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Rocking block simulation based on numerical dissipation
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Abstract In this paper, a computational approach

based on numerical dissipation is proposed to simulate

rocking blocks. A rocking block is idealized as a solid

body interacting with its foundation through a contact-

based formulation. An implicit time integration

scheme with numerical dissipation, set to optimally

treat dissipation in contact problems, is employed. The

numerical dissipation is ruled by the time step and the

rocking dissipative phenomenon at impacts is accu-

rately predicted without any damping model. A broad

numerical campaign is conducted to define a regres-

sion law in analytic form for the setting of the time

step, depending on the block size and aspect ratio, the

contact stiffness, as well as the coefficient of restitu-

tion selected. The so-obtained regression law appears

accurate and an a posteriori validation with cases not

in the training dataset confirms the effectiveness of the

approach. Finally, the comparison with available

experimental tests highlights the approach efficacy

for free rocking and harmonic loading cases (in a

deterministic sense), and for earthquake-like loading

cases (in a statistical sense). It is found that rocking

blocks with sizes of interest for structural engineering

(e.g., cultural heritage structures) can be simulated

with time steps within 10–3 7 10–1 s, so allowing

very fast computations.

Keywords Rocking � Dynamics �Masonry � Out-of-
plane collapse � Finite element method � Cultural
heritage structures

1 Introduction

In the last decades, rocking structures have been

intensely investigated, and various models to predict

the rocking motion have been developed. On the one

hand, this was motivated by the need of analyzing the

dynamic response of existing and cultural heritage

structures, e.g., masonry and dry-stone walls [1–5],

stone monuments [6–9], as well as statues [10, 11],

that typically experience damage/collapse due to

seismic events. On the other hand, rocking structures

attracted the attention of researchers as they might be

used as seismic design strategies [12], given that the

uplift of a rocking block limits the design forces acting

in the superstructure, as well as in the foundation. This

‘‘rocking isolation’’ strategy can be used on both

buildings [13] and bridges [14].

One significant issue with the seismic response of a

rocking block is the large sensitivity to its defining

features, i.e. minor changes in rocking block
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properties may result in significantly different time-

history responses. Indeed, experiments involving

dynamically excited rocking specimens are rarely

replicable, and the response is typically labeled as

chaotic [12] (i.e., nonreproducible and unpredictable).

Accordingly, a plausible approach to proceed with

model validation, instead of the classical approach of

comparing deterministically the specimen and the

model responses under a specific ground excitation,

should be based on statistical validation (as proposed

in [15]).

The most established model to predict the response

of a rocking block has been introduced by Housner

[16]. Such well-known analytical model, even though

the solution is typically obtained numerically given

the event-by-event formulation, represents the so-

called classical rocking theory, based on the hypothe-

ses of (i) rigid block and rigid foundation, (ii) two

potential contact points, (iii) no sliding, (iv) no

bouncing, and (v) energy dissipation at impacts. Based

on the classical rocking theory [16], several enhance-

ments and extensions [17–37] have been developed to

treat a wide range of rocking structures with a

multitude of different boundary conditions. However,

the hypothesis of no sliding (as well as no bouncing)

might be too strict for many actual applications, as

sliding (and bouncing) is not always prevented. For

this reason, more general analytical models account-

ing also for sliding (as well as bouncing) have been

proposed [38–48]. Nonetheless, most of these models

did not find widespread actual applications given the

complexities and limitations in the generalization of

the problem.

In this context, numerical approaches may repre-

sent an appealing choice to generalize the solution for

rocking problems, as they are able to deal with

complex geometries, boundary conditions, and

mechanical aspects (such as sliding, bouncing, 3D

effects, material nonlinearities etc.). When consider-

ing masonry and cultural heritage structures, the use of

block-based numerical models [49] also allows to

account for the actual masonry pattern as well as the

interaction with adjacent structural elements. In this

framework, the adoption of contact-based numerical

approaches appears particularly appropriate to model

rocking blocks. The explicit time integration

scheme has been typically preferred, see e.g. applica-

tions within the so-called discrete element method

(DEM) [50–56]. The main drawback of these contact-

based explicit approaches consists in the definition of a

suitable damping model. Indeed, the choice and the

characterization of a damping model (e.g., Rayleigh

damping) is challenging and non-univocal [50], as the

rocking block response is nonlinear, and a represen-

tative frequency of the rocking motion cannot be

defined univocally. Accordingly, the setting of the

damping model is mostly conducted to fit some

reference response in a phenomenological fashion,

rather than having a clear physical meaning. To bridge

the gap between classical rocking theory and numer-

ical models, in terms of energy dissipation, an

equivalent viscous damping model calibrated on

analytical solutions has been proposed in [57].

The adoption of implicit time integration schemes

to model rocking blocks has found less interest in the

scientific community, as such schemes are typically

characterized by numerical (i.e., algorithmic) dissipa-

tion [58, 59], and so the response depends on the time

step chosen [60, 61]. Indeed, very small time steps

should be adopted to reduce the amount of numerical

dissipation that would lead to inconvenient simula-

tions. However, by noticing that when dealing with

rocking motion the setting of damping models appears

as questionable as relying on numerical dissipation

only, this paper investigates the possibility of utilizing

an implicit time integration scheme with numerical

dissipation without any damping model to simulate

rocking blocks. In other words, the use of numerical

dissipation to account for the rocking energy dissipa-

tion does not appear more problematic than ad hoc

calibrated damping models, and it leads to superior

computational efficiency. The potential benefit of this

choice, beyond its simplicity, is indeed immediately

clear: if only numerical dissipation is employed, rather

large time steps can be used, so allowing very fast and

convenient computations.

In this framework, a pioneering approach was

proposed in [62] where rocking blocks were modelled

by means of beam elements with no-tension zero-

length fiber cross-sections representing the rocking

surfaces, using a corotational formulation to account

for geometric nonlinearity. In particular, the adoption

in [62] of the well-known implicit time integration

scheme with numerical dissipation proposed in [58],

also known as HHT or a-method, and quasi-rigid

rocking surfaces allowed to obtain classical rocking

solutions through numerical dissipation only, without

having a strong dependency on the adopted time step
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(which could vary between 0.0001 s and 0.001 s), yet

without directly controlling the energy dissipation.

In this paper, a rocking block is idealized as a solid

body interacting with its foundation through a contact-

based formulation. The HHT time integration

scheme is employed with an algorithmic setting to

optimally treat dissipation in contact problems [63].

The rocking dissipative phenomenon at impacts is

investigated, correlating its dependency on the time

step. A broad numerical campaign is conducted to

define a regression law in analytic form for the setting

of the time step, using as reference the classical

rocking theory. Comparisons with available experi-

mental tests are used to check the efficacy of the

regression law.

The paper is structured as follows. Section 2

discusses the modelling assumptions at the basis of

the present computational approach. Section 3 pre-

sents the strategy adopted to define a suitable setting of

the time step, as well as the obtained regression law

together with its post validation. Section 4 shows the

comparison with available experimental tests, partic-

ularly free rocking and harmonic loading cases (in a

deterministic sense) from [64], and earthquake-like

loading cases (in a statistical sense) from [15].

2 Modeling of rocking blocks

In this section, the classical approach to model a rigid

rocking block according to [16], used as reference, is

firstly briefly recalled. Then, the proposed computa-

tional approach based on numerical dissipation to

model a solid deformable body interacting with its

foundation though a contact-based formulation is

discussed together with few details about the adopted

time integration method.

2.1 Classical rocking theory

According to the classical rocking theory [16], the

symmetric rocking block (Fig. 1) is idealized as a rigid

body, characterized by the semi-diagonal R and

slenderness a ¼ atan B=Hð Þ, rocking on a rigid foun-

dation. The hypotheses of no sliding and no bouncing

yield.

The equation of motion of the rigid block in in-

plane free rocking about pivot points O and O0, and
measured using the rocking angle h (Fig. 1) is:

€h tð Þ ¼ �p2 sin asgn h tð Þð Þ � h tð Þ½ �f g ð1Þ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmgR=I0Þ
p

is the frequency parameter of

the rigid rocking block, with m representing the mass

of the block, and I0 representing the rotational moment

of inertia with respect to the pivot points. For

rectangular cuboid blocks, I0 ¼ 4=3ð ÞmR2 and, hence,

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3g=4RÞ
p

.

Impacts between the block and the foundation

occur when h ¼ 0. At any impact, the pivot point

changes and the rotation changes sign. Importantly,

impacts result in instantaneous energy losses. Accord-

ing to [16], the reduction of energy at any impact may

be described using the coefficient of restitution r,

defined as the ratio of postimpact to preimpact kinetic

energy. Furthermore, within the preceding assump-

tions, the classical rocking theory [16] provided an

estimation of the coefficient of restitution by employ-

ing the conservation of angular momentum:

r ¼ 1� mR2

I0
1� cos2að Þ

� �2

ð2Þ

It should be underlined that, although various more

recent formulations (see e.g. [31, 57, 65]) adopt as

coefficient of restitution
ffiffi

r
p

, i.e. the ratio of the pre-

and post-impact angular velocities, the original defi-

nition of ratio of kinetic energies is herein considered.

In free rocking motion, maximum rocking angles hn
and half rocking periods Tn=2 along with the number

of impacts n are defined, according to [16], as:

Fig. 1 The rocking block
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hn ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rn 1� 1� h0ð Þ2
h i

r

;

Tn=2 ¼ 2

p
tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rn 1� 1� h0ð Þ2
h i

r ð3Þ

where hn¼0 ¼ h0 is the initial rocking angle, and

Tn¼0=2 ¼ T0=2 is computed by doubling the time

elapsed until the first impact. In the following, Eqs. (1)

and (3) are referred to as analytical solutions. As a

result, the rocking behavior is nonlinear due to (i) the

change of pivot point (fromO toO0 and vice versa) and
(ii) the jump discontinuity of the angular velocity pre-

and post-impact caused by the impact energy dissipa-

tion, ruled by the coefficient of restitution. Further

insights on the nonlinear nature of the rocking

behavior can be found in [19, 66–70].

2.2 Numerical modeling

A free-standing rocking block is idealized as a solid

deformable body interacting with its foundation

(Fig. 2a) though a contact-based formulation,

characterized by a finite contact stiffness kn. The

Young’s modulus of the block is assumed so that the

overall block stiffness is much higher than the contact

stiffness, i.e., the block Young’s modulus becomes

irrelevant to the present study. Additionally, a reason-

ably high value of friction coefficient prevents sliding

to occur. In other words, the contact stiffness kn is the

only mechanical parameter which has a direct and

significant effect on the rocking behavior of the block.

The one-step implicit time integration method with

numerical dissipation developed in [58], also called

HHTmethod (as well as a-method), is considered. The

HHT method approximates the solution of an

undamped structural dynamics problem by means of

the following relationships:

M€uiþ1þ 1þaHHTð ÞKuiþ1�aHHTKui¼Fiþ1

uiþ1¼ uiþDt _uiþDt2 1=2�bHHTð Þ€uiþbHHT €uiþ1½ �
_uiþ1¼ _uiþDt 1�cHHTð Þ€uiþc€uiþ1½ �

ð4Þ

Fig. 2 Proof of concept for free rocking response. a Solid block

rocking on its foundation. Comparison of free rocking response

in terms of b normalized rocking angle time history, and c
normalized total energy time history (being E the total energy),

for a block with 2H ¼ 4:2m, 2B ¼ 0:6m, r ¼ 0:94, h0=a ¼ 0:5
(the present solution has been obtained with kn ¼ 5e ? 08 N/

m3, Dt ¼ 0:013 s)
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For i ¼ 0,1; 2; . . ., being Dt the time step, andaHHT ,
bHHT , and cHHT parameters governing the numerical

dissipation and the stability of the algorithm (the

subscript HHT has been added to avoid any confusion

with other parameters). In Eq. (4), M is the mass

matrix, K is the stiffness matrix, F is the external

forces vector, and u is the displacement vector

(superimposed dots symbolize time differentiation).

The solution is initiated through initial conditions

u0 ¼ uð0Þ; _u0 ¼ _uð0Þ; and €u0 ¼ M�1 F 0ð Þ � Ku0ð Þ.
To optimally treat numerical dissipation in the

elastodynamic contact problem, the setting of aHHT ,
bHHT , and cHHT is carried out according to [63]. In

particular, the time integration parameters are adopted

to ensure unconditional stability, second-order accu-

racy, momentum transfer in dynamic rigid impact

problems and optimal numerical dissipation, [62] as:

aHHT ¼ �
ffiffiffi

2
p

þ 1 ¼ �0:41421;

bHHT ¼ 1=2 ¼ 0:5; cHHT ¼
ffiffiffi

2
p

� 1=2 ¼ 0:91421

ð5Þ

Accordingly, once defined aHHT , bHHT , and cHHT ,
numerical dissipation is fully governed by the time

step Dt. The higher the Dt, the higher will be the

numerical dissipation.

2.3 Proof of concept

The possibility to find a certain time step Dt that

guarantees good estimates of the rocking response is

shown in Fig. 2. The free rocking response of a solid

block (Fig. 2a) with initial rocking angle h0=a ¼ 0:5

obtained by the present solution is compared, in terms

of normalized rocking angle (Fig. 2b) and normalized

total energy (Fig. 2c), with the analytical solution

given by Eq. (1) and the explicit numerical solution

from [57]. It can be observed that the free rocking

response is accurately reproduced by the present

solution and the step-like rocking dissipative phe-

nomenon at impacts is well predicted, even without

any damping model.

It should be pointed out that the solution in Fig. 2

has been obtained with a rather large time step (in this

case Dt ¼ 0:013 s), which thus allowed a very fast

simulation (416 s on a commercial laptop) given the

limited number of increments needed.

Further features of rocking response of the present

solution shown in Fig. 2 can be gathered by observing

the phase portraits in Fig. 3. Indeed, the phase portraits

show an overall good agreement between the analyt-

ical and the present solutions (see Fig. 3, left). In

particular, it appears worth to highlight the response

around impacts (see, e.g., the first impact in Fig. 3, top

right). On the one hand, the analytical solution shows a

sharp jump of the angular velocity at impact, fully

governed by the coefficient of restitution. On the other

hand, the present solution shows a smoother response

at impacts, given the presence of a deformable contact

interface. Indeed, the contact pressure distribution (see

Fig. 3, bottom right) at initial condition (A) starts to

sensibly change at the instant (B), i.e., the instant in

which analytical and numerical solutions tend to drift

apart. The first impact happens between (C) and (D),

where in both cases the contact pressure is rather

distributed on a considerable portion of the contact

interface, with the maximum contact pressure

observed in opposite corners. From the instant

(E) the analytical and numerical solutions tend to

overlap again. Although globally in agreement, the

numerical solution represents the impact in a smoother

way than the analytical one, the latter based on the

hypothesis of only two potential contact points.

The effect of the time step on the present solution is

shown in Fig. 4 where the previously selected time

step Dt ¼ 0:013 s and the analytical solution are

compared with different time steps, i.e. Dt ¼ 0:026 s

and Dt ¼ 0:007 s. As it can be noted, the time step has

a direct effect on the energy dissipation, leading to

normalized rocking angle time histories sensibly

different (Fig. 4a). This effect is clearly shown in

Fig. 4b, where the normalized total energy time

histories show larger energy drops at impacts for

larger time steps. Interestingly, the half rocking period

versus normalized rocking angle diagram for subse-

quent impacts shown in Fig. 4c highlights that the

present modelling strategy is able to accurately

represent the nonlinear period-to-amplitude relation-

ship as in Eq. (3), independently from the time step

utilized. Indeed, the time step only rules the energy

losses at impacts and therefore the distance between

the points in the period-to-amplitude diagram. Con-

sequently, the three cases considered in Fig. 4c lay on

the same curve. As in the classical rocking theory the

distance between the points in the period-to-amplitude

diagram is governed by the coefficient of restitution in

Eq. (2), it appears that the time step could be tuned to

guarantee the desired energy dissipation at impacts.
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The free rocking response of the same block for

different values of initial amplitude (h0=a) with the

sameDt is compared with the analytical solution given

by Eq. (3) in Fig. 5, in terms of normalized rocking

angles (Fig. 5a) and half rocking periods (Fig. 5b),

along with the number of impacts. As it can be

observed, the problem appears amplitude independent,

i.e. the same Dt can be utilized independently of the

rocking angle. This feature appears particularly

appealing, and guarantees a reasonable generalization

of the present computational approach.

As a result, the surgical use of the numerical

dissipation of the time integration scheme allows the

modelling of energy dissipation at impacts in a

phenomenological manner, allowing fast numerical

simulations. In other words, the proposed modelling

strategy permits to account for the desired energy

dissipation while using the largest possible time step.

3 Setting of the time step

In this section, a strategy for the setting of the time step

Dt to guarantee good estimates of the rocking response

based on an extensive numerical campaign and a

multivariable nonlinear regression is discussed. The

coefficient of restitution r is here assumed as an

independent parameter [57]. The choice to keep r

independent allows the employment of any experi-

mentally measured coefficient of restitution (e.g.

[33, 65, 71]) or theoretically improved model (e.g.

[47, 72–74]) to be adopted, which might differ from

the one in Eq. (2) [33, 64, 65].

Furthermore, it has been found from preliminary

analyses that the setting of the time step Dt is

influenced, beyond the contact stiffness kn, as dis-

cussed in Section 2.2, and the coefficient of restitution

r [57], by the size and the aspect ratio of the block, i.e.

by R and H=B, respectively. Accordingly, the setting

of the time step might be reasonably represented,

Fig. 3 Phase portrait for the case shown in Fig. 2. Comparison

between the analytical and the present solutions (left).

Magnified phase portrait at the first impact (top right). Contact

pressure contour plots, from red (maximum contact pressure) to

blue (no contact), at subsequent instants
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similarly to what utilized in [57] for an akin problem,

by the following simple function:

Dt ¼ A1 R
H

B

� �A2

kA3
n ln rð Þ ð6Þ

where A1, A2, and A3 are coefficient to be determined.

It is here highlighted that such function will provide

Dt ¼ 0 for r ¼ 1. This extreme case is out of interest

for the present study as r\1 for all real cases. A

suitable strategy for the identification of A1, A2, and A3

is discussed in the following.

Fig. 4 Effect of the time step on the present solution based on

numerical dissipation (see Fig. 2 for the settings). Comparison

of the present solution (Dt ¼ 0:013 s) with two other time steps

(Dt ¼ 0:026 s and Dt ¼ 0:007 s) in terms of a normalized

rocking angle time history, b normalized total energy time

history, and c half rocking period versus normalized rocking

angle diagram for subsequent impacts

Fig. 5 Free rocking response for different values of initial

amplitude (h0=a) with the same Dt, in terms of a normalized

rocking angles and b half rocking periods, along with the

number of impacts. Solid lines represent the analytical solution,

while hollow circles represent numerical solutions
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3.1 Numerical campaign

An extensive numerical campaign is here carried out

to estimate the coefficients A1, A2, and A3 in Eq. (6). In

total, 10 different block geometries with 3 different

aspect ratios are considered, as specified in Table 1.

Such geometries are chosen to have a reasonable

replication of real rocking structures (namely cultural

heritage structures). For each block geometry, 4

different values of kn are considered, i.e. 2.5e ? 08,

5e ? 08, 10e ? 08, and 25e ? 08 N/m3 (for later

convenience labeled as k2.5, k5, k10, and k25,

respectively), adopted in a reasonable range according

to [57, 75]. Finally, for each case, 40 values of Dt are
considered within the range of 0.001 s, 0.002 s, ….,

0.040 s.

Accordingly, the numerical campaign here dis-

cussed is composed of 1600 numerical simulations of

free rocking. Given the amplitude independence

shown in Fig. 5, all these simulations have been

conducted by adopting h0=a ¼ 0:5. According to

[64, 76], a material density equal to 2600 kg/m3 has

been here adopted for the blocks, while the density

variability for common stone/masonry construction

materials is consider negligible for the calibration

purposes of this work. In all cases, the free rocking

response is analysed for 30 s, or the minimum time

needed to reach the maximum rocking angle of a cycle

equal to 0:05h0=a if greater than 30 s.

To visualize the various blocks geometries consid-

ered, their proportions are highlighted in Fig. 6,

organized with the same layout of Table 1.

3.2 Regression for the setting of the time step

The comparison against the analytical solution in

Eq. (3) is performed in terms of rocking angle and half

rocking period, for a significant number of impacts N,

which is here identified as the number of impacts

needed to reach a rocking angle lower than 0:05h0=a.
An example of comparison between analytical and

numerical solutions is shown in Fig. 7, in terms of

normalized rocking angle (Fig. 7a) and half rocking

period (Fig. 7b), along with the number of impacts for

a certain r and a certain Dt.
An error measurement between analytical and

numerical solutions is here introduced. Firstly, the

root-mean-square error of the rocking angle normal-

ized on the initial angle (eh=a), and of the half rocking

periods normalized on the initial period (eT=2) is

computed, for a significant number of impacts N, as:

eh ¼
1

bh0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

n¼0

bhn � ehn
�

�

�

�

�

�

2

v

u

u

t ;

eT ¼ 1

bT 0=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

n¼0

bT n=2� eT n=2
�

�

�

�

�

�

2

v

u

u

t

ð7Þ

where the symbol �̂ denotes values obtained through

the analytical solution, and the symbol ~� denotes

values obtained through the numerical solution.

Table 1 Blocks geometries employed in the numerical

campaign

Block label 2H [m] 2B [m] R [m] H=B [–]

HB4_R0.62 1.2 0.3 0.62 4

HB4_R1.24 2.4 0.6 1.24 4

HB4_R2.48 4.8 1.2 2.48 4

HB4_R3.71 7.2 2.8 3.71 4

HB7_R1.06 2.1 0.3 1.06 7

HB7_R2.12 4.2 0.6 2.12 7

HB7_R4.24 8.4 1.2 4.24 7

HB10_R1.51 3.0 0.3 1.51 10

HB10_R3.02 6.0 0.6 3.02 10

HB10_R6.04 12.0 1.2 6.04 10

Fig. 6 Blocks geometry proportions used in the numerical

campaign. For actual sizes, refer to Table 1

123

A. M. D’Altri et al.



Secondly, these two error measures are combined into

a unique global measurement of the relative error eG,

defined as:

eG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2h þ e2T

q

ð8Þ

This global measurement of the relative error eG is

here used within a sort of optimization problem, where

the optimal Dt is selected as the case with the lowest

eG, aimed at investigating the optimal Dt to be used in
numerical simulations given the block geometry, r,

and kn. Accordingly, eG is computed for each of the 40

considered Dts, for each block listed in Table 1, for

each value of contact stiffness kn, and for coefficients

of restitution r varying within the range 0.80, 0.81,…,

0.99.

Examples of distribution of eG along with the

considered time steps are shown in Fig. 8, where the

error trends between two different values of coeffi-

cient of restitution (a lower value 0.88, and a higher

value 0.95) are compared. As it can be noted, the error

eG reaches small values for a range of Dts. In

particular, it is observed that lower values of r (e.g.,

0.88) show smoother trends of eG, i.e., a wider range of

Dt is characterized by small errors, while higher values

of r (e.g., 0.95) show steeper trends of eG, i.e., a

narrower range of Dt is characterized by small errors.

By way of example, with reference to Fig. 8, an error

eG � 10% is obtained with 0:10 s�Dt� 0:17 s for

r ¼ 0:95, while with 0:26 s�Dt� 0:40 s for r ¼ 0:95

(considering also that values of Dt[ 0:40 s have not

been here considered). Accordingly, the adoption of a

Dt in a neighborhood of the optimal Dt would still

guarantee accurate results. This is particularly true for

lower values of coefficient of restitution, i.e. for values

of r expected in real historical structures with, e.g.,

mortar joints and/or defects.

Moreover, it should be pointed out that the present

approach is based on the HHT method and the

convergence within each increment is not guaranteed.

Indeed, for highly nonlinear problems (e.g. damage

constitutive laws, contact cohesion, etc.) convergence

may not be found within a time increment. This might

be overcome by reducing the time increment (only for

the non-converged increment, e.g., by 50%) to obtain a

solution. This aspect may affect locally (in time) the

dissipative properties of the solution, and the analysis

report should be checked to judge the quality of the

response. In any case, in all the simulations considered

in this paper, non-converged increments have not been

recorded.

Fig. 7 Example of comparison between analytical and numerical solutions, in terms of a normalized rocking angle and b half rocking

period, along with the number of impacts, for r = 0.89 and Dt=0.009 s (case HB4_R0.62_k2.5)

Fig. 8 Distribution of eG along with the considered time steps:

examples of a lower value (r ¼ 0:88) and a higher value

(r ¼ 0:95) of coefficient of restitution (case HB7_R2.12_k2.5)

123

Rocking block simulation based on numerical dissipation



In the following, the optimal Dt has been chosen as
the one with the minimum value of eG (anyway,

considered only when eG � 7% to exclude the extreme

cases). In the following, the so-computed optimal Dts
are referred to as ‘‘measured optimal Dt’’.

A multivariable nonlinear regression analysis is

then performed using the results of the numerical

campaign and, in particular, the measured optimal Dt.
As a result, the coefficients of Eq. (6) have been

determined, and the resulting analytic formula for the

setting of the time step (in the following, referred to as

‘‘estimated optimal Dt’’), with a coefficient of deter-

mination R2 ¼ 0:970, is:

Dt ¼ �2:238 R
H

B

� �0:629

k�0:205
n ln rð Þ ð9Þ

with Dt in s, R in m, and kn in N/m
3 (being H=B and r

dimensionless). It should be pointed out that R and

H=B are raised to the same power as, after an initial

investigation, it has been found that even if two

different power parameters were supposed they would

practically assume the same value during the multi-

variable nonlinear regression. Additionally, for rect-

angular cuboid blocks, Eq. (9) can be also written in

terms of frequency parameter p and slenderness a as:

Dt ¼ �7:851
cota
p2

� �0:629

k�0:205
n ln rð Þ ð10Þ

with Dt in s, p in Hz, a in rad, and kn in N/m
3 (being r

dimensionless). The results of the multivariable non-

linear regression analysis are shown in Fig. 9. In

particular, the estimated versus measured optimal Dt
plot is shown in Fig. 9a, where an overall good

agreement between estimated and measured optimal

Dt can be observed (as also confirmed by the rather

high coefficient of determination). This agreement is

further highlighted by the comparison between esti-

mated and measured time steps along with r by

varying the block size, i.e. R (Fig. 9b), the block

aspect ratio, i.e. H=B (Fig. 9c), and the contact

stiffness, i.e. kn (Fig. 9d).

Interestingly, it is found that by increasing the block

size R for a fixed r, also the optimal Dt increases (as it
could be deduced by the coefficients in Eq. (9) and in

Fig. 9b). This aspect is particularly appealing for real

case applications, such as rocking of monuments and

cultural heritage structures, as it allows faster dynamic

simulations for larger structures.

3.3 Post validation

The validation of the regression function in Eq. (9) is

conducted a posteriori with cases not included in the

training set by adopting the blocks geometry in

Table 2 with 3 different values of kn, i.e. 4e ? 08,

7e ? 08, and 12e ? 08 N/m3 (for convenience,

labeled as k4, k7, and k12, respectively). It is here

highlighted that such cases represent intermediate

cases within the range of parameters investigated.

The comparison of the predictions of Eq. (9) with

the numerical results obtained with the blocks in

Table 2 is shown in Fig. 10. As it can be seen in

Fig. 10a, Eq. (9) well predicts the optimal Dt for cases
not in the training set, as also confirmed by the

coefficient of determination R2 ¼ 0:980. This good

prediction is also highlighted by the comparison

between estimated and measured time steps along

with r for k4 (Fig. 10b), k7 (Fig. 10c), and k12

(Fig. 10d). Accordingly, the analytic formula for the

setting of the time step in Eq. (9) appears to be robust,

accurate, and reliable. In the following, it is thus used

to reproduce experiments.

4 Comparison with experimental tests

In this section, the outcomes of the experimental

campaigns in [15, 64] are used to compare the results

of the present computational approach. Particularly,

free rocking and harmonic loading cases are treated in

a deterministic sense [64], while earthquake-like

loading cases are treated in a statistical sense (accord-

ing to [15]). For each case, the time step Dt for the
present computational approach is adopted according

to Eq. (9). In the following, the Dt adopted is

symbolized in the graphs as ‘‘t’’ followed by the digits

after the decimal (e.g. Dt ¼ 0:0123 s is concisely

depicted as ‘‘t0123’’).

4.1 Experimental campaign by Peña et al. (2008)

In this section, the outcomes of the experimental

campaign discussed in [64] are used as reference. In

particular, three specimens are here considered, see

Table 3. It is worth highlighting that the dimensions of

these specimens are considerably smaller than the

range of block dimensions adopted in the numerical
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campaign aimed at the setting of the time step

(Table 1). Three values of contact stiffness, i.e. k2.5,

k5, and k10, are considered in the numerical solutions,

while the coefficients of restitution provided in [64]

are utilized for the analytical solutions and as input for

Eq. (9).

The results comparison for Specimen 1 in free

rocking is shown in Fig. 11, in terms of normalized

rocking angle time history (Fig. 11a), normalized

rocking angle (Fig. 11b) and half rocking period

(Fig. 11c) along with the number of impacts. An

overall good agreement between numerical and

experimental results is observed, both following the

analytical solution. All the three considered values of

contact stiffness show consistent results, although the

case k5 shows a small difference especially in the

period (Fig. 11a). Anyway, it should be pointed out

that the case k5 is still in good agreement with the

analytical rocking period (Fig. 11c).

The comparison of Specimen 1 with harmonic

excitation is shown in Fig. 12, in terms of normalized

rocking angle time histories. The three considered

values of contact stiffness show very similar results,

with peak amplitudes always slightly smaller than the

experimental result. It is here worth to mention that a

similar trend was also observed in [57]. Nevertheless,

the free rocking behavior (i.e., after 20 s) is accurately

predicted by all cases.

The comparison of the results for Specimen 2 are

shown in Figs. 13 and 14 for free rocking and

harmonic excitation, respectively. Free rocking time

histories are more dispersed than the previous spec-

imen (Fig. 13a), although the rocking angle and period

decay along with the number of impacts is consistent

with the analytical solution (Fig. 13b–c). Indeed,

small differences between experimental results and

the analytical solution can be noted for both rocking

angle (Fig. 13b) and rocking period (Fig. 13c). It is

worth noting that numerical results are anyway

Fig. 9 Results of the

multivariable nonlinear

regression analysis. a
Estimated versus measured

optimal time step plot

(coefficient of determination

R2 ¼ 0:970). Comparison of

estimated (solid lines)

versus measured (hollow

circles) time steps along

with r by varying b the block

size, i.e. R, c the block

aspect ratio, i.e. H=B, as
well as slightly the block

size R, and d the contact

stiffness, i.e. kn

Table 2 Blocks geometry for post validation

Block label 2H [m] 2B [m] R [m] H=B [–]

HB6_R0.91 1.8 0.3 0.91 6

HB8.5_R2.57 5.1 0.6 2.57 8.5
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included in between this range of variability. Note that

numerical time histories have been shifted towards left

to agree with the initial rocking period measured in the

experiment, which is shorter than the analytical

prediction. The harmonic excitation response com-

parison (Fig. 14) highlights an overall good agreement

for all the three considered cases, also for the free

rocking behavior (i.e., after 10 s).

The results comparison for Specimen 3 free rocking

is shown in Fig. 15. The numerical time histories of

the 3 cases are consistent between each other

(Fig. 15a) and show a rocking angle decay close to

the experimental one. However, the rocking periods

(except for the initial one) appear to be significantly

different between experimental and numerical. A

similar shift in the rocking periods was also observed

in [57]. By looking at the rocking angle (Fig. 15b) and

period (Fig. 15c) along with the number of impacts, is

it possible to note that, on the one hand, an overall

good agreement of the rocking angle (Fig. 15b) is

observed between experimental, analytical, and

numerical results, while, on the other hand, numerical

results fit pretty well the analytical solution for half

rocking periods, being the experimental periods

systematically lower than the other solutions. This

again shows the good consistency of the present

Fig. 10 Results of the a

posteriori validation. a
Estimated versus measured

optimal time step plot

(coefficient of determination

R2 ¼ 0:980). Comparison of

estimated (solid lines)

versus measured (hollow

circles) time steps along

with r for b kn ¼4e ? 08 N/

m3, c kn ¼7e ? 08 N/m3,

and d kn ¼12e ? 08 N/m3

Table 3 Details of the specimens considered, from [64]

Specimen 2H [m] 2B [m] H=B Test cases

1 1.0 0.25 4.0 Free rocking ? harmonic sinusoidal excitation with frequency 3.3 Hz,

amplitude 6 mm, and duration 20 s

2 1.0 0.17 5.9 Free rocking ? harmonic sinusoidal excitation with frequency 5.0 Hz,

amplitude 5 mm, and duration 10 s

3 1.0 0.12 8.3 Free rocking ? artificial ground motion n. 18, load factor: 0.5,

see [64] for more details
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computational approach with the reference analytical

solution.

The results comparison for Specimen 3 subjected to

an artificial ground motion are shown in Fig. 16. For

this test, only the case k5 has been considered, which is

characterized by an optimal time step Dt ¼ 0:0032 s

(t0032). In such experimental test, the specimen

collapses. This outcome is also obtained with the

reference numerical solution (t0032), although col-

lapse is reached few seconds before with respect to the

experiment and the numerical normalized rocking

angle time history differs significantly from the

experiment. To check the sensitivity of the time step

in the collapse response of this specimen, time steps

equal to 0.0020, 0.0025, 0.0030, 0.0035 s are also

shown in Fig. 16 for the sake comparison (with k5 in

each scenario). As it can be noticed, collapse is

obtained with t0020, t0030, and t0032, while no

collapse is observed for t0025 and t0035. Additionally,

a large variability of numerical rocking angle time

histories is observed, although the adopted time steps

are pretty similar. Accordingly, no clear trend can be

deduced from Fig. 16, as the response appears chaotic.

In this regard, the rocking response to earthquake-like

ground motions is discussed in a statistical sense in the

next subsection, according to [15].

4.2 Experimental campaign by Bachmann et al.

(2018)

In this section, the experimental campaign discussed

in [15] is considered and compared (Fig. 17) with the

computational approach here proposed. Firstly, an

equivalent cuboid solid block

(2H ¼ 0:609m; 2B ¼ 0:09135m) is deduced from

the value of frequency parameter p identified exper-

imentally (4.8883 Hz) and tana ¼ 0:15 [15]. In par-

ticular, an equivalent R is obtained from p, considering

a rectangular cuboid block, and B and H are then

determined according to a. By considering the coef-

ficient of restitution determined experimentally (i.e.,

0.9532), and the one coming from the classical rocking

theory [16] (i.e., 0.9465), two optimal time steps, i.e.

t00278 and t00319, respectively, are set according to

Eq. (9), by considering a contact stiffness k5.

The comparison between the experimental, analyt-

ical, and numerical results for a free rocking test is

shown in Fig. 17a in terms of normalized rocking

angle time history, and in Fig. 17b–c in terms of

normalized rocking angle and half rocking period,

respectively, along with the number of impacts.

Although the need of resorting to an equivalent cuboid

solid block, numerical results appear in a good

agreement with the experimental/analytical ones, for

both time steps considered, with less accuracy in the

last part of the free rocking response (characterized by

Fig. 11 Comparison with the experimental tests by Peña et al. [64] for Specimen 1, free rocking. a Normalized rocking angle time

history. b Normalized rocking angle and c half rocking period along with the number of impacts
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small rocking angles). Considering that also in this

case the equivalent block dimensions are significantly

smaller than the range of dimensions adopted in the

numerical campaign for the setting of the time step

(Table 1), such results are promising.

The ‘‘Case Lefkada 2H = 10 m’’ described in [15]

has been considered here (as it presents a full range of

normalized rocking angles, including also collapses).

This case conceives the application of 100 different

artificial ground motions, generated by a stochastic

model to match the physical characteristics of the 2003

Lefkada earthquake, subsequently scaled in time to

indirectly increase the dimensions of the specimen.

The actual accelerograms recorded on the shaking

table [15] have been used as input in the numerical

simulations. The results of these simulations are

shown and compared with experimental and analytical

results in Fig. 17d in terms of cumulative distribution

functions of the maximum normalized rocking angle

(Fðhmax=aÞ) for the 100 tests. In Fig. 17d, adapted

from [15], the 90% and 95% nonparametric confi-

dence intervals (CI) are also reported for the exper-

imental cumulative distribution function (the

interested reader is referred to [15] for more details).

As it can be noted, the cumulative distribution

functions obtained numerically with t00278 and

t00319 fit very well the experimental/analytical ones,

being also included within the aforementioned CIs.

Three phase portraits for conditions far from collapse

(Signal 1, with hmax=a ¼ 0:24), near to collapse

(Signal 85, with hmax=a ¼ 0:84), and collapse (Signal

66) are shown in Fig. 18, together with the rhomboidal

separatrix [70] (red dotted lines), delimitating

stable paths of rocking motion (being the maximum

angular velocity evaluated as 2psina=2). In particular,
by comparing the phase portraits of Signal 85 and

Fig. 12 Comparison with the experimental tests by Peña et al.

(2008) [64] for Specimen 1, harmonic loading. Normalized

rocking angle time histories

Fig. 13 Comparison with the experimental tests by Peña et al. (2008) [64] for Specimen 2, free rocking. a Normalized rocking angle

time history. b Normalized rocking angle and c half rocking period along with the number of impacts
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Signal 66, it is further highlighted the randomness

between collapse and no collapse conditions, which

strongly depends on the signal and the phase between

current rocking angle and the signal.

As a counterexample, the numerical results with

time steps very far from the optimal one (i.e., t03190,

which is 10 times greater than the highest mentioned

before, and t00032, which is 10 times smaller) show

cumulative distribution functions (Fig. 17d)

considerably far from the others. Indeed, the case

t03190 appears completely outside from the consid-

ered CIs, while the case t00032 results on the CIs

frontier for most of the curve and in the other side of

the envelope with respect to the t03190 case. This

outcome highlights the efficacy of the present

approach in predicting the rocking response subjected

to ground motions in a statistical sense, and the

proposed setting of the time step appears robust and

general.

5 Conclusions

In this paper, the possibility of utilizing an implicit

time integration scheme with numerical dissipation

and without any damping model to simulate rocking

blocks has been investigated. According to the present

Fig. 14 Comparison with the experimental tests by Peña et al.

(2008) [64] for Specimen 2, harmonic loading. Normalized

rocking angle time histories

Fig. 15 Comparison with the experimental tests by Peña et al. (2008) [64] for Specimen 3, free rocking. a Normalized rocking angle

time history. b Normalized rocking angle and c half rocking period along with the number of impacts

Fig. 16 Comparison with the experimental tests by Peña et al.

(2008) [64] for Specimen 3, earthquake-like loading. Normal-

ized rocking angle time histories
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computational approach, a rocking block has been

idealized as a solid body interacting with its founda-

tion through a contact-based formulation. The well-

known HHT method, set to optimally treat dissipation

in contact problems, has been employed, being the

numerical dissipation governed by the time step. The

rocking dissipative phenomenon at impacts appeared

to be accurately predicted by the proposed computa-

tional approach without the use of any damping

model.

A broad numerical campaign has been conducted to

define a regression law in analytic form for the setting

of the optimal time step. Such law has been found to be

dependent on the block size and aspect ratio, the

contact stiffness, as well as the coefficient of restitu-

tion selected. The so-obtained regression law appeared

accurate and an a posteriori validation with cases not

in the training dataset confirmed the effectiveness and

the robustness of the approach. Interestingly, it has

been found that by increasing the block size also the

optimal time step increases (so allowing fast dynamic

Fig. 17 Comparison with the experimental tests by Bachmann

et al. [15]. a Free rocking normalized rocking angle time history,

adapted from [15]. b Normalized rocking angle and c half

rocking period along with the number of impacts. d Earthquake-

like input, Case Lefkada 2H = 10 m, cumulative distribution

functions of the maximum normalized rocking angle for 100

tests (adapted from [15])
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simulations even for large-scale structures). In partic-

ular, it has been found that rocking blocks with sizes of

interest for structural engineering (namely cultural

heritage structures) can be simulated with time steps

within 10–3 7 10–1 s, so allowing very fast

computations.

Finally, the comparison with available experimen-

tal tests highlighted the efficacy of the present

computational approach for free rocking and harmonic

loading cases (in a deterministic sense), and for

earthquake-like loading cases (in a statistical sense,

i.e., in terms of cumulative distribution functions).

Future developments will concern the extension of

the present computational approach to multi-block

rocking structures, e.g., by exploiting the concept of

dynamically equivalent rocking structures [23] to set

the time step in a straightforward way.
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