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Abstract

Biomarkers for immune checkpoint inhibitors (ICIs) response and resistance include

PD‐L1 expression and other environmental factors, among which the gut micro-

biome (GM) is gaining increasing interest especially in lymphomas. To explore the

potential role of GM in this clinical issue, feces of 30 relapsed/refractory lymphoma

(Hodgkin and primary mediastinal B‐cell lymphoma) patients undergoing ICIs were
collected from start to end of treatment (EoT). GM was profiled through Illumina,

that is, 16S rRNA sequencing, and subsequently processed through a bioinformatics

pipeline. The overall response rate to ICIs was 30.5%, with no association between

patients clinical characteristics and response/survival outcomes. Regarding GM,

responder patients showed a peculiar significant enrichment of Lachnospira, while

non‐responder ones showed higher presence of Enterobacteriaceae (at baseline and

maintained till EoT). Recognizing patient‐related factors that may influence

response to ICIs is becoming critical to optimize the treatment pathway of heavily

pretreated, young patients with a potentially long‐life expectancy. These pre-

liminary results indicate potential early GM signatures of ICIs response in lym-

phoma, which could pave the way for future research to improve patients prognosis

with new adjuvant strategies.

K E YWORD S
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1 | INTRODUCTION

In the past decade, the host immune system has become a major

focus of research because of its central role in the pathogenesis of

cancer. Indeed, evasion of immune surveillance is one of the main

mechanisms that cancer cells put in place for their survival and

proliferation. In this setting, the use of immune checkpoint inhibitors

(ICIs), particularly monoclonal antibodies (mAbs) directed against

PD‐1 (programmed cell death receptor‐1, anti‐PD1 mAbs), has

shown good efficacy with a manageable safety profile for the
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treatment of several B‐cell malignancies, such as relapsed/refractory

(r/r) classical Hodgkin lymphoma (cHL) and primary mediastinal B‐
cell lymphoma (PMBCL).1–4 Although data show a significant anti-

tumor efficacy with an overall response rate (ORR) ranging from 40%

to 70% according to histology, more than half of these patients

eventually progress or lose response, regardless of the underlying

disease and the type of ICIs employed.1–4

Understanding the variability of response in patients with the

same pathology and undergoing the same treatment is therefore a

key point in hematological research with the aim of identifying

strategies that can enhance the efficacy of ICIs and better predict

patient outcomes. In this scenario, increasing attention is being paid

to the gut microbiome (GM), the community of trillions of microor-

ganisms, mainly bacteria but also eukaryotes, viruses and archaea,

which inhabits the human gastrointestinal tract and profoundly in-

fluence human physiology.5 In particular, since 2015, milestones have

been reached on the role of GM in immunotherapy,6,7 showing that

the GM profile at diagnosis, as well as its temporal dynamics during

anticancer treatments, could influence the response to therapies,

modulating their efficacy and toxicity.8–11 This influence is most likely

due to the ability of GM to regulate immune responses through the

production and/or activation of bacterial‐derived molecules, the

translocation of its members into the peripheral circulation, and the

cross‐reactivity with tumor antigens.12 However, to our knowledge,

most of the research in Hematology has focused on the impact of GM

on the outcomes of cell‐based therapies such as allogeneic hemato-

poietic stem cell transplantation (the risk and severity of graft‐
versus‐host disease and overall survival [OS]),13–15 and chimeric

antigen T‐cell therapy (the risk and severity of immune effector‐cell
associated toxicity and treatment response),16,17 while data on the

relationship between GM and ICIs response in lymphoma patients

are still lacking.

Herein, we hypothesized that the GM configuration at baseline

and its dynamics during treatment have an impact on the therapeutic

response also in pretreated B‐cell lymphoma patients scheduled for

anti‐PD1 mAbs. To test this assumption, we recruited adult patients

with r/r cHL or PMBCL and profiled their GM before and during anti‐
PD1 therapy, until the end of treatment (EoT) or disease relapse or

progression, whichever came first.

2 | MATERIALS AND METHODS

2.1 | Study design

A prospective, single‐center, exploratory human GM study was con-

ducted. Thirty patients (aged 18 years or older) with histologically

confirmed r/r cHL or PMBCL who were candidates for single‐agent
anti‐PD‐1 therapy, namely pembrolizumab or nivolumab, were

consecutively enrolled. Patients received nivolumab at a dose of 3 mg/

kg or 240 mg every 2 weeks for up to 2 years or pembrolizumab at a

fixed dose of 200 mg every 3 weeks for up to 2 years as per clinical

practice, based on histology and previous lines of therapy.

Stool samples were collected at baseline, that is, 1 week before

the first course of anti‐PD1 treatment, and at each treatment cycle,

till EoT or relapse or progression, whichever occurred first. Fecal

samples were also collected in the event of gastrointestinal toxicity

and/or immune‐related adverse events (irAEs) grade ≥2 or any other

non‐hematological AEs grade 3 or higher. Hematological and non‐
hematological AEs were graded according to CTCAE v.4.0.

Disease assessments were performed using positron emission

tomography and computed tomography scan at baseline and with

subsequent timing as per clinical practice. Patients who discontinued

treatment due to disease progression or grade 4 hematological

toxicity and/or grade ≥3 non‐hematologic toxicity were followed up

for survival. Response was defined according to the 2014 Lugano

classification.18,19 ORR was defined as the sum of partial response

(PR) and complete response (CR) rates at EoT, whereas best ORR was

defined as the best response achieved at any timepoint after the

initiation of ICIs. OS was calculated from the date of infusion until

death from any cause or last available follow‐up. Disease‐free sur-

vival was estimated from the date of the first documented CR to the

last follow‐up or the date of disease recurrence or death as a result

of lymphoma or acute toxicity of study treatment; progression‐free
survival (PFS) was defined as the time from infusion for all treated

patients to the first observation of progressive disease or death from

any cause.

The primary objective of the study was the longitudinal phylo-

genetic profiling of the GM of lymphoma patients treated with ICIs

(before, during and at the EoT), while the secondary objectives were

any associations between GM composition at baseline with response

to ICIs and patient survival.

The study was approved by our institutional board (Ethical

Committee AVEC of Bologna, approval id 015/2017/U/Tess/

AOUBO). All participants gave written informed consent in accor-

dance with the Declaration of Helsinki.

2.2 | 16S rRNA amplicon sequencing and data
processing

Microbial DNA was extracted from fecal samples using the repeated

bead‐beating plus column method as previously described.20 In brief,

250 mg of feces were resuspended in 1 mL of lysis buffer (500 mM

NaCl, 50 mM Tris‐HCl pH 8, 50 mM EDTA, 4% SDS [w/v]) with four

3‐mm glass beads and 0.5 g of 0.1‐mm zirconia beads, and mechan-

ically homogenized thrice in a FastPrep instrument (MP Biomedicals)

at 5 movements/s with a 1‐min incubation period on ice every 5 min.

Samples were then incubated at 95°C for 15 min and centrifuged to

separate beads and stool particles. Ten molar ammonium acetate was

added to the supernatants, and after 10‐min incubation nucleic acids

were precipitated by adding one volume of isopropanol. After a

further centrifugation step, the pellets were washed with 70%

ethanol and then resuspended in TE buffer (10 mM Tris‐HCl, 1 mM

EDTA pH 8). RNA and protein were removed by treatment with

DNase‐free RNase (10 mg/mL) at 37°C for 15 min and proteinase K
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at 70°C for 10 min, respectively. DNA was then purified using the

DNeasy Blood & Tissue Kit (QIAGEN).

For library preparation, the V3‐V4 hypervariable regions of the

16S rRNA gene were amplified using primers 341F and 785R with

Illumina overhang adapters according to the Illumina protocol “16S

Metagenomic Sequencing Library Preparation” (Illumina). Amplicons

were purified using a magnetic bead‐based clean‐up system (Agen-

court AMPure XP; Beckman Coulter). The Nextera technology was

then used for limited‐cycle PCR to generate indexed libraries. The

indexed amplicons were further purified and then pooled at equi-

molar concentration (4 nM). The pool was denatured with 0.2 N

NaOH and diluted to 4.5 pM with a 20% PhiX control for paired‐end
sequencing (2 � 250 bp) on an Illumina MiSeq platform. Sequence

reads were deposited in the National Center for Biotechnology In-

formation Sequence Read Archive (NCBI SRA).

Raw amplicon sequences were analyzed using a bioinformatics

pipeline combining PANDASeq and QIIME 2.21,22 After length and

quality filtering, reads were clustered into amplicon sequence vari-

ants (ASVs) using DADA2.23 Chimeras were discarded during the

process. The VSEARCH tool was used to assign taxonomy using the

Greengenes database as a Reference 24. Publicly available sequences

from healthy subjects matched for GM‐associated confounding fac-

tors (i.e., age, gender, and geography) were retrieved and used as

controls. Sequences were obtained from: Schnorr and colleagues

(deposited in the MG‐RAST database: project ID mgp12183),25 and

Biagi and colleagues (MG‐RAST database: project ID mgp17761).26

All fecal samples were processed in the same laboratory, then sub-

jected to the same wet and in silico analysis steps. The q2‐diversity
plugin was used to perform alpha and beta diversity assessments.

The Shannon diversity index, an alpha diversity metric, was used to

assess intra‐sample richness and evenness of microbial taxa. principal
coordinates analysis (PCoA) graphs were then constructed utilizing

Bray–Curtis and weighted and unweighted UniFrac distances to

assess the (dis)similarities between samples, representing beta

diversity.

The PICRUSt 2.0 (v2.5.0) prediction tool was used to profile the

baseline gut microbiota pathway composition of the patients.27 The

ASVs and the BIOM table with ASV abundance across the samples

were used as input. The predicted MetaCyc pathway abundances

were then normalized to relative abundances. To obtain the corre-

sponding names and descriptions, we searched the pathway IDs in

the MetaCyc database.

2.3 | Statistical analysis

As no preliminary data on the same matter of the present project

were available in literature, no formal sample size estimation was

made. On the basis of the case histories of the hospital involved in

the project and taking into account an enrollment period of

12 months, we foreseen to enroll 30 patients. Patients' demographics

and characteristics were summarized by descriptive statistics.

Comparisons between groups were performed using contingency

table analysis with chi‐squared or Fisher's exact test for categorical

variables, as appropriate, whereas continuous data were analyzed

using Student's t test, after checking for normal distribution (based

on the Shapiro–Wilk statistic), or otherwise the Wilcoxon rank‐sum
test. Statistical analyses for clinical data were performed using

Stata 17 (StataCorp LP).

For GM data, all statistical analyses were performed using R

software (https://www.R‐project.org/). The Wilcoxon test was used

to assess differences in GM composition (i.e., relative taxon abun-

dance) and alpha diversity between study groups. The ggplot2 and

ggsignif packages were used to generate boxplots. PCoA plots were

constructed using the vegan package for multidimensional scaling,

and pairwise Adonis was used to test for data separation using a

permutation test with pseudo‐F ratio.28 The point‐biserial correlation
test was used to evaluate associations between therapeutic response

and relative taxon abundances. In case of significant association,

Spearman's correlation test was then used to evaluate the associa-

tions between relative taxon abundances and nutritional values.

Heatmaps where plotted using taxa or pathway relative abundances

and the variables were hierarchical clustered and sorted according to

their Euclidean distances.

A p ≤ 0.05 was considered statistically significant.

3 | RESULTS

3.1 | Clinical outcomes and safety

Thirty patients were consecutively enrolled, 20 of whom were

evaluable for study objectives, while 10 were excluded from the

analysis mainly due to withdrawal of consent, lack of stool sample at

baseline, and rapid disease progression resulting in treatment

modification. Of the 20 evaluable patients, 5 were affected by

PMBCL while 15 had cHL. Fourteen patients were female and 6 were

male. The median age at enrollment was 28.5 years (18.3–71.4).

Eleven patients (55%) had stage III/IV, according to Ann Arbor clas-

sification, with 45% of patients presenting with extra‐nodal disease
involvement. The median number of lines of therapy failed before

ICIs was 3 (2–8), with 15 patients (75%) being refractory to the first

line of treatment and all except one being refractory to the last line

of treatment before ICIs. Regarding previous therapies, patients were

treated in a homogeneous manner in accordance with the thera-

peutic indications for each disease. The median time from last ther-

apy to the first infusion of ICIs was 46 days (8–179) with a

statistically significant difference between patients with cHL

(46 days) and PMBCL (66 days) (p < 0.05) (Table S1).

For 8 patients (all with cHL), the scheduled therapy was nivo-

lumab, while 12 patients (7 with cHL and all PMBCL patients)

received pembrolizumab. The median number of drug cycles was 14

(1–39), specifically, 16 cycles (6–39) for nivolumab and 9 for pem-

brolizumab (1–35). There was a significant difference between

CASADEI ET AL. - 3 of 12
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patients with cHL and those with PMBCL, as the latter had a me-

dian of 4 cycles of therapy before interruption (p < 0.05) (Table S1).

All patients discontinued treatment early, the main causes being

disease progression (11 patients) and achievement of complete

remission (4 patients), subsequently consolidated with a stem cell

transplantation.

At first restaging, after 4 cycles of treatment, 5 (20.5%) patients

were in CR (3 with cHL and 2 with PMBCL), 6 (30%) were in PR (all

with cHL), while 6 had a disease progression (4 with cHL and 2 with

PMBCL). During the course of therapy, 2 patients in PR converted

their response to CR, while the remaining 4 patients in PR pro-

gressed. At final evaluation, 30% of patients were in CR (4 with cHL

and 2 with PMBCL) and 1 was in PR (converted from stable disease)

achieving an ORR of 30.5%. The best ORR was 60%, with 6 patients

(30%) in CR and 6 (30%) in PR, as the best response (Table S2).

In terms of safety, 26 non‐hematological treatment‐related AEs

occurred, predominantly grade 1–2. Seven irAEs were recorded,

mainly grade 1–2 thyroiditis. Three patients developed 6 hemato-

logical AEs, with grade 1–2 anemia and thrombocytopenia being the

most frequent.

Regarding concomitant medications, patients did not undergo

antibiotic therapy right neither before nor during ICIs treatment.

With a median follow‐up of 28.9 months, the median PFS and OS
for the entire population were 11 and 41.3 months, respectively.

Based on histology, median PFS was 11.1 months for cHL patients

and 23.5 months for PMBCL patients, while median OS was

41.5 months and not reached, respectively. No associations were

found between patients' baseline clinical characteristics and out-

comes (best response, final response and OS).

3.2 | GM dysbiosis of B‐cell lymphoma patients
before ICIs treatment compared to healthy subjects

The baseline GM structure of evaluable patients was compared with

that of healthy age/gender‐matched Italian subjects as controls

(Table S3). Alpha diversity, as assessed by the Shannon index, was

lower in patients than in controls (p = 0.02; Wilcoxon test)

(Figure 1A). As for beta diversity, PCoA based on Bray–Curtis dis-

tances, showed significant segregation between the two study groups

(p = 0.0001; adonis) (Figure 1B). The two groups also differed in the

relative abundance of many taxa, even at the phylum level. Specif-

ically, the phylum Actinobacteria was overrepresented in patients

(p = 0.01; Wilcoxon test), whereas Verrucomicrobia and Tenericutes

were overrepresented in controls (p ≤ 0.04) (Figure 1C). At the family

level (Figure 1D), patients were discriminated by a higher relative

abundance of Streptococcaceae, Coriobacteriaceae, and Erysipelo-

trichaceae, while lower of Bifidobacteriaceae, Rikenellaceae, Porphyr-

omonadaceae, Verrucomicrobiaceae, Ruminococcaceae, and

Lachnospiraceae (p ≤ 0.02). Furthermore, the family Bacteroidaceae

tended to be underrepresented in patients (p = 0.06). At the genus

level (Figure 1E and Figure S1), the patient group showed a reduced

relative abundance of Bifidobacterium, Parabacteroides, Odoribacter,

Akkermansia, Clostridium, Anaerostipes, Coprococcus, Lachnobacterium,

Dehalobacterium, Blautia, Dorea, Lachnospira, Roseburia, Faecalibacte-

rium, Anaerotruncus, Ruminococcus, Bilophila, and Sutterella, while a

higher relative abundance of Streptococcus (p ≤ 0.04). In addition,

patients tended to be depleted in Bacteroides, Butyricimonas and

Coprobacillus, while enriched in Collinsella (p ≤ 0.07).

The diminished microbial diversity observed in patients, marked

by the depletion of health‐associated commensal taxa and the pro-

liferation of potentially pathogenic bacteria—recognized as dysbiosis

—can be attributed to a multifaceted interplay of factors. These

factors encompass prior treatments, antibiotic exposure, alterations

in lifestyle, and the intrinsic nature of the disease itself. Collectively,

these observations suggest that the GM of our patients exhibited

disruption compared to that of healthy controls, a perturbation

evident even before the initiation of ICIs treatment.

3.3 | Potential GM signatures predictive of ICIs
treatment outcomes

Patients were stratified into responders, that is, those who achieved

CR or PR, and non‐responders, that is, those who maintained a stable
disease or progressed, based on the final assessment, and their

baseline and EoT GM structures were compared. No significant dif-

ferences in term of alpha and beta diversity were found between the

two groups both at baseline and EoT (Figures 2A,B and 3A,B), while

from a taxonomic point of view (Figures 2C–E and 3C–E) several

distinctive features emerged. In particular, prior to starting treat-

ment with ICIs, responder patients were distinguished by a higher

relative abundance of Lachnospiraceae and Lachnospira (p ≤ 0.04), and

showed a trend toward increased proportions of Peptos-

treptococcaceae and Prevotellaceae, along with the genus Prevotella

(p ≤ 0.06). The baseline relative abundance of Lachnospiraceae and

Lachnospira correlated positively with the ORR (rpb = 0.59 and 0.62,

p = 0.03 and 0.02, respectively) (Figure 2F). On the other hand, non‐
responder patients showed a higher relative abundance of Proteo-

bacteria and Enterobacteriaceae (p ≤ 0.04), and a trend toward a

higher representation of Lactobacillaceae, especially Lactobacillus

(p = 0.07). To evaluate the potential confounding effects of sex, age

and disease on the predictive GM signature, we evaluated beta di-

versity and the genus‐level relative abundances among these groups
at baseline. Results are presented in Figures S2‐S4.

At EoT (Figure 3A–E), the previously identified potential GM

signatures of response were largely maintained, namely the over-

representation of Lachnospiraceae in responders, and the over-

representation of Proteobacteria, Enterobacteriaceae and Lactobacillus

in non‐responders (p ≤ 0.095). Furthermore, responder subjects

showed higher proportions of Firmicutes (p = 0.03) and a trend to-

ward an increase in Ruminococcus (p = 0.085). The relative abundance

of Lachnospiraceae and Ruminococcus at EoT correlated positively with

ORR (rpb = 0.73, p = 0.03) (Figure 3F).

4 of 12 - CASADEI ET AL.
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3.4 | Predicting functional microbiome pathways
potentially involved in patients ICIs outcome

From the PICRUSt2‐predicted MetaCyc pathways of patient's GM at

baseline, we evaluated the relative abundance of these pathways in

relation to the patient's therapy outcomes to identify potential pre-

dictive functional signatures. Differences in pathways abundances

between responders (R) and non‐responders (NR) were determined

using the Wilcoxon test. We found that certain pathways were

significantly increased in the R group (p ≤ 0.036). These include D‐

F I GUR E 1 Legend on next page.
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galacturonate degradation (GALACTUROCAT‐PWY), glycogen

degradation I (GLYCOCAT‐PWY), superpathway of L‐serine and

glycine biosynthesis I (SER‐GLYSYN‐PWY), biotin biosynthesis II

(PWY‐5005). These pathways are associated with enhanced meta-

bolic and biosynthetic capabilities, potentially supporting the energy

demands and biosynthesis of essential compounds required for an

effective immune response and modulation. Conversely, the GM of

NR was characterized by a predominance of fermentative meta-

bolism pathways, such as the superpathway of hexitol degradation

(bacteria) (HEXITOLDEGSUPER‐PWY), hexitol fermentation to

lactate, formate, ethanol, and acetate (P461‐PWY), and the super-

pathway of glycolysis and Entner‐Doudoroff (GLYCOLYSIS‐E‐D)
(p ≤ 0.036). These pathways indicate a metabolic shift toward

fermentation, which may lead to the production of metabolites that

can create a more inflammatory or less immune‐supportive envi-

ronment. All significant associations (p ≤ 0.05) are reported in

Figure 4, providing a comprehensive view of how these microbial

pathways might influence patient responses to ICIs.

4 | DISCUSSION

In our exploratory study, we longitudinally profiled the GM of

adult patients with r/r cHL or PMBCL undergoing anti‐PD‐1
therapy (nivolumab or pembrolizumab) in an attempt to identify

potential predictive GM signatures of ICIs response. Although the

enrolled patients were heavily pretreated (median number of

previous lines, 3) and had advanced disease, refractory to the last

line prior to ICIs, response rates and survival were comparable to

those reported in the literature. In particular, the best response in

cHL patients was 67% with a median PFS of 11.1 months, similar

to the results of the Keynote‐087 and Checkmate‐205 studies.1,2

Regarding patients with PMBCL, 40% achieved a response with a

median PFS of almost 2 years, a result significantly different from

the median PFS of 4.3 months reported in the Keynote‐170 study.3

However, this finding may be influenced by the small sample size

of our study.

Considering that cancer patients' GM, including those with B‐
cell non‐Hodgkin's lymphomas, is altered both at the time of diag-

nosis,29–31 underscoring a close correlation between disease onset

and loss of GM diversity, and following previous treatment,13–17 we

first compared the baseline GM profiles of patients with those of

healthy subjects matched for microbiota‐associated confounding

factors (i.e., age, gender, and geography),32 indicating that, also in

our cohort of r/r B‐cell lymphoma patients, the GM prior to the

initiation of ICIs treatment is dysbiotic. In particular, it showed

predictably low diversity and an unbalanced composition, with

enrichment in potential pathobionts, for example, Streptococcus and

Collinsella and depletion of typical health‐associated taxa, including

Bifidobacterium and members of the Lachnospiraceae and Rumino-

coccaceae families (e.g., Coprococcus, Lachnobacterium, Blautia, Dorea,

Lachnospira, Roseburia, Faecalibacterium, and Ruminococcus).33–37 As

widely discussed in the literature, the latter are known to produce

short‐chain fatty acids (SCFAs), end‐products of fiber fermentation,
which are key players in promoting metabolic and immunological

homeostasis.38

Notably, a baseline dysbiotic signatures were less pronounced in

those patients in our cohort who subsequently responded to therapy.

In particular, we found potential GM signatures, characterizing both

baseline and EoT samples, able to segregate responder patients from

non‐responder ones. Specifically, prior to ICIs treatment, responder

subjects showed an overrepresentation of Lachnospiraceae and Pre-

votellaceae (and the respective genera Lachnospira and Prevotella), and

an underrepresentation of Proteobacteria (especially Enterobacteri-

aceae) and Lactobacillus compared to non‐responders. Most of these

taxa continued to discriminate between responder and non‐
responder patients at EoT. Supporting the potential role of these

microorganisms in influencing ICIs efficacy, the relative abundance of

Lachnospiraceae and Lachnospira at baseline was positively correlated

with ORR, as was the relative abundance of Lachnospiraceae and

Ruminococcus at EoT. As we already know, Lachnospiraceae and

Ruminococcus are capable of producing SCFAs, mainly butyrate,

which can enhance the antitumoral activity of the immune system by

modulating the function of several immune cells such as macro-

phages, dendritic cells, anti‐inflammatory T‐regulatory cells, pro‐
inflammatory T helper cells and plasma cells.39,40

Regarding the other discriminating taxa, the response‐associated
depletion of Enterobacteriaceae was expected, as their enrichment has

already been correlated with unfavorable outcomes in naïve diffuse

large B‐cell lymphomas.31 In contrast, the potential role we found of

Prevotella and Lactobacillus as a favorable and unfavorable prognostic

factor, respectively, partially contradicts the available literature,

F I GUR E 1 Gut microbiota dysbiosis of B‐cell lymphoma patients before ICI treatment compared to healthy subjects. (A) Boxplots

showing the distribution of alpha diversity, estimated according to the Shannon index, in the gut microbiota of B‐cell lymphoma patients
before ICI treatment (BAS) versus healthy age/gender‐matched Italian subjects (CTRL). A significant decrease in alpha diversity is observed in
the patient group (p = 0.02; Wilcoxon test). (B) Principal coordinates analysis based on Bray–Curtis distances between study groups. Ellipses

include 95% confidence area based on the standard error of the weighted average of sample coordinates. The analysis reveals significant
segregation between the microbiota of patients and healthy subjects (p = 0.0001; adonis), indicating distinct microbial community structures.
Boxplots showing the relative abundance distribution of (C) phyla and (D) families differentially represented between patients and healthy

subjects. °p ≤ 0.1; *p ≤ 0.05; **p ≤ 0.01; **p ≤ 0.001; ****p ≤ 0.0001; Wilcoxon test. (E) Heatmap showing relative abundance differences,
scaled by row, of the more abundant and prevalent GM genera (relative abundance ≥0.1% in at least 1/8 of the studied population) between
R and NR patients at baseline. Only pathways showing significant differences (p ≤ 0.05; Wilcoxon test) between groups are plotted. Pathways
are hierarchical clustered and sorted according to their Euclidean distances. GM, gut microbiome; ICI, immune checkpoint inhibitor; NR, non‐
responder; R, responder.
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F I GUR E 2 Potential gut microbiota signatures of response to ICIs in B‐cell lymphoma patients at baseline. (A) Boxplots showing the

distribution of alpha diversity, estimated according to the Shannon index, in the baseline gut microbiota profile of B‐cell lymphoma patients
stratified by response (R, responders vs. NR, non‐responders). The analysis reveals no significant differences in alpha diversity between R and
NR (p = 0.73; Wilcoxon test). (B) PCoA based on unweighted and weighted UniFrac distances between study groups. The PCoA shows no

significant segregation between R and NR (p > 0.05; adonis). Ellipses include the 95% confidence area based on the standard error of the
weighted average of sample coordinates, indicating overlapping microbial community structures between the two groups. Boxplots showing
the relative abundance distribution of (C) phyla, (D) families, and (E) genera differentially represented between groups. °p ≤ 0.1, *p ≤ 0.05;

Wilcoxon test. (F) Scatterplots showing the point‐biserial correlation (rpb) between relative taxon abundances and ORR. Only significant
correlations (p ≤ 0.05) with absolute rpb ≥ 0.3 are shown, identifying taxa that are strongly associated with treatment response. ICIs, immune
checkpoint inhibitors; ORR, overall response rate; PCoA, principal coordinates analysis.

CASADEI ET AL. - 7 of 12

 10991069, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hon.3301 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [01/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



which generally reports the former as associated with cancer pro-

gression, and the latter as a probiotic taxon.41,42 However, it should

be noted that Lactobacillus has recently been identified among genera

that were overrepresented in B‐cell lymphoma patients with high

disease burden or chemotherapy‐related side effects,43 suggesting a

potential species‐ and context‐dependent role. It is important to note
that while p values did not reach conventional levels of statistical

significance, they are still meaningful to report statistical tendencies

or trends when discussing microbiome data.44,45 In our study, this

observation suggests a potential trend toward depletion, which

warrants further investigation or consideration in the context of

broader research findings.

We investigated potential confounding effects of age, sex and

disease type on the GM signatures predictive of ICIs therapy

F I GUR E 3 Differences in the gut microbiota profile of B‐cell lymphoma patients at the end of ICI treatment according to response.
(A) Boxplots showing the distribution of alpha diversity, estimated according to the Shannon index, in the gut microbiota of B‐cell lymphoma
patients stratified by response (R, responders vs. NR, non‐responders) at the end of ICI treatment. The analysis reveals no significant
differences between R and NR (p = 0.29; Wilcoxon test). (B) PCoA based on unweighted and weighted UniFrac distances between study
groups. The PCoA shows no significant segregation between R and NR (p ≥ 0.05; adonis). Ellipses include 95% confidence area based on the

standard error of the weighted average of sample coordinates, indicating that the microbial community structures are similar between the two
groups. Boxplots showing the relative abundance distribution of (C) phyla, (D) families, and (E) genera differentially represented between
groups, suggesting changes in the gut microbiota composition and potential microbial markers of response. °p ≤ 0.1, *p ≤ 0.05; Wilcoxon test.

(F) Scatterplots showing the point‐biserial correlation (rpb) between relative taxon abundances and ORR. Only significant (p ≤ 0.05)
correlations with absolute rpb ≥0.3 are shown, identifying taxa that are strongly associated with treatment response. ICI, immune checkpoint
inhibitor; ORR, overall response rate; PCoA, principal coordinates analysis.
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outcomes in B‐cell lymphoma patients. Our analyses revealed age as

a potential confounding factor, notably affecting the relative abun-

dance of the Lachnospira genus, which showed an age‐related in-

crease in older subjects at baseline, particularly prevalent among

responders (Figure S2). Sex did not significantly influence GM sig-

natures, while differences in GM composition between different

lymphoma types (i.e., PMBCL and cHL) did not align with ICIs therapy

outcome signatures. These findings underscore the importance of

considering age‐related GM changes when interpreting microbial

predictors of ICIs treatment response, suggesting avenues for future

research to refine predictive models.

To deeply understand the impact of the microbiota on patient

prognosis, we predicted the functional potential of the patient's

microbiome using the PICRUSt2 package based on 16S rRNA

sequencing data. This prediction provides a more comprehensive

overview of the possible involvement of gut microbiota in anti‐PD1
therapy. The network of microbial pathways present in a patient's

microbiota could support a healthy and balanced gut environment,

thereby enhancing the efficacy of ICIs such as anti‐PD1 mAbs by

promoting better immune cell function and response. Enhanced

pathways in the R group, such as D‐galacturonate degradation and

glycogen degradation I, suggest an increased availability of energy

sources. These pathways support the production of SCFAs, which are

known for their anti‐inflammatory properties, ability to modulate the
immune system, and role in strengthening the gut barrier.37,46 SCFAs

like butyrate are critical for maintaining gout homeostasis and sup-

porting the differentiation of regulatory T cells, which can enhance

the immune response against tumors. The superpathway of L‐serine
and glycine biosynthesis I and biotin biosynthesis II are also signifi-

cantly increased in the R group. L‐serine and glycine are amino acids

essential for nucleotide synthesis and other metabolic processes vital

for rapidly proliferating cells, including immune cells.47,48 Biotin, a B‐
vitamin, is crucial for various carboxylation reactions, which play a

role in gluconeogenesis, fatty acid synthesis, and amino acid catab-

olism. Enhanced biotin biosynthesis may thus support the metabolic

demands of activated immune cells during ICIs therapy.

Conversely, the predominance of fermentative metabolism

pathways in NRs, such as hexitol fermentation and glycolysis, may lead

to the production of metabolites that can adversely affect the gut

environment and immune response. Ethanol, produced from hexitol

fermentation, can increase oxidative stress and disrupt the gut bar-

rier, potentially leading to a pro‐inflammatory state detrimental to

F I GUR E 4 Predicted gut microbiota pathway relative abundance differences at baseline according to overall response rate. Heatmap
showing relative abundance differences, scaled by row, in the gut microbiome PICRUSt2‐predicted MetaCyc pathway between responder

(R) and non‐responder (NR) patients at the baseline. Only pathways with significant differences (p ≤ 0.05; Wilcoxon test) between groups are
plotted, suggesting potential biomarkers for predicting response to ICIs treatment in B‐cell lymphoma patients. Pathways are hierarchical
clustered and sorted according to their Euclidean distances. ICIs, immune checkpoint inhibitors; NR, non‐responder; R, responder.
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effective immune responses. Formate, another bacterial fermentation

product, can contribute to metabolic acidosis and inhibit cellular

respiration, further compromising immune cell function.49

Our results suggest that GM functional profiling could be crucial

to better elucidate the role of the GM in patients' responses to ICIs

therapy and the molecular mechanism involved. Understanding these

associations can inform the development of microbiome‐based in-

terventions to improve therapeutic outcomes.

Nevertheless, our study is not without limitations. First of all,

the small size of the patient cohort, that constrained the robustness

of the statistical evaluations. Additionally, the comparison of base-

line GM between patients and controls may have been influenced

by potential biases introduced by prior lines of lymphoma treatment

and previous antibiotic exposure. In fact, patients did not undergo

antibiotics right before or during therapy eliminating them from the

list of potential confounding factors, but we did not have informa-

tion about antibiotics in previous medical history of both patients

and controls. Importantly, recognizing and addressing the potential

confounding effects of previous treatments on baseline GM com-

parisons will be crucial for a more nuanced understanding of the

study results. Finally, longitudinal sampling was not consistent

across patients, preventing a robust high‐resolution assessment of

GM trajectories in responder versus non‐responder patients,

including in relation to AEs. To date, we conceived the study with

fixed timepoints to ensure the consistency of longitudinal sampling,

also for AE. Unfortunately, since these were fragile patients, the

established timepoints were not always respected. In addition, due

to the outpatient setting it was often impossible collect fecal sam-

ples contextually to an AE. These limitations underscore the need

for caution in interpreting the findings and emphasize the impor-

tance of larger, more diverse samples to increase the study's sta-

tistical power and generalizability.

Despite the constrained size of our patient cohort, our study

represents a pioneering effort to unravel GM signatures in patients

with r/r cHL and PMBCL before initiating ICI treatment. In particular,

we identified potential early prognostic GM biomarkers and in terms

of a correlation between them and patient outcomes during anti‐PD1
mAb therapy. These preliminary results open promising avenues for

future research in this direction with the aim of optimizing response

to ICIs in heavily pretreated patients affected by r/r cHL and PMBCL.

The study was conceived as pivotal as there were no data exploring

connections between GM, lymphomas and ICIs treatment. Our early

results have to be considered as a start of point for further and more

robust research. Moving forward, leveraging shotgun metagenomic

sequencing will be crucial to uncover species‐level variations and

functional signatures within the GM of patients in response to ICIs

treatments. By integrating species‐level and functional analyses,

future studies can more precisely delineate microbial signatures

associated with therapy outcomes, thereby advancing our under-

standing and potentially enhancing clinical strategies in B‐cell lym-
phoma treatment. This, in turn, will set the stage for a more tailored

and personalized approach to treatment strategies in this challenging

patient population. The prospects offered by understanding and

manipulating the interplay between GM and immunotherapy out-

comes underscore the evolving landscape of precision medicine in

lymphoma treatment.
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