
Future Generation Computer Systems 161 (2024) 545–558

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Scalability through Pulverisation: Declarative deployment reconfiguration at
runtime✩

Nicolas Farabegoli ∗, Danilo Pianini, Roberto Casadei, Mirko Viroli
Alma Mater Studiorum—Università di Bologna, Cesena, Italy

A R T I C L E I N F O

Dataset link: https://doi.org/10.5281/zenodo.1
1401482

Keywords:
Runtime reconfiguration
Distributed systems
Self-adaptation
Self-organisation
Pulverisation
Deployment

A B S T R A C T

In recent years, the infrastructure supporting the execution of situated distributed computations evolved at a
fast pace. Modern collective adaptive applications – as found in the Internet of Things, swarm robotics, and
social computing – are designed to be executed on very diverse devices and to be deployed on infrastructures
composed of devices ranging from cloud servers to wearable devices, constituting together a cloud–edge
continuum. The availability of such an infrastructure opens to better resource utilisation and performance but,
at the same time, introduces new challenges to software designers, as applications must be conceived to be able
to adapt to changing deployment domains and conditions. In this paper, we introduce a practical framework
for the development of systems based on the concept of pulverisation, meant to neatly separate business logic
and deployment concerns, allowing applications to be defined independently of the infrastructure they will
execute upon, thus supporting scalability. The framework is based on a domain-specific language capturing, in
a declarative fashion: pulverised application components, device capabilities, resource allocation, and (runtime
re-) configuration policies. The framework, implemented in Kotlin multiplatform and available as open source,
is then evaluated in a small-scale real-world demo and in a city-scale simulated scenario, demonstrating the
feasibility of the approach and its potential benefits in achieving better trade-offs between performance and
resource utilisation.
1. Introduction

Recent technological and scientific advances are extending the kinds
of applications and systems being addressed and their supporting infras-
tructure [1]. Specifically regarding infrastructure, it is mounting the
idea of the Edge–Cloud Continuum (ECC) [2]: a multi-layer hetero-
geneous network of devices (ranging from large and powerful cloud
servers to small connected things). There, software can compute, store,
and exchange data in a distributed fashion while optimising for perfor-
mance and resource utilisation.

This kind of infrastructure is particularly valuable for collective
adaptive systems (CASs) [3–6], collections of devices and agents that
interact to solve problems or provide services cooperatively, while
adapting coherently ‘‘as a whole’’ to dynamic environments. Indeed,
CAS implementations generally feature components that, depending on
the conditions at hand, could benefit from being deployed on different
devices or from offloading some of their tasks. Application examples
of CASs include Internet of Things (IoT) deployments, swarms of

✩ This work has been supported by the Italian PRIN Project COMMON-WEARS (2020HCWWLP).
∗ Corresponding author.

E-mail addresses: nicolas.farabegoli@unibo.it (N. Farabegoli), danilo.pianini@unibo.it (D. Pianini), roby.casadei@unibo.it (R. Casadei),
mirko.viroli@unibo.it (M. Viroli).

robots, social computing systems, crowds of wearable-augmented peo-
ple, and so on—supporting activities like monitoring, transportation,
coordination, and other forms of collective intelligence [7].

However, exploiting this infrastructure poses new challenges to
application designers. Commonly, applications are designed with a
specific infrastructure in mind, whose assumptions unavoidably leak
into the application logic [8] unless captured and encapsulated away
from it: the higher the coupling between the application and the
infrastructure, the harder it is for the former to exploit the latter’s full
potential and adapt to changes. The general solution is to devise a
reasonable partitioning [9] of the software system and a corresponding
(dynamic) deployment plan defining the mapping between the software
components and the target deployment domain [10]. The central idea
is to decouple the application logic from the deployment concerns,
allowing the former to be designed as independently of the latter as
possible.

In this work, we investigate whether existing techniques born in
the context of CASs can be adapted to the cloud–edge continuum, and
https://doi.org/10.1016/j.future.2024.07.042
Received 30 November 2023; Received in revised form 7 June 2024; Accepted 22
vailable online 25 July 2024
167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a
July 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
https://doi.org/10.5281/zenodo.11401482
mailto:nicolas.farabegoli@unibo.it
mailto:danilo.pianini@unibo.it
mailto:roby.casadei@unibo.it
mailto:mirko.viroli@unibo.it
https://doi.org/10.1016/j.future.2024.07.042
https://doi.org/10.1016/j.future.2024.07.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.07.042&domain=pdf
http://creativecommons.org/licenses/by/4.0/

N. Farabegoli et al.

(

(

Future Generation Computer Systems 161 (2024) 545–558
how they can be extended to support scalability and achievement of
specific performance trade-offs. In particular, previous work proposes
an application partitioning schema, called pulverisation [6,11], that
fosters the decoupling of business logic and deployment concerns. In
short, the core idea is to consider devices as logical entities whose
software can be designed as (or broken down to, if already existing)
an ensemble of five components (behaviour, state, communication, sensors,
and actuators) that can be deployed with flexibility on available infras-
tructure without (ideally) affecting application functionality. We call a
pulverised system a system that is partitioned according to this schema.
This way, the designer can focus on the business logic at hand, delaying
the definition of an optimised deployment to later stages of the software
design, thus gaining resilience to changes in the infrastructure or in
non-functional requirements. Although interesting, pulverisation has
been so far limited under the point of view of dynamicity, ultimately
hindering its capability to scale with mutating conditions or changing
requirements: although the application can be deployed on arbitrary
systems, there is no support for the reconfiguration of components at
runtime.

In this work, we improve over the state of the art by introducing dy-
namicity in pulverised systems, retaining the neat separation between
functional and non-functional specifications while providing means to
tackle scalability. Specifically, we provide three main contributions:

1. we extend the theoretical framework of pulverisation by adding
support for runtime configuration rules, allowing the system to
adapt at runtime by moving pulverised components across the
available infrastructure;

2. we accordingly provide a practical implementation of reconfig-
urable pulverisation called PulvReAKt, developed in the Kotlin
programming language; and

3. we validate the proposed framework and approach both by
simulation and through a real deployment, and provide open-
source archived artefacts [12,13], useful for reproducibility and
as base for future work.

In particular, with respect to previous work [11], which is mainly
theoretical, we provide as major novel contributions: (i) two DSLs for
specifying pulverised systems and deployment reconfiguration rules, (ii)
a working implementation of a runtime (or middleware) supporting pul-
verisation and reconfiguration, and (iii) experiments on runtime adap-
tation of pulverised systems (where in [6,11] these are only statically
generated).

The manuscript is organised as follows. Section 2 provides an ex-
plicit account of the research questions. Section 3 provides background
on deployment and pulverisation. Section 5 describes the proposed
DSL and platform. Section 7 provides an evaluation of the approach.
Section 4 covers related work. Finally, Section 8 concludes the paper
and highlights directions for future work.

2. Motivation and research questions

This work draws motivation from the problem of deployment recon-
figuration for CASs, as a way to dynamically improve the non-functional
profile of these kinds of systems by leveraging additional infrastructure
as provided by the edge–cloud continuum. Previous work [11] has
shown that pulverising the responsibility of individual devices into
common components (covering sensing, actuation, state, computation,
communication) provides flexibility at the deployment stage, and that
deployments can be generated statically and then evaluated by simula-
tion [6]. However, when the infrastructure is subject to highly dynamic
conditions (due e.g., to changing load, energy availability, or network
status) as in the case of the ECC, the deployment plan may need
to be adapted to scale the application and improve performance and
resource utilisation. Thus, the focus of this work is on the specification
and runtime support of reconfigurable pulverised systems; in particular,

the focus is not on illustrating the benefits of the pulverisation approach

546
with respect to other component models (such as those reviewed in
Section 4.1).

Specifically, with this work, we mean to answer the following
research questions:

RQ1) How can a pulverised deployment be reconfigured at run-
time in a decentralised way to adapt to changing conditions
(load, energy, etc.)?

RQ2) How can such adaptation be designed to provide relevant
benefits over a static allocation?

To answer these questions, this work advances the current state
of the art on pulverisation approaches by introducing runtime re-
configuration rules and providing a practical implementation of a
reconfigurable pulverisation framework.

3. Background

In this background section, we provide a conceptual framework
for deployment and reconfiguration (Section 3.1) and then describe
the pulverisation approach to application partitioning and deployment
(Section 3.2).

3.1. Deployment and reconfiguration: Basic concepts

The deployment view is a well-known architectural viewpoint for
software systems, concerned with the mapping of software components
to physical machines [14] and supported by modelling notations like
UML Deployment diagrams. Here, we briefly introduce deployment and
reconfiguration based on the conceptual characterisation of [10,15].
A site is a set of computers (hosts) that may host a software system,
i.e., a product described by a coherent collection of artefacts and con-
sisting of a set of deployment units that can be independently operated.
(Software) Deployment is the process of moving and making a software
system available and operational from one or more producer sites to
a target set of consumer sites, also called the deployment domain. The
deployment plan defines the mapping between the software system and
the deployment domain, possibly augmented with further information
(e.g., metadata, constraints, preferences). Common deployment-related
activities include: (i) release/update of the software system at the pro-
ducer site; (ii) installation/uninstallation at/from the consumer sites; (iii)
activation/deactivation, for starting/stopping the components; (iv) reor-
ganisation of the software system; and (v) redistribution, i.e., changing
the deployment plan. According to the analytical framework of [10],
the problem of (automatic) deployment of distributed software systems
can be addressed by considering (i) the nature of the software to be
deployed (e.g., how the software system is split into components);
(ii) the nature of the deployment domain (i.e. the characteristics and
topology of the available infrastructure); (iii) how the deployment is
designed (e.g., how the deployment plan is specified); and (iv) how the
deployment is performed (e.g., how deployment activities are carried
out). From an operational point of view, deployment may be supported
by a so-called runtime or middleware [16]. Related work covering these
issues is provided in Section 4. In the following, we introduce the
deployment approach that we extend and upon which we develop
PulvReAKt.

3.2. Pulverisation

Pulverisation [6,11] is an approach to distributed application par-
titioning and deployment, exemplified in Fig. 1 and described in the
following. Its goal is to provide application designers with a way to
specify the functional semantics of their software in a deployment-
independent way. To do so, the application logic should be designed
considering a logical system: a network of logical devices forming a
network with arbitrary topology. A software system is pulverisable if
the application of every single logical device is decomposable into an

ensemble of pulverised components representing, respectively:

N. Farabegoli et al.

g
p
s
t
b
g
t
l
b

d
a
b
t
c
t
a
t
m
b
w
o
t
a
L
t
l
a
I
t
c

i
l

Future Generation Computer Systems 161 (2024) 545–558
Fig. 1. Pulverisation model and examples of deployments. Notation: solid-border boxes
denote physical hosts (bold borders are for thick devices); solid lines denote connections
between hosts; dashed-border boxes denote software components; different colours
denote (software components of) different logical devices; red dashed lines denote
connections between the software components, i.e., neighbouring relationships (not
shown for co-located software components).

• a set 𝜎 of logical sensors;
• a set 𝛼 of logical actuators;
• a state 𝜅, representing the logical device’s knowledge;
• a communication component 𝜒 , handling interaction with reach-

able devices in the logical system, and
• a computation component 𝛽, modelling the behaviour of the logic

device.

Decomposition of an application into pulverised components can be
achieved in two ways: either the application is designed with pulveri-
sation in mind, or the application is developed using a framework
supporting automatic decomposition (one notable example are aggre-
ate computing frameworks [17,18]). Once the application has been
ulverised, a mapping must be provided between the pulverised logical
ystem and the hosts that will execute the pulverised components. In
his process, a single logical device could (and usually does) end up
eing executed on multiple hosts. Indeed, though logical devices are
enerally associated with ‘‘application-level’’ physical devices that need
o be controlled or monitored (e.g., a drone, a sensor, or a person—a
ogical ensemble of wearables), their execution can also be supported

y other physical devices (e.g., purely infrastructural ones).

547
For instance, let us assume a minimal logical system counting two
evices: two rain gauges logging the water level for future reference
nd opening a valve when the water level crosses a threshold in
oth devices. Once pulverised, the logical system would be split into
en deployable pulverised components (that we indicate with their
omponent symbol and an index, e.g., 𝜎1 is the logical sensor of
he first device). These pulverised components can be deployed in
rbitrary hosts as far as they have the capabilities required to host
hem (for instance, the device executing the rain gauge logical sensor
ust be equipped with the right sensor, while the host executing the

ehaviour must be sufficiently powerful to execute the logic). Thus,
ith no change to the application logic, the system could be deployed
n very different systems: let us assume, for instance, that our actual
arget infrastructure is not composed of two connected devices but is
n existing IoT system where the rain gauges are connected to two
oRaWAN motes (which are too weak and energy-critical to execute
he logic), a dedicated device controls the valves, the levels must be
ogged on a database hosted on a cloud server reachable via HTTPS,
nd we have an internal edge server that we can use as we please.
n this case, we would deploy 𝜎1 and 𝜎2 on the motes, 𝛼1 and 𝛼2 on
he valve controllers, 𝜅1 and 𝜅2 on the cloud server, and the remaining
omponents on the edge server.

Although the idea behind pulverisation is simple, finding a way to
mplement it effectively requires tackling several challenges at different
evels:

• communication: splitting logical devices into small deployment
units implies communication among them, thus requiring to con-
sider networking at two levels: across pulverised components
(intra-device) and among logical devices (inter-device);

• portability: hosts will have very diverse hardware specifications,
operating systems, and software stacks;

• runtime: the system should be able to reconfigure its deployment
at runtime without disrupting the application logic; and

• language: for the idea to be exploitable by designers, it is es-
sential that the pulverised configuration and the mapping of
pulverised components to the underlying infrastructure can be
expressed easily and, possibly, declaratively.

4. Related work

Following the conceptual framework introduced in Section 3.1,
in this section, we cover related work about languages for speci-
fying distributed systems (Section 4.1) and languages for specifying
infrastructures, deployments, and reconfigurations (Section 4.2).

4.1. Application description languages: Component-based software engi-
neering and the pulverisation model

We consider a distributed application as a graph of deployable
units. This partitioning may be manually specified at development time
(e.g., by explicitly defining and packaging different components) or
automatically defined through application partitioning approaches [9].

In our approach, the application partitioning into components is
manually specified through a DSL. Therefore, it can be framed in the
context of component-based software engineering, with [19] providing a
comprehensive review. The specification or design of distributed sys-
tems may leverage component models [20], architectural description
languages [21], service-based compositions [22], or frameworks.

Specifically, this work builds on the pulverisation component model
[6,11], whereby a large-scale cyber–physical system is partitioned into
a graph of devices where each device is split into five deployable com-
ponents: (i) sensors interface, (ii) actuators interface, (iii) behaviour,
(iv) state, and (v) communication component. In [6], a methodology on
top of the pulverisation model is proposed for generating and testing

deployments through simulation. There, file descriptors and scripts are

N. Farabegoli et al.

D

o
d
t
u
l
a
c
c

4

a
u
i
m
d
o
e
s
i
s
e

d
m
s
m
s
t
t
p

o
f
f
f
i
c
n
(
l
r
s

s
p
T
o
t
d
a
i
C
s
u
l
e
a
h
p
t
t

Future Generation Computer Systems 161 (2024) 545–558
used to generate deployment plans; in PulvReAKt, instead, we provide
SLs supporting a specification-oriented, declarative approach.

Additionally, the approach of specifying in a single codebase parts
f the structure, behaviour, interaction and/or other aspects of a whole
istributed system is also related to macroprogramming [23] and, in par-
icular, to multi-tier programming paradigm [24], where the deployment
nits for different tiers (e.g., client and server tiers; or view, business
ogic, and data tiers) are obtained by compilation or interpretation of
single codebase. PulvReAKt adopts the same idea, where a logically

entralised specification of the distributed architecture enables runtime
hecks and deployment activities.

.2. Infrastructure and deployment description languages

A deployment plan is a configured mapping of a software system onto
deployment domain. Given a deployable software system developed

sing the techniques of the previous subsection, what is needed now
s a language to describe a deployment domain and the deployment
apping. Languages have been proposed targeting specific deployment
omains such as the smart grid (cf. dspec in the RIAPS platform [25])
r the cloud (cf. the CAMEL multi-DSL [26]). In this work, we are
specially interested in deployments over large-scale cyber–physical
ystems and the edge–cloud continuum. The main aspects distinguish-
ng PulvReAKt from other approaches are that it targets pulverised
ystems (and not general partitionings) and that it uses internal DSLs
mbedded in Kotlin.

A related (external) DSL is MuScADeL [27]: it allows expressing
eployment properties of applications on multi-scale deployment do-
ains, i.e., large and heterogeneous infrastructures considered under

everal viewpoints (device, geography, network, administrative do-
ains, etc.). Component descriptions can include constraints (both basic

oftware/hardware constraints and multi-scale criteria). The specifica-
ions are used to generate probe artefacts supporting data collection at
he level of the deployment middleware. However, the work in [27] is
reliminary and does not cover runtime adaptation.

A comprehensive conceptual framework on automatic deployment
f distributed systems is provided in [10]. A more recent survey [28]
ocuses on formal techniques for verifying the correctness of recon-
igurations in component-based distributed software systems. Indeed,
ormal models can help specify reconfigurable architectures: examples
nclude DR-BIP [29] and DReAM [30]. Both are based on the same
onceptual model: they feature components (capturing behaviour), con-
ectors (capturing the interaction between components’ ports), maps
logical topologies), and deployments (associating components to map
ocations), overall organised in motifs (dynamic architectural configu-
ations), to model and analyse dynamic architectures. These tools can
upport reasoning about reconfigurations and verification.

Several approaches use languages together with middlewares to
pecify and execute reconfiguration policies. The AWaRE DSL [31] sup-
orts constraint-based self-management, leveraging managing agents.
he language enables the specification of the domain model (in terms
f components), the problem structure model (in terms of constraints),
he agent architecture model (in terms of agents, roles, and their coor-
ination), and the assignment model (in terms of management problem
ssignment strategies). Similarly, earlier approaches based on the spec-
fication of constraint-sets include DELADAS [32] and ConfSolve [33].
trl-F [34] is an architectural description language with constructs for
pecifying adaptive behaviour and policies (constraints) for reconfig-
ring system components. The idea of its DSL to reconfiguration is to
et designers specify behaviours that regulate the transitions between
xplicitly specified configurations. In [35], a model-based deployment
pproach is proposed targeting so-called fleets, i.e., distributed and
eterogeneous devices at the edge characterised by different cyber–
hysical contexts (cf. resources, connectivity, etc.). The main goal is
o support the distribution of multiple variants of the same applica-

ion based on the different contexts of the different target devices.

548
Fig. 2. The approach provides two DSLs and a runtime for specifying and executing
deployment plans. Each deployment unit will be delivered to the target site and
properly configured to interact with other deployment units according to the protocol
that the application at hand requires (see Section 7 for examples).

The approach is based on the GeneSIS modelling language, where a
DeploymentModel consists of sets of Resources (e.g., Components, spe-
cialised by InfrastructureComponents and SoftwareComponents) with
associated Propertys and Links. However, these approaches, being
based on constraint solving, typically suffer from scalability issues.

Finally, there is a plethora of approaches for automatic deployment
or offloading across the edge–cloud continuum. One example is osmotic
computing [36], whereby microservices (the solvent) can migrate across
the edge–cloud infrastructure (the solution), passing through layer
boundaries (the semi-permeable membranes) in order to keep a balance
in the desired properties (the solute).

5. A runtime and DSLs for reconfigurable pulverised systems

The original pulverisation approach, as described in [11], does
not provide any support for the dynamic relocation/reconfiguration of
the pulverised components, a significant limitation when scalability is
required. Thus, in this section, we present two main contributions to
the extension of the pulverisation approach to support scalability: first,
we clarify how we support the dynamic reconfiguration of pulverised
systems (Sections 5.1, 5.2); then, we cover the two DSLs for specifying
pulverised systems and their reconfiguration logic (Sections 5.3 and
5.4); and finally, we provide details about the middleware architecture
and logic (Section 5.5).

An overall view of the approach in terms of the provided tools
and the main modelling concepts is provided in Fig. 2. The elements
depicted in the figure are explained in the following sections.

5.1. Pulverisation with dynamic reconfiguration

To support the dynamic relocation of the execution of pulverised
components, we extend the pulverisation approach introducing the
concept of capability. Capabilities manage the way pulverised compo-
nents are deployed on the hosts and how (if) they should relocated at
runtime.

In the proposed approach, each host exhibits a set of capabilities,

representing features available to the pulverised components, such

N. Farabegoli et al. Future Generation Computer Systems 161 (2024) 545–558
Fig. 3. A general example of a PulvReAKt system deployment. The figure shows how the system is decentralised, running a middleware instance on each node. Notice that we
abstract the details about how the middleware instances are connected, which in general depends on the physical network connection, which is managed by a dedicated middleware
component called Communicator.
c

(
c
b
f
c
c
o
m

a
b
a
i
b

t

as hardware resources, specific configuration settings, and userland
policies. Complementarily, each pulverised component requires a set
of capabilities, intended, from this perspective, as the features that the
host must provide to the pulverised component for it to be executed.
Following this approach, akin to labelling systems found in container
orchestration platforms, a pulverised component can be deployed on
a host that provides a superset of the capabilities required by the
pulverised component.

Introducing the concept of capability in the original pulverisation
approach enables the definition of fine-grained requirements for pul-
verised components, thus preventing illegal deployment combinations,
even when these are the result of changing runtime conditions. For
instance, the deployment of an 𝛼 component on a host that does not
provide any sensing capability will not be allowed; and, interestingly,
a 𝛽 component deployed on a host whose performance degraded too
much (e.g., due to aggressive CPU throttling in response to a critical
battery level) may be relocated elsewhere, making the improved ap-
proach more robust to changes introduced after the validation of the
initial deployment plan.

In the remainder of the paper, we will refer to devices capable of
hosting only sensors (𝜎 component) and actuators (𝛼 component) as
thin, since they are supposed to be resource-constrained devices not
capable of executing the remainder of the pulverised components. On
the other hand, we will refer to devices capable of hosting the 𝛽, 𝜒 , 𝜅
components (beside possibly the 𝜎 and 𝛼 components) as thick, since
they are supposed to be powerful enough to execute the logic of the
pulverised components. Crucially, a pulverisation middleware must be
capable of running on both devices, possibly using a stripped-down,
lightweight version for thin devices.

To support constrained devices that can only host sensors and actua-
tors, we consider a lightweight variant of the middleware
(refer to Fig. 4). Compared to the full-fledged version running on thick
devices, the lightweight variant does not implement the
UnitReconfigurator, since there is no need to relocate components on
thin devices, as sensors and actuators are supposed to be fixed in the
549
Fig. 4. Lightweight middleware implementation for thin devices. This version of the
middleware does not support the reconfigurations and can execute only the 𝜎 and 𝛼
omponents.

thin) host. The other main difference is that, since the 𝛽, 𝜒 , and 𝜅
omponents are not supported on thin devices, there is no need for em-
edding software libraries (such as the Aggregate Computing runtime)
or behaviour implementations. Such a lightweight middleware variant
an be also implemented using languages more suitable for resource-
onstrained devices, such as C/C++ or Rust, enabling a wide range
f target devices otherwise impossible to support with a full-fledged
iddleware implementation.

When lightweight middleware instances are involved in the system,
t least one thick device must be available in the infrastructure to
e able to execute the remainder of the components required by the
pplication logic. Via the capabilities mechanism, we can ensure that
nvalid deployment configurations are prevented, and the system can
e reconfigured at runtime to adapt to changing conditions.

Additionally, the capability mechanism can be used to enforce the
ypical ‘‘pairing’’ of the 𝜎 and 𝛼 on the same physical device, preserving

the situatedness of the application logic. Conversely, PulvReAKt can

N. Farabegoli et al.

h
m

m
t
(
d

a
a
t
t
e
i
t
t
l
s

a
a
R
t
d
A
l
a
a
t
r
a
p
t
d
e
b
o
p

c
1
t
c
d
r
d
n
a
r
t
e
c
m

1

1

1

1

1

1

1

w
T
u
s
o
U
t
e
i
d
c
c
w
A
s
c
a
i

Future Generation Computer Systems 161 (2024) 545–558
support multiple sensors (or actuators) to be deployed on different
physical devices, but still belonging to the same logical device, to
enable a variety of heterogeneous deployment scenarios. In Fig. 3 is
reported an example of a system running the PulvReAKt middleware
composed of three thin and a single thick host. The figure shows how
the middleware is deployed on each node of the infrastructure and
how the deployment units are managed inside each host. In the figure,
each middleware of the thin host is directly connected to the thick host.
Although the image does not depict the physical connection between
the hosts but only the logical ones among the middleware instances,
the framework is not limited to a specific topology, as a dedicated
middleware component (the Communicator) manages the construction
of a routing table over physical network connection.

5.2. On middlewares and (Domain-specific) languages for deployed systems
specification and execution

As mentioned in Section 3.1, the deployment and reconfiguration of
a software system may be supported – following the well-known lay-
ered architectural style – by a runtime or middleware [16] encapsulating,
among others, deployment and reconfiguration services. The runtime
could be reified into a deployment unit per se or can be implemented
as part of the deployment units of the software system to be deployed—
e.g., taking the form of an application-program interface (API) or a
framework. To take decisions about deployment and reconfiguration,
such a runtime has to be configured for the software application at
and, i.e., it has to be given a deployment plan capturing deployment
appings, constraints, and policies.

In principle, there are several possibilities to implement a deploy-
ent plan: (i) declaratively through a set of configuration files; (ii)

hrough an API/library implemented in a general-purpose language; or
iii) through a dedicated DSL [37]. Naturally, these approaches have
ifferent trade-offs.

A framework/runtime with configuration files enforces declarativity
t the configuration level, but its flexibility is limited, as options not
ccounted for at design time can hardly be injected through configura-
ion files. On the other hand, a (well-designed) library can be flexible as
he host language can be used to express peculiar configurations and is
asier to adopt for users acquainted with the host language. However,
ts configuration may quickly become imperative and more challenging
o maintain as complexity grows. Finally, a DSL [37] can be designed
o be as expressive as needed, but it has a high maintenance cost (as the
anguage maintenance stacks upon the library/API) and, potentially, a
teep learning curve due to the need to learn a new (custom) language.

However, recent evolution in programming languages opened an
dditional strategy: internal DSLs, hybrids between libraries and stand-
lone (external) DSLs [37]. Modern languages such as Kotlin, Groovy,
uby, and Scala [38] provide specific syntactic features to enable

he construction of APIs whose ergonomics is akin to the one of a
edicated language, but that are valid fragments in the host language.
lthough internal DSLs are de facto libraries in the host programming

anguage (there is no clear boundary defining when a library becomes
DSL1), from a practical perspective they allow for great flexibility

nd ergonomics (although not total as the one of a custom DSL, as
hey are subject to the syntactic constraints of the host language) while
etaining a reduced maintenance cost (as the host language ecosystem
nd tooling can be reused directly) and a gentle learning curve com-
ared to stand-alone DSLs (as the syntax will be largely familiar to
he host language users). Unlike external ones, internal DSLs allow the
esigner to directly fall back to the host language to implement peculiar
ntities or processes that the DSL cannot express. The approach has thus
een successfully applied in several domains, from build systems2 and
ntologies [39] to hardware design [40] to logic [41] and aggregate
rogramming [42].

1 https://archive.is/wip/xAeiX.
2 https://archive.is/5xtaN.
 i

550
5.3. The system DSL : Components and required capabilities

The System DSL captures the concepts of device type, component,
apability, and requirement. A reference sample is presented in Listing
. The DSL provides simple means to define capabilities as types in
he host language (Lines 1–3) and associate them with pulverised
omponents for each device type (Lines 6–15). This DSL is meant to
efine constraints that the application imposes on the infrastructure,
uling out configurations that cannot support the system (for instance,
eploying the sensor component of a device in a host that exposes
o sensor). All combinations of components and capabilities defined
s supported become amenable instead as targets of deployment or
econfiguration—forming what we may call the deployment range. In
he example, e.g., component Behavior in iot-sensor is defined as
xecutable on any host exposing HighCPU and/or EmbeddedDevice as
apabilities (Line 12): it implies that the component can be dynamically
oved to any host offering any such capability.

1 object HighCPU : Capability

2 object LowLatencyComm : Capability

3 object EmbeddedDevice : Capability

4

5 val conf = pulverizedSystem {

6 device("controller") {

7 Behavior and State deployableOn HighCPU

8 Communication deployableOn LowLatencyComm

9 Sensors deployableOn EmbeddedDevice

0 }

1 device("iot-sensor") {

2 Behavior deployableOn setOf(HighCPU, EmbeddedDevice)

3 Communication deployableOn LowLatencyComm

4 Sensors and Actuators deployableOn EmbeddedDevice

5 }

6 }

Listing 1: Example of System DSL usage. This code snippet defines three
capabilities and a logical system composed of two device types, whose
components are bound to the set of capabilities they need to execute.

5.4. The deployment DSL : Deployment domain, mapping, and reconfigura-
tion

The Deployment DSL supports the definition of the mapping between
pulverised components and specific hosts and the definition of reactive
reconfiguration policies. It works with the concepts of Host (associated

ith Capability), ReconfigurationEvent, and ReconfigurationRule.
he main goal of the Deployment DSL is to configure the deployment
nit, which represents the smallest deployable unit of the pulverised
ystem. It is characterised by a set of pulverised components, the host
n which they are deployed, and the logical device they represent.
sing Listing 2 as a reference example, we show how reconfigura-

ion events (Lines 1–11) can be captured at the type-system level by
xpressing them as a predicate over an asynchronous flow of events

nfluencing the system’s state. Similarly, hosts can be configured by
efining their names and capabilities (Lines 12–21). Once the hosts
omposing the system have been configured, the entire infrastructure
an be set up (Lines 22–38) by defining, for each logical device,
hich host should host each pulverised component (Lines 26–29).
dditionally, reconfiguration rules (Lines 30–37) can be defined to
pecify how the system should react to reconfiguration events. In this
ontext, the DSL exposes a special syntax to express the migration of
pulverised component on a different host. Crucially, being the DSL

nternal, specialised behaviour not supported by the DSL can be defined

n the host language directly: configuration blocks surrounded by curly

https://archive.is/wip/xAeiX
https://archive.is/5xtaN

N. Farabegoli et al.

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

4

t
d
m

p

f
t
m
s

Future Generation Computer Systems 161 (2024) 545–558
brackets are, in fact, plain lambda expressions [43] supporting any kind
of computation.

1 // Reconfiguration events

2 expect fun cpuLoad(): Flow<Double>

3 expect fun batteryLevel(): Flow<Double>

4 object HighLoad : ReconfigurationEvent<Double>() {

5 override val predicate = { it > 0.90 }

6 override val events = cpuLoad()

7 }

8 object LowBattery : ReconfigurationEvent<Double>() {

9 override val predicate = { it < 0.20 }

0 override val events = batteryLevel()

1 }

2 // Available hosts

3 object Smartphone : Host {

4 override val hostname = "smartphone"

5 override val capabilities = setOf(EmbeddedDevice)

6 }

7 object Server : Host {

8 override val hostname = "amazon-aws"

9 override val capabilities =

0 setOf(HighCPU, LowLatencyComm)

1 }

2 // Runtime setup and runtime reconfiguration rules

3 val infrastructure = setOf(Smartphone, Server)

4 val conf = ... // see Listing 1

5 pulverizationRuntime(conf,"iot-sensor",infrastructure){

6 DeviceBehavior() startsOn Server

7 DeviceCommunication() startsOn Server

8 DeviceSensors() startsOn Smartphone

9 DeviceActuators() startsOn Smartphone

0 reconfigurationRules {

1 onDevice {

2 HighLoad reconfigures {

3 Behavior movesTo Smartphone

4 }

5 LowBattery reconfigures { Behavior movesTo Server }

6 }

7 }

8 }

9 pulverizationRuntime(conf,"controller",infrastructure){

0 /* ... */

1 }

Listing 2: Example of the usage of the domain-specific language for the
runtime configuration. The example defines the runtime configuration
of the system, specifying the initial deployment and the reconfiguration
rules.

5.5. Implementation details and the runtime system

Several factors influenced the decision of the target technology
for PulvReAKt. From the language perspective, we favoured statically
typed languages, which often come with better contextual assist, and
may help reducing the learning curve (we thus discarded Python,
Javascript, and Ruby upfront). For the same reason, we decided to
focus on the top-50 languages available on the well-known TIOBE
index3 to avoid selecting a language known only to a small niche. We
hen verified whether the language provided first-class support to the
efinition of DSLs, and, finally, we considered the possibility to target
ultiple runtimes.

Targeting multiple runtimes, and, in particular, native code, is
aramount for the approach to be effective in a highly heterogeneous

3 https://archive.is/GiRce.
551
context such as the ECC. In fact, the framework should ideally be able
to execute even on resource-constrained devices, and be able to support
as much as possible the deployment of arbitrarily-written software
components (namely, the interoperability with other languages should
be as complete as possible).

We ultimately implemented the proposed DSL in Kotlin which, at
the time of writing, targets the Java Virtual Machine (JVM), JavaScript,
and native code for many platforms,4 including mobile and wearable
devices Scala could have been a valid alternative, but we deemed
the multiplatform support of Kotlin a better fit for our needs. The
framework has been open-sourced and released with a permissive
licence.5

The runtime bases its operation on three main components: the
Spawner, which is responsible for executing the components; the
UnitReconfigurator, which is responsible for reconfiguring the
deployment unit according to the ReconfigurationEvent; and the
Communicators, which are used to establish the components’ intra-
communication. To start, the PulverisationRuntime needs to know the
name of the logical device, the host on which it is running, and the con-
igurations produced by the two DSLs. At the start of the system, using
he provided configuration, the runtime spawns all the components that
ust execute on the deployment unit. Similarly, the UnitReconfigurator

tarts observing all the configured ReconfigurationEvents and regis-
ters the listeners for incoming reconfigurations. Then, each spawned
component starts executing its logic and sharing data with other
components via the Communicator, which is responsible for the compo-
nents’ intra-communication by leveraging the communication protocol.
Finally, when a reconfiguration occurs, the UnitReconfigurator con-
siders the new deployment configuration and, by interacting with
the Spawner, starts or stops components in order to achieve the new
setup.

At startup, the framework starts observing the Reconfiguration

Events specified by the DSL, and, for each one, it collects the values pro-
duced by the phenomena observed by the event. These values are repre-
sented in the Kotlin language as Flows, namely asynchronous streams of
values. Whenever a new value is produced by the Flow, the framework
checks if the value satisfies the condition of the ReconfigurationEvent.
Upon satisfaction of the conditions, the designated deployment unit re-
sponsible for that particular event initiates the reconfiguration process.
The updated system configuration resulting from the reconfiguration
process is then propagated to the other deployment units within the
system.

If any of the conditions are satisfied, the specific deployment unit
triggers the reconfiguration, and the new system configuration is prop-
agated to the other deployment units.

To implement the migration of a component execution, each deploy-
ment unit is equipped with all the component defined by the DSLs,
independently by the initial configuration. Whenever a reconfigura-
tion is required, there is the problem of moving the execution of
a component from one host to another. To do so, when a recon-
figuration event is triggered, the component on the current host is
stopped via the UnitReconfigurator and the Spawner. Subsequently, the
UnitReconfigurator on the destination host – the intended migration
target – interacts with the Spawner to start the component. This ap-
proach effectively simulates the migration of the component between
hosts by managing the start and stop processes on the respective
hosts.

During the application’s startup phase, the framework conducts a
validation check on the reconfiguration rules. This check aims to pre-
vent the system from executing with invalid rules, such as attempting
to migrate a component to a host lacking the required capabilities (as
specified by the component). This validation ensures that the system

4 https://archive.is/JSiTg.
5 https://github.com/pulvreakt/pulvreakt.

https://archive.is/GiRce
https://archive.is/JSiTg
https://github.com/pulvreakt/pulvreakt

N. Farabegoli et al.

m
t
e
t
a
i
p
r

W
(

a
c
s
r

d
n

l

o
𝜎
i
m
c

p
i
t
w
a

7

o
t
i
a
r
q
d
T
P
f
h
f

7

p
f
a
T
b
r
a

7

w

Future Generation Computer Systems 161 (2024) 545–558
Fig. 5. Representation of the scenario described in Section 6. graph dots represent
wearables, and arc lengths represent the distance between them. The rectangle at the
bottom represents the monitor. The closer the wearables are, the higher the alert level
(reddish tones).

consistently maintains a valid state, and that the reconfiguration rules
remain applicable throughout runtime.

The configuration produced by the DSL needs a platform that in-
structs the system on how actual communication must be performed. In
our current implementation, we provide out-of-the-box a JVM platform
based on the AMQP protocol leveraging RabbitMQ, supporting both
intra- and inter-device communication. The platform also optimises
pulverised components of the same logical device ending up running
on the same host: their communication happens directly by sharing
memory without the need to go through (de)serialisation processes and
networking. For the large-scale experiment, we implemented a second
platform, this time to comply with the requirements of the simulation
engine we used. The implementation required little effort and has been
made available as part of the evaluation repositories.

6. Practical demonstrator: Crowd sensor

As a basic practical proof-of-concept demonstrator, we exercise
the framework on a real-world testbed located in a laboratory. In
particular, we want to avoid situations where too many people are too
close to each other in the same room for safety reasons. To do so, we
equip each person with a wearable device that can detect the distance
from other similar devices via Bluetooth. For the sake of simplicity, we
relied on smartphones to emulate wearables, and we used the Bluetooth
received signal strength indicator (RSSI) to estimate the distance 𝑑
between devices as:

𝑑 = 10
𝑅𝑟𝑒𝑓 −𝑅

10⋅𝑛

where 𝑅𝑟𝑒𝑓 is the RSSI reference value at 1 meter, R is the currently
easured RSSI, and 𝑛 is the path loss exponent, a parameter indicating

he rate at which the RSSI decreases with distance. 𝑅𝑟𝑒𝑓 and 𝑛 are
nvironment-sensitive parameters that require calibration; we set up a
est with two smartphones and measured, for our setup, 𝑅𝑟𝑒𝑓 − 60 dBm
nd 𝑛 = 2.0 dB. We used a monitor to issue the warning by setting
ts colour from green to red depending on the average distance among
eople: the shorter the distance, the redder the tone. Fig. 5 shows a
epresentation of the scenario.

The system is composed of two kinds of devices: wearable and alarm.
earables consist of the following pulverised components: sensors

𝜎𝑤), perceiving other devices by their signal strength; behaviour (𝛽𝑤),
converting raw data from the sensor into messages for the alarm; and
communication (𝜒𝑤) sending data to the alarm. They do not need

state or actuators. The alarm consists of the following pulverised
omponents: 𝛽𝑎, computing the mean distance among devices; 𝜅𝑎,
toring the distances measured by the device for comparison with the

𝑎
ecent past; 𝜒 , responsible for receiving the data from the wearable l

552
evices; 𝛼𝑎, enacting the alarm by showing a colour on the screen. It
eeds no sensors.

We use the following hosts in the scenario:

• multiple Smartphones, one per user, emulating wearables and used
as distance sensors;

• a Monitor used to show the alarm;
• a Server used to run crowd estimation and wearable logic.

Initially, 𝛽𝑤 is allocated to the Server while 𝜎𝑤 and 𝜒𝑤 are executed
on the Smartphones, and all the alarm components are executed in the
Monitor. In the experiment, we define a rule by which, if the Server
is overloaded, 𝛽𝑤 is moved to the Smartphones (with each smartphone
running the 𝛽𝑤 corresponding to its 𝜎𝑤). During the experiment, we
aunch several heavy-duty processes on the Server and observe how the

system reacts to the overload. We rely on the MQTT platform module
for all the communication, meaning that the same protocol and broker
handle both intra- and inter-device communication.

As soon as the reconfiguration event is triggered, the 𝛽 component
f the Wearable is moved from the Server to the Smartphone 𝑠 hosting
𝑤
𝑠 , relieving the server and preserving while retaining the system
n nominal conditions. The reconfiguration of the system is entirely
anaged by the framework, which handles all the machinery and

ommunication to move the component from one host to another.
This example has been used as a real-world testbed driving our ex-

erimental implementation. We do not report the entire configuration
n this manuscript for brevity, but it is available, fully open-sourced, in
he companion artefact [13], for those willing to inspect or exercise the
hole system. To simplify testing, we also provide, in the same artefact,
simulation of the system where every device is containerised.

. Evaluation

In this section, we perform an evaluation of the proposed framework
n a larger-scale scenario via simulation. First, we set our evalua-
ion goals (Section 7.1), connecting them with the research questions
ntroduced in Section 2. Then, we simulate a city-scale distributed
pplication deployed for a urban event and show how the dynamic
econfiguration may help to balance cost, energy consumption, and
uality of service (QoS) (Section 7.2). At the end of the section, we
iscuss applicability (Section 7.3) and threats to validity (Section 7.4).
he implementation of the scenario has been performed by interfacing
ulvReAKt with the Alchemist Simulator [44] through a dedicated plat-
orm module. For inspectability and reproducibility, the experiments
ave been released with a permissive open-source licence6 and archived
or future reference on Zenodo [12].

.1. Evaluation goals

We aim to evaluate PulvReAKt both in terms of expressiveness and
erformance of the resulting system. Specifically, we show how the
ramework can be used to develop a scalable pulverised system in

declarative and deployment-independent fashion, answering RQ1.
hen, we demonstrate how the novel reconfiguration capabilities can
e exploited to achieve better trade-offs between performance and
esource utilisation compared to pre-defined static deployments, thus
ddressing RQ2.

.2. Large scale urban collective computation

To show the potential benefit of automatic reconfiguration in CASs,
e consider a city-scale collective computation in a urban setting.

6 https://github.com/nicolasfara/experiments-2024-fgcs-pulverization-
ocal-reconfiguration.

https://github.com/nicolasfara/experiments-2024-fgcs-pulverization-local-reconfiguration
https://github.com/nicolasfara/experiments-2024-fgcs-pulverization-local-reconfiguration

N. Farabegoli et al.

S

C
c

Future Generation Computer Systems 161 (2024) 545–558
Suppose a large number of people are attending an event in a city to
participate in a computationally intensive collective activity, e.g., a
tournament of a geo-located game similar to Ingress7 or Pokémon Go.8

Overall, the system features three types of networked devices: wear-
ables (e.g., smartwatches), smartphones, and the cloud. Each wearable
device is paired with a smartphone; which are connected to the cloud
via 5G cellular network. We assume the application implementing the
collective activity to be partitioned as prescripted by the pulverisation
model; with two components capable to migrate on different devices:
the application behaviour can execute either on smartphones or in
the cloud; while the Global Positioning System (GPS) sensors used
to determine each participant’s position can be hosted either on the
smartphones or on the wearables. We use this scenario as a reference
to evaluate the effectiveness of PulvReAKt by opportunistically relocate
these two components achieving previously unattainable trade-offs
among energy consumption, cost to operate the system, and active
participation of the users.

7.2.1. Metrics
We are interested in the following metrics:

• 𝑃𝑠𝑦𝑠𝑡𝑒𝑚 (kW): the average power consumption of the system, com-
puted as the sum of the power consumed by the devices and the
cloud instances (under the assumption of a non-carbon-neutral
energy mix, it can be used as a proxy for the carbon footprint);

• $𝑐𝑙𝑜𝑢𝑑 ($): the cost related to the cloud instances;
• Distance (km): the total distance walked by the participants,

which we use as an indicator of the quality of experience (QoE)
(the higher, the better), as users temporarily quit the event (and
thus stop walking from the point of view of the application) when
recharging; and

• ℎ (minutes): the average time spent by users with their devices
connected to a charging station instead of actively participating
in the game, which we use as an indicator of the QoE (the lower,
the better).

7.2.2. Energy model
We assume that the power consumption of the device is linearly

dependent on the CPU usage, and we thus decided to estimate the
energy per instruction (EPI) [45] of a typical CPU for a smartphone
(𝐸𝑃𝐼𝑑𝑒𝑣𝑖𝑐𝑒), a wearable device (𝐸𝑃𝐼𝑤𝑒𝑎𝑟𝑎𝑏𝑙𝑒), and a server (𝐸𝑃𝐼𝑐𝑙𝑜𝑢𝑑).

To do so, we take the thermal design power (TDP) of a Qualcomm
napdragon 888 (5 W) and an Intel Xeon Platinum P-8124 (220 W), and

we divide it by the score the CPU obtained in the popular Passmark
benchmark9 (9362 and 22674, respectively) obtaining an indication of
the power per benchmark point (5 𝑊∕9362 𝑝𝑡𝑠 and 220 𝑊∕22 674 𝑝𝑡𝑠 respec-
tively). We then used these ratios to estimate the relative EPI of the
two CPUs, obtaining an 𝐸𝑃𝐼𝑟𝑎𝑡𝑖𝑜 close to 1:18. Thus, we take the EPI
estimation for the server CPU from [45], (approximately 100 nJ per
instruction, considering 36 logical cores of our reference processor)
and we assume the EPI of the smartphone CPU to be 18 times lower.
Since no score is available for the wearable CPU, we assume the same
efficiency of the smartphone CPU (as, in the case of smartwatches, the
CPU is often based on a similar architecture) and a TDP five times
lower (estimated from the specifications of a Google Pixel Watch 2).
Once the EPIs of the platforms are known, we estimate the number of
instructions for the pulverised components as follows: we assume the
application to be a heavy-duty game, capable of draining the battery
of a smartphone (approximately 4500 mAh in capacity, and thus, at
3.3 V, 14.85 Wh, or equivalently, 53 460 J) in 6 h of continuous usage,
which divided by the EPI of the smartphone CPU provides the number

7 https://www.ingress.com/.
8 https://pokemongolive.com/.
9
 https://www.cpubenchmark.net/.

553
Table 1
Battery duration of the wearable and mobile devices with different components

allocation. With OS we indicate the operating system and other applications running on
the device. The reported time represents the average duration of the battery assuming
operational devices for which the components allocation is constant.

Device Allocated Comp. Avg. drain time

Smartphone
𝛽 + 𝜎 + 𝜒 +OS 6h
𝛽 + 𝜒 + OS 10h
OS 24h

Wearable 𝜎 + 𝜒 +OS 6h
OS 24h

Table 2
Simulation parameters.

Simulation parameter Values

PoIs 15
𝛽 Offloading threshold ⇕𝑥 |𝑥 ∈ {0, 10, 20, 30, 40, 100}
𝜎 Offloading policies Smartphone, hybrid, wearable
Device count 300
Random seed 1, 2, . . . , 1000

of instructions. For the wearables, we assume that the GPS component
can drain the battery in 6 h of continuous usage,10 and we estimate
the number of instructions accordingly. Additionally, we account for
a variable quota of instructions that captures other activities of the
devices (screen, operating system, other applications, etc.). Table 1
summarises the battery duration of the mobile and wearable devices
when different components are allocated to them. For each device, we
generate a variable OS workload, to make the battery discharge more
realistic. This power consumption is computed by randomly selecting
a percentage of the maximum power impact of the OS (as reported
in Table 1) every simulated second.

7.2.3. Cost model
We assume the cloud to be composed of a set of Amazon AWS

instances, precisely, m5.16xlarge instances (using our reference server
PU). We consider for the AWS (Elastic Compute Cloud) an hourly
ost of $3.584.11 We estimate the number of instances required to run

the pulverised components by dividing the total power consumption
of the cloud by the TDP of the server, assuming the CPU to be the
dominant energy consumption component, and assuming that each
vCPU on AWS maps to a logical core of the underlying hardware. The
specific parameters of the cloud instances are determined based on the
CPU specifications, in order to have the closest match to the reference
server CPU described in Section 7.2.2.

7.2.4. Experimental setup
We assume the event starts with users displaced at random positions

in the city, and their smartphones and wearables devices charge is ran-
domly initialised ensuring at least 60% of battery, and a probability of
the 10% that a device requires to be recharged when joining the event.
The game requires users to physically move around the city, reaching
PoIs and performing some operations there (e.g., play a collaborative
game or visit an attraction). We assume users with low battery to turn
off the application and recharge the device before rejoining the game.
Fig. 6 shows a snapshot of the simulation.

We configure the framework to move the behaviour to the cloud
when the battery level (measured as a percentage of the maximum
charge) is below a threshold 𝜆, and to move it back to the device when
the battery is fully charged.

The ⇕𝑥 symbol represents the different behaviour reconfiguration
strategies, where 𝑥 is the battery charge percentage threshold at which

10 https://archive.is/2JEwe.
11 https://archive.is/HhBLI.

https://www.ingress.com/
https://pokemongolive.com/
https://www.cpubenchmark.net/
https://archive.is/2JEwe
https://archive.is/HhBLI

N. Farabegoli et al. Future Generation Computer Systems 161 (2024) 545–558
Fig. 6. A snapshot of the large-scale simulation. Smartphones are represented as
coloured circles, with the colour indicating the average battery level between smart-
phone and wearable (green when charged, red when low). The blue squares represent
the PoIs.

the 𝛽 component is moved to the cloud; the special cases ⇕0 and
⇕100, represent, respectively, smartphone-only and cloud-only config-
urations. The 𝜎 component reconfigurations are instead: smartphone,
where only the smartphone’s GPS is used; wearable, where only the
wearable’s GPS is used; or hybrid, where the GPS is allocated to the
device with the highest battery level, with the reconfiguration rule
triggered every 5% of battery discharge of the device the component is
currently allocated on.

In each experiment, the initial battery levels, the initial position of
the users, and the decision of the next PoI to visit is stochastic. As
a consequence, we repeat each experiment 1000 times with different
random seeds. Table 2 summarises the simulation parameters. The
results and errors shown in the remainder of this paper are computed
over these repetitions.

7.2.5. Results
In the following, we show the results of the simulations based on

the metrics defined in Section 7.2.

Travelled distance. Fig. 7 reports the average distance walked by the
participants in the last 30 min over time, comparing different sensor
(one per chart) and behaviour (one line per chart) reconfiguration
strategies. As expected, ⇕0 requires more frequent recharges, and the
need for recharging is less frequent as it gets more likely for the be-
haviour workload to be offloaded to the cloud, reaching the best results
with ⇕100. This condition is evident but when the sensor allocation
strategy is to always keep the GPS sensor on the wearable: in this case,
wearables’ discharge dominate over smartphones, and the overall QoE
flattens regardless of the behaviour allocation strategy. By looking at
the behaviour of the system towards the end of the experiment, (the
rightmost part of the charts showing hybrid and smartphone sensor
allocation strategies), we can see that the hybrid strategy outperforms
the other ones, as, regardless the behaviour allocation strategy, devices
tend to not undergo a second recharge cycle (also, the first recharge
cycle is delayed). In the hybrid strategy, alternation between of the GPS
allocation between smartphones and the wearables discharges batter-
ies more uniformly, extending the overall battery life and impacting
positively on the QoE.

Time on recharge. Since for this application the time spent recharging
the device is time not spent using the application actively, we investi-
gate such metric as a proxy for the QoE; results are depicted in Fig. 8.
Data shows that the wearable-only sensor allocation strategy is the
worst across the board (as wearable tend to discharge faster), except
in the case of the ⇕0 configuration, in which hosting both behaviour
and sensors on the smartphones accelerates the discharge so much that
554
it becomes the dominating factor. Notably, the hybrid strategy performs
visibly better than the others when no other compensation strategy is in
place, namely, in ⇕0 and ⇕100 configurations. Otherwise, the behaviour
induced by the balance between the smartphone and wearable battery
life is less impactful, as the cloud offload can compensate similarly for
the battery discharge (but, as we will show later, at a higher cost).

Power consumption. We compute the overall power consumption, com-
bining smartphones, wearables, and cloud instances, applying the en-
ergy model introduced in Section 7.2.2. The results are depicted in
Fig. 9. The power consumption gives us an indication of the overall
system power impact. This metric, assuming the same non-carbon-
neutral energy mix is used to operate the cloud and recharge the
mobile devices, can also be used as a proxy metric to evaluate the
relative carbon footprint of operating the system. As expected, power
consumption is dominated by the cloud instances, thus, in cases in
which the behaviour is never (⇕0) or always (⇕100) offloaded to the
cloud, a different sensor allocation strategy does not impact cost. In
experiments where the behaviour can be relocated, purely cost-wise,
the always-on-wearable strategy seems to perform best, but it does so
at the expense of QoE, as many devices discharge their wearable well
before the smartphone battery has been consumed enough to reach
the cloud relocation threshold. The behaviour of the smartphone-only
and hybrid strategies is similar, and comparing the two is interesting,
as for low reconfiguration thresholds (⇕10 and ⇕20), it outperforms
the smartphone-only strategy, while induces more power consumption
as the threshold increases (⇕30 and ⇕40). This result is motivated by
the fact that the hybrid strategy tends to keep the sensor on the
wearables when the battery discharge of the smartphone is higher,
and less when it is lower: the larger the fraction of battery at which
the smartphone delegates its behaviour to the cloud, the more the
sensor reconfiguration can extend the duration of the participation in
the activity, the higher the cost. In other words, the sensor relocation
strategy is capable to extend the period of time in which the behaviour
is offloaded to the cloud longer than the period in which is bound to
the smartphone, thus causing a higher power consumption (and a better
QoE). Although the interaction among multiple reconfiguration rules on
power consumption can be non-trivial, data shows that it can be a very
effective way of balancing power consumption and QoE.

Cloud cost. The last metric we are interested in is the monetary cost
associated to cloud usage. In Fig. 10, we show the cost of the cloud
for each reconfiguration threshold and sensor allocation strategy. Un-
surprisingly, these are very similar to the power consumption results,
with the addition of a constant amount of money that is spent to always
keep at least one instance online for the application to work, as the
communication component in the implementation under analysis is
cloud-allocated. Thus, very similar considerations apply, including the
effect of the hybrid strategy in extending the period of time in cloud
(and thus whose cost grows faster with the cloud offload threshold
compared with the smartphone-only strategy).

7.2.6. Final considerations
We have provided a comprehensive evaluation of the proposed

framework, showing that thanks to the runtime reconfiguration we can
achieve trade-offs between the cloud cost, the distance walked by the
participants, and the time spent on recharge, otherwise not possible
with a static deployment (answering the RQ2 and RQ1). The results
show that appropriate reconfiguration strategies can be beneficial to
extract the most out of complex configurations in which multiple
devices can play the same role (for instance, because sensors are
replicated). In this sense, we have shown that opportunistically moving
the sensor execution between the smartphone and the wearable device
can extend the battery life of the devices, reducing the time spent on
recharge and thus maximising the QoE. Finally, we have provided a
cloud cost analysis highlighting how, with a dynamic reconfiguration,
good performance for the system under study could be achieved with
less than half of the cost of a cloud-only deployment, thus enabling
novel trade-offs unavailable without relocation.

N. Farabegoli et al. Future Generation Computer Systems 161 (2024) 545–558
Fig. 7. Average distance walked by the participants in the last 30 min. Coloured lines represent different reconfiguration thresholds. One chart is produced for every sensor
allocation strategy: smartphone-only (left), hybrid (center), wearable-only (right). Shades show ±1𝜎.
Fig. 8. Average time spent by the participants to recharge their devices. For each reconfiguration threshold, the three sensor allocation strategies are shown. The vertical lines
over the bars show ±1𝜎.
Fig. 9. Overall system power consumption. For each reconfiguration threshold, the three sensor allocation strategies are shown. The vertical lines over the bars show ±1𝜎.
7.3. Applicability

PulvReAKt can be profitably applied to support flexible deployment
of any system that can be conveniently modelled according to the pul-
verisation approach (cf. Section 3.2), which means, broadly speaking,
a collective of devices equipped with sensors (and possibly actuators)
able to compute and interact with neighbours—i.e. systems found in
scenarios like the IoT, edge computing, swarm robotics, and the like.

Therefore, PulvReAKt offers a versatile solution for a wide range of
applicative scenarios and infrastructures. It is designed to address com-
plex deployments in emergent infrastructures such as the cloud–edge
continuum, as well as systems and environments of highly dynamic
nature (cf. mobility, failure, varying loads).
555
As showed in Sections 5.4 and 5.3, the main advantage offered is
the possibility to specify the model of the system in terms of classes
of devices in the system, then provide different deployment strategies
according to the target infrastructure, without touching the business
logic of the system. In this way, the same application can be deployed
on many infrastructures with minimal effort, and reducing all the risks
related to different deployment configurations for the same application,
strategy aligned with the approach proposed in [11].

Conversely, the opposite strategy can be adopted: for the same
infrastructure specification, several system specifications can be pro-
vided. In this workflow, the focus is put on relying on the same
infrastructure for deploying different systems reusing the same de-
ployment specification, useful to test the same application in

N. Farabegoli et al.

d
t

t
p
d
t
a
c

c
h
t
f
o
(

7

v
c
k
t
t
b
o
t

o
p
v
e
e
c
u

v
t
t

8

r

Future Generation Computer Systems 161 (2024) 545–558
Fig. 10. Cloud cost for each reconfiguration threshold and sensor allocation strategy. The vertical lines over the bars show ±1𝜎.
i
n
i
a
t
t
r
b
w
v
p

b
c
u
p
o
s
w
a
b
i
b
c
t
e
i
a
r
s
o
i

C

D
&
R
C
t

D

c

ifferent deployments, such as via simulation as showed in Sec-
ion 7.

The proposed framework allows you to specify more complex sys-
ems and infrastructures, compared to the examples proposed in this
aper. To do this simply specify the right components for each type of
evice that takes part in the system, and specify the infrastructure struc-
ure and then leave the rest of the work to the framework. With this
pproach, the framework can scale from simple systems to real-world
omplex deployments.
PulvReAKt can be used to design and deploy heterogeneous systems

haracterised by heterogeneity of system’s devices (cf. thin and thick
osts), dynamic changing requirements, and a strong interaction with
he physical world. Therefore, we argue that PulvReAKt can be adopted
or managing the reconfiguration of collective systems in the context
f the IoT and more generally for large-scale cyber–physical systems
CPSs), as showed by the results in Section 7.2.

.4. Threats to validity

Our experiments consider a scenario where the application is pul-
erised and the behaviour can be executed either on the device or in the
loud, depending on the battery level. To do so, we assume the same
ind of smartphones to be used by all the participants, and we assume
he same battery consumption for each of them. Similarly, we suppose
he cloud to be composed of a single server type. In this regard, we
elieve that the consumption model we used is a good approximation
f the real-world scenario (see Section 7.2), but we acknowledge that
he results may vary if different devices are used.

Another aspect that may affect the results is the ‘‘external load’’
f both the cloud and the devices: the cloud is likely used for other
urposes, and the smartphones may run in the background other ser-
ices and/or applications. In the experiment, we have emulated the
xternal load by increasing the overall host load with a random co-
fficient. Although this is an approximation, we believe that does not
ompromise the validity of the results. This issue can be alleviated by
sing real-world data, but this is out of the scope of this work.

Finally, we evaluated four reconfiguration strategies, doing so by
arying the thresholds of each strategy. Despite the limited number of
ested configurations, we believe that the results are representative of
he potential of the framework.

. Conclusion and future work

In this work, we presented a practical DSL and framework for the

untime reconfiguration of pulverised CAS applications. The original i

556
dea of pulverisation was to define applications considering arbitrary
etworks of logical devices, decompose (pulverise) these logical devices
nto small deployment units, and then define their desired deployment
t a later time. The specialised DSL introduced in this work shows
hat this idea can be realised in practice. Moreover, we extended
he original idea of pulverisation with the possibility of specifying
untime reconfiguration policies, which can be leveraged to achieve
etter performance, cost, and resource usage trade-offs (RQ1). Finally,
e provide a real-world demonstrator for the technology and show
ia simulation that the reconfiguration approach can scale better and
rovide benefits compared to a static approach (RQ2).

In its current form, the proposed DSL has two limitations that will
e addressed in the future. First and foremost, it currently does not
onsider openness, as hosts get specified in the runtime and reconfig-
ration DSLs as a closed set. The second limitation is related to the
olicies that can be expressed in the reconfiguration DSL: currently,
nly policies that can be assessed at the local host level can be as-
essed. A policy that requires considering the state of multiple hosts
ould require resorting to the host language’s primitive mechanisms
nd make explicit communications outside the framework [46], thus
reaking the abstraction. This limitation can be addressed by extend-
ng the current reconfiguration block of the DSL so that queries can
e performed on any reachable host of the system, thus making all
ommunications (including reconfiguration-related ones) pass through
he channels controlled by the framework. Concurrently with these
xtensions, we intend to add support for additional heterogeneity,
ncluding device types and communication networks, to extend the
pplicability to a larger number of practical scenarios. Finally, a future
esearch direction is a practical evaluation of the framework in a large-
cale real-world application to better learn how the intrinsic complexity
f a real deployment (latencies, lost packets, failing sensors, etc.) can
mpact the reconfiguration rules and the overall system performance.

RediT authorship contribution statement

Nicolas Farabegoli: Writing – original draft, Validation, Software,
ata curation, Conceptualization. Danilo Pianini: Writing – review
editing, Writing – original draft, Data curation, Conceptualization.
oberto Casadei: Writing – review & editing, Writing – original draft,
onceptualization. Mirko Viroli: Writing – review & editing, Concep-
ualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

N. Farabegoli et al. Future Generation Computer Systems 161 (2024) 545–558
Data availability

https://doi.org/10.5281/zenodo.11401482.

Acknowledgements

The work was partially supported by the Italian PRIN project ‘‘Com-
monWears’’ (2020HCWWLP).

References

[1] S.S. Gill, M. Xu, C. Ottaviani, P. Patros, R. Bahsoon, A. Shaghaghi, M. Golec,
V. Stankovski, H. Wu, A. Abraham, M. Singh, H. Mehta, S.K. Ghosh, T. Baker,
A.K. Parlikad, H. Lutfiyya, S.S. Kanhere, R. Sakellariou, S. Dustdar, O.F. Rana, I.
Brandic, S. Uhlig, AI for next generation computing: Emerging trends and future
directions, Internet Things 19 (2022) 100514, http://dx.doi.org/10.1016/j.iot.
2022.100514.

[2] L.F. Bittencourt, R. Immich, R. Sakellariou, N.L.S. da Fonseca, E.R.M. Madeira,
M. Curado, L. Villas, L.A. DaSilva, C. Lee, O.F. Rana, The internet of things, fog
and cloud continuum: Integration and challenges, Internet Things 3–4 (2018)
134–155, http://dx.doi.org/10.1016/j.iot.2018.09.005.

[3] Z. Hong, W. Chen, H. Huang, S. Guo, Z. Zheng, Multi-hop cooperative com-
putation offloading for industrial IoT-edge-cloud computing environments, IEEE
Trans. Parallel Distrib. Syst. 30 (12) (2019) 2759–2774, http://dx.doi.org/10.
1109/TPDS.2019.2926979.

[4] H. Wang, H. Zhao, J. Zhang, D. Ma, J. Li, J. Wei, Survey on unmanned
aerial vehicle networks: A cyber physical system perspective, IEEE Commun.
Surv. Tutor. 22 (2) (2020) 1027–1070, http://dx.doi.org/10.1109/COMST.2019.
2962207.

[5] M. Afrin, J. Jin, A. Rahman, A. Rahman, J. Wan, E. Hossain, Resource allocation
and service provisioning in multi-agent cloud robotics: A comprehensive survey,
IEEE Commun. Surv. Tutor. 23 (2) (2021) 842–870, http://dx.doi.org/10.1109/
COMST.2021.3061435.

[6] R. Casadei, G. Fortino, D. Pianini, A. Placuzzi, C. Savaglio, M. Viroli, A method-
ology and simulation-based toolchain for estimating deployment performance
of smart collective services at the edge, IEEE Internet Things J. 9 (20) (2022)
20136–20148, http://dx.doi.org/10.1109/JIOT.2022.3172470.

[7] R. Casadei, Artificial collective intelligence engineering: A survey of concepts
and perspectives, Artif. Life 29 (4) (2023) 433–467, http://dx.doi.org/10.1162/
artl_a_00408.

[8] J. Spolsky, The law of leaky abstractions, in: Joel on Software, A Press, 2004,
pp. 197–202, http://dx.doi.org/10.1007/978-1-4302-0753-5_26.

[9] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, A. Qureshi, Application
partitioning algorithms in mobile cloud computing: Taxonomy, review and future
directions, J. Netw. Comput. Appl. 48 (2015) 99–117, http://dx.doi.org/10.
1016/j.jnca.2014.09.009.

[10] J. Arcangeli, R. Boujbel, S. Leriche, Automatic deployment of distributed software
systems: Definitions and state of the art, J. Syst. Softw. 103 (2015) 198–218,
http://dx.doi.org/10.1016/j.jss.2015.01.040.

[11] R. Casadei, D. Pianini, A. Placuzzi, M. Viroli, D. Weyns, Pulverization in
cyber-physical systems: Engineering the self-organizing logic separated from
deployment, Future Internet 12 (11) (2020) 203, http://dx.doi.org/10.3390/
fi12110203.

[12] N. Farabegoli, Nicolasfara/experiments-2024-fgcs-pulverization-local-
reconfiguration: 1.11.6, 2024, http://dx.doi.org/10.5281/zenodo.
11401482.

[13] N. Farabegoli, Nicolasfara/pulvreakt-crowd-room: 1.2.2, 2024, http://dx.doi.org/
10.5281/zenodo.10637846.

[14] P. Kruchten, The 4+1 view model of architecture, IEEE Softw. 12 (6) (1995)
42–50, http://dx.doi.org/10.1109/52.469759.

[15] A. Carzaniga, A. Fuggetta, R.S. Hall, D. Heimbigner, A. Van Der Hoek, A.L. Wolf,
A Characterization Framework for Software Deployment Technologies, Technical
Report, Colorado State University, 1998.

[16] A. Gazis, E. Katsiri, Middleware 101, Commun. ACM 65 (9) (2022) 38–42,
http://dx.doi.org/10.1145/3546958.

[17] J. Beal, D. Pianini, M. Viroli, Aggregate programming for the internet of things,
IEEE Comput. 48 (9) (2015) 22–30, http://dx.doi.org/10.1109/MC.2015.261.

[18] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, D. Pianini, From distributed
coordination to field calculus and aggregate computing, J. Log. Algebr. Methods
Program. 109 (2019) 100486, http://dx.doi.org/10.1016/j.jlamp.2019.100486.

[19] T. Vale, I. Crnkovic, E.S. de Almeida, P.A. da Mota Silveira Neto, Y.C. Cavalcanti,
S.R.d. Meira, Twenty-eight years of component-based software engineering, J.
Syst. Softw. 111 (2016) 128–148, http://dx.doi.org/10.1016/j.jss.2015.09.019.

[20] I. Crnkovic, S. Sentilles, A. Vulgarakis, M.R.V. Chaudron, A classification frame-
work for software component models, IEEE Trans. Softw. Eng. 37 (5) (2011)
593–615, http://dx.doi.org/10.1109/TSE.2010.83.

[21] N. Medvidovic, R.N. Taylor, A classification and comparison framework for
software architecture description languages, IEEE Trans. Softw. Eng. 26 (1)
(2000) 70–93, http://dx.doi.org/10.1109/32.825767.
557
[22] A.L. Lemos, F. Daniel, B. Benatallah, Web service composition: A survey of
techniques and tools, ACM Comput. Surv. 48 (3) (2016) 33:1–33:41, http:
//dx.doi.org/10.1145/2831270.

[23] R. Casadei, Macroprogramming: Concepts, state of the art, and opportunities of
macroscopic behaviour modelling, ACM Comput. Surv. (2023) http://dx.doi.org/
10.1145/3579353.

[24] P. Weisenburger, J. Wirth, G. Salvaneschi, A survey of multitier programming,
ACM Comput. Surv. 53 (4) (2021) 81:1–81:35, http://dx.doi.org/10.1145/
3397495.

[25] P. Ghosh, H. Tu, T. Krentz, G. Karsai, S.M. Lukic, An automated deployment and
testing framework for resilient distributed smart grid applications, in: COINS,
IEEE, 2022, pp. 1–6, http://dx.doi.org/10.1109/COINS54846.2022.9854934.

[26] A.P. Achilleos, K. Kritikos, A. Rossini, G.M. Kapitsaki, J. Domaschka, M. Orze-
chowski, D. Seybold, F. Griesinger, N. Nikolov, D. Romero, G.A. Papadopoulos,
The cloud application modelling and execution language, J. Cloud Comput. 8
(2019) 20, http://dx.doi.org/10.1186/s13677-019-0138-7.

[27] R. Boujbel, S. Rottenberg, S. Leriche, C. Taconet, J. Arcangeli, C. Lecocq,
MuScADeL: A deployment DSL based on a multiscale characterization framework,
in: COMPSAC Workshops, IEEE Computer Society, 2014, pp. 708–715, http:
//dx.doi.org/10.1109/COMPSACW.2014.120.

[28] H. Coullon, L. Henrio, F. Loulergue, S. Robillard, Component-based distributed
software reconfiguration:A verification-oriented survey, ACM Comput. Surv. 56
(1) (2023) http://dx.doi.org/10.1145/3595376.

[29] R.E. Ballouli, S. Bensalem, M. Bozga, J. Sifakis, Four exercises in program-
ming dynamic reconfigurable systems: Methodology and solution in DR-BIP,
in: Leveraging Applications of Formal Methods, Verification and Validation.
ISoLA, Proceedings, Part III, in: Lecture Notes in Computer Science, Vol. 11246,
Springer, 2018, pp. 304–320, http://dx.doi.org/10.1007/978-3-030-03424-5_20.

[30] R.D. Nicola, A. Maggi, J. Sifakis, The dream framework for dynamic recon-
figurable architecture modelling: theory and applications, Int. J. Softw. Tools
Technol. Transf. 22 (4) (2020) 437–455, http://dx.doi.org/10.1007/s10009-020-
00555-2.

[31] M.B. Chhetri, H.P. Luong, A.V. Uzunov, Q.B. Vo, R. Kowalczyk, S. Nepal, I.
Rajapakse, ADSL: An embedded domain-specific language for constraint-based
distributed self-management, in: ASWEC, IEEE Computer Society, 2018, pp.
101–110, http://dx.doi.org/10.1109/ASWEC.2018.00022.

[32] A. Dearle, G.N.C. Kirby, A.J. McCarthy, A framework for constraint-based
deployment and autonomic management of distributed applications, in: 1st
International Conference on Autonomic Computing (ICAC 2004), 17-19 May
2004, New York, NY, USA, IEEE Computer Society, 2004, pp. 300–301, http:
//dx.doi.org/10.1109/ICAC.2004.3.

[33] J.A. Hewson, P. Anderson, A.D. Gordon, Constraint-based autonomic reconfigu-
ration, in: SASO, IEEE Computer Society, 2013, pp. 101–110, http://dx.doi.org/
10.1109/SASO.2013.23.

[34] F. Alvares, É. Rutten, L. Seinturier, A domain-specific language for the control of
self-adaptive component-based architecture, J. Syst. Softw. 130 (2017) 94–112,
http://dx.doi.org/10.1016/j.jss.2017.01.030.

[35] H. Song, R. Dautov, N. Ferry, A. Solberg, F. Fleurey, Model-based fleet de-
ployment in the IoT-edge-cloud continuum, Softw. Syst. Model. 21 (5) (2022)
1931–1956, http://dx.doi.org/10.1007/s10270-022-01006-z.

[36] M. Villari, M. Fazio, S. Dustdar, O. Rana, D.N. Jha, R. Ranjan, Osmosis: The
osmotic computing platform for microelements in the cloud, edge, and internet
of things, IEEE Comput. 52 (8) (2019) 14–26, http://dx.doi.org/10.1109/MC.
2018.2888767.

[37] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L.C.L. Kats, E.
Visser, G. Wachsmuth, DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages, dslbook.org, 2013, URL http://www.dslbook.org.

[38] P. Riti, Practical Scala DSLs: Real-World Applications Using Domain Specific
Languages, A Press, Berkeley, CA, 2018, http://dx.doi.org/10.1007/978-1-4842-
3036-7.

[39] J.P. Balhoff, Scowl: a scala DSL for programming with the OWL API, J. Open
Source Softw. 1 (1) (2016) 23, http://dx.doi.org/10.21105/joss.00023.

[40] F. Serre, M. Püschel, DSL-based hardware generation with scala: Example fast
Fourier transforms and sorting networks, ACM Trans. Reconfigurable Technol.
Syst. 13 (1) (2020) 1:1–1:23, http://dx.doi.org/10.1145/3359754.

[41] G. Ciatto, R. Calegari, A. Omicini, 2P-kt: A logic-based ecosystem for symbolic
AI, SoftwareX 16 (2021) 100817:1–100817:7, http://dx.doi.org/10.1016/j.softx.
2021.100817.

[42] R. Casadei, M. Viroli, G. Aguzzi, D. Pianini, ScaFi: A scala DSL and toolkit
for aggregate programming, SoftwareX 20 (2022) 101248, http://dx.doi.org/10.
1016/j.softx.2022.101248.

[43] J. Järvi, J. Freeman, C++ lambda expressions and closures, Sci. Comput.
Program. 75 (9) (2010) 762–772, http://dx.doi.org/10.1016/J.SCICO.2009.04.
003.

[44] D. Pianini, S. Montagna, M. Viroli, Chemical-oriented simulation of computa-
tional systems with ALCHEMIST, J. Simul. 7 (3) (2013) 202–215, http://dx.doi.
org/10.1057/jos.2012.27.

[45] Y.S. Shao, D.M. Brooks, Energy characterization and instruction-level energy
model of intel’s xeon phi processor, in: ISLPED, IEEE, 2013, pp. 389–394,
http://dx.doi.org/10.1109/ISLPED.2013.6629328.

https://doi.org/10.5281/zenodo.11401482
http://dx.doi.org/10.1016/j.iot.2022.100514
http://dx.doi.org/10.1016/j.iot.2022.100514
http://dx.doi.org/10.1016/j.iot.2022.100514
http://dx.doi.org/10.1016/j.iot.2018.09.005
http://dx.doi.org/10.1109/TPDS.2019.2926979
http://dx.doi.org/10.1109/TPDS.2019.2926979
http://dx.doi.org/10.1109/TPDS.2019.2926979
http://dx.doi.org/10.1109/COMST.2019.2962207
http://dx.doi.org/10.1109/COMST.2019.2962207
http://dx.doi.org/10.1109/COMST.2019.2962207
http://dx.doi.org/10.1109/COMST.2021.3061435
http://dx.doi.org/10.1109/COMST.2021.3061435
http://dx.doi.org/10.1109/COMST.2021.3061435
http://dx.doi.org/10.1109/JIOT.2022.3172470
http://dx.doi.org/10.1162/artl_a_00408
http://dx.doi.org/10.1162/artl_a_00408
http://dx.doi.org/10.1162/artl_a_00408
http://dx.doi.org/10.1007/978-1-4302-0753-5_26
http://dx.doi.org/10.1016/j.jnca.2014.09.009
http://dx.doi.org/10.1016/j.jnca.2014.09.009
http://dx.doi.org/10.1016/j.jnca.2014.09.009
http://dx.doi.org/10.1016/j.jss.2015.01.040
http://dx.doi.org/10.3390/fi12110203
http://dx.doi.org/10.3390/fi12110203
http://dx.doi.org/10.3390/fi12110203
http://dx.doi.org/10.5281/zenodo.11401482
http://dx.doi.org/10.5281/zenodo.11401482
http://dx.doi.org/10.5281/zenodo.11401482
http://dx.doi.org/10.5281/zenodo.10637846
http://dx.doi.org/10.5281/zenodo.10637846
http://dx.doi.org/10.5281/zenodo.10637846
http://dx.doi.org/10.1109/52.469759
http://refhub.elsevier.com/S0167-739X(24)00404-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00404-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00404-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00404-7/sb15
http://refhub.elsevier.com/S0167-739X(24)00404-7/sb15
http://dx.doi.org/10.1145/3546958
http://dx.doi.org/10.1109/MC.2015.261
http://dx.doi.org/10.1016/j.jlamp.2019.100486
http://dx.doi.org/10.1016/j.jss.2015.09.019
http://dx.doi.org/10.1109/TSE.2010.83
http://dx.doi.org/10.1109/32.825767
http://dx.doi.org/10.1145/2831270
http://dx.doi.org/10.1145/2831270
http://dx.doi.org/10.1145/2831270
http://dx.doi.org/10.1145/3579353
http://dx.doi.org/10.1145/3579353
http://dx.doi.org/10.1145/3579353
http://dx.doi.org/10.1145/3397495
http://dx.doi.org/10.1145/3397495
http://dx.doi.org/10.1145/3397495
http://dx.doi.org/10.1109/COINS54846.2022.9854934
http://dx.doi.org/10.1186/s13677-019-0138-7
http://dx.doi.org/10.1109/COMPSACW.2014.120
http://dx.doi.org/10.1109/COMPSACW.2014.120
http://dx.doi.org/10.1109/COMPSACW.2014.120
http://dx.doi.org/10.1145/3595376
http://dx.doi.org/10.1007/978-3-030-03424-5_20
http://dx.doi.org/10.1007/s10009-020-00555-2
http://dx.doi.org/10.1007/s10009-020-00555-2
http://dx.doi.org/10.1007/s10009-020-00555-2
http://dx.doi.org/10.1109/ASWEC.2018.00022
http://dx.doi.org/10.1109/ICAC.2004.3
http://dx.doi.org/10.1109/ICAC.2004.3
http://dx.doi.org/10.1109/ICAC.2004.3
http://dx.doi.org/10.1109/SASO.2013.23
http://dx.doi.org/10.1109/SASO.2013.23
http://dx.doi.org/10.1109/SASO.2013.23
http://dx.doi.org/10.1016/j.jss.2017.01.030
http://dx.doi.org/10.1007/s10270-022-01006-z
http://dx.doi.org/10.1109/MC.2018.2888767
http://dx.doi.org/10.1109/MC.2018.2888767
http://dx.doi.org/10.1109/MC.2018.2888767
http://www.dslbook.org
http://dx.doi.org/10.1007/978-1-4842-3036-7
http://dx.doi.org/10.1007/978-1-4842-3036-7
http://dx.doi.org/10.1007/978-1-4842-3036-7
http://dx.doi.org/10.21105/joss.00023
http://dx.doi.org/10.1145/3359754
http://dx.doi.org/10.1016/j.softx.2021.100817
http://dx.doi.org/10.1016/j.softx.2021.100817
http://dx.doi.org/10.1016/j.softx.2021.100817
http://dx.doi.org/10.1016/j.softx.2022.101248
http://dx.doi.org/10.1016/j.softx.2022.101248
http://dx.doi.org/10.1016/j.softx.2022.101248
http://dx.doi.org/10.1016/J.SCICO.2009.04.003
http://dx.doi.org/10.1016/J.SCICO.2009.04.003
http://dx.doi.org/10.1016/J.SCICO.2009.04.003
http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1109/ISLPED.2013.6629328

N. Farabegoli et al. Future Generation Computer Systems 161 (2024) 545–558
[46] N. Farabegoli, D. Pianini, R. Casadei, M. Viroli, Dynamic iot deployment
reconfiguration: A global-level self-organisation approach, 2024, http://dx.doi.
org/10.2139/ssrn.4798700.

Nicolas Farabegoli is a Ph.D. student at Alma Mater
Studiorum–Università di Bologna (Italy). He graduated in
Computer Science at the University of Bologna in 2023, with
a thesis on the design and development of a framework for
flexible deployments in cloud–edge systems. His research
interests include Cloud–edge computing, large-scale dis-
tributed systems, collective adaptive systems, and aggregate
programming.

Danilo Pianini is senior assistant professor at Alma Mater
Studiorum—Università di Bologna (Italy). His research is
focused on self-organising systems, complex systems engi-
neering, and simulation, topics on which he published more
than 70 papers in international journals and conferences.
He made dozens of contributions to the open-source com-
munity, and he is the chief architect and lead engineer of
the open-source Alchemist Simulator and Protelis aggregate
programming language. He served as PC chair of IEEE
ACSOS 2021 and as PC member of multiple IEEE and ACM
558
conferences including AAMAS, ACSOS, COORDINATION,
ICAART, and IJCAI.

Roberto Casadei is an assistant professor at Alma Mater
Studiorum–Università di Bologna (Italy). His research re-
volves around software engineering and distributed artificial
intelligence. He has 60+ publications in international
journals and conferences on topics including collective intel-
ligence, aggregate computing, self-* systems, and IoT/CPS.
He also leads the development of the open-source ScaFi
aggregate programming toolkit. He has been serving in the
OC/PC of multiple conferences such as ACSOS, COORDINA-
TION, ICCCI, and SAC, and as editorial board member of
JAISCR.

Mirko Viroli is Full Professor in Computer Engineering
at the University of Bologna, Italy. He is an expert in
foundations of computer science and programming, object-
oriented programming, advanced software development,
software engineering and self-adaptive/self-organising per-
vasive computing systems. He is author of more than 300
papers, of which more than 80 on international journals.
His GoogleScholar h-index is 49 with >8500. He is member
of the Editorial Board of IEEE Software magazine, and
was program chair of the ACM Symposium on Applied
Computing (SAC 2008 and 2009), and IEEE Self-Adaptive
and Self-Organizing systems (SASO 2014) conferences.

http://dx.doi.org/10.2139/ssrn.4798700
http://dx.doi.org/10.2139/ssrn.4798700
http://dx.doi.org/10.2139/ssrn.4798700

	Scalability through Pulverisation: Declarative deployment reconfiguration at runtime
	Introduction
	Motivation and Research Questions
	Background
	Deployment and Reconfiguration: Basic Concepts
	Pulverisation

	Related Work
	Application Description Languages: Component-based Software Engineering and the Pulverisation Model
	Infrastructure and Deployment Description Languages

	A Runtime and DSLs for Reconfigurable Pulverised Systems
	Pulverisation with Dynamic Reconfiguration
	On Middlewares and (Domain-Specific) Languages for Deployed Systems Specification and Execution
	The System dsl : Components and Required Capabilities
	The Deployment dsl : Deployment Domain, Mapping, and Reconfiguration
	Implementation Details and the Runtime System

	Practical Demonstrator: Crowd Sensor
	Evaluation
	Evaluation Goals
	Large Scale Urban Collective Computation
	Metrics
	Energy model
	Cost model
	Experimental Setup
	Results
	Final Considerations

	Applicability
	Threats to Validity

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

