Supplementary Material

Unpredictable Dynamic Behavior of Ruthenium Chelate Pyrrole Derivatives

Giacomo Drius ¹, Riccardo Tarroni ^{1,*}, Matteo Birchmeier ¹, Carola Parolin ², Carla Boga ¹, Magda Monari ³ and Silvia Bordoni ^{1,4,*}

- ¹ Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum, Università di Bologna, Via Piero Gobetti, 85, 40129Bologna, Italy; giacomo.drius2@unibo.it (G.D.); matteo.birchmeier@studio.unibo.it (M.B.); carla.boga@unibo.it (C.B.)
- ² Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; carola.parolin@unibo.it
- ³ Department of Chemistry 'Giacomo Ciamician', Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy; magda.monari@unibo.it
- ⁴ Health Sciences and Technologies Interdepartmental Centre for Industrial Research (CIRI SDV), University of Bologna, 40126 Bologna, Italy
- * Correspondence: riccardo.tarroni@unibo.it (R.T.); silvia.bordoni@unibo.it (S.B.)

Table of Contents

Abbreviations
CHARACTERIZATION OF THE COMPLEXES
Characterization of 2
Mass spectra of 2
IR spectrum of 2
NMR spectra of 2
Characterization of 3
Mass spectra of 3
IR spectrum of 3
NMR spectra of 3
Characterization of 4
Mass spectrum of 4
IR spectrum of 4
NMR spectra of 4
Characterization of 5
Mass Spectrum of 5
IR spectrum of 5
NMR spectra of 5
DFT CALCULATIONS
Mayer Bond Orders
MBO complex 2
X-RAY DIFFRACTION STUDIES
Crystal Data

Crystal Packing of 3	30
Crystal Packing of 4	30
Antimicrobial evaluation	33
Antimicrobial tests on Candida albicans	33
Antimicrobial tests on Escherichia coli	
Antimicrobial tests on Staphylococcus aureus	

Abbreviations

SCXRD	Single Crystal X-ray Diffraction
DFT	Density Functional Theory
PyrCOO	Pyrrole-2-carboxylic acid
PyrCHO	Pyrrole-2-carboxaldehyde
СРМЕ	Cyclopentyl Methyl Ether
MeCN	Acetonitrile
1,2-DME	1,2-Dimetoxyethane
MW	Microwave
CDCl ₃	Deuterated Chloroform
CD ₂ Cl ₂	Deuterated Dicloromethane
EtOH	Ethanol
DMSO	Dimethyl sulfoxide
Et ₂ O	Diethyl Ether

CHARACTERIZATION OF THE COMPLEXES

Characterization of **2**

Mass spectra of 2

Figure S1: ESI-Mass spectrum of 2 (positive mode, m/z: 150 – 850) in CH₃CN.

Figure S2: ESI-Mass spectrum of **2** (positive mode, m/z: 730 – 795) in CH₃CN.

Figure S3: ESI-HRMS spectrum of 2. (positive mode, m/z: 665 – 775) in CH₃CN.

Figure S4: ESI-Mass spectrum of 2 (positive mode, m/z: 757–771) in CH₃CN compared to simulation.

IR spectrum of 2

Figure S5: IR spectrum of 2 (ATR).

NMR spectra of **2**

Figure S6: ¹H NMR spectrum in CDCl₃ for a period of 60 h at room temperature. The spectra of **2** reveal the occurrence of two distinct diastereoisomers.

Figure S7: ³¹P NMR spectrum in CDCl₃ of the kinetic mixture. Five species are observed.

Figure S8: ¹H NMR spectrum of 2 in CDCl₃.

Figure S9: ${}^{31}P{}^{1}H$ NMR spectrum of **2** in CDCl₃.

Figure S10: ¹³C{¹H} NMR spectrum of 2 in CDCl₂.

Characterization of 3

Mass spectra of 3

Figure S11: ESI-Mass Spectrum of 3 (positive mode, m/z: 200 – 950) in CH₃CN.

Figure S12: ESI-Mass spectrum of 3 (positive mode, m/z: 640 – 880) in CH₃CN.

IR spectrum of 3

Figure S13: IR spectrum of 3 (ATR).

NMR spectra of **3**

Figure S14: ¹H NMR spectrum of 3 in CDCl₃.

Figure S15: ${}^{31}P{}^{1}H$ NMR spectrum of 3 in CDCl₃.

Figure S16: $^{13}C{^{1}H}$ NMR spectrum of 3 CDCl₃.

Figure S17: Heterocorrelated NMR spectrum ${}^{13}C, {}^{1}H$ HSQC of 3 in CDCl₃.

Figure S18: Heterocorrelated NMR spectrum {¹³C, ¹H} HMBC of 3 in CDCl₃.

Characterization of 4

Mass spectrum of 4

Figure S19: ESI-Mass spectrum of 4 (positive mode, m/z: 600 – 860) in CH₃CN compared to simulation.

IR spectrum of 4

Figure S20: IR spectrum of 4 (ATR).

NMR spectra of 4

Figure S21: ¹H NMR spectrum of 4 in CDCl₃.

Figure S22: ³¹P{¹H} NMR spectrum of 4 in CDCl_{3.}

Figure S23: $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum of 4 in CDCl3.

Figure S24: Homocorrelated {¹H} COSY spectrum of 4 in CDCl₃.

Figure S25: Heterocorrelated NMR spectrum ${}^{13}C, {}^{1}H$ HSQC of 4 in CDCl₃.

Figure S26: Heterocorrelated NMR spectrum {¹³C, ¹H} HMBC of 4 in CDCl₃.

Characterization of **5** Mass Spectrum of **5**

Figure S27: ESI-Mass spectrum of 5 (positive mode, m/z: 630 – 810) in CH₃CN.

IR spectrum of 5

Figure S28: IR spectrum of 5 (ATR).

NMR spectra of 5

Figure S29: ¹H NMR spectrum of 5 in CDCl₃.

Figure S30: ³¹P{¹H} NMR spectra of 5 in CDCl₃.

Figure S31: ¹³C{¹H} NMR spectrum of 5 in CDCl₃.

Figure S32: ¹H Homonuclear decoupling: upon the irradiation of the CHO aldehyde proton, the molteplicity of the Ru-hydride signal converts from double triplet to triplet.

Figure S33: 2D COSY NMR spectrum of **5**. The coupling between the hydride triplet and the multiplet of the CHO group is observed.

Figure S34: Homocorrelated NMR spectrum {¹H} COSY of 5 in CDCl₃.

Figure S35: Heterocorrelated NMR spectrum {¹³C, ¹H} HMBC of 5 in CDCl₃.

DFT CALCULATIONS

Mayer Bond Orders MBO complex **2**

Figure S36: Calculated bond lengths of 2. Mayer Bond Orders are reported in brackets.

Atoms	Distance (Å)			
NH-C(Ph)	3.44			
CH(Ph)-O(carboxylate)	2.60			
CH(Ph)-O(carboxylate)	3.24			
RuH-CH(Ph)	1.93			
RuCO-CH(Ph)	1.95			

Table S	1 . Su	mmarized	dinole	hindings	of 2
Table J	1 . Ju	IIIIIaiizeu	uipule	Diffulligs	

Fig S37: DFT calculations for **4** and **5** have been performed both in vacuo, 1,2-DME and EtOH solvents.

X-RAY DIFFRACTION STUDIES

Crystal Data

Table S2. Crystal data and structure refinement for 3-5.

Compound	3	4	5
Formula	$C_{44}H_{36}N_2O_3P_2Ru$	$C_{42}H_{35}NO_2P_2Ru$	$C_{42}H_{35}NO_2P_2Ru$
Fw	803.76	748.72	748.72
Т, К	100	100	100
λ, Å	1.54178	0.71073	1.54178
Crystal symmetry	Monoclinic	Monoclinic	Monoclinic
Space group	P21/n	P2₁/c	C2/c
<i>a,</i> Å	13.7700(4)	13.1063(8)	16.7723(14)
b, Å	9.5479(3)	14.9846(6)	10.7193(10)
<i>c,</i> Å	27.9662(8)	18.8647(9)	19.5464(13)
α	90	90	90
β	95.449(2)	108.890(6)	101.826(4)
γ	90	90	90
Cell volume, Å ³	3660.23(19)	3505.3(3)	3439.6(5)
Ζ	4	4	4
D _C , Mg m ⁻³	1.459	1.419	1.446
Absorption coefficient, mm ⁻¹	4.644	0.576	4.866
F(000)	1648	1536	1536
Crystal size/ mm	0.30 x 0.25 x 0.20	0.25 x 015 x 010	0.20 x 0.10 x 0.05
θ limits, °	3.175 - 68.344	4.212 - 25.999	4.622 - 67.680
Reflections collected	46483	23038	24870
Unique obs. Reflections $[F_o > 4\sigma(F_o)]$	6505 [R _{int} = 0.0922]	6862 [R _{int} = 0.0539]	3044 [R _{int} = 0.0927]

Goodness-of-fit-on F ²	1.035	1.087	1.086
$R_1(F)^a$, w $R_2(F^2)[I > 2\sigma(I)]$	0.0480, 0.1161	0.0575, 0.1209	0.0671, 0.1476
Largest diff. peak and hole, e. Å ⁻³	1.174 and -1.086	0.714 and -0.640	0.847 and -1.571
CCDC	2326582	2326583	2326584

a) $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0| \cdot b WR_2 = [\Sigma W (F_0^2 - F_c^2)^2 / \Sigma W (F_0^2)^2]^{1/2}$ where $W = 1 / [\sigma^2 (F_0^2) + (aP)^2 + bP]$ where $P = (F_0^2 + F_c^2) / 3$.

Crystal Packing of 3

Figure S38: View down the *b* axis of the crystal packing of 3.

Figure S39: Arbitrary view of the packing of **3** showing intermolecular C-H...O hydrogen bonds (light-blue dots).

Crystal Packing of 4

Figure S40: View down the *c* axis of the crystal packing of 4.

Figure S41: View down the *c* axis of the crystal packing of 5.

Figure S42: ORTEP drawing of 3. Thermal ellipsoids are drawn at the 30% probability level.

Figure S43: ORTEP drawing of 4. Thermal ellipsoids are drawn at the 30% probability level.

Figure S44 ORTEP drawing of 5. Thermal ellipsoids are drawn at the 30% probability level.

Antimicrobial evaluation

Antimicrobial tests on Candida albicans

Figure S45. Percentage of the growth compared to control of Candida albicans tested with compounds 2, 3, and 5 by turbidity measurements at the concentration of 100 μ g/mL.

Antimicrobial tests on Escherichia coli

Figure S46: Percentage of the growth compared to control of Escherichia coli tested with compounds **2**, **3**, and **5** by turbidity measurements at the concentration of $100 \mu g/mL$.

Antimicrobial tests on Staphylococcus aureus

Figure S47: Percentage of the growth compared to control of Staphylococcus aureus tested with compounds **2**, **3**, and **5** by turbidity measurements at the concentration of $100 \mu g/mL$.

Figure S48: Percentage of the growth compared to control of Staphylococcus aureus tested with compound **3** by turbidity measurements at the concentrations of 100, 75, 50, 25, 10, 5 and 2 μ g/mL.

Figure S49: Percentage of the growth compared to control of Staphylococcus aureus tested with compound 1 by turbidity measurements at the concentrations of 100, 75, 50, 25, 10, 5 and 2 μ g/mL.

Figure S50: Percentage of the growth compared to control of Staphylococcus aureus tested with compound H_1L_2 by turbidity measurements at the concentrations of 100, 75, 50, 25, 10, 5 and 2 µg/mL.