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QoE and Cost-Aware Resource and Interference
Management in Aerial-Terrestrial Networks for

Vehicular Applications
Danila Ferretti, Silvia Mignardi, Riccardo Marini, Roberto Verdone, Chiara Buratti

Abstract—In this paper, we address the deployment of Un-
manned Aerial Vehicles (UAVs) as Unmanned Aerial Base Sta-
tions (UABSs) which cooperate with Macro Base Stations (MBSs)
in an urban environment to serve vehicles, denoted as Ground
User Equipments (GUEs), implementing vehicle-to-everything
(V2X) services. As vehicles perform extended sensing, exchanging
data with nearby GUEs through UAVs and MBSs links, we
propose an Integer Linear Programming (ILP) model that jointly
optimizes radio resources allocation and beamforming, while
accounting for vehicular application requirements, backhaul
capacity limits and interference between GUE-UABS and GUE-
MBS links. The model allows also to find a trade-off between
benefits and cost of UABSs activation. Two system architectures
are considered: a distributed model, where MBSs independently
run the Radio Resource Management (RRM) algorithm sharing
information with each other, and a centralized model, where
MBSs send information to the network core, where the op-
timization algorithm runs. The study investigates interference
through two resource allocation approaches, considering splitting
and sharing of resources among UABSs and MBSs. Numerical
evaluations demonstrate the effectiveness of using UABSs to
improve the Quality of Experience (QoE) of GUEs. We also
compare the two architectures, considering both resource pool
assignments, and highlighting the impact of varying UABSs
parameters and activation costs.

Index Terms—UAV, 5G, Joint RRM, Uplink Interference,
Beamforming, Vehicular Wireless Networks.

I. INTRODUCTION

THE rising and relevance of Unmanned Aerial Vehicles
(UAVs) in civil applications, like delivery, video moni-

toring, photogrammetry and others, lead to increased use of
professional drones even in urban environments. With the new
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technology advancements, professional UAVs will be safer,
will carry heavier payloads, and will last for a longer flight
time. For these reasons, we can predict a huge increase in the
use of professional UAVs in urban environments. In addition,
while UAVs fly over a city to perform their primary mission
(such as monitoring via on-board cameras), we envision they
can also carry small Base Station (BS) equipment so that they
can be activated as Unmanned Aerial BSs (UABSs) to provide
wireless communication services when needed. In such cases,
UABSs will support the radio terrestrial infrastructure to serve
ground users seeking a network connection.

In this work we consider a scenario where terrestrial Macro
BSs (MBSs) and multiple UAVs, following a predefined path,
are deployed in an urban scenario, to serve vehicles moving in
the area, hereafter denoted as ground user equipments (GUEs).
UAVs can activate the UABSs on board to help the terrestrial
network when needed. Indeed, we assume the activation of the
UABS has a given cost to be accounted for, making convenient
the identification of the best time when the activation should be
performed. Vehicles perform an extended sensing application,
according to which they need to exchange huge amounts of
data with other vehicles nearby, either via a MBS or a UABS.
Through sensors mounted onboard, each vehicle, for a given
amount of time, gathers data about its surroundings to be
sent in uplink, then the network will process the data and
send it back to vehicles. In the following we will focus on
the uplink traffic and we will denote as demand the amount
of data to be transmitted by each GUEs. In particular, the
proposed model aims at maximizing the Quality of Experience
(QoE) of users, which are able to upload their demand for a
continuous amount of time. By considering the scenario and
application described above, we propose an Integer Linear
Program (ILP) that jointly addresses vehicular applications’
requirements, UABS backhaul capacity and radio resource
management (RRM), trying to minimize interference between
GUE-UABS and GUE-MBS links. The RRM is performed
based on beamforming at the UABSs and GUEs sides so
that beam activation is optimized jointly with time-frequency
resource allocation. In addition, the model allows to trade-off
between the benefits of activating UABSs and the cost of such
activation. The analysis has been conducted by considering
two possible system architectures: i) a distributed model,
where MBSs run the RRM algorithm separately, sharing envi-
ronment information with each other and managing signalling
with a subset of UABSs; ii) a centralized model, where MBSs
send their information to the network core, which is in charge
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of running the RRM algorithm. Furthermore, we investigate
the impact of interference by analyzing two different resource
set allocations: resource split and resource sharing. In the
former, two BS will interfere with each other only if they are
both terrestrial or both aerial since all MBSs exploit the same
pool of resource units (RUs) (the same applies to UABSs),
and an orthogonal one with UABSs, whereas in the latter
MBSs and UABSs share the entire resource pool, and thus,
the interference must always be taken into account. Numerical
evaluations show how the adaptive behaviour of UAVs helps
the terrestrial infrastructure to improve the performance, by
comparing the two architectures considered (distributed and
centralized), considering both split and shared resource pool
assignment, with a benchmark case where no UABSs are
deployed in the scenario. We also show how changing UABS-
related parameters, such as its footprint, the grid of beams
or the cost of the UABSs activation, impact the results,
investigating the consequent trade-offs.

The rest of this paper is organized as follows. First, Sec-
tion II introduces the literature state of the art. The network
model is described in Section III, including the reference
scenario and application requirements, the two alternative sys-
tem architectures and the UAVs trajectory. The RRM problem
formulation and implementation for the different architectures
follow in Section IV and Section V, respectively. Numerical
results are discussed in Section VI and Section VII concludes
the paper.

II. LITERATURE OVERVIEW

The application of UAVs in mobile networks has been
extensively investigated in the recent scientific literature. One
of the widely explored topics is RRM when UAVs support the
terrestrial network and very often this topic is jointly analyzed
with other aspects, such as beamforming, backhaul capacity
limits, etc. Table I classifies a sample of recent papers, report-
ing whether they discuss or account for the following aspects:
multi-UAVs scenario, interference management, beamforming,
backhaul and QoE.

Authors in [1] investigate spectrum efficiency and optimize
served users to separate the optimization problem into two sub-
problems, related to user association and optimal placement.
Authors in [2] propose two heuristic and scalable solutions for
resource-aware UAV flight planning. Among studies that con-
sider interference but not beamforming, [3] proposes a hybrid
algorithm to determine optimal UAV placement in a traffic
offloading scenario, aiming to maximize system capacity. In
[4] and [5], authors focus on maximizing energy efficiency
through power allocation optimization. Furthermore, [6] ad-
dresses the optimal 3D-trajectory design and UAV resource
allocation. However, these RRM problems neglect the opti-
mization of backhaul connections, which are crucial for UAV-
aided architectures. [7]–[10] investigate multi-UAV scenarios:
in [7], UAVs deliver critical data in vehicular networks during
emergencies; [8] addresses UAV deployment and resource
allocation; [9] analyzes user association and caching, while
[10] focuses on network throughput with RRM and backhaul.
However, these studies do not consider beamforming and the
challenges associated with unpredictable user movement. In

[11], authors explore the same topic as [7] but focus on single-
UAV applications. [12] and [13] analyze energy consumption
as a cost metric, while [13] specifically addresses jamming
policies to maximize energy efficiency. However, these studies
do not prioritize investigating end users’ QoE. In our work,
we define user satisfaction based on consecutive time slots
service. The topic is investigated in [14], but in a single-UAV
scenario with no interference or backhaul considerations.

In [15]–[17] trajectory and RRM are optimized without
considering interference. For instance, [15] focuses on a
caching-based UAV trajectory. Studies by [16], [17] specifi-
cally explore a multi-UAV scenario, with the former aiming
to maximize the number of users while satisfying their data
transmission demand and the latter focusing on optimizing the
energy consumption of UAVs. In contrast, our work differs
as we optimize link selection taking interference into account.
Among studies addressing interference, [18] explores weighted
power assignment to minimize UAV energy consumption. [19]
optimizes subchannel assignment and user association for fair
resource sharing among GUEs. [20] focuses on energy har-
vesting, while [21] jointly considers user scheduling and power
allocation for energy efficiency. Backhaul is considered only in
[22] with predictable user movement. Lastly, [23] maximizes
the sum rate while addressing self-interference cancellation.
Importantly, none of these works incorporates QoE or beam-
forming considerations. [24] only consider beams from MBSs,
while [25] and [26] specifically investigate UAV beamforming.
While [24] focuses on RRM strategies in caching networks,
[25] optimizes UAV trajectory and GUE transmission power.
These do not consider the interference issue, while our work
extensively investigates it.

TABLE I
REFERENCE PAPERS

Ref. Multi-UAV Int. Beamforming Backhaul QoE
[1]

√ √ √
(MBS)

√

[2]
√

[3]
√ √

[4]
√ √ √

[5]
√ √

[6]
√

[7]
√ √

[8]
√

[9]
√ √

[10]
√ √ √

[11]
√

[12]
√

[13]
√ √ √

[14]
√

[15]
√

[16]
√ √

[17]
√

[18]
√ √

[19]
√ √

[20]
√

[21]
√

[22]
√ √

[23]
√ √

[24]
√ √

(MBS)
[25]

√

[26]
√ √ √ √

▼
√ √ √ √ √

Ref.: reference work; Int.: interference; ▼: this work.
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Table I shows whether the topics discussed are investigated
in the reference works (marked with a

√
).

To summarize, in contrast with the scientific literature, this
work’s contributions are the following:

• We consider a complex urban vehicular scenario, where
GUEs are characterized by a high degree of dynamism,
which makes the RRM process quite complex to handle;

• We analyze an application where UAVs are deployed
to perform a predefined mission (different from com-
munication) and may activate BSs on board when it is
convenient;

• Since a portion of the resource pool is allocated to
perform signalling, the backhaul issue between UABSs
and MBSs is investigated;

• QoE of final users is optimized, to ensure that the vehicles
are served for several consecutive slots;

• Beamforming is accounted for when dealing with com-
munication links between UABSs and GUEs.

Moreover, extending our work in [26], we investigated:
• Two possible network infrastructures (distributed and

centralized) to analyze the trade-off between signalling
complexity and efficiency.

• Uplink links that interfere with each other, both among
MBSs and UABSs.

• A cost of activation of UAVs as UABSs. In this way, the
algorithm has to optimize the number of satisfied users,
given that turning on each UABS will negatively impact
the objective function.

III. SYSTEM MODEL

A. Reference Scenario and Application

We consider an urban scenario with the elements depicted in
Figure 1. A set A of UAVs is flying above the area at a constant
altitude, h, from the ground. We assume that each UAV is
dedicated to a predefined mission, following the predefined
trajectory described in [26] and denoted as Paparazzi-scan.
At the same time, each UAV has radio-frequency equipment
on board (i.e., acts as UABS). Fixed on the ground there are
terrestrial MBSs, being part of a set M and GUEs g, belonging
to the set G, move in the environment.

Fig. 1. Network components and architecture.

MBSs have wired connections with the network core,
therefore, we assume this link to be robust and to have
sufficient capacity to forward signalling and content. On the
opposite, UABSs have to maintain a wireless communication
link with MBSs to receive the necessary command and control
signalling and to reach the network core. This backhaul link
is subject to RRM optimization.

From the users’ side, we consider an extended sensing
application, according to which each GUE wants to exchange
data gathered through local sensors or video with the network
and other GUEs nearby. By exchanging vehicle-to-anything
(V2X) messages [27], GUE can enhance the perception of
their surroundings beyond what their own sensors can detect.
As sensor data should be sent from GUEs to the network
for their collection, the traffic requirements are particularly
challenging for the uplink (UL) communication [28]. The
traffic demand, Dg , for the GUE g ∈ G depends on the degree
of automation considered, with a data rate ranging from 1 to
1000 Mbps [28]. The mobility of GUEs and UABSs leads to a
dynamic scenario, considered by updating the traffic demand
of GUEs with a time granularity2 of ∆t = 100 ms.

We define a GUE, g, as served in a given interval, ∆t,
if it is able to upload its demand Dg . Then, to account for
vehicles’ QoE, we define a GUE, g, as satisfied if it is served
for at least N̂s time intervals within a given time window,
Tw = Nw ∆t (being N̂s a given percentage of Nw). The QoE
requirement, N̂s, is determined by the time the vehicle may
take to execute a manoeuvre (e.g., turn at crossroads, enter/exit
roundabouts, stops, and so on). Example values are reported
in [31], considering the average values of vehicles’ speed and
communication range in specific use cases. The percentage of
users satisfied, P (sat)

g , is used as a performance metric.

B. UAVs Trajectory

As previously mentioned, we assume UAVs in the sce-
nario have predefined missions (other than communication)
constraining them flying on an already determined trajectory.
Possible UAVs’ tasks might be video-monitoring an area or
collecting sensor data scattered all over the scenario. A suitable
trajectory for such missions is a Paparazzi-scan, which shapes
a serpentine that scans the entire area [32]. An example is
pictured in Figure 2, while Figure 3 shows the real-world
scenario in which we run the proposed model, specifically
in the historic center of Bologna.

Fig. 2. Example where UAVs follow a Paparazzi-scan trajectory to accomplish
a predetermined task.

To model the UAV movement, the scan serpentine is com-
pletely defined by the area side and a parameter introduced

2Note that 100 ms is the packet generation interval for many types of V2X
including Cooperative Awareness Message (CAM) and Collective Perception
Message (CPM) [29], [30]
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on purpose, which we name Paparazzi-scan sensing radius, rp.
The value of 2 rp defines the serpentine width, while height
and length are respectively denoted as Q and Q′. The rp
choice depends on the UAVs potential coverage; its definition
allows UAVs to eventually cover the entire service area for
a number of UAVs, Nuav. Each new UAV enters the scan
trajectory every tp and dUAV represents the distance between
each UAV. Please note that the model presented hereafter
works independently from the UAV trajectory, and it can be
re-applied for any given UAV path.

Fig. 3. Real-world scenario tested in simulations, located in the historic center
of Bologna.

C. Network Architectures

The architecture considered is reported in Figure 4; the
GUEs are connected either to MBSs or UABSs via an access
wireless link and the aerial BSs are connected to the terrestrial
BSs via a backhaul wireless link. Moreover, MBSs can com-
municate with each other and with the network core through
a wireline IP link. Based on this block diagram, we consider
four cases based on the architecture and resource pool applied:

1) Case I: Distributed Architecture with Resource Split:
The RRM runs at each MBS separately, handling a pre-
defined subset of GUEs and UABSs in the scenario, which

Fig. 4. Network Architecture: distributed or centralized.

are those receiving the largest receive power from the MBS.
Moreover, since interference is taken into account, MBSs share
non-real-time, worst-case scenario information on the level of
interference coming from the other subsets (i.e., GUEs and
UABSs connected to other MBSs). The exchange happens
through the wireline Internet Protocol (IP) link. The resource
pool is halved: one half is used by MBSs to serve GUEs, the
orthogonal half is used by UABSs. Therefore, MBSs interfere
with other MBSs, and the same applies to UABSs, but MBSs
and UABSs do not interfere with each other. This concept is
further explained in Table II under subsection III-G.

2) Case II: Distributed Architecture with Resource Sharing:
The RRM runs in the same way as in Case I, but when the
resources are shared, all BSs share the entire resource pool,
whether the GUE is served by a MBS or a UABS.

3) Case III: Centralized Architecture with Resource Split:
The RRM runs at the network core and takes all decisions
related to the area of interest, meaning that MBSs send
information to the core network (i.e., a controller) based on all
potential links present in the area. The interference information
is real-time and not based on the worst-case scenario. The
resource pool is halved in the same way as it is for Case I.

4) Case IV: Centralized Architecture with Resource Split:
The RRM runs in the same way as in Case III, but the resource
pool is shared as in Case II.

D. Channel Model

The channel model follows the Urban Macro (UMa) channel
described in the 3GPP TR 38.901 [33]. The considered model
provides different channel descriptions for line of sight (LoS)
and Non-LoS (NLoS) conditions through the exploitation of
the parameter ρL which is the probability of being in LoS
condition that depends on the distance between the considered
GUEs g, regarded as transmitters, and the UABS/MBSs, the
receivers, and on the height of g, hg . The path loss variation
due to shadowing can be described through a log-normal
distribution zero-mean and with a standard deviation σLoS = 4
dB and σNLoS = 6 dB for LoS and NLoS respectively. The
propagation loss determines the robustness of a link, and
allows the computation of the relevant metrics of Signal-to-
Noise ratio (SNR) and Signal-to-Interference-plus-Noise ratio
(SINR), taking into account both noise and interference [26].
In particular, we consider the situation in which the channel
fluctuations do not change significantly, i) in the time interval
in which RRM takes place when the environment dynamism
cannot be appreciated and ii) among different frequency offsets
within the predefined bandwidth, B. Then, we can compute
the SNR, γ, and the SINR, γ(I), (in linear scale) as

γ =
Prx

Pnoise
, (1)

γ(I) =
Prx

Pnoise +
∑Nint

i=1 Prx,i

, (2)

where Prx is referring to a generic useful link and indicates
the receiver power, Pnoise denotes the noise power, and Prx,i

indicates the interfering power from interferer i supposing
Nint total interferers are present. Consequently, the data rate
a single link can achieve depends on the SNR or SINR values
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computed through the Shannon capacity formulas. Then, a link
can be established if the SNR and the SINR are above a given
threshold, γth and γI

th, respectively. If this is the case, the data
rate can be computed only on the SNR (if it is noise-limited)
or on the SINR. Thus, given a bandwidth portion, Bch, we
have:

r =Bch log2(1 + γ). (3)

r(I) =Bch log2(1 + γ(I)). (4)

E. Radio Resource Unit

Regarding RUs, they encompass time, frequency, and space
dimensions for facilitating network communication. The time-
frequency aspect aligns with the 3rd Generation Partner-
ship Project (3GPP) fifth-generation (5G) standard numerol-
ogy [34]. A set of time-frequency radio resources comprises
resource blocks (RBs), with each RB containing 12 consecu-
tive subcarriers transmitting an orthogonal frequency-division
multiplexing (OFDM) signal. Subcarriers cover the frequency
axis with a spacing of ∆f . Time-wise, RB boundaries align
with time slots lasting Tslot, accommodating 14 OFDM
symbols based on the chosen ∆f . The selected bandwidth
value, B, determines the available RBs count, denoted as W ,
formalized as:

W = Bch · (∆t/Tslot) (5)
where Bch = B

12∆f .
Additionally, beamforming defines the spatial aspect using

multiple covering beams. Regarding UABS beam modeling,
we define ϕ(u) as the vertical field of view and Φ(u) as the
corresponding solid angle. By relating them through Φ(u) =
2π(1−cos(ϕ(u)/2)), we can approximate the solid angle of an
individual beam as Φ(u)

beam ≈ Φ(u)/Nbeam. Finally, the receiving
gain of UABS can be expressed as follow [35]:

Gbeam =
41000(

Φ
(u)
beam

360
2π

)2 . (6)

We assume an ideal radiation pattern with gain Gbeam within
ϕ
(u)
beam and 0 dB outside. GUEs outside the beam are not

considered connected to the UABS, representing a worst-case
connectivity scenario. With fully digital or hybrid beamform-
ing, the number of available beams K depends on the UAV’s
transceiver chains. Depending on the beam pattern, RUs can
be orthogonal or not. If a source’s beam covers unintended
receivers, interference occurs on the same time-frequency RBs.
Each MBS can activate all ground footprint beams, while
UABSs are limited to Nbeam out of K beams to manage
payload and energy consumption. Therefore, optimizing beam
selection based on current GUE demand becomes crucial. Each
source utilizes specific beams to cover different users, denoting
a RU as one RB over a covering beam. The granularity of
the allocation is based on a Radio Resource Block, which is
composed of a slot, of duration Tslot, a bandwidth, Bch, and
a portion of space equal to Φ

(u)
beam. Numerical parameters are

reported in Table III.

F. Link Definition

Given the definition of RU, we now observe the different
links that could be established in the network, being:

• UABS-MBS link: the wireless backhaul forwards all traf-
fic handled by UABSs to the MBSs. We assign dedicated
resources to backhaul links, not shared with access links,
because of the bottleneck represented by these links.
Clearly, because of the scenario dynamicity, the set of
RUs given to backhaul might change over time.

• GUE-MBS link: reuse of RBs in the space dimension is
not applied, since, given the wide area to cover, MBSs’
beams might create overlapping footprints on the ground,
resulting in interference.

• GUE-UABS link: reuse of RBs in the space dimension
is applied, since UABSs fly at heights above those of the
MBSs (hundreds of meters against 25-30 meters), and
each beam’s resulting coverage spot on the 2D ground
plane is smaller and better distinguishable from others.

G. Interference Analysis

Depending on RUs assignment, the system may need to
counteract interference problems. The total number of RBs at
the disposal of MBSs and UABSs depends on the resource
allocation strategy used: for the resource splitting case, we
assume MBSs and UABSs use an orthogonal subset of the
available RBs, W/2 each, whereas, when resource sharing
is exploited, all BSs share the same set of RBs, W . Then,
accounting for the fact that reuse of RBs can be applied for
UABSs, but not for MBSs, the total amount of RUs available
will be W ∗

m equal to W/2 (or W ) for MBSs and W ∗
a equal

to W/2 · K (or W · K) for UABSs. Table II summarizes
the interfering links for the different approaches. In the case
of resource splitting the system suffers from interference
only on GUE-BS links if the interfering BS share the same
typology (aerial or terrestrial). In the resource sharing case, the
scheduler shares the same set of resources in the GUE-MBS
and GUE-UABS links to improve the spectrum efficiency,
therefore interference is always present.

TABLE II
INTERFERING LINKS

UL interfering link

Links GUE - UABS GUE - MBS UABS - MBS

U
L

us
ef

ul
lin

ks GUE - UABS
√

△ ×

GUE - MBS △
√

×

UABS - MBS × × ×
√

: interfering; ×: non-interfering; △: only with shared RUs.

As far as the treatment of interference in the two archi-
tectures is concerned, in the distributed case, each MBS is
in charge of assigning RUs to UABSs and GUEs, so it is
able to predict interference on its GUE and UABS-GUE links,
but it cannot evaluate in advance the possible interference
coming from links established with other MBSs. On the
contrary, the centralized architecture has a central controller
that manages RUs for all MBSs and UABSs in the considered
area. Therefore, the controller has the ability to predict the
interference coming from all links GUE-MBS and GUE-
UABS. In the following, to tackle these issues and implement
a proper RRM, we propose four ILP problems related to the
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distributed or centralized architectures as well as the potential
reuse of RUs from which we achieve the optimal solution and
maximize network performance.

IV. PROBLEM STATEMENT

In the following, we present four ILP formulations, denoted
respectively as P1, P2, P3, and P4, which correspond to
two architectures and two resource utilization approaches,
as described in the previous section. Despite their slight
differences, all four ILPs aim for the same target performance
and share a similar network model. We describe their structure
by introducing a common objective function and desired
outputs. The optimal RRM strategy is obtained by solving
these formulations at regular intervals of duration ∆t. The
objective is to maximize the number of served GUEs within
∆t through a joint operation of MBS and UABS, taking into
account the cost factor associated with activating each UABS.
Given the discussion on RUs and interference, we still have
some degrees of freedom related to i) the BS from which a
GUE has assigned RUs, ii) how many RUs should be allocated
given the demand Dg , iii) the UABSs’ beams that should be
activated, iv) and the number of RUs needed by backhaul
links given its capacity or data rate. These aspects are then
considered in the proposed ILP, which results in a beam
selection and joint resource allocation optimization accounting
for the backhaul capacity.

We now describe the variables used to introduce the ILP.
First, the binary variables are defined as follows:

xg,m =


1 if user g ∈ G is assigned RUs by

MBS m ∈ M
0 otherwise

xg,a =


1 if user g ∈ G is assigned RUs by

UABS a ∈ A
0 otherwise

xa,m =


1 if UABS a ∈ A is assigned RUs by

MBS m ∈ M
0 otherwise

eja =


1 if beam ja ∈ K is active on

UABS a ∈ A
0 otherwise

ιg,m,a′ =


1 if link g −m is interfered by any

GUE connected to a′ ∈ A
0 otherwise

ιg,a,m′ =


1 if link g − a is interfered by any

GUE connected to m′ ∈ M
0 otherwise

ιg,m,m′ =


1 if link g −m is interfered by any

GUE connected to m′ ∈ M
0 otherwise

ι
(b)
m,a =


1 if MBS m ∈ M suffers interference

from any GUE connected to a ∈ A
0 otherwise

ι
(b)
a,m =


1 if UABS a ∈ A suffers interference

from any GUE connected to m ∈ M
0 otherwise

ι
(b)
m,m′ =


1 if MBS m ∈ M suffers interference

from any GUE connected to m′ ∈ M
0 otherwise

The following integer variables, along with binary variables,
are optimized and serve as the output of the RRM procedure,
providing the RUs allocation for each communication link:

• wg,m and wg,a represent the number of RUs assigned to
user g ∈ G by m ∈ M or a ∈ A, respectively;

• wa,m is the number of resources assigned by the MBS
m ∈ M to the backhaul with UABS a ∈ A.

As previously stated, the objective function aims at maxi-
mizing the number of served users, through yg , defined as:

yg =

{
1 if user g ∈ G is served
0 otherwise

To achieve continuous service for vehicles, we assign a
time-varying priority value, denoted as pg , to each user g ∈ G.
Specifically, for each t ∈ [1, Tw], pg varies as follows:

pg(t) =


1 for t = 1

pg(t− 1) + 1 if yg(t) = 1

pg(t− 1) if yg(t) = 0

To consider the impact of the activation of UABSs, we
introduce the parameter ξ as a weighting factor ranging be-
tween [0;1]. Such a factor allows us to assess the influence of
having multiple UABSs active in the network. Additionally, we
incorporate two normalization factors, namely Nue and Nuav,
representing the number of GUEs and UAVs respectively.
Furthermore, a dynamic normalizing factor p

(∆t)
g,max is intro-

duced to balance the priority term in the objective function.
This factor linearly increases between [1;Ns] as the GUE pg
increases over each window Ns∆t. In general, it is possible
to eliminate the impact of the cost factor on UABS activation
by setting Nue = 1 and ξ = 0. In summary, the ILPs aim to
optimize: i) the joint operation between MBSs and UABSs by
maximizing yg with variables xg,m, wg,m, xg,a, wg,a; ii) the
selection of UABSs’ beams to maximize the number of GUEs
using variables eja ; iii) the assignment of RB to backhaul with
variables wa,m, considering all g ∈ G, a ∈ A, m ∈ M and iv)
the activation of UABSs based on the value of ξ, determining
which UAV serves as UABS.

For what concerns the model complexity, the problem is
NP-hard even in the special case with a single UABS and
a single MBS, and all GUEs visible by the UABS and the
MBS. In fact, the problem generalizes the Multiple Knapsack
Problem that is known to be strongly NP-hard also for the
special case of two knapsacks [36], [37].

A. Case I: Distributed with Resource Split

The RRM algorithm runs separately at each MBS m ∈ M,
so it is dependent on m. Each MBS manages the RUs of
a given set Gm of GUEs, and a given set Am of UABSs.
These sets are determined by the GUEs and UABSs, which
select the MBS granting them the strongest communication
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link, i.e., highest SNR. This is later described in Fig. 5. The
environment information exchanged by MBSs is limited to the
total number of UAVs present in the area since this information
is necessary to avoid interference between the different UAVs.
We formulate the problem P1 as:

P1 : max

∑
g∈Gm

1− ξ

Nue
ygpg −

∑
a∈Am

ξ

Nuav
xa,mp(∆t)

g,max


(7a)

s.t.: wg,mrg,m∆t+

+
∑
a∈A

∑
ja∈Ka

kg,jawg,arg,a∆t ≥ ygDg , ∀g ∈ Gm (7b)∑
g∈Gm

wg,m +
∑

a∈Am

wa,m ≤ W ∗
m (7c)∑

g∈Gm

kg,jawg,a + wa,m ≤ W ∗
a , ∀a ∈ Am, ∀ja ∈ Ka (7d)∑

g∈Gm

∑
ja∈Ka

wg,akg,jarg,a ≤ ra,mwa,m, ∀a ∈ Am (7e)∑
j∈Ka

eja ≤ Nbeam, ∀a ∈ Am (7f)∑
g∈Gm

wg,akg,ja ≤ ejaW
∗
a , ∀a ∈ Am, ∀ja ∈ Ka (7g)

xg,m +
∑
a∈A

xg,a ≤ 1, ∀g ∈ Gm (7h)

wg,m ≤ xg,mW ∗
m, ∀g ∈ Gm (7i)

wg,a ≤ xg,aW
∗
a , ∀a ∈ Am, ∀g ∈ Gm (7j)

xg,a ∈ {0, 1}, ∀a ∈ Am, ∀g ∈ Gm (7k)
xg,m ∈ {0, 1}, ∀g ∈ Gm (7l)
xa,m ∈ {0, 1}, ∀a ∈ Am (7m)
wg,a ∈ {0,W ∗

a }, ∀a ∈ Am, ∀g ∈ Gm (7n)
wg,m ∈ {0,W ∗

m}, ∀g ∈ Gm (7o)
wa,m ∈ {0,min [W ∗

m,W ∗
a ]}, ∀a ∈ Am (7p)

where the input kg,ja indicates with value 1 whether vehicle g
is covered by beam ja of UABS a ∈ Am and 0 otherwise. Sets
Am ⊆ A and Gm ⊆ G depend on m and are computed later
in Sec.V. Each constraint serves a specific purpose. Constraint
(7b) ensures that each vehicle g transmits a demand of Dg

bits, considering the rate of a unitary RU and the number
of assigned RUs from a particular BS. Constraints (7c) and
(7d) limit the number of RUs assigned to respect the maxi-
mum capacity of MBSs and UABSs, respectively, accounting
for backhaul RUs as well. Constraint (7e) ensures sufficient
backhaul capacity for UABS vehicular traffic. Constraints (7f)
and (7g) restrict the number of activated beams at each UABS
a ∈ Am to Nbeam. Finally, constraints (7h) to (7j) ensure that
each vehicle is served by only one BS at a time. Expressions
(7k)-(7p) demonstrate the validity of each variable in P1.

B. Case II: Distributed with Resource Sharing

As the RRM algorithm of the distributed architecture runs
at the single MBS, the objective function of P2 is the same.
Due to the lack of awareness of interference sources from
other MBSs, there are no specific inputs to the relative ILP.

Still, when RUs are shared from a common pool for the GUE-
UABSs and GUE-MBS links, the interference coming from the
links managed by the same MBS is known. Therefore, P2 is
mathematically described as follows.

P2 : max

∑
g∈Gm

1− ξ

Nue
ygpg −

∑
a∈Am

ξ

Nuav
xa,mp(∆t)

g,max


(8a)

s.t.: wg,mrIg,m,a′∆t+
∑

a∈Am

∑
ja∈Ka

kg,jawg,ar
I
g,a,m∆t ≥

≥

(
ιg,m,a′ +

∑
a∈Am

ιg,a,m

)
Dg , ∀g ∈ Gm,∀a′ ∈ Am (8b)

(7b) - (7g)

ι(b)m,a ≥
∑

g′∈Gm

Ig′,a,mxg′,a

Ig′,a,m
, ∀a ∈ Am (8c)

ι(b)a,m ≥
∑

g′∈Gm

Ig′,m,axg′,m

Ig′,m,a
, ∀a ∈ Am (8d)

ιg,m,a ≥ xg,m + ι(b)m,a − 1, ∀g ∈ Gm,∀a ∈ Am (8e)

ιg,a,m ≥ xg,a + ι(b)a,m − 1, ∀g ∈ Gm, , ∀a ∈ Am (8f)

ι(b)m,a, ι
(b)
a,m ∈ {0, 1}, ∀a ∈ Am (8g)

ιg,m,a, ιg,a,m ∈ {0, 1}, ∀g ∈ Gm,∀a ∈ Am (8h)
(7h) - (7p)

With respect to P1, P2 includes resource sharing and,
thus, the possible interference prediction at the single MBS.
Therefore, new variables must be introduced, like ι

(b)
a,m, ι(b)m,a,

ιg,a,m, and ιg,m,a′ . Additionally, rIg,m,a′ denotes the data rate
achieved by the link g-m when it is interfered by the strongest
possible interferer connected to a′, as formulated in Eq. (2);
Ig′,a,m and Ig′,m,a have binary values stating if a ∈ A is
inside the interfering beam of g′ ∈ G while connected to
m or m is inside the interfering beam of g′ ∈ G while
connected to a ∈ A, respectively (1 if true, 0 otherwise).
The constraint (8b) is similar to (7b) as it defines the number
of resources required by GUE g to satisfy its demand, Dg;
however, (8b) serves to recompute the number of RUs required
only in the case interference is present, i.e., g is connected to
an interfered BS. Description of constraints (7b) - (7g) are
reported in Sec.IV-A. Ensuring the efficient transmission of
data in our vehicular communication model involves several
constraints. Firstly, constraint (7b) guarantees that each vehicle
g transmits a demand of Dg bits. This considers the rate
of a unitary RU and the number of assigned RUs from a
specific BS. To maintain network integrity, constraints (7c) and
(7d) place limits on the number of RUs assigned, respecting
the maximum capacity of both MBSs and UABSs, while
accounting for backhaul RUs.

Moreover, constraint (7e) ensures that there is adequate
backhaul capacity to support vehicular traffic at UABS. Lastly,
constraints (7f) and (7g) serve to restrict the number of
activated beams at each UABS denoted by a ∈ Am to a fixed
value of Nbeam. Then, the constraints (8c) and (8d) verify if
there is at least one effective interferer on the MBS that is
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connected to a UABSs a ∈ Am or vice versa, respectively,
and constraints 8e and (8f) verify if a UABS a ∈ Am is
interfering the link g−m given it is established or if the MBS
m is interfering the link g−a, a ∈ Am given it is established,
respectively. Finally, constraints (8g) - (8h) and (7h) - (7p), the
same constraints used in P1, specify all binary variables.

C. Case III: Centralized with Resource Split
The centralized RRM algorithm, operating at the network

core, possesses knowledge of all the BSs. This allows a better
MBSs load balance, understanding the potential interference
that each network element may generate. The problem formu-
lated for the centralized architecture is denoted as P3.

P3 : max

∑
g∈G

1− ξ

Nue
ygpg −

∑
a∈A

∑
m∈M

ξ

Nuav
xa,mp(∆t)

g,max


(9a)

s.t.:
∑

m∈M
wg,mrg,m∆t+

∑
a∈A

∑
ja∈Ka

kg,jawg,arg,a∆t ≥ +

≥ ygDg , ∀g ∈ G (9b)∑
m∈M

wg,mrIg,m,m′∆t ≥

( ∑
m∈M

ιg,m,m′

)
Dg ,

∀g ∈ G,∀m′ ∈ M (9c)∑
g∈G

wg,m +
∑
a∈A

wa,m ≤ W ∗
m, ∀m ∈ M (9d)∑

g∈G
kg,jawg,a +

∑
m∈M

wa,m ≤ W ∗
a , ∀a ∈ A, ∀ja ∈ Ka

(9e)∑
g∈G

∑
ja∈Ka

wg,akg,jarg,a ≤
∑

m∈M
ra,mwa,m, ∀a ∈ A (9f)∑

j∈Ka

eja ≤ Nbeam, ∀a ∈ A (9g)∑
g∈G

wg,akg,ja ≤ ejaW
∗
a , ∀a ∈ A, ∀ja ∈ Ka (9h)

ι
(b)
m,m′ ≥

∑
g′∈G

Ig′,m′,mxg′,m′

Ig′,m′,m
, ∀m,m′ ∈ M (9i)

ιg,m,m′ ≥ xg,m + ι
(b)
m,m′ − 1,∀g ∈ G,∀m,m′ ̸= m ∈ M

(9j)∑
m∈M

xg,m +
∑
a∈A

xg,a ≤ 1, ∀g ∈ G (9k)

wg,m ≤ xg,mW ∗
m,∀m ∈ M,∀g ∈ G (9l)

wg,a ≤ xg,aW
∗
a ,∀a ∈ A,∀g ∈ G (9m)∑

m∈M
xa,m ≤ 1,∀a ∈ A (9n)

wa,m ≤ xa,mW ∗
m,∀m ∈ M,∀a ∈ A (9o)

xg,a ∈ {0, 1},∀a ∈ A,∀g ∈ G (9p)
xg,m ∈ {0, 1},∀m ∈ M,∀g ∈ G (9q)
xa,m ∈ {0, 1},∀m ∈ M,∀a ∈ A (9r)
wg,a ∈ {0,W ∗

a },∀a ∈ A,∀g ∈ G (9s)
wg,m ∈ {0,W ∗

m},∀m ∈ M,∀g ∈ G (9t)
wa,m ∈ {0,min [W ∗

m,W ∗
a ]},∀m ∈ M,∀a ∈ A (9u)

The constraints Eqs. (9b)-(9m) find their correspondent
in Eqs. (7b)-(7j). Thus, the description and motivation of
these constraints are the same, with the difference that the
optimization includes the overall set of MBSs, M, together
with the knowledge of their surrounding environment. Indeed,
the algorithm is centralized and it can optimize the control over
the entire network scenario. Also, since MBSs use RU reuse
equal to 1, the controller is able to predict the interference
that potentially arises among the different MBSs. This is
taken into account in i) constraint (9c) for what concerns
the number of RUs, as similar to (8b), ii) constraint (9i) for
looking if there is at least one interferer on an other MBS, and
iii) constraint (9j) for defining if there is interference on an
established link. Furthermore, two more constraints are added:
Eqs. (9n) and (9o). These two ensure that the backhaul for
each active UABS is established with a single MBS. Clearly,
the ILP formulated for the centralized case adds more levels
of complexity depending on the new variables and constraints
introduced by the set M. The model does not vary for higher
values of the cardinality, |M|, but the computation time might
increase exponentially, limiting its practical implementation
over large network areas.

D. Case IV: Centralized with Resource Sharing

The problem formulated for the centralized architecture
implementing resource sharing is denoted as P4.

P4 : max

∑
g∈G

1− ξ

Nue
ygpg −

∑
a∈A

∑
m∈M

ξ

Nuav
xa,mp(∆t)

g,max


(10a)

s.t.:
∑

m∈M
wg,mrIg,m,a′∆t+

∑
a∈A

∑
ja∈Ka

kg,jawg,ar
I
g,a,m′∆t

≥

( ∑
m∈M

ιg,m,a′ +
∑
a∈A

ιg,a,m′

)
Dg ,

∀g ∈ G,∀a′ ∈ A,∀m′ ∈ M (10b)
(9b) - (9h)

ι(b)m,a ≥
∑
g′∈G

Ig′,a,mxg′,a

Ig′,a,m
, ∀a ∈ A, ∀m ∈ M (10c)

ι(b)a,m ≥
∑
g′∈G

Ig′,m,axg′,m

Ig′,m,a
, ∀a ∈ A,∀m ∈ M (10d)

ιg,m,a ≥ xg,m + ι(b)m,a − 1, ∀g ∈ G, ∀a ∈ A,∀m ∈ M (10e)

ιg,a,m ≥ xg,a + ι(b)a,m − 1, ∀g ∈ G, ∀a ∈ A,∀m ∈ M (10f)

ι(b)m,a, ι
(b)
a,m ∈ {0, 1} ∀a ∈ A, ∀m ∈ M (10g)

ιg,m,a, ιg,a,m ∈ {0, 1}, ∀g ∈ G,∀a ∈ A,∀m ∈ M (10h)
(9k) - (9u)

The constraint (10b) is similar to (8b) as reuse of RUs is
present. Description of constraints (9b) - (9h) are reported in
Sec.IV-C. These constraints collectively ensure the efficient
transmission of data and the optimal utilization of resources.
They address considerations such as individual vehicle de-
mands, the assignment and limitation of resource units (RUs)
from specific BSs, and the overall capacity constraints of both
MBSs and UABSs. Additionally, the constraints account for
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the sufficient backhaul capacity required for UABS vehicular
traffic. The control over the number of activated beams at each
UABS is also constrained to a specified limit, contributing
to the overall system’s stability and performance. Then, the
constraints (10c) and (10d) verify if there is at least one
effective interferer on the MBS that is connected to a UABSs
a ∈ A or vice versa, respectively, and constraints 10e and (10f)
verify if a UABS a ∈ A is interfering the link g − m
given it is established, or if the MBS m is interfering the
link g − a, a ∈ A given it is established, respectively. The
difference with respect to the constraints (8c) to (8f) is that the
entire set of UABSs and GUEs is under control. Finally, the
constraints (10g) - (10h) and (9k) - (9u), the same constraints
used in P3, specify all binary variables.

V. PROBLEM IMPLEMENTATION

Due to the complexity of the scenario considered, some
assumptions have been introduced in order to simplify the
solution of the ILP. In particular, since considering all potential
interference exponentially increases the ILP complexity, we
feed it with the strongest interferer for each potential use-
ful link. The strongest interferer is selected based on time
frequency and space dimension, considering beam directivity.
This simplifying assumption allows decreasing the number
of input parameters and the set of variables of the ILP. To
derive the actual performance of the network, we apply the
methodology depicted in Fig. 5: i) we first run the ILP, having
as input time parameters Nw, Tsim, all unitary rates rx,y , user
demand Dg , beam directivity kg,ja and resource availability
W ∗

x ; ii) the output of the ILP, including the set of RUs used
by every BSs to serve the vehicles or to support backhauling,
wx,y and the number of UABSs to be activated xa,m, are
given as input to a network simulator, where all assumptions
are dropped to compute P

(sat)
g . Moreover, as explained below,

the updated value of the GUEs priorities goes in input to the
ILP in the following ∆t.

Fig. 5. Simulation block scheme.

Algorithm 1 clarifies the relationship between the ILP and
the simulation, specifying the latter’s features. In particular,
the ILP gives information on the number of resources used to
serve each GUE in each ∆t, but does not provide information
on which RUs are actually used in Time x Frequency x Space
(t,f,s). As explained in Algorithm 1, at each ∆t, once we know
how many RUs are used by each BS to serve every GUEs, we
create two matrices, Wa and Wm, respectively for UABSs
and MBSs (lines 6-12), used to assess the actual RUs. We do
not account for resources used for backhaul wa,m, assuming
orthogonality. Once all resources are assigned, we compute
the intra-link interference, based on time, frequency and space,
and check whether γ

(I)
g is below the defined threshold (lines

14-17). Finally, each vehicle served will have an increased
value of priority in the following ∆t (lines 18-22).

Algorithm 1: ILP and Simulation.
1 Input: M, A, G, kg,ja , Dg , W ∗

a , W ∗
m, Nw, Tsim,

rg,m, ra,m, rg,a ∀g ∈ G, a ∈ A, m ∈ M
2 Output: P (sat)

g ∀g ∈ G
3 for t = t0 to Tsim do
4 run ILP
5 start Simulator
6 for each MBS m ∈ M do
7 create array Wm of length W ∗

m −
∑

a∈A wa,m

8 map wg,m in Wm, ∀g ∈ G
9 end

10 for each UABS a ∈ A do
11 create array Wa of length W ∗

a −
∑

m∈M wa,m

12 map wg,a in Wa, ∀g ∈ G
13 end
14 for each GUE g ∈ G do
15 compute γ

(I)
g

16 set yg = 1 if γ(I)
g ≥ γ

(I)
th

17 end
18 for each GUE g ∈ G do
19 if (t mod Nw) = 0 then
20 pg = 1
21 else if yg = 1 and 1 ≤ (t mod Nw) < Nw then
22 pg+ = 1
23 end
24 stop Simulator
25 end

VI. NUMERICAL RESULTS

Numerical results will be discussed in the following, show-
ing the general improvement obtained in the performance
when deploying UABSs in the network and analyzing the
configurations discussed above. Simulations of the proposed
model and scenario run in a Python environment, and the
Gurobi solver provides the output from the ILP. Each sim-
ulation spans over a time Tsim = 60 seconds and parame-
ter settings are listed in Table III. To properly account for
vehicular movement through time, we implement vehicular
traces obtained from SUMO, ”Simulation of Urban MObility”,
which is an open-source, highly portable, microscopic, and
continuous traffic simulation package designed to handle large
networks [38], which is a common approach exploited to solve
similar problems [39], [40].

In the following, we show the percentage of satisfied users,
P

(sat)
g , that is the ratio between the number of GUEs for which

it holds Ns ≥ N̂s, w.r.t. the total number of GUEs in the area.
In this section, we will present all results related to the

distributed and the centralized model, in which interference is
taken into account.

Figs. 6, 7, 8 show the percentage of satisfied GUEs, P (sat)
g ,

depending on the minimum number of intervals of duration
∆t given by the application requirements, N̂s, chosen over the
time window Tw. All curves present a decreasing trend when
increasing N̂s, and, in particular, Fig. 6 shows how sharing
resources is more efficient than splitting the pool of RUs, even
with higher interference. Due to the nature of the distributed
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TABLE III
NETWORK AND CHANNEL PARAMETERS.

Parameter Notation Value
Area sides QxQ′ 1800x1600 m

Number of MBSs |M| 4
Number of UAVs |A| = Nuav 18

SNR threshold γth -13.7 dB
SINR threshold γI

th -5 dB
UABS transmit power Ptx,A 23 dBm
GUE transmit power Ptx,G 20 dBm

UABS transmission gain Gtx,A 17.72 dB
UABS receiver gain Grx,A 17.72 dB

GUE transmission gain Gtx,G 0 dB
Paparazzi-scan sensing radius rp 200 m

Paparazzi-scan time shift tp 25 s
Inter-UAV distance dUAV 500 m

UABS speed vA 20 m/s
UABS altitude h 100 m

UABS aperture angle αA 140°
Nr. of UABS available beams K 9
Max n. of UABS active beams Nbeam 4

GUE traffic demand Dg 100 kbit
Effective noise power Pnoise -106.4 dBm

Overall bandwidth B 400 MHz
Channel bandwidth Bch 1.44 MHz
Subcarrier spacing ∆f 120 kHz

Slot duration Tslot 0.125 ms
Nr. of time windows for QoE Nw 60

Fig. 6. Percentage of satisfied GUEs, P
(sat)
g , while varying the QoE

threshold, N̂s, and for different parameter settings and Grx,M = 16 dB,
with the inclusion of interference.

Fig. 7. Percentage of satisfied GUEs, P
(sat)
g , while varying the QoE

threshold, N̂s, and for different parameter settings and Grx,M = 16 dB,
with the inclusion of interference.

model, MBSs share worst-case, non-real-time information on
interference toward other MBSs, the improvement between
resource split and sharing is lower than in the centralized case,

Fig. 8. Percentage of satisfied GUEs, P
(sat)
g , while varying the QoE

threshold, N̂s, and for different parameter settings and Grx,M = 25 dB,
with the inclusion of interference.

Fig. 9. Percentage of satisfied GUEs, P (sat)
g , for the same QoE threshold,

N̂s = 95%, and for different UABS aperture angles.

where proper load balancing is performed.
Since resource sharing globally performs better than re-

source split results, Figs. 7 and 8 only show results related
to the former. The difference between the two graphs is the
value of the receiving MBS gain Grx,M which is equal to 16
dB and 25 dB, respectively.

We can notice how the use of the centralized architecture
collectively improves the results with both values of Grx,M.
For instance, in Fig. 7, having a controller which has a
whole overview of the scenario allows us to increase GUEs
satisfaction levels of 20% when N̂s is set to 85%, proving
the goodness of the centralized configuration. Moreover, the
comparison with the benchmark case, in which GUEs are
served only by MBSs, shows that the use of UABSs in
the scenario significantly improves network performance. In
particular, in Fig. 8, P (sat)

g increases up to 80% when UAVs
start working as UABSs. Finally, increasing Grx,M from 16
to 25 dB causes opposite effects for the two architectures: as
mentioned above, due to the nature of the distributed model,
higher receiving gain at the MBS means higher non-real-time
interference, while in the centralized case, the ILP is able to
tackle the current interference.

Fig. 9 shows the percentage of satisfied GUEs, P (sat)
g for a

fixed value of N̂s, depending on different UABSs aperture an-
gles (which corresponds to varying the UABSs flight height).
The two curves are obtained for two values of inter-UAV
distance: dUAV equal to 500 m, and dUAV equal to 250 m.
Reducing the inter-UAV distance causes the maximum value
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Fig. 10. Percentage of satisfied GUEs, P (sat)
g , for the same QoE threshold,

N̂s = 95%, and for different beam grids.

of P (sat)
g to be higher and shifted to the left. This implies that,

despite the increased overlapping, the ILP is able to manage a
higher level of interference, as long as the footprint is below
155 degrees, where the performance drop due to an increased
overlap with respect to when dUAV is equal to 500 m.

Figure 10 demonstrates the influence of beamforming con-
figuration on network performance by examining various grid
of beams and network capacities. It is evident that the im-
pact of beamforming is heavily reliant on the availability of
backhaul resources. Specifically, a larger number of RBs en-
ables the BS to effectively handle more demanding signalling
processing, highlighting the critical role played by backhaul
resources. Results display how, for a fixed value of N̂s, P

(sat)
g

varies by changing the number of beams in the antenna array
on the UABS. Due to the relationship between the antenna
gain and the number of beams, as explained in Eq. (6), having
a higher number of beams performs better with respect to
a single antenna scenario, but at the same time too many
beams, make the backhaul signalling too heavy. Moreover, by
increasing the availability of RUs by a factor of 10, the gap
between P

(sat)
g between 9 and 16 beam grid reduces from

30% to 10%.
Fig. 11 shows the percentage of satisfied GUEs, P (sat)

g for
a fixed value of N̂s, depending on different UABSs aperture
angles. The three curves are obtained for three values of ξ: 0,
0.3 and 0.5. Increasing the value of ξ means that the cost
of UABSs activation will be higher, and the general trend
of P

(sat)
g reduces. It is important to notice that for higher

aperture angles, implementing a higher cost might be useful,
since interference is handled more effectively. Increasing ξ

causes the maximum value of P (sat)
g to be lower and shifted to

the right. This implies that, despite the increased overlapping,
the ILP is able to manage a higher level of interference, as
long as the best set of UABSs is turned on.

VII. CONCLUSION

In this work we propose a novel approach to minimize
uplink interference in vehicular networks, when considering a
complex urban scenario, where terrestrial MBSs and multiple
UABSs serve vehicles moving in a city. UAVs can be activated
as UABSs to assist vehicles in exchanging data with nearby
vehicles. The proposed ILP model jointly optimizes radio
resources allocation and beamforming while accounting for

Fig. 11. Percentage of satisfied GUEs, P (sat)
g , for the same QoE threshold,

N̂s = 95%, and for different UABS aperture angles, including cost.

vehicular application requirements, backhaul capacity limits,
and interference between GUE-UABS and GUE-MBS links.
Two system architectures are considered: distributed (MBS-
based RRM with shared information) and centralized (network
core-based RRM). The percentage of satisfied GUEs has been
analyzed and reported a decreasing trend, when getting the
requirement on the duration of the service longer. Results
showed that deploying UABSs significantly enhances network
performance, and the implementation of a centralized archi-
tecture with resource sharing has been proven to be the most
efficient solution, especially for large values of the MBSs gain.
Finally, we have shown that: i) reducing inter-UAV distance
increases the maximum P

(sat)
g , proving that the ILP could

handle higher interference levels; ii) a higher number of beams
significantly improves performance and iii) higher UABSs
activation cost was effective in managing interference, when
setting large values of aperture angles at the UABSs.

In future works, we plan to explore the integration of aerial
highways, which refer to high-altitude corridors or routes used
by aircraft for navigation and air traffic management. These
routes are designed to optimize air traffic flow and reduce
congestion in the skies. Additionally, we will focus on combin-
ing resource allocation with trajectory optimization, through
the application of Multi-Agent Deep Reinforcement Learning
(MADRL). Through these topics, we aim at advancing the
autonomy and adaptability of UAV networks.

ACKNOWLEDGMENT

This work has been carried out in the framework of the
CNIT National Laboratory WiLab and the WiLab-Huawei
Joint Innovation Center. We would like to thank Aman Jassal
for the very fruitful discussion on this paper. Moreover, we
would like to express our gratitude to Professor Valentina
Cacchiani, from University of Bologna, for her invaluable con-
tribution to the analysis of the complexity of the optimization
algorithm presented in the paper.

REFERENCES

[1] C. Qiu et al., “Joint resource allocation, placement and user association
of multiple uav-mounted base stations with in-band wireless backhaul,”
IEEE Wireless Communications Letters, vol. 8, no. 6, pp. 1575–1578,
2019.

[2] O. Bekkouche et al., “Edge cloud resource-aware flight planning for
unmanned aerial vehicles,” in 2019 IEEE Wireless Communications and
Networking Conference (WCNC), 2019, pp. 1–7.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 12

[3] O. Andryeyev and A. Mitschele-Thiel, “Efficiency vs. accuracy of aerial
base station placement,” in 2019 International Conference on Networked
Systems (NetSys), 2019, pp. 1–8.

[4] H. Yang and X. Xie, “Energy-efficient joint scheduling and resource
management for uav-enabled multicell networks,” IEEE Systems Jour-
nal, vol. 14, no. 1, pp. 363–374, 2020.

[5] A. Manzoor, D. H. Kim, and C. S. Hong, “Energy efficient resource
allocation in uav-based heterogeneous networks,” in 2019 20th Asia-
Pacific Network Operations and Management Symposium (APNOMS),
2019, pp. 1–4.

[6] Y. Sun et al., “Optimal 3d-trajectory design and resource allocation
for solar-powered uav communication systems,” IEEE Transactions on
Communications, vol. 67, no. 6, pp. 4281–4298, 2019.

[7] M. Samir et al., “Trajectory planning and resource allocation of multiple
uavs for data delivery in vehicular networks,” IEEE Networking Letters,
vol. 1, no. 3, pp. 107–110, 2019.

[8] N. Namvar et al., “Heterogeneous uav cells: An effective resource
allocation scheme for maximum coverage performance,” IEEE Access,
vol. 7, pp. 164 708–164 719, 2019.

[9] M. Chen, W. Saad, and C. Yin, “Liquid state machine learning for
resource and cache management in lte-u unmanned aerial vehicle (uav)
networks,” IEEE Transactions on Wireless Communications, vol. 18,
no. 3, pp. 1504–1517, 2019.

[10] C. Pan et al., “Joint 3d uav placement and resource allocation in
software-defined cellular networks with wireless backhaul,” IEEE Ac-
cess, vol. 7, pp. 104 279–104 293, 2019.

[11] L. Deng et al., “Joint resource allocation and trajectory control for uav-
enabled vehicular communications,” IEEE Access, vol. 7, pp. 132 806–
132 815, 2019.

[12] J. Ji et al., “Energy consumption minimization in uav-assisted mobile-
edge computing systems: Joint resource allocation and trajectory de-
sign,” IEEE Internet of Things Journal, vol. 8, no. 10, pp. 8570–8584,
2021.

[13] Y. Cai et al., “Joint trajectory and resource allocation design for energy-
efficient secure uav communication systems,” IEEE Transactions on
Communications, vol. 68, no. 7, pp. 4536–4553, 2020.

[14] F. Zeng et al., “Resource allocation and trajectory optimization for qoe
provisioning in energy-efficient uav-enabled wireless networks,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 7, pp. 7634–7647,
2020.

[15] A. Al-Hilo et al., “Uav-assisted content delivery in intelligent transporta-
tion systems-joint trajectory planning and cache management,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp.
5155–5167, 2021.

[16] M. T. Nguyen and L. B. Le, “Resource allocation, trajectory opti-
mization, and admission control in uav-based wireless networks,” IEEE
Networking Letters, vol. 3, no. 3, pp. 129–132, 2021.

[17] Y. K. Tun et al., “Energy-efficient resource management in uav-assisted
mobile edge computing,” IEEE Communications Letters, vol. 25, no. 1,
pp. 249–253, 2021.

[18] T. R. Kamel et al., “Resource allocation in thz unmanned aerial vehicles-
based heterogeneous networks,” in 2021 International Telecommunica-
tions Conference (ITC-Egypt), 2021, pp. 1–5.

[19] M. D. Nguyen, L. B. Le, and A. Girard, “Integrated uav trajectory
control and resource allocation for uav-based wireless networks with
co-channel interference management,” IEEE Internet of Things Journal,
vol. 9, no. 14, pp. 12 754–12 769, 2022.

[20] Y. Xu et al., “Robust resource allocation algorithm for energy-
harvesting-based d2d communication underlaying uav-assisted net-
works,” IEEE Internet of Things Journal, vol. 8, no. 23, pp. 17 161–
17 171, 2021.

[21] Y. Li et al., “Joint resource allocation and trajectory optimization with
qos in noma uav networks,” in GLOBECOM 2020 - 2020 IEEE Global
Communications Conference, 2020, pp. 1–5.

[22] Q.-V. Pham et al., “Joint placement, power control, and spectrum allo-
cation for uav wireless backhaul networks,” IEEE Networking Letters,
vol. 3, no. 2, pp. 56–60, 2021.

[23] A. Hajihoseini Gazestani et al., “Resource allocation in full-duplex
uav enabled multismall cell networks,” IEEE Transactions on Mobile
Computing, vol. 21, no. 3, pp. 1049–1060, 2022.

[24] Y. Yin et al., “Resource allocation for uav-assisted mimo-noma wireless
caching networks,” in 2021 IEEE 21st International Conference on
Software Quality, Reliability and Security Companion (QRS-C), 2021,
pp. 1006–1010.

[25] B. Liu et al., “Resource allocation and trajectory design for miso uav-
assisted mec networks,” IEEE Transactions on Vehicular Technology,
vol. 71, no. 5, pp. 4933–4948, 2022.

[26] S. Mignardi et al., “Optimizing beam selection and resource allocation
in uav-aided vehicular networks,” in 2022 Joint European Conference
on Networks and Communications & 6G Summit (EuCNC/6G Summit),
2022, pp. 184–189.

[27] ETSI, “5G; service requirements for enhanced V2X scenarios,” ETSI TS
22.186 version 16.2.0, Nov. 2020.

[28] M. H. C. Garcia et al., “A tutorial on 5G NR V2X communications,”
IEEE Communications Surveys Tutorials, pp. 1–1, 2021.

[29] S. Bartoletti et al., “Impact of the generation interval on the performance
of sidelink C-V2X autonomous mode,” IEEE Access, vol. 9, 2021.

[30] ETSI, “Intelligent transport system (ITS); vehicular communications;
basic set of applications; analysis of the collective perception service
(CPS); release 2,” ETSI TR 103 562 V2.1.1, 2019.

[31] 5GAA, “C-V2X use cases volume II: Examples and service level
requirements,” White Paper, Jun. 2019.

[32] O. Bouachir et al., “A mobility model for UAV ad hoc network,” in 2014
International Conference on Unmanned Aircraft Systems (ICUAS), 2014.

[33] 3GPP, “Technical Specification Group Radio Access Network; Study on
channel model for frequencies from 0.5 to 100 GHz,” 3GPP TR 38.901
version 16.1.0, Dec. 2019.

[34] ——, “NR overall description,” 3GPP TS 38.300, 2021.
[35] V. K. Salvia, Antenna and wave propagation. Laxmi, 2007.
[36] H. Kellerer, “A polynomial time approximation scheme for the multiple

knapsack problem,” in International Workshop on Randomization and
Approximation Techniques in Computer Science. Springer, 1999, pp.
51–62.

[37] A. Caprara, H. Kellerer, and U. Pferschy, “The multiple subset sum
problem,” SIAM Journal on Optimization, vol. 11, no. 2, pp. 308–319,
2000.

[38] P. A. Lopez et al., “Microscopic traffic simulation using sumo,” in 2018
21st International Conference on Intelligent Transportation Systems
(ITSC), 2018, pp. 2575–2582.

[39] R. Marini et al., “Reinforcement learning-based trajectory planning for
uav-aided vehicular communications,” in 2022 30th European Signal
Processing Conference (EUSIPCO), 2022, pp. 967–971.

[40] L. Spampinato et al., “Drl path planning for uav-aided v2x networks:
Comparing discrete to continuous action spaces,” in ICASSP 2023 -
2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2023, pp. 1–5.


