUADAS-2 divides sources of bias into four cat-
egories, including patient selection, index test, 
reference standard, and flow and timing (21,22). 
Incomplete reporting of major features was flagged 
using QUADAS-2 under the flow and timing do-
main. Risk of bias and applicability assessment were 
performed in duplicate and independently by two 
authors (C.B.v.d.P., J.P.S.; each with experience 
conducting risk of bias assessment for diagnostic 
test accuracy studies), and differences were resolved 
by discussion with a third author (M.D.F.M.). A 
pilot of one study with subsequent discussion was 
performed by these three authors to improve subse-
quent interobserver agreement.

Diagnostic Accuracy Measures
The main model estimates of interest were odds 
ratios (ORs) to determine the association of each LI-RADS 
major feature with a diagnosis of HCC, both independently 
and in combination.

Synthesis of Results
All data were pooled into a master data set, with each obser-
vation assigned a unique identifier. IPD received from primary 
study investigators were compared against the published reports 
for each study. When data were unclear or inconsistent, primary 
study investigators were contacted to resolve the differences 
(nine studies). When multiple readers were present, the data 
from one reader was chosen at random (six studies). One study 
included observations made with an extracellular contrast agent 
and the same observations made again with a hepatobiliary-
specific contrast agent. Examinations using the contrast agent 
less represented in our cohort (gadoxetic acid) were included to 
improve representation of that agent.

Statistical Analysis
We used a one-step IPD meta-analysis approach to pool the IPD 
across studies and model them simultaneously to compute OR 
for the association of each LI-RADS major feature with HCC 
(Appendix E9 [online]). Liver observation clustering was ad-
dressed at the study and patient levels through random inter-
cepts. The ORs for all the variables are presented with 95% CIs. 
Collinearity between variables was assessed by calculating the 
variance inflation factor, the tolerance statistic, and eigenvalues. 
The strength of the association of the variables with the outcome 
of interest was determined based on the statistical significance 
and the magnitude of the ORs derived in the multivariable 
model. A sensitivity analysis was performed by limiting the same 

Figure 1: Flow diagram shows search results, study review, and study inclusion. CENTRAL = 
Cochrane Central Register of Controlled Trials, IPD = individual patient data.

analyses to studies at overall low risk of bias. Forest plots show 
individual study results. t2 was used to quantify heterogeneity, 
and funnel plots were generated to demonstrate publication bias. 
The level of significance was set at P , .05. All analyses were 
performed by study authors (J.P.S., B.L.) using the glmer func-
tion in the Lme4 package in R (R Core Team, version 4.0.0; R 
Foundation for Statistical Computing) (23).

Results

Study Selection and Characteristics
A total of 865 studies were identified during the initial search, 
with 466 remaining once duplicates were removed. On title 
and abstract review, 161 studies were identified for possible 
inclusion (Fig 1). After full-text review, authors of 81 stud-
ies were invited to collaborate, 47 of whom agreed and 37 
of whom provided data (Appendix E10 [online] lists studies 
whose authors did not respond). Studies were then excluded 
at this stage for the following reasons: incomplete and redun-
dant data with other studies (24,25), multisite data not readily 
available (26), only patient-level and not observation-level data 
were available (27), and data formatting issues precluding ex-
traction of relevant parameters (28). The final cohort included 
32 studies, including 28 articles and four published conference 
abstracts (Table 1) (29–60).

Risk of Bias and Applicability
Of the 32 studies, seven were considered at low risk of bias, and 
23 had low concern regarding applicability (Fig 2). Study flow 



van der Pol et al

Radiology: Volume 302: Number 2—February 2022  n  radiology.rsna.org 329

Table 1: Characteristics of Included Studies

Imaging Technique Observation Data

Ref 
StandardRef No. Country Design

Prevailing   
Risk  
Factor* Modality

Contrast  
Agent 

LI- 
RADS 
Version

No. of 
Readers

No. of Liver 
Observa tions/ 
No. of Patients

No. of  
HCCs

No. Overall 
Malig nancy

No.  
Benign

No.  
LR-1

No.  
LR-2

No.  
LR-3

No.  
LR-4

No.  
LR-5

No. LR- 
TIV/5 V

No.  
LR-M

29 Can
RC Cirrhosis 

. . HBV
CT ECA 2017 2 91/39 72 

(79)
76 15 1 5 9 25 38 10 3 P and 

CCRS
30 USA RCCon Cirrhosis 

. . HBV
MRI ECA, 

HPB
2014 3 47/36 42 45 2 0 0 10.3 11 25.7 0 0 P and 

CCRS
31 Kor RC HBV . . 

cirrhosis

MRI HPB 2014 2 225/225 218 
(97)

225 0 0 0 1 43 170 0 11 P

32 Can RC Cirrhosis 
. . HBV

MRI ECA 2014 2 275/102 113 
(41)

123 152 38 52 57 53 58 2 15 P and 
CCRS

33 Chi RC HBV . 
cirrhosis

MRI ECA, 
HPB

2018 2 149/149 149 
(100)

149 0 0 0 0 0 149 0 0 P

34 Chi RCCon HBV with 
cirrhosis

CEUS Blood 
pool

2017 2 176/176 88 
(50)

176 0 0 0 1 6 49 0 120 P

35 Kor RC HBV . 
cirrhosis

MRI HPB 2018 NR 372/258 273 
(73)

291 81 0 0 18 154 180 4 16 P and 
CCRS

36 Spain RC Cirrhosis MRI ECA 2018 NR 262/262 197 
(75)

204 58 15 26 74 12 127 0 8 P and 
CCRS

37 USA RC Cirrhosis 
. . HBV

CT,  
MRI

CT: ECA 
MRI: 
ECA

2014 2 CT: 7/7 MRI: 
213/213

CT: 4 
(57) 
MRI: 
132 
(62)

CT: 7  
MRI: 171

CT: 0  
MRI: 
42

CT: 0  
MRI: 
4

CT: 0 
MRI: 
10.5

CT: 0 
MRI: 
10.5

CT: 
0.5  
MRI: 
34

CT: 2  
MRI: 
93.5

CT: 1.5  
MRI: 11

CT: 3  
MRI: 
49.5

P

38 Can PC Cirrhosis 
. . HBV

CEUS,  
MRI

CEUS: 
Blood 
pool 
MRI: 
ECA, 
HPB

CEUS: 
2017 
MRI: 
2018

2 CEUS: 39/35  
MRI: 38/34

CEUS: 
11 
(28) 
MRI: 
11 
(29)

CE US:  
12 MRI: 12

CE US:  
27 
MRI: 
26

CE 
US: 22 
MRI: 
NR

CE 
US:  
1 
MRI: 
NR

CE 
US:  
4 
MRI: 
NR

CE 
US:  
1 
MRI: 
NR

CE 
US: 
10 
MRI: 
NR

CE US:  
0 MRI: 
NR

CE 
US:  
1 
MRI: 
NR

P and 
CCRS

39 Kor RCCon HBV . . 
cirrhosis

MRI HPB 2017 2 140/140 70 
(50)

140 0 0 0 0 21 67 2 50 P

40 Chi PC HBV . . 
cirrhosis

MRI HPB 2018 2 272/272 215 
(79)

254 18 1 3 4 28 151 57 28 P and 
CCRS

41 Kor RC HBV . . 
cirrhosis

CT, MRI CT: ECA 
MRI: 
HPB

2014 2 216/158 216 
(100)

216 0 CT: 0  
MRI: 
0

CT: 0 
MRI: 
0

CT: 
23.5  
MRI: 
5.5

CT: 
55.5  
MRI: 
74

CT: 
129  
MRI: 
128

CT: 6  
MRI: 6

CT: 2  
MRI: 
2.5

P

42 Kor PC HBV . 
cirrhosis

CEUS,  
CT, MRI

CEUS: 
blood  
pool CT: 
ECA  
MRI: 
HPB

2017 2 CEUS: 43/43  
CT: 35/35  
MRI: 8/8

CEUS: 
20  
(47) 
CT: 16 
(46) 
MRI: 
4 (50)

CE US: 21  
CT: 17  
MRI: 4

CE US:  
22 CT: 
18 
MRI: 4

0 0 CE 
US:  
16 
CT: 
NR 
MRI: 
NR

CE 
US:  
16 
CT: 
NR 
MRI: 
NR

CE 
US: 
10  
CT: 0 
MRI: 
0

0 CE 
US: 1  
CT: 0 
MRI: 
0

P and 
CCRS

43 Chi RC Cirrhosis, 
no  
other 
details

MRI ECA 2014 2 19/19 15 
(79)

17 2 0 0 4 2 11 1 1 P and 
CCRS

44 USA RC Cirrhosis 
. HBV

MRI ECA, 
HPB

2017 3 144/98 82 
(57)

90 54 5 8 45 25 41 10 10 P and 
CCRS

45 Kor RC HBV . . 
cirrhosis

MRI HPB 2018 2 203/160 186 
(92)

197 6 NR NR NR NR NR NR NR P

46 Kor RC HBV . . 
cirrhosis

MRI HPB 2014 1 202/109 129 
(64)

135 67 11 27 42 29 75 5 13 P and 
CCRS

47 Kor RCCon Cirrhosis, 
most had 
HBV

MRI HPB 2018 2 220/220 165 
(75)

220 0 0 0 5 10 70 0 135 P

Table 1 (continues)
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Table 1 (continued): Characteristics of Included Studies

Imaging Technique Observation Data

Ref 
StandardRef No. Country Design

Prevailing   
Risk  
Factor* Modality

Contrast  
Agent 

LI- 
RADS 
Version

No. of 
Readers

No. of Liver 
Observa tions/ 
No. of Patients

No. of  
HCCs

No. Overall 
Malig nancy

No.  
Benign

No.  
LR-1

No.  
LR-2

No.  
LR-3

No.  
LR-4

No.  
LR-5

No. LR- 
TIV/5 V

No.  
LR-M

48 Kor RCCon HBV . 
cirrhosis

MRI HPB 2017 2 99/99 66 
(67)

99 0 NR NR NR NR NR NR 65 P

49 USA RC HBV ~ 
cirrhosis

MRI ECA, 
HPB

2017 2 65/63 36 
(55)

65 0 0 0 0 0.5 26 5.5 33 P

50 Kor RC Cirrhosis 
. . HBV

MRI HPB 2018 2 65/65 23 
(35)

58 7 0 0 0 0 0 0 65 P

51 Can RC Cirrhosis 
. . HBV

CEUS Blood 
pool

2016 3 196/184 139 
(71)

157 39 10 1 24 8 116 8 29 P and 
CCRS

52 Italy PC Cirrhosis 
. . HBV

CEUS Blood 
pool

2017 NR 54/34 33 
(61)

34 20 6 3 4 7 25 3 1 P and 
CCRS

53 France PC Cirrhosis 
. . HBV

CT, MRI ECA 2014 1 CT: 528/292  
MRI: 562/300

CT: 
323 
(61)  
MRI: 
328 
(58)

NR NR NR NR CT: 
116  
MRI: 
132

CT: 
98  
MRI: 
95

CT: 
242  
MRI: 
264

CT: 11  
MRI: 6

0 P and 
CCRS

54 Poland RC Cirrhosis 
. . HBV

MRI HPB 2017 2 69/18 50 
(72)

50 19 0 0 18 13 38 0 0 P

55 Kor RC HBV ~ 
cirrhosis

CT ECA 2014 2 R1: 67/50 R2: 
102/65

R1: 42 
(63) 
R2: 54 
(53)

NR NR R1: 11  
R2: 
16

R1: 1 
R2: 
18

R1: 11  
R2: 14

R1: 
16  
R2: 
21

R1: 
28 
R2: 
31

NR R1: 0 
R2: 2

P

56 Kor RC HBV ~ 
cirrhosis

MRI ECA, 
HPB

2014 2 77/52 77 
(100)

77 0 0 0 ECA: 
1  
HPB: 
1

ECA: 
25  
HPB: 
39

ECA: 
51 
HPB: 
37

0 0 P and 
CCRS

57 Switz-
erland

RC Cirrhosis 
. . HBV

MRI ECA 2018 4 71/51 28 
(39)

28 43 18 11 15 6 21 0 0 P and 
CCRS

58 Italy RC Cirrhosis 
. . HBV

CEUS Blood 
pool

2017 NR 333/NR 278 
(83)

289 44 0 0 74 97 144 0 18 P and 
CCRS

59 Can RC Cirrhosis 
. . HBV

MRI ECA, 
HPB

2018 2 222/81 72 
(32)

72 150 23 33 68 42 56 0 0 P and 
CCRS

60 Chi RC HBV . . 
cirrhosis

MRI ECA, 
HPB

2018 2 82/80 82 
(100)

82 0 0 0 7 7 68 0 0 P

Note.— Data were averaged if there was more than one reader. Data in parentheses are percentages. Studies were considered case control 
studies if groups of patients were selected based on final diagnosis and then imaging findings were compared. Gadobenate dimeglumine was 
documented as a hepatobiliary contrast agent if hepatobiliary phase imaging was used; otherwise, it was considered an extracellular agent. 
Can = Canada, Chi = China, CCRS = composite reference standard, CEUS = contrast-enhanced US, ECA = extracellular contrast agent,  
HPB = hepatobiliary contrast agent, Kor = Korea, NR = not recorded, P = pathology, PC = prospective cohort, RC = retrospective cohort,  
RCCon = retro spective case control, Ref = reference, USA = United States.
* The  symbol indicates the first risk factor was more represented in the cohort than the second risk factor. The ~ symbol indicates both 
risk factors were represented approximately equally. The  symbols indicate that the first risk factor was substantially more represented in 
the cohort than the second risk factor.

and timing was the domain most often at risk for bias, which 
was usually due to unclear or inappropriate intervals between 
the index test and the reference standard or verification bias 
(from tissue sampling of only a subset of observations) (Table 
E1 [online]). Patient and observation selection were also fre-
quently at risk for bias due to multiple studies with case-con-
trol design and studies limited to only patients with malignant 
lesions. The index test and reference standard domains were at 
low risk of bias for most studies. Funnel plots are available in 
Appendix E11 [online].

Synthesis of Results
All observations were classified using either pathology or the 
composite reference standard (Table 2).

CT/MRI.—A total of 1170 observations obtained with CT in 
812 patients from six studies and 3341 observations obtained 
with MRI in 2639 patients from 17 studies had sufficient data 
to be incorporated into the model (Table E2 [online]). From 
these cohorts, 813 observations were obtained with both CT 
and MRI. All five major features had been assessed for 887 ob-
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reported (n = 4434), observation size smaller than 10 mm was 
associated with decreased odds of HCC diagnosis (OR, 0.1; 
95% CI: 0.0, 0.2; P = .01) compared with a size of 10–19 
mm. Observation size of at least 20 mm was not associated 
with HCC compared with a size of 10–19 mm (OR, 1.6; 
95% CI: 0.95, 2.7; P = .06).

Of all CT/MRI major features, differences between CT 
and MRI were found only for observation size. For patients 
with observations of at least 10 mm on MRI scans, the odds 
of having HCC were higher than for those imaged with CT, 
namely 3.6 (95% CI: 1.04, 12.4; P = .04) for 10–19-mm 
observations and 3.1 (95% CI: 1.9, 5.1; P = .03) for observa-
tion 20 mm or larger.

CEUS.—A total of 853 observations were imaged using 
CEUS in 833 patients from six studies, and assessments of 
all major features were available. Results of the univariable 
analysis are presented in Table E5 [online]. On multivariable 
analysis, the following were associated with HCC: nonrim 
APHE (OR, 7.3; 95% CI: 4.6, 11.5; P = .01), late and mild 
washout (OR, 4.1; 95% CI: 2.6, 6.6; P = .01), and size of at 
least 20 mm (OR, 1.6; 95% CI: 1.04, 2.5; P = .04) compared 
with 10–19-mm observations (Table 4). Rim or peripheral 
discontinuous globular enhancement was associated with de-
creased odds of HCC (OR, 0.3; 95% CI: 0.1, 0.9; P = .02), 
as was early (,60 seconds) washout (OR, 0.3; 95% CI: 0.1, 
0.5; P = .03). Marked washout was not associated with diag-

Figure 2:  Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) 
risk of bias assessment. CEUS = contrast-enhanced US.

Table 2: Observation Diagnosis and Reference Standard

Final Diagnosis
Total No. of  
Observations

Confirmed 
with  
Histology

Confirmed  
with  
Composite  
Reference  
Standard*

HCC 3582 3011 571
Intrahepatic  

cholangiocarcinoma
28 28 0

Combined  
HCC and 
cholangiocarcinoma

122 122 0

Other specific  
malignancy

256 256 0

Nonspecific  
malignancy

3 0 3

Benign 1373 961 412

* Benign if stable for at least 12 months or spontaneous 
size reduction of at least 30% or disappearance attributable 
to treatment or resorption of tumoral blood products. 
Hepatocellular carcinoma (HCC) was diagnosed if LR-5 
criteria were fulfilled on another imaging modality study and 
there was threshold growth, or if LR-5 criteria were fulfilled 
and recurred after local-regional treatment on CT or MRI 
scans based on treatment response criteria. Other malignancies 
required histopathology for confirmation. LR-3, LR-4, and 
LR-M observations with recurrence on CT or MRI scans after 
local treatment were considered malignant but not specifically 
indicative of HCC.

servations, while 3547 observations included assessment of all 
major features except threshold growth. Threshold growth was 
the major feature that was reported least often; authors reported 
that this was due to a lack of prior imaging examinations avail-
able for comparison in 75% of studies (21 of 28), rather than a 
feature of study design.

Results of the univariable analyses are presented in Table E3 
(online), which found all five major features to be associated with 
HCC. Based on the clinical and statistical significance in the uni-
variable analyses, the size variable was investigated as a categorical 
variable in the multivariable analysis. On multivariable analysis of 
the cohort including only observations with all five major features 
assessed (n = 887 observations), all major features were associated 
with HCC except threshold growth (OR, 1.6; 95% CI: 0.7, 3.6; 
P = .07) (Fig 3, Table 3). Multivariable analysis was repeated on 
the subset of observations, with all major features assessed except 
threshold growth (3547 observations). In this subset, we did not 
find evidence of association of enhancing capsule with HCC (OR, 
1.3; 95% CI: 0.7, 2.5; P = .08). However, when multivariable 
analysis was performed on the largest cohort including observa-
tions with APHE, enhancing capsule, and nonperipheral washout 
consistently reported (4434 observations), each was associated 
with HCC. The variance inflation factor, tolerance statistic, and 
eigenvalues were computed and were within guidelines (61). On 
sensitivity analysis limited to observations from studies at low risk 
of bias, these associations persisted (Table E4 [online]).

Using the largest cohort of observations with APHE, en-
hancing capsule, and nonperipheral washout consistently 
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nosis or nondiagnosis of HCC (OR, 0.7; 95% CI: 0.2, 2.8; 
P = .10). A sensitivity analysis including only the two CEUS 
studies at overall low risk of bias was not performed due to 
model instability.

Forest plots show individual study results (Appendix E12 
[online]), and t2 was used to quantify heterogeneity (Appen-
dix E13 [online]).

Discussion
This individual patient data 
(IPD) meta-analysis of 1170 
CT, 3341 MRI, and 853 con-
trast-enhanced US (CEUS) ob-
servations found that all Liver 
Imaging Reporting and Data 
System (LI-RADS) major fea-
tures were independently as-
sociated with hepatocellular 
carcinoma (HCC) except for 
threshold growth. For CT/
MRI, nonperipheral washout 
(odds ratio [OR], 13.2; 95% 
CI: 9.0, 19.2; P = .01) and 
nonrim arterial phase hyperen-
hancement (APHE) (OR, 10.3; 
95% CI: 6.7, 15.6; P = .01) had 
the strongest association with 
HCC, followed by enhancing 
capsule (OR, 2.4; 95% CI: 1.7, 
3.5; P = .03). Threshold growth 

was infrequently reported (mostly due to a lack of available 
prior examinations followed by study design) and was not in-
dependently associated with HCC (OR, 1.6; 95% CI: 0.7, 3.6;  
P = .07). For CEUS, nonrim and nonperipheral discontinuous 
globular APHE had the strongest association with HCC (OR, 
7.3; 95% CI: 4.6, 11.5; P = .01), whereas late and mild washout 

Figure 3: Multivariable analysis odds ratios with 95% CIs (error bars) for the association of each CT/MRI and contrast-
enhanced US (CEUS) Liver Imaging Reporting and Data System major feature with a diagnosis of hepatocellular carci-
noma. APHE = arterial phase hyperenhancement.

Table 3: CT/MRI Major Features Multivariable Analysis

Major Feature

Observations with All Five Major 
Features Reported (n = 887)*

Observations with All Major 
Features Reported Except  

Threshold Growth (n = 3547)†
Observations with or without Threshold 

Growth Reported (n = 4434)‡

Odds Ratio P Value Odds Ratio P Value Odds Ratio P Value
Nonrim APHE 3.6 (1.9, 6.9) .01 14.5 (7.1, 29.8) .01 10.3 (6.7, 15.6) .01
Enhancing capsule 2.3 (1.1, 4.7) .04 1.3 (0.7, 2.5) .08 2.4 (1.7, 3.5) .03
Nonperipheral washout 5.6 (3.0, 10.5) .02 7.9 (4.4, 14.3) .01 13.2 (9.0, 19.2) .01
Size
 ,10 mm 0.1 (0.0, 0.3) .01 0.0 (0.0, 0.4) .01 0.1 (0.0, 0.2) .01
 10–19 mm Reference … Reference … Reference …
 20 mm 11.2 (1.9, 65.2) .03 0.7 (0.3, 1.6) .07 1.6 (0.95, 2.7) .06
Threshold growth 1.6 (0.7, 3.6) .07 … … … …
CT (reference) versus MRI§

 ,10 mm 2.4 (0.6, 10.1) .10 0.9 (0.1, 10.7) .12 1.2 (0.8, 1.9) .09
 10–19 mm 0.5 (0.2, 1.5) .06 0.3 (0.2, 0.6) .03 3.6 (1.04, 12.4) .04
 20 mm 0.1 (0.0, 0.5) .03 6.2 (2.5, 14.9) .02 3.1 (1.9, 5.1) .03

Note.—Data in parentheses are 95% CIs. Reference categories are as follows: for size, 10–19 mm; for nonrim arterial phase 
hyperenhancement (APHE), absent; for enhancing capsule, absent; for nonperipheral washout, absent.
* References 29, 32, 37, 43, 44, 54, 55, 57, and 59.
† References 29, 30, 32, 33, 35–37, 40, 41, 47, 48, 53, 54, 56, 57, 60.
‡ References 29, 30, 32, 33, 35–37, 40, 41, 43, 44, 47, 48, 53–57, 59, and 60.
§ MRI and CT were compared for all major features and were only found to differ for size. The bottom rows list odds ratios for size cutoffs 
comparing MRI and CT, with CT as the reference standard.
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was also associated with HCC (OR, 4.1; 95% CI: 2.6, 6.6; P = 
.01). Early (,60 seconds) washout was associated with a non-
HCC diagnosis (OR, 0.3; 95% CI: 0.1, 0.5; P = .03), whereas 
marked washout was not useful for differentiating between HCC 
and non-HCC (OR, 0.7; 95% CI: 0.2, 2.8; P = .10).

Prior studies exploring the diagnostic performance of LI-
RADS major features for establishing HCC have mostly focused 
on the sensitivity, specificity, and predictive values of individual 
imaging features and the LI-RADS categories (62). Multivari-
able modeling that includes all LI-RADS major features to estab-
lish the relative strength of association of each feature with HCC 
may not have been possible in single centers or with study-level 
meta-analyses (32,63,64).

Observation size did not have an association with HCC 
when treated as a continuous variable at univariable analysis. 
Associations were observed for larger observations using cutoffs 
of 10, 15, and 20 mm. However, at multivariable analysis, size 
of at least 20 mm was not significantly associated with HCC 
compared with size of 10–19 mm. Size of at least 20 mm was as-
sociated with HCC for the smaller cohort with threshold growth 
reported, likely due to decreased interstudy variability for these 
observations. Interstudy variability likely also explains the differ-
ence between cohorts when comparing CT and MRI.

Our findings suggest that threshold growth is not a signifi-
cant predictor of HCC relative to the other LI-RADS major 
features. Of note, CT/MRI LI-RADS version 2014, 2017, and 
2018 were included. The criteria for threshold growth in LI-
RADS version 2018 was limited to a size increase of at least 
50% of a mass in no more than 6 months, whereas for LI-
RADS versions 2014 and 2017, threshold growth also included 
a size increase of at least 100% on imaging examinations more 
than 6 months apart and new observations of 10 mm or larger 
in 24 months or less. The impact of this change could not be 
further explored, as the specific criterion for threshold growth 
using LI-RADS versions 2014 and 2017 could not be retro-
spectively identified.

Prior CEUS LI-RADS studies mostly explore the performance 
of the LI-RADS categories for HCC diagnosis (26,65–67).  
Our finding that both nonrim and nonperipheral discontinu-
ous globular APHE and late and mild washout each had strong 
association with HCC corroborate prior works on the CEUS 
imaging characteristics of HCC and support the application of 
these as major features in the LI-RADS framework (68).

Most studies (25 of 32) had a high risk of bias. A prolonged 
interval between the index test and the reference standard was 
frequent. However, an optimal interval remains uncertain. Veri-
fication bias from tissue sampling of only a subset of observa-
tions is another frequent potential source of bias, as many lower-
risk observations are less likely to have histopathologic proof. 
Despite the high risk of bias, a sensitivity analysis including only 
low-risk-of-bias studies confirmed the findings, increasing confi-
dence in the results for the larger cohort.

Our study had several limitations. First, less than half of 
the eligible data sets were made available, which precluded a 
more detailed analysis. The findings of this study must be in-
terpreted in the broader context of the liver imaging literature, 
and we recommend clinicians refer to the current version of 
LI-RADS until a future iteration is released. Second, thresh-
old growth was not reported for most observations, and it re-
mains unclear if its predictive value may differ when applied 
at centers that routinely perform CT/MRI within 6-month 
intervals. Third, ancillary features were not included, because 
they were incompletely reported in most studies. Fourth, 
comparison of extracellular and hepatobiliary contrast agents 
was not performed, because only one study included direct 
comparison of each contrast agent using the same observa-
tions, and our data set was skewed toward extracellular agent. 
Finally, we required only 12 months of stability to establish 
benignity. A longer interval might have been more specific 
but at the expense of sensitivity.

In conclusion, the CT/MRI and contrast-enhanced US 
(CEUS) Liver Imaging Reporting and Data System (LI-RADS) 
major features have different independent associations with he-
patocellular carcinoma (HCC). Arterial phase hyperenhance-
ment and washout pattern have strong independent associations 
with HCC using CT/MRI and CEUS LI-RADS. Threshold 
growth was infrequently reported and was not a significant in-
dependent predictor of HCC. The utility of ancillary features, 
which were not included in our study, would benefit from more 
comprehensive reporting in future research.
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Note.—Reference categories are as follows: for size, 10–19 
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