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Abstract
In this paper, we present a method based on an ensemble of convolutional neu-
ral networks (CNNs) for the prediction of residual drift capacity in unreinforced
damaged masonry walls using as only input the crack pattern. We use an accu-
rate block-based numerical model to generate mechanically consistent crack
patterns induced by external actions (earthquake-like loads and differential set-
tlements). For a damaged masonry wall, we extract the crack width cumulative
distribution, we derive a crack width exceedance curve (CWEC), and we eval-
uate the drift loss (DL) with respect to the undamaged wall. Numerous pairs
of CWEC and DL are thus generated and used for training (and validating) an
ensemble of CNNs generated via repeated 𝑘-folding cross validation with shuf-
fling. As a result, a method for damage prognosis (Level IV of SHM) is provided.
Suchmethod appears general, inexpensive, and able to adequately predict theDL
using as only input the CWEC, providing real-time support for decision making
in damaged masonry structures.

1 INTRODUCTION

Cracks in masonry structures are frequent. On the one
hand, masonry has a well-known quasi-brittle behavior
characterized by weak interfaces in the mortar joints
(low cohesion). On the other hand, crack patterns are
typically induced by seismic events (even with low inten-
sity), foundation settlements (Napolitano & Glisic, 2020),
remodel works, materials aging, and so forth. In general,
the cause of damage might be known (e.g., due to an
earthquake; Giaretton et al., 2016) or it could be (initially)
unknown, and damage diagnostics (e.g., see D’Altri et al.,
2023; Napolitano & Glisic, 2019) should be employed to
understand the reasons of damage.
The presence of cracks in a masonry structure could

have considerable negative effects on the structural behav-
ior. Accordingly, damage inspection, identification, and
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structural health monitoring (SHM) of masonry and his-
toric structures are nowadays main concerns for assets
owners (Boscato et al., 2015; Eltouny & Liang, 2021;
Ierimonti et al., 2023; Riveiro et al., 2016;Wang et al., 2018).
In the last decade, a great development has been

achieved in the automatic crack detection of buildings
by using images and/or point clouds (Dais et al., 2021;
Dang et al., 2022; Hallee et al., 2021; Katsigiannis et al.,
2023; Loverdos & Sarhosis, 2022; Malek et al., 2023; Meng
et al., 2023; Ni et al., 2019; Quqa et al., 2023; Stałowska
et al., 2022; Yang et al., 2018). Such development has been
clearly powered by the use of machine learning (ML)
algorithms toward SHM, which opened a new frontier
in the damage inspection of buildings. As a result, very
advanced crack detection procedures can be already found
in the recent literature, also specifically developed for
masonry structures.

Comput Aided Civ Inf. 2024;1–15. wileyonlinelibrary.com/journal/mice 1

mailto:bglisic@princeton.edu
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/mice
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fmice.13212&domain=pdf&date_stamp=2024-05-02


2 PEREIRA et al.

Even though considerable advances have been lately car-
ried out in crack pattern detection and identification, the
quantification of the impact of the crack pattern on the
structural and seismic response of a masonry structure
is still very challenging to determine (Asjodi & Dolat-
shahi, 2022) and typically unknown, unless very simplistic
and rough approaches are used (e.g., see FEMA, 1998). To
our best knowledge, the only step forward in this direc-
tion has been very recently made by Rezaie et al. (2022)
for rubble stone masonry piers. In particular, six quasi-
static cyclic shear-compression tests on plastered rubble
stone masonry piers (Dolatshahi & Beyer, 2022; Rezaie,
Achanta et al., 2020; Rezaie, Godio et al., 2020; Rezaie et al.,
2021) were used in Rezaie et al. (2022) to build a predic-
tive ML model for stiffness degradation, residual strength,
and residual displacement capacity starting from the crack
pattern of the piers identified through digital image cor-
relation (DIC) in terms of three features: maximum crack
width, crack length density, and complexity dimension.
Although the research in Rezaie et al. (2022) was aimed to
quantify the loss of seismic performance of walls due to the
presence of cracks induced by seismic actions, the gener-
alization of such results to other masonry types, boundary
conditions, and wall sizes is nontrivial, as pointed out
by the authors, and further expensive experimental tests
might be required to extend the applicability.
A potential way to overcome this issue could be to use

accurate and detailed numerical models to generate crack
patterns in masonry walls. Although there are still chal-
lenges to be addressed (e.g., computational effort, effective
parameter calibration, dealing with imperfect boundary
conditions, dynamic effects), numerical modeling strate-
gies for masonry structures have shown a remarkable
development in the last decades (D’Altri et al., 2020). In
this framework, block-based approaches (Abdulla et al.,
2017; Angiolilli et al., 2021; D’Altri et al., 2019; Ferrante
et al., 2021; Lourenço & Rots, 1997; Macorini & Izzud-
din, 2011; Pantò et al., 2022; Petracca et al., 2023; Serpieri
et al., 2017) can be very accurate (like micromechanics-
based equivalent continua (Addessi et al., 2002; De Bellis
& Addessi, 2011; Trovalusci & Masiani, 2003), as they can
explicitly account for the actual masonry pattern and, con-
sequently, automatically embed the anisotropic nature of
masonry and the numerous failure modes of the material.
The aim of this research is to perform damage progno-

sis (Level IV SHM; Rytter, 1993) by predicting the residual
displacement capacity of unreinforced damaged masonry
walls from the crack pattern. Such research can thus pro-
vide fundamental support to the structural analysis of
full-scale cracked masonry structures, for example, in the
framework of equivalent frame modeling (D’Altri et al.,
2020) where the structure is idealized as a frame com-
posed of piers and spandrels and an ultimate drift capacity
is a priori assigned to each pier. However, if one or more

piers are cracked, the definition of an effective residual
drift capacity is not trivial. Accordingly, this research aims
at the development of a simple and real-time method-
ology to estimate the residual drift capacity of damaged
masonry walls.
In this paper, a new ML predictor employing numer-

ically generated mechanically consistent crack patterns
as training data is proposed. The desired features of this
predictor are as follows:

(1) Real-time accurate predictions to support decision
making in damaged masonry structures. This can be
obtainable by ML approaches based on a large data set
to train the predictions.

(2) Generalizable predictions. Predictions should not only
be valid on a specific masonry type (or test set-up). As
anticipated before, this might be obtainable by using
a detailed block-based numerical model for data gen-
eration, that is, to generate mechanically consistent
damaged wall conditions in an easier way with respect
to experiments (Messali & Rots, 2018).

(3) Predictions based on a consistent data set. Indeed,
residual displacement capacity and the representative
feature of the crack pattern should be unambiguously
computed given a damaged wall, independently of the
masonry pattern, presence of openings, and so forth.
Also, the input data (i.e., the quantification of cracks)
should be unequivocallymeasurable on an actual wall.
In addition, potential changes in stiffness and strength
of the masonry wall due to the crack pattern (Dolat-
shahi & Beyer, 2022) are not discussed here as (i)
the evaluation of the representative actual stiffness is
extremely conventional (e.g., secant or tangent stiff-
ness at a certain load ratio), and (ii) strength changes
are typically significant in nearly collapse conditions,
so outside the scope of this paper.

(4) Predictions feasible with different techniques. The
input data should be obtainable with different tech-
nologies. For example, the representative feature of the
crack pattern should be obtainable from still images,
point clouds, DIC, and so forth. Also, the data gener-
ation should be possible through several models and
approaches. Accordingly, the training data set might
be subsequently enlarged by various research groups.

With this in mind, this paper contributes a new
method for the real-time prediction of residual displace-
ment capacity in damaged masonry walls based on an
ensemble of convolutional neural networks (CNNs) using
as only input the crack pattern. The damaging block-
based numerical model developed and validated in D’Altri
et al. (2019), where a parameter calibration on small
scale experimental tests guaranteed a good agreement
against large-scale cyclic tests of masonry structures, is
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PEREIRA et al. 3

F IGURE 1 Methodology overview. Actual crack pattern pictures adapted from Giaretton et al. (2016).

used to generate simulated crack patterns induced by
external actions (earthquake-like loads and differential set-
tlements). Accordingly, numerous damaged conditions in
masonry walls are simulated. For each damaged condi-
tion, the crack width cumulative distribution (CWCD) is
extracted, and a crack width exceedance curve (CWEC) is
subsequently derived. The CWEC is adopted as represen-
tative feature of the crack pattern, and the residual drift
capacity is expressed in terms of drift loss (DL), evalu-
ated with respect to the corresponding undamaged wall.
Accordingly, DL is a direct measurement for damage prog-
nosis, as it represents the current loss of drift capacity of
a wall with respect to an undamaged condition. A spe-
cific data preprocessing is carried out to obtain convenient
input data and to avoid dependencies on the block-to-
wall size ratio. Many pairs of CWEC and DL are thus
generated and used for training (and validating) an ensem-
ble of CNNs, based on repeated 𝑘-folding cross validation
with shuffling.
The paper is structured as follows. Section 2 presents an

overview of the proposedmethodology. Section 3 describes
how data are generated and preprocessed. Section 4
presents and describes the ensemble of CNNs used for DL
prediction. Section 5 shows and discusses the results of the
crack pattern–based ML predictor. Finally, Section 6 sum-
marizes the potentialities of the proposed methodology.

2 METHODOLOGY

Anoverview of themethodology to predict the residual dis-
placement capacity of a damagedmasonry wall based only
on the actual crack pattern is herein discussed (Figure 1).

First, the actual crack pattern is surveyed on a masonry
wall. This could be conducted either through automatic
crack detection procedures based on images (Hallee et al.,
2021; Loverdos & Sarhosis, 2022) and/or point clouds
(Stałowska et al., 2022), or through more traditional visual
inspections and manual crack measurements. The crack
pattern is then conveniently described through a dis-
crete CWEC, derived from the CWCD. The CWEC is
constituted of points, which represent the percentage of
masonry joints exceeding a certain value of crack width.
The CWEC, eventually normalized to avoid block-to-wall
size ratio dependencies (see Section 3.3), is taken as the
main representative feature of the crack pattern, as it sum-
marizes crack patterns in a very concise and standalone
way. Additionally, CWECs can be derived by means of
any crack detection/measurement techniques, for any type
of masonry.
The CWEC is given as input to an ensemble of CNNs,

specifically trained and validated on numerous data
numerically generated. TheCNNswill give as output a pre-
diction of the DL, based only on the CWEC, that is, based
only on the actual crack pattern. Such real-time prediction
of DL can be used to support decision making in damaged
masonry structures. For example, it can be straightfor-
wardly used by practitioners in seismic assessments when
utilizing equivalent frame models (directly reducing the
drift capacity of damaged piers through the DL).
The training and validation of the ensemble of CNNs

is based on several pairs of CWEC and DL generated
by means of numerical block-based simulations. Several
damaged wall conditions with different dimensions and
boundary conditions are generated and considered. On
the one hand, the simulated CWEC is directly obtained
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4 PEREIRA et al.

F IGURE 2 Block-based numerical modeling of masonry walls.

from the simulated crack pattern (extracted from dam-
aged walls in equilibrium with no external horizontal
forces applied). On the other hand, the simulated DL is
obtained by reloading the damagedwall within a pushover
analysis framework, comparing the residual drift capac-
ity (after a normalization of the displacement baseline)
with respect to the undamaged wall. Accordingly, the DL
is straightforwardly related to the residual drift capacity of
the damaged wall.
Any suitable masonry block–based numerical model

can be utilized in this framework. The potential of
using numerical simulations instead of actual experiments
(Rezaie et al., 2022) to train the ML predictor, beyond
the cheaper cost that can allow the generation of a much
larger and diversified data set, consists of the possibility
to directly assess the residual displacement capacity on
each damaged wall condition, by performing a pushover
analysis on the cracked wall. Hence, this allows a straight-
forward measurement of the DL, that does not depend on
the cyclic test protocol.
To conclude, it should be highlighted that all numeri-

cal simulations are conducted off-line (a priori), as they
consist in preanalyses to generate the data set. Then, the
ensemble of CNNs is trained on the data set. Once the
ensemble of CNNs is identified and given a CWEC, a real-
time prediction of the residual drift capacity is achieved.

3 DATA GENERATION

This section describes data generation based on numerical
modeling. Data preprocessing is carried out to extract rep-
resentative features of the crack pattern (CWEC), together
with a representative feature of the seismic response of
damaged masonry walls, that is, the residual drift capac-
ity (definable in terms of DL). Such preprocessing leads to
convenient input data for the ML predictor.

3.1 Block-based numerical model

The damaging block-based modeling approach previously
developed and validated at the full-scale in D’Altri et al.
(2019) is employed to generate crack patterns. Such a
model, which is briefly described in the following, consid-
ers explicitly all the blocks of the structure as nonlinear
continuum bodies (discretized by eight-node solid finite
elements) interacting through a contact-based node-to-
surface frictional-cohesive formulation to represent the
behavior of masonry joints (Figure 2). This modeling
approach has been validated by D’Altri et al. (2019) against
large-scale cyclic tests of masonry structures for both in-
and out-of-plane responses.
The isotropic plastic-damage constitutive model devel-

oped in Lee and Fenves (1998) is assumed to govern the
mechanical response of blocks. Two independent damage
variables for tension (0 ≤ 𝑑𝑡 < 1) and compression (0 ≤

𝑑𝑐 < 1) are supposed, and softening behavior could thus
take place in tension and/or compression, and the uniax-
ial stress–strain response in tension and compression is,
respectively:

𝜎𝑡 = (1 − 𝑑𝑡)𝐸𝐵
(
𝜀𝑡 − 𝜀

𝑝
𝑡

)
, 𝜎𝑐 = (1 − 𝑑𝑐)𝐸𝐵

(
𝜀𝑐 − 𝜀

𝑝
𝑐

)
(1)

where 𝐸𝐵 is the block Young’s modulus, 𝜎𝑡 and 𝜎𝑐 are the
uniaxial tensile and compressive stresses, 𝜀𝑡 and 𝜀𝑐 are the
uniaxial tensile and compressive strains, and 𝜀𝑝𝑡 and 𝜀

𝑝
𝑐 are

the uniaxial tensile and compressive plastic strains. This
constitutive model is then characterized by a nonassocia-
tive flow rule and a multiple-hardening Drucker–Prager–
type yield surface in multiaxial stress conditions.
The block interaction is governed by a contact con-

strain enforced by the Lagrange multiplier method. A
tensile cohesive contact response (Figure 2), governed
by 𝑓𝑡 (tensile strength), 𝐾𝑡 (cohesive stiffness in normal
direction), and 𝑢𝐹 (excursion of normal displacement in
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PEREIRA et al. 5

the postpeak branch), is supposed. Analogously, a shear
cohesive-frictional contact response (Figure 2), governed
by 𝑓𝑠 (shear strength, equal to 𝑓𝑠 = 𝑐 − tan 𝜙𝜎, 𝑐 being
the shear cohesion, 𝜙 the friction angle, and 𝜎 the con-
tact stress), 𝐾𝑠 (shear stiffness given by the contributions
of cohesion 𝐾𝑐

𝑠 and friction), and 𝑣𝐹 (excursion of slip in
the softening branch), is supposed. Once reached tensile or
shear strengths, themaximum value of the contact stresses
in a contact point is given by:

𝜎 = (1 − 𝐷)𝑓𝑡, 𝜏 = (1 − 𝐷)𝑐 − tan 𝜙𝜎 (2)

where 𝜏 is the shear stress, and 0 ≤ 𝐷 ≤ 1 is the degrada-
tion scalar contact variable, which is equal to 𝐷 = 0 at the
peak of cohesion, and 𝐷 = 1 at the full degradation of the
contact point (Pereira et al., 2023).

3.2 Numerical campaign

Solid fired clay brick masonry is assumed as material for
the data generation, as it is the most representative type
of masonry for existing structures (Ghiassi et al., 2019).
Single-leaf running bond masonry is considered. The cali-
bration of themodel parameter, which has been conducted
following the calibration strategy proposed in D’Altri et al.
(2019), is shown and discussed in the Appendix, based on
the experimental tests performed in Jafari and Esposito
(2017) and Licciardello and Esposito (2019).
A total of 100 damaged wall conditions are gener-

ated by considering different combinations of wall sizes,
boundary conditions, axial load ratios (ALRs, defined
as the ratio between the actual vertical stress and
the compressive strength of the material), and external
actions, chosen to be representative of actual masonry
walls:

(1) wall size: 2×3, 3×3, 4.2×3 (𝐵 × 𝐻, in m);
(2) boundary condition: cantilever, fixed-guided (consid-

ering a rigid beam on the top surface of the wall and
allowing vertical displacements in both cases);

(3) ALR: 10%, 15%, 20%;
(4) external action: monotonic and cyclic horizontal force

(applied on the top surface of thewall), differential set-
tlement (applied vertically on a portion of the bottom
surface of the wall).

For each combination of these features, several damaged
wall conditions are extracted.
The ultimate condition of a wall is identified when the

pushover curve shows a significant base shear drop (more
than 20% of the peak shear, or a sharp drop withmore than
10% in less than 0.5 mm). The range of variation of the

TABLE 1 Range of variation of the ultimate drift computed in
the simulations for initially undamaged walls.

Wall size (𝑩 ×𝑯 in m) Ultimate drift
2×3 0.49% − 0.95%

3×3 0.43% − 0.54%

4.2×3 0.43% − 0.60%

ultimate drift computed for initially undamaged walls is
shown in Table 1 for different wall sizes.
Examples of crack patterns generated on a 3×3 wall

with 10% ALR are shown in Figure 3 (crack patterns are
extracted while no external horizontal forces are applied).
For the sake of comparison, 2×3 (Figure 4a) and 4.2×3
(Figure 4b) walls with 10% ALR (monotonic, fixed guided)
are also shown.
Examples of horizontal force-top displacement curves

for 3×3 walls with 10% ALR (cantilever) are shown in
Figure 5. It is here recalled that each damaged wall config-
uration is reloaded within a pushover analysis framework
to compute the residual displacement capacity (Figure 5).
A total of 100 damaged wall cases were generated, with

36 of 3×3 walls, 31 of 2×3 walls, and 33 of 5×3 walls, with
ALRs ranging from 10% to 20% for all cases. There are 65
pushover, 24 cyclic, and 12 settlement load cases, with at
least one case of each load for each wall size versus bound-
ary condition. For the boundary conditions, 56 cases are
cantilevered and the 44 remaining are fixed. Beyond the
100 abovementioned damaged walls, extra crack patterns
are generated (see Figure 6) and used for a posteriori ver-
ification of the method, choosing cases never seen in the
training/validation data set, in particular:

(1) 3×3wallwith small opening (monotonic, fixed-guided,
8% and 12% ALR);

(2) 3×3 wall with Flemish bond (monotonic and cyclic,
cantilever, 12% ALR);

(3) 2×2 wall with giant granite blocks, inspired by the case
study in Milani et al. (2013) and Pereira et al. (2023)
(monotonic, fixed-guided, 18% ALR). In this case, the
mechanical setting utilized in Pereira et al. (2023) for
granite masonry has been adopted.

3.3 Data preprocessing

CWCDs are extracted from the results of numerical sim-
ulations (Figure 7a), for damaged walls in equilibrium
with no external horizontal forces applied. To simplify and
consolidate the amount of data, CWCDs are conveniently
turned into discrete CWECs characterized by a represen-
tative number of discrete crack width thresholds (CWTs).
In the following, five CWTs are assumed (0.1 mm, 0.5 mm,
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6 PEREIRA et al.

F IGURE 3 Examples of crack patterns generated on a 3×3 wall with 10% axial load ratio (ALR). (a) Monotonic, cantilever (early stage).
(b) Monotonic, cantilever (later stage). (c) Monotonic, fixed-guided. (d) Settlement, cantilever. (e) Cyclic, cantilever. (f) Cyclic, fixed-guided.
Magnified horizontal displacement contour plots are used to better highlight the crack pattern.

1.0mm, 1.5mm, 2.5mm), see Figure 7b. It should be under-
lined that the minimum CWT has been adopted equal to
0.1 mm as narrower cracks are typically invisible to the
naked eye (Korswagen et al., 2019).
Each damaged wall configuration is then reloaded and

employed in a pushover analysis framework. The pushover
curve is extracted and the baseline of the top horizontal
displacement is normalized so that to begin at null dis-
placement (Figure 8). Thereby, the residual drift capacity
of the damaged wall (𝛿𝐷) is computed in the normal-
ized baseline.Hence, for each damagedwall configuration,
the DL with respect to a reference undamaged wall is
computed as:

DL =
𝛿𝑅 − 𝛿𝐷

𝛿𝑅
(3)

where 𝛿𝑅 is the drift capacity of the reference undam-
aged wall.
Accordingly, each damaged wall configuration is char-

acterized by a CWEC composed of five parameters (that
will be used as input values) and the DL that will be used
as output.

3.3.1 Data normalization

In order to keep consistent the input data independently
from the block-to-wall size ratio, a simple normalization of

the CWEC is considered here. Accordingly, the total crack
length of cracks exceeding a certain CWT is normalized
by a representative length of the wall. In particular, each
discrete value of the CWEC is multiplied by the factor

Λ =
𝑡𝑗𝑙𝑗

𝑙𝑤
(4)

𝑡𝑗 being the total number of joints of the wall, 𝑙𝑗 a rep-
resentative length of the joint (assumed here as averaged
half-length of masonry bed joints), and 𝑙𝑤 a representa-
tive length of the wall (e.g., length of the wall diagonal).
Accordingly, the i-th value of the normalized CWEC (n-
CWEC) represents a normalized total length of cracks
exceeding the i-th CWT.

4 ENSEMBLE PREDICTIVEMODEL

In this section, the CNN model architecture, the training
policy, and the prediction method using an ensemble of
models𝑚(⋅) generated using repeated 𝑘-folding cross vali-
dation with shuffling are presented. Usually, 𝑘-fold cross
validation is employed to better assess a model perfor-
mance to unseen data (James et al., 2023). This process
is here employed to generate a set of data-driven predic-
tive models that are used in conjunction at inference time.
Further, it is found that allowing partial information leak-
age from validation data via warm start of subsequent folds
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PEREIRA et al. 7

F IGURE 4 Examples of crack patterns generated on (a) 2×3
and (b) 4.2×3 walls with 10% axial load ratio (ALR; monotonic, fixed
guided). Magnified horizontal displacement contour plots are used
to better highlight the crack pattern.

F IGURE 5 Examples of horizontal force-top displacement
curves (3×3 walls with 10% axial load ratio [ALR], cantilever).

F IGURE 6 Examples of generated crack patterns used for a
posteriori verification of the method: (a) 3×3 wall with small
opening, (b) 3×3 wall with Flemish bond, and (c) 2×2 wall with
giant granite blocks. Magnified horizontal displacement contour
plots are used to better highlight the crack pattern.
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8 PEREIRA et al.

F IGURE 7 Examples of (a) crack width cumulative
distributions (CWCDs) and related (b) discrete crack width
exceedance curves (CWECs) for crack patterns generated on a 3×3
wall with 10% axial load ratio (ALR).

F IGURE 8 Examples of horizontal force-normalized top
displacement curves for (3×3 walls with 10% axial load ratio [ALR],
cantilever).

F IGURE 9 Convolutional neural network architecture.

and repetitions leads to superior performance in unseen
test data.
This section is organized as follows, first the CNN

architecture is introduced, followed by the training pol-
icy employed. Then, the method for the generation of the
ensemble is presented, together with a results discussion
to show the performance of the proposed approach.

4.1 Neural network architecture

In the proposed method, DL prediction is performed using
an ensemble of data-driven models𝑚(⋅). Each model𝑚(⋅)

takes as input a vector 𝐱𝑐𝑤 ∈ ℝ5 representing the CWEC
and outputs the expected DL. The model 𝑚(⋅) consists
of a CNN, shown in Figure 9, that applies a 1𝐷 convo-
lutional layer (Conv1D) to the input followed by batch
normalization (BatchNorm) and with a leaky rectilinear
unit (LeakyReLU) activation. The convolutional layer has
a single kernel of length 3, linear activation, and no zero
padding. The LeakyReLU is an activation function given
by

LeakyReLU(𝑥) =

{
𝑥, if 𝑥 > 0

0.3𝑥, otherwise
(5)

This is followed by a dense connection to a layer with
four neurons, followed by BatchNorm and LeakyReLU,
another dense layer of equal size, and a dense connection
to a single output yieldingDL. The use of the convolutional
architecture was motivated by the distinct gradients and
curvatures observed in the CWECs (e.g., see Figure 7b).
Instead of using traditional metrics of gradient and curva-
ture, the kernels are learned directly from the data. The
following two dense layers are used to increase model
capacity, and the number of neurons was increased until
generalization to the validation data started to drop.

4.2 Training policy

Each model 𝑚(⋅) is trained using stochastic gradient
descent (SGD) with Adam optimizer (Kingma & Ba, 2015)
to minimize a mean squared error (MSE) loss with respect
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PEREIRA et al. 9

F IGURE 10 Samples of (a) training and (b) validation loss
curves.

to the DL. Other loss functions can be used, such as the
mean absolute error (MAE), but the MSE penalizes large
errorsmore, and for this reason, it is a suitable loss function
for the proposed application. The training policy proceeds
as follows, an initial learning rate of 0.1 is set. Train-
ing proceeds until the validation loss does not improve
for 50 consecutive epochs or a maximum of 500 epochs
is achieved. That process is repeated for another three
iterations. Because the SGD uses random data batches,
repeating the process at the same learning rate raises the
opportunity of finding better local optima at that learning
rate scale. Then, the learning rate is reduced to 0.01 and the
procedure is repeated starting at the previous lowest vali-
dation loss. Finally, the learning rate is reduced to 0.001
and the procedure is repeated.

4.3 K-fold cross-validation ensemble

While over a 100 numerical simulations were performed,
from a data-drivenmodeling perspective that is a relatively
limited amount of data (e.g., modern computer vision data
sets often exceed millions of samples; Russakovsky et al.,
2015). Further, due to the presence of multiple combina-
tions of BCs, ALRs, and loading types, the assessment of
model generalization to unseen data using a single train-
ing and validation random data split is insufficient. This
is because a single random train–validation data split can
lead to better orworse generalization by chance,whichwill
bias themodel performance on unseen test data. For exam-
ple, Figure 10 shows two training and validation loss curves
resulting from two alternative data splits (in this case, there
are a total of five alternative splits of the data, the plot
shows only cases 𝑘 = 2 and 𝑘 = 5, where 𝑘 indicates the
data split case), which clearly exhibit different validation
performances (units are omitted in the plot as the RMSE
corresponds to the DL, which is a dimensionless quantity).

F IGURE 11 Diagram showing the ensemble of N random
shuffles with k-folding for prediction of drift loss.

In this paper, the use of an ensemble of models generated
by performing𝑁 repeats of 𝑘-folding cross validation with
shuffling is proposed to improve model generalization to
unseen data.
The 𝑘-folding cross validation is a traditional method to

improve the assessment of generalization performance. In
such amethod, the data are split into 𝑘 segments, with one
segment held out for validation and the remaining 𝑘 − 1

segments used for training. Then, 𝑘 models are trained,
with each model using a distinct segment for validation. A
performancemetric (e.g.,MSE or𝑅2) is used for each of the
𝑘models, and statistics of themetric, such as themean, are
used to better reflect themodel performance onunseen test
data. Since in this work the proposed CNNmodel is small,
it is feasible to store all 𝑘 models and perform inference
on new data by averaging the output of all 𝑘 models. Fur-
thermore, the 𝑘-folding process can be repeated 𝑁 times
while shuffling the data, such that the data points within
each 𝑘 segment are varied. In practice, this process creates
𝑁 ⋅ 𝑘 distinctmodels𝑚𝑖𝑗 , 𝑖, 𝑗 = 1…𝑁, 1…𝑘, where 𝑖 corre-
sponds to the number of data shuffles, and 𝑗 corresponds
to the 𝑗-th of the 𝑘 data splits for a given data shuffle, as
illustrated in Figure 11.
Then, given an unseen test data 𝐱𝑐𝑤, the predicted DL,

𝐷𝐿, from the ensemble is

𝐷𝐿 =

∑𝑁

𝑖=1

∑𝑘

𝑗=1
𝑚𝑖𝑗(𝐱𝑐𝑤)

𝑁 ⋅ 𝑘
(6)

The advantage of the ensemble approach is to minimize
the occurrence of extreme predictive errors.
Usually, 𝑘-folding is performed by training each model

from scratch, to prevent information leakage and overes-
timation of performance. However, it is possible to train
subsequent models starting from a previously found set
of weights. This can affect the estimation of model gen-
eralization to unseen data, as the preset weights contain
information about the training data, which may be used
as validation data in a subsequent fold. However, in the
present work, it was found that allowing for a small degree
of information leakage via trained weights can benefit
the generalization to unseen data. This is akin to a warm
start procedure, where a model is trained starting from an
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10 PEREIRA et al.

F IGURE 1 2 Training, validation, and testing losses for 𝑘 = 5

segments with and without warm start.

already good set of weights (Ash & Adams, 2020). Using
this approach leads to better training, validation, and test-
ing 𝑅2 as shown in Figure 12. Notice also that repeating
the 𝑘-folding with data shuffling improves performance.
For each approach (with and without warm start), the
full training procedure is repeated five times. The shaded
region corresponds to the min/max observed, and the
solid line corresponds to the mean 𝑅2. The full ensemble
construction procedure is presented in Algorithm 1.

5 RESULTS

In this section, predicted versus true DL (here, true
corresponds to the DL obtained from the numerical sim-
ulations) and 𝑅2 results are presented for training, vali-
dation, and testing using the proposed method. To better
understand the method potentialities and limitations, and
the impact of training and test data selection, four data
scenarios (DS) are considered:

1. Interpolation: The data concerning 0.15 ALR are
excluded from training and validation and used exclu-
sively for testing (about 52% of the data). Supporting
results presented in the previous section consider this
DS. The goal is to assess model performance on unseen

ALGORITHM 1 Ensemble Generation.

Require: Training and validation data
Ensure: Trained ensemble
Initialize model𝑚11

for 𝑖 = 1 to 𝑁 do
Shuffle data
Split shuffled data into 𝑘 non-overlapping segments
if ∃model weights 𝑤𝑖−1,𝑘 then
Assign 𝑤𝑖−1,𝑘 to𝑚𝑖𝑗

end if
for 𝑗 = 1 to 𝑘 do
Get 𝑘𝑡ℎ training and validation data
if ∃model weights 𝑤𝑖,𝑗−1 then
Assign 𝑤𝑖,𝑗−1 to𝑚𝑖𝑗

end if
Train model𝑚𝑖𝑗 using Algorithm 1
Get trained model weights 𝑤𝑖𝑗

end for
end for

data whose ALR falls in-between the limits of ALRs
explored during training. This scenario is better suited
for the application of ML methods as opposed to
extrapolation with respect to ALR.

2. Balanced test data: Two random samples from each
case of wall size and ALR are taken for testing (about
18% of the data), and the remaining data are used for
training and validation. The goal is to assess the perfor-
mance impact of testing on data of similarwall sizes and
ALRs but not necessarily subject to the same boundary
conditions and loading.

3. Balanced training data: Seven random samples from
each case of wall size and ALR are taken for training
and validation, with the remaining (about 37% of the
data) left for testing. The goal is to assess the test per-
formance when a balanced number of ALRs and wall
sizes are considered during training.

4. Randomized: Randomdata splits are used for training,
validation, and testing, with 20% of data left for testing.
The goal is to assess the range and average performance
of the proposed method when agnostic to the block
sizes, ALRs, and boundary and loading conditions. This
can be a challenging scenario as data imbalances and
extrapolation conditions can appear by chance.

In Figure 13, scatter plots of predicted𝐷𝐿 versus true𝐷𝐿
are presented. Bounds of 10% and 20% errors are added
to aid in the visual interpretation of the scatter plots.
Notice that since the training process involves a random
step at the formation of the 𝑘 segments, some variation
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PEREIRA et al. 11

F IGURE 13 Scatter plots of predicted versus truth for
training, validation, and test data with 𝑘 = 5 segments and 𝑁 = 10

repeats for multiple data scenarios.

can be observed on iterations of the methodology. That
aspect is discussed later in this section, scatter plots of
one sample iteration of the algorithm for the multiple DS
aforementioned are presented.
For DS1 (Figure 13a), good DL prediction is observed on

the test data, and the performance observed in the training
and validation data is coherentwith the test data. Although
not shown here for conciseness, some performance over-
estimation is observed when the validation data are too
small (e.g., less than 20% of the available data for train-
ing and validation). This is due to the higher uncertainty
associated with performance estimation on small amount
of validation data and the associated increased amount

of training data, which improves coverage of loading
scenarios.
ForDS2 (Figure 13b), excellentDLprediction is observed

on the test data. The performance observed in the train-
ing and validation data underestimates the performance
on the test data, but still with good prediction performance
on validation data. The reason for the excellent perfor-
mance here is that the wall sizes and ALRs present in
the test data have counterparts in the training data, albeit
with potentially different loading and boundary condi-
tions. This seems to facilitate prediction. The presence of
more diverse data can challenge the model capacity lead-
ing to some small degradation of training and validation
performance.
For DS3 (Figure 13c), good DL prediction is observed on

the test data. The performance is similar to DS1, which
indicates that it is possible to achieve similar performance
with less data if careful case coverage is taken into account
during the numerical experiment design. Further, it also
suggests that potential data imbalances present in DS1 do
not deteriorate the model performance.
For DS4 (Figure 13c), this iteration shows good DL pre-

diction also with performance similar to DS1, however as
will be discussed next, good performance is not guaranteed
when randomly sampling the training data.
For DS 2,3,4, the proposedmethod is repeated five times.

The goal was to assess the method repeatability. Figure 14
shows the performance in terms of 𝑅2 (computed with
respect to the true and predicted DL) for DS 2,3,4 (recall
that DS1 was already considered in Figure 12) as a function
of repeats of the𝑘-folding process. ForDS2 (Figure 14a), the
method shows high repeatability, with consistent test per-
formance across multiple iterations. For DS3 (Figure 14b),
the method shows higher variance, but with fair to good
performance across iterations, and average performance
close to 𝑅2 ≈ .75. For DS4 (Figure 14c), poor repeatability
is observed, with one iteration showing subpar test per-
formance. In this DS, occasional critical data imbalances
are observed. These imbalances can cause overfitting of
the model and poor generalization. For example, notice
that the corresponding training and validation 𝑅2 for the
anomalous sample (solid red in Figure 14c) are signifi-
cantly higher than the remaining iterations, which enables
identification of models with poor generalization. When
this anomalous iteration is removed, the mean perfor-
mance (purple dash-dot in Figure 14c) on DS4 is similar
to DS1 and DS2.
These results indicate that the proposed method is

robust under multiple DS, and that if overfitting occurs, it
is possible to identify it.
To check the method generalization, DL prediction

is also performed for walls not used in the training
data, which considers the presence of openings, different
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12 PEREIRA et al.

F IGURE 14 Training, validation, and testing performance under multiple data scenarios.

F IGURE 15 Scatter plots of predicted vs. truth for walls
configurations never seen in the training and validation data set
with 𝑘 = 5 segments and𝑁 = 10 repeats for multiple data scenarios.

masonry textures, ALRs, and block sizes, that is, cases
never seen in the training and validation data. As shown
in Figure 15, predictions are accurate, all within 10%
of error for multiple DS. Accordingly, given these pre-
liminary results, the method appears generalizable to
other masonry walls, with different geometries (e.g., pres-
ence of small openings), masonry patterns, ALRs, and
block-to-wall ratios.

It has to be pointed out that the pure shear sliding fail-
ure mode of masonry piers should be carefully treated, as
this kind of failure will plausibly never show a substantial
decay of the shear force given that friction will guarantee
a pseudo-constant response in shear and crushing will not
occur. Although a consistent definition of the ultimate drift
capacity would be not trivial for shear sliding, such failure
is very rarely encountered in postearthquake inspections,
as it characterizes walls with extremely small ALRs.
The ML predictor herein developed, once its parame-

ters are trained, allows real-time predictions, that is, it
manages to predict instantaneously the DL given a certain
CWEC. Accordingly, it can be applied to support decision
making in damaged masonry structures. For example, the
DL prediction can be straightforwardly used in equivalent
frame model–based seismic assessments, where the drift
capacity of piers is defined a priori, by simply updating
the residual drift capacity of cracked piers in numerical
simulations.

6 CONCLUSIONS

In this paper, a new approach employing an ensemble
of CNNs for the prediction of residual drift capacity in
damaged masonry walls has been developed using as
only input the crack pattern. An accurate block-based
numerical model has been employed to generatemechani-
cally consistent crack patterns induced by earthquake-like
actions and differential settlements. Although there are
still challenges to be addressed in numerical modeling of
masonry structures (e.g., imperfect boundary conditions to
represent actual walls), the idea of numerically generating
damagedwalls scenarios appears promising. Any damaged
wall has been described by a concise representative feature,
that is, a discrete CWEC, which has been paired to the DL
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PEREIRA et al. 13

with respect to the undamaged wall (evaluated within a
pushover analysis framework). Numerous pairs of CWEC
andDLhave been generated and used for training (and val-
idating) the ensemble of CNNs based on repeated 𝑘-folding
cross validation with shuffling.
TheCNN-based predictions showed good generalization

to unseen data and the framework can be easily extended
by increasing the available data via numerical simulation.
The concise representative feature adopted for the crack
pattern (i.e., the CWEC) encapsulates sufficient informa-
tion for reasonably accurate predictions over distinct and
differently damaged masonry walls, for example, for both
seismic- and settlement-induced damage. Good predic-
tions on masonry walls with features different from those
used in the training data support the generalization poten-
tial of the proposedmethodology. Accordingly, the training
data set could be straightforwardly enlarged also by using
other block-based numerical approaches (e.g., utilized in
other research groups).
The utilization of this ML predictor in conjunction

with modern automatic crack detection procedures for
masonry appears straightforward, as the CWEC is easily
and automatically computable on images and point clouds.
As a result, such methodology appears general, inex-

pensive, and able to adequately predict the DL using as
only input the CWEC, providing real-time support for
decisionmaking in damagedmasonry structures. The pro-
posed method performs damage prognosis and therefore
contributes to SHM Level IV.
Future developments might concern the enlargement

of the training data set by adding further combinations
of wall geometries, boundary conditions, and external
actions (e.g., by also considering material aging). Addi-
tionally, the same data set of damaged masonry walls
could be utilized to train predictors for the evaluation of
stress increase in blocks due to the presence of cracks.
This future development could originally support the static
monitoring of masonry and historical structures.
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APPENDIX
In this appendix, the calibration of the block-based model
developed in D’Altri et al. (2019) is conducted with respect
to the experimental campaign on solid clay brick masonry
conducted at TU Delft (Jafari and Esposito, 2017; Lic-
ciardello and Esposito, 2019), see Figure A1, using the
calibration strategy proposed in D’Altri et al. (2019). Par-
ticularly, a soft calibration is conducted, given the typ-
ical considerable variability of experimental outcomes
in masonry. Accordingly, the mechanical parameters are
tuned so that the numerical response in small-scale
tests becomes rather close to the experimental one (in
terms of stiffness, strength, and postpeak behavior), that
is, it is within the range of variability of the experi-
mental outcomes. The so-calibrated mechanical proper-
ties (Table A1) are then utilized in large-scale simula-
tions. An example of numerical–experimental comparison
of the compressive response on a small-scale masonry
wallet is shown in Figure A1a, while the comparison
of the responses of masonry triplet tests is shown in
Figure A1b.

F IGURE A1 Examples of calibration of the block-based
model against experimental tests on solid clay brick masonry: (a)
compressive response on masonry wallets and (b) shear response on
masonry triplets. Block size is equal to 0.22 m × 0.06 m × 0.10 m.
Experimental findings are adapted from Licciardello and Esposito
(2019).

TABLE A1 Model mechanical properties for solid clay brick masonry.

Contact mechanical properties
Tensile behavior Shear behavior
𝑓𝑡 (MPa) 0.12 𝑐 (MPa) 0.14
𝑢𝐹 (mm) 0.40 𝛿𝐹 (mm) 0.40
𝐾𝑡 (N∕m

3) 2.0 × 1010 𝐾𝑐
𝑠 (N∕m

3) 1.0 × 1010

Frictional elastic slip 0.08 mm 𝜙 (◦) 38.6
Block mechanical properties
𝐸𝐵 (MPa) 3000 𝜈 (/) 0.17
Density (kg∕m3) 1600 Dilation angle (◦) 10
Eccentricity (/) 0.1 𝑓𝑏0∕𝑓𝑐0 (/) 1.16
𝐾 (/) 0.67 Viscosity parameter (s) 1.0 × 10−9

Uniaxial tensile nonlinear behavior Uniaxial compressive nonlinear behavior
Stress (MPa) Inelasic strain 𝒅𝒕 (/) Stress (MPa) Inelasic strain 𝒅𝒄 (/)
4.0 0 0 12.0 0 0
0.4 0.004 0.9 12.0 0.004 0

1.2 0.012 0.9
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