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A B S T R A C T

Overcrowding is a well-known major issue affecting the behavior of an Emergency Department (ED), as it
is responsible for patients’ dissatisfaction and has a negative impact on the quality of workers’ performance.
Dealing with overcrowding in an ED is complicated by lack of its precise definition and by exogenous and
stochastic nature of requests to be served. In this paper, we present a Decision Support System (DSS) based
on the integration of a Deep Neural Network for dealing with the sources of uncertainty and a simulation tool
to evaluate how specific management policies affect the ED behavior. The DSS is designed to be run on-line,
dynamically suggesting the most suitable policy to be implemented in the ED. We evaluate the performance
of the DSS on a specific major ED located in northern Italy. Numerical results show that overcrowding can
be considerably reduced by allowing a dynamic selection among a limited set of simple policies for queue
management.
1. Introduction

The Emergency Department (ED) is a medical facility dedicated
to receiving and treating patients with unexpected illness and injury
within a short period of time. It works 24 h a day, for a variable number
of week days, usually 5 or 7, depending on the number of accesses. Due
to its own nature, activities performed within an ED are unprojectable.
Patients arrive either by their own or with an ambulance, and claim
different types of treatment for a wide variety of diseases.

Due to the complexity of this environment, the admission of patients
is handled according to a priority-based policy [1]. As a consequence,
the first activity performed during an ED pathway is to determine the
patient’s priority with a process called triage. ED triage is aimed at
defining the urgency of treatment while taking into account scarcity
of the resources [2]. Triage activities are coded at the regional or
national level based on a scale, and assign each patient an urgency
of treatment according to a specific scale, the most common ones
being the Australasian Triage Scale, the Canadian Triage and Acuity
Scale, the Manchester Triage System, and the Emergency Severity Index
(see, [3]). These activities are usually performed by a nurse, who takes
notes about the patient’s health and personal condition and assigns
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a priority code. In addition to structured data (e.g., sex, age, oxygen
saturation, etc.), the nurse may also fill-in a diary with more detailed
information, such as the circumstances of accident or others elements
that can be used by the physician during decision-making process. Data
collected during the triage process are useful for the whole ED pathway;
as shown in [4], triage nurses are capable of assessing the patient’s
complexity in a reliable and valid way. In addition, analytics or AI-
based techniques can be used to effectively support triage decision
making, see, e.g., [5].

Even in case the triage correctly assigns the level of care to each
patient, the performance of an ED may be affected by overcrowd-
ing, arising when the demand for ED services exceeds the available
resources. Overcrowding may have a negative impact on different op-
erational aspects, such as waiting times, length of stay (LoS), increasing
number of patients leaving without being seen (LWBS), which can
increase medical errors and decrease efficiency [6,7]. Overcrowding is
a complex phenomenon for which there exists no universally accepted
definition and measure. The most common way to quantify ED over-
crowding is the so-called National ED OverCrowding Study (NEDOCS)
indicator, proposed in [8]. This is a one-dimensional indicator that,
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based on the available resources (e.g., ED beds, Hospital beds) and
on the ED state (e.g., total patients simultaneously present in the ED),
returns the ED overcrowding score (from ‘‘not busy’’ to ‘‘Dangerously
Overcrowded’’). Although NEDOCS is not suitable in some cases [9],
it may be a useful indicator for detecting areas where efforts have to
be put for addressing congestion (e.g., total admits in the ED, total pa-
tients simultaneously present in the ED, number of respirators, longest
admit time, etc.). More generally, different Operations Research and
Operations Management approaches have been proposed to deal with
overcrowding. A first class of actions affects the ED intake process [10],
including techniques for allocating ambulances within a network of
EDs [11,12], or for rerouting ambulances to others hospitals in periods
of crowding (Ambulance Diversion, see [13]). A second possibility is
to focus on the internal ED patient flow, in order to use available
resources efficiently. Although many attempts for creating decision
support system tools have been proposed in recent years [14], their
application within an ED environment is challenging. Indeed, forecast-
ing patient pathways can be hard [15] for different reasons, as large
number of pathways variants or missing information. Nevertheless,
mining the patients’ pathway is a key issue for improving the internal
flow of patients in the ED, by correctly identifying bottlenecks and
waiting times. The mining problem is typically addressed by either
using Process Mining or by means of Machine Learning. These two
approaches exploit information from structured data, usually avoiding
non-structured ones. Process Mining exploits data in order to provide a
pathway representation [16]. However, this technique tends to be inef-
fective (creation of very complex models) with high variety processes
(so-called Spaghetti processes), and this is the case of ED pathways.
Nevertheless, in the literature there are different attempts to avoid this
problem. For example, the authors of [17] propose an innovative ad
hoc process mining approach to discover patients’ pathways, that tries
to solve the problem through an initial clustering of patients.

Conversely, Machine learning techniques, and artificial neural net-
works in particular, have the capability of predicting the future path-
way of a patient (see, e.g., [18]). This approach allows to rely on
extensive information about a patient (represented via a set of at-
tributes) to achieve higher accuracy predictions of their needs within the
ED. The use of those techniques in predicting patients’ needs in terms of
resources is clearly not restricted to the ED. For example, [19] presents
a machine learning model applied to the master surgical scheduling
problem, with the aim of predicting the impact of surgical patients in
terms of occupied beds on other areas of the hospital (e.g., intensive
care unit).

Once patients’ pathways are predicted, the next step is to use this
information to improve ED performance and avoid overcrowding. A
commonly used approach for addressing this task makes use of sim-
ulation [20–22], allowing the creation of what-if scenarios and the
selection of the best resource allocation policies to improve the patients’
flow. Traditional approaches use discrete-event simulation in an off-line
configuration [23], to assess how a specific policy performs. This kind
of approach has been successfully used for taking decisions also in other
hospital departments. For example, [24] presents a simulation-based
optimization method to obtain optimal decisions on patients discharge.

Recently, alternative approaches based on agent based simulation
have been introduced [25]. A first attempt of taking operational de-
cisions in an ED based on real-time prediction is proposed in [26],
where an ED simulator is used to evaluate the performance of a (fixed)
pre-selected policy. The implementation of this policy requires a real-
time prediction of patients’ pathways, which is obtained by means of a
process-mining discovery model exploiting structured data. The (fixed)
policy to be implemented in the real ED is then determined by eval-
uating a portfolio of possible policies according to some performance
indicators.

Approaches based on off-line simulation and decision making are
in general not fully satisfactory within a highly dynamical system such
2

as an ED, where an on-line approach trying to solve problems before
they happen could be preferable. The aim of this paper is to propose
a new Decision Support System (DSS) based on the integration of a
Deep Neural Network and a simulation tool to take decision on-line.
Our approach is original in two aspects: first, the neural network is
used to predict patients’ clinical pathways by exploiting all information,
i.e., both structured and not-structured data, collected during the triage
process. To the best of our knowledge, there exists no previous attempt
reported in the related literature to exploit unstructured data; for exam-
ple, even the very recent paper [26] makes use of only structured data
for prediction. Second, predicted pathways are used within a discrete-
event simulator aimed at on-line testing different simple policies and
ynamically selecting the most appropriate one, so as to decrease
vercrowding. In other words, the tool is designed to react immediately
o any undesired behavior of the system by switching management
olicy when needed. To the best of our knowledge, this is another
nique feature of our approach, while even very recent contributions
n the literature only perform an evaluation of fixed policies, without
eciding when to switch to a different one (see again [26]). We will
ocus on ‘‘normal’’ operating conditions, though the approach can be
e-trained and re-calibrated to handle exceptional circumstances (such
s an ongoing pandemic).

The proposed DSS has been implemented, validated and tested on
real case study derived from one of the biggest EDs located in a
ajor city in northern Italy. The main contribution of our work is the
esign and the implementation of the DSS. In particular, this requires a
ontrivial integration of the different components aimed at predicting
nd simulating the behavior of the real system. A key task for providing
useful tool is to define a proper level of detail in the representation of

the ED and the associated data collection. Indeed, while a too detailed
representation would result in a DSS with a limited applicability in an
ED that is not the one of our case study, a too simplified representation
of the operations and resources would yield an oversimplified tool,
unable in providing useful guidance. As we discuss in the following, we
adopt a representation of the ED where the specific processes and the
associated resources are simplified enough to obtain a tool which can
be adapted to different settings with a manageable effort. At the same
time, the numerical analysis of our case study shows that the resulting
DSS is highly effective in reducing overcrowding: that is, we are able
to simplify the representation of the system without losing relevant
information.

The paper is organized as follow: Section 2 describes the context
and data of the problem, with particular attention to the uncertainties
that are addressed within the ED. Section 3 presents the predictive
models developed to deal with uncertainties, while Section 4 shows the
integration of simulation and optimization. Finally, Section 5 reports
the results obtained with the DSS in our case study, while Section 6
concludes the paper.

2. Problem context and data

All EDs include the same kind of human actors and resources such
as doctors, nurses, clinical staff, technicians, devices, stretchers and
beds, all of them interacting within similar processes. Therefore, in
this section we present a generic model for describing an ED pathway,
the interaction with the aforementioned resources, and the information
needed to build an effective DSS upon this model. Although the case
study under examination comes from an ED located in Italy, the model
itself is general enough to allow an adaptation of the proposed DSS to
basically any other ED working with the same mechanism.

2.1. The ED pathway

Each patient within an ED follows a pathway that can be summa-
rized as in Fig. 1.

The patient enters the ED either autonomously or with an ambu-

lance. In both cases, the triage phase starts as soon as possible, and a
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Fig. 1. Generic ED pathway.
staff member, usually a nurse, assesses the patient and registers their
personal information (name, age, sex, etc.) and clinical observations
(oxygen saturation, blood pressure, etc.). In addition to the structured
information, nurses often fill in a text box (nursing diary) with more
detailed information about the patient, such as the type of injury or
other diseases affecting the patient. This unstructured textual informa-
tion is sometimes more relevant than the structured one. For example,
in the ED we considered, the nursing diary reported annotations for all
patients registered in the period from January 2018 to October 2019;
in the same period, the field ‘‘Main Problem’’ recorded a very generic
information (‘‘Other injuries’’) in more than 50% of the cases. This
is a common situation which applies to our ED and to many others.
After receiving a priority during the triage phase, the patient is possibly
placed in a waiting room. In case the waiting time extends too much, as
it may happen in overcrowded EDs, some patients may leave without
being seen. After the waiting time, a patient is checked for the first time
by a physician (First Visit).

At the end of the visit, the physician either decides to discharge
the patient or requests a further set of services, including, for example,
X-ray exams, ultrasound, specialist visit, laboratory exams, therapies
etc. In the following we will denote by ‘‘package’’ a set of services
which are prescribed together for the same patient with no specific
order. A check-up is performed after each package is completed; during
this check, the patient is re-evaluated and possibly discharged, or an
additional package with further services can be requested. This loop
can be repeated several times, until the physician has a diagnosis. Once
patients receive the diagnosis, they may have different destinations:
discharged, hospitalized, transferred to a Short-Stay Observation (SSO),
or transferred to another hospital. In the last three cases, the bed
availability has a major impact on the patients’ LoS.

2.2. ED components and definition of services

Patients and services are the key elements of our model of the ED.
Patients enter the ED because they need to access services, which are
associated with scarce resources; therefore, patients may have to queue
and the ED may experience overcrowding. Our analysis starts right after
triage, reason why we only discuss operations and resources involved
after this phase.

Resources are either internal to the ED, i.e., owned and managed
by the ED itself, or external to the ED, i.e., owned and managed by
different entities while providing services to the ED. The first type
3

of resources includes, among others, ED physicians, ED nurses, ED
areas (in terms of number of medical stretchers), while the second type
includes, among others, physicians who provide a specific consultation
(e.g., orthopedic examination), and the laboratory.

The distinction between internal and external resources induces a
different level of detail in their representation within a simulation
model. Indeed, a fine granularity must be used for the former resources,
whose dynamic heavily impacts on the time spent within the ED by
the patients. On the other hand, a too detailed representation would
result in an unnecessarily complicated and computationally challenging
model. Accordingly, a proper representation of the internal resources is
as follows:

• For what concerns internal areas of patient care, the main at-
tributes are the type of treatable patients (e.g., low-urgency pa-
tients or high-urgency patients), the schedule of availability (at
night or during public holidays some areas may be closed) and
number of simultaneously treatable patients (this figure depend-
ing on the availability schedule);

• Physicians can be either assigned to a specific area or shared
among different areas. In addition, the number of available physi-
cians may vary during the day and physicians may have dif-
ferent skills, which induce different policies for what concerns
preemption in case of life-threatening arrivals;

• Care staff (e.g., nurses) and support staff (e.g., porters) are not
explicitly modeled, as their contribution can be merged with that
of the previous two resources. Indeed, despite their relevance for
running the system, their contribution is transversal to the whole
process and can hardly be framed in well-defined phases. This is
often compounded by a lack of information (e.g., registration) on
the tasks performed by this group.

The internal resources mentioned above are needed for performing first
visits, checks-up and a subset of services (e.g., therapies), as shown in
Fig. 1. For example, for the first visit to begin, a place in the appropriate
area and a physician must be available.

As already mentioned, a coarser granularity is sufficient in repre-
senting external resources, as only the (potentially) blocking elements
for ED patients need to be highlighted. External resources are charac-
terized by the schedule of availability (typically, there are specific slots
reserved to the ED) and the number of simultaneously treatable patients
(this figure depending on the availability schedule).

All resources mentioned above require the physical presence of
the patient for providing the service. In addition, we consider the

laboratory, which is a relevant (external) resource not requiring the
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physical presence of the patient. In major hospitals, laboratory services
are provided 24/7 and typically have the capability of simultaneously
performing multiple tests for different patients. Laboratory activities
are therefore performed in parallel to any other service. From a sim-
ulation point of view, we model the laboratory as a service without a
queue but having a duration (sampled on historic data) that can stretch
the overall duration of the package including it.

2.3. Uncertainty model

In order to timely detect and react to overcrowding, one has to
know how the ED will evolve in the near future. We describe the
evolution of the ED system by observing its state, characterized by a set
of measurable variables at a given time, and by forecasting the future
value of those variables. As the evolution of those figures depends both
on internal actions and on exogenous stochastic events, one has to deal
with different sources of uncertainty, namely:

1. uncertainty of arrivals;
2. uncertainty of pathways (temporal sequence of first visit, service

packages and check-ups until the patients’ discharge);
3. uncertainty of duration of the first visit, check-ups, and services

that make up the packages;
4. uncertainty of the effect of internal actions performed on the

system.

Indeed, the evolution of the ED state is strongly influenced by the
temporal distribution of the future patients’ arrivals, as well as by the
patients’ pathways and by the duration of each specific activity of the
pathway.

Formally, let us assume we are interested in modeling uncertainty
over a set of 𝑛 patients, for an Emergency Department operating with
𝑚 possible packages. We will proceed by introducing, for each patient
𝑖, multiple random variables and in particular:

• a random variable 𝑇𝑖 with support R+, representing the arrival
time for the patient;

• a random variable 𝑋𝑖 representing the information collected on
the patient at triage time. This variable is a vector of values
associated with a fixed set of attributes, thus its support depends
on the type of information that are collected;

• a sequence of random variables {𝑌𝑖𝑗}𝑗=1..𝑛𝑖 each one with support
𝑀 = {1,… , 𝑚} ∪ {⊥}, representing the sequence of 𝑛𝑖 (say)
packages for patient 𝑖 (i.e., their pathway); the value ⊥ denotes a
special package signaling sequence termination, so that 𝑌𝑖,𝑛𝑖 = ⊥
by construction;

• a random variable 𝐷𝑖𝑗𝑘 with support R+, representing the time
for the 𝑘th service, in the 𝑗th package, for the 𝑖th patient.

Part of our analysis (see Section 3) will be devoted to determine
reasonable distributions and correlations for these variables.

We note that all sources of uncertainty are exogenous, i.e., they
are not affected by sequencing decisions. On the other hand, the
overall behavior of the ED (including performance indicators such as
the number of patients waiting for a visit) depends on the complex
interplay between the uncertain factors and the operated choices. For
this reason, improving the performance of an ED requires to forecast
these sources of uncertainty, to assess their impact, and to define how
to search for an optimal policy.

2.4. DSS architecture

In the reminder of the paper, we will describe the building blocks
of a Decision Support System (DSS) aimed at optimizing the ED perfor-
mance. In the next section, we introduce the modules that are used for
4

dealing with the sources of uncertainty, namely:
• an arrival time generator, based on statistical approaches, for the
first source of uncertainty;

• a Deep Neural Network to predict patients’ pathway;
• a service duration generator, based on statistical approaches, for

the visit/check-ups/services duration.

Then, in Section 4 we detail a discrete-event simulator to evalu-
ate how specific management policies affect the ED behavior, and to
perform an on-line selection of the best policy.

All data-driven approaches (i.e., the statistical models and the neu-
ral network) are meant to be calibrated over available historical data.

3. Predictive model

In this section we present the techniques adopted to address uncer-
tainty about arrivals, pathways and activities duration. The analysis can
be applied to any ED, provided the necessary information is available.

There is a major distinction in terms of prediction between patients
that have already entered the ED (for whom triage information has
already been collected) and patient that might arrive in the future (for
whom no information has been observed yet). We discuss the two cases
separately.

3.1. Predicting pathways for patients within the ED

The expected pathway is the most relevant aspect to be predicted
for patients, as it affects activity queues, patients’ LoS and ED global
overcrowding. Predicting pathways is a very challenging task, mainly
for two reasons. First, since an ED typically offers many services, the
number of potential pathways for a patient is very large, as the number
of possible combinations of service packages grows exponentially with
the pathway length. Second, many pathways are similar, since they
include many common services (possibly, in a different order), thus in-
creasing uncertainty in the prediction task. From a formal perspective,
this implies that the probability distribution for the package sequences
(i.e., {𝑌𝑖𝑗}𝑗) has a very large support and complex correlations.

For patients that have already entered the ED, all triage information
is used to perform more accurate inference, resulting in a contextual
prediction problem that can be tackled via Machine Learning. Our
Machine Learning-based approach is used to forecast the actual path-
ways by exploiting the available patients’ information, including the
unstructured one from the nurse’s diary, and predicts the packages
of services for a patient, one at a time (see Fig. 1), until the whole
pathway is determined. This is coherent with the metric that we adopt
for evaluating the performance, in terms of accuracy, of our pathway
predictor (see Section 5.3), which considers the accuracy in predicting
the next package, right after the current one. Indeed, the proposed
approach is more accurate that an alternative one in which the entire
pathway is forecast in one step, as the number of service packages is
much smaller than the number of their combinations into pathways.

Formally, we adopt a factored approximation for the distribution
of all possible package sequences. In particular, we approximate the
distribution of possible sequences with a product of probabilities:

𝑃 ({𝑌𝑖𝑗}𝑗=1..𝑛𝑖 ) ≃ 𝑃 (𝑌𝑖,1)
∏

𝑗=2..𝑛𝑖

𝑃 (𝑌𝑖,𝑗 ∣ {𝑌𝑖,ℎ}ℎ=1..𝑗−1) (1)

n practice, when sampling the next package we use as an input to the
stimator the sequence of all packages observed or generated so far for
he considered patient.

In addition to the pathway taken so far (sequence of service pack-
ges), our prediction is based on a number of additional inputs/
onditioning factors, i.e., 𝑋𝑖 from our probabilistic model. These vari-
bles correspond to information that is systematically collected at triage
ime, namely:

• Age;
• Sex;
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• Patient’s urgency (triage code);
• Text in the nurse’s diary.

In order to use these features within a Deep Neural Network (DNN),
a preprocessing step is needed. All categorical attributes (i.e., sex and
urgency) are represented using a one-hot or label encoding; in our im-
plementation, we use methods available in the scikit-learn library [27].
The nurse’s diary consists of free text and requires preprocessing for
being used. To this end, we consider a Natural Language Processing
(NLP) approach based on a Bag-of-words model. We have tested three
alternatives for processing the text:

1. a combination of the Python Natural Language Toolkit (NLTK)
[28] for normalizing the text (e.g., removing stop words) and
scikit-learn for creating tokens and word 𝑛-grams;

2. the same approach as above, plus a stemming step, performed
via the Snowball algorithm for the Italian language [28];

3. an open source tokenizer based on a version of the Bidirectional
Encoder Representations from Transformers (BERT) [29] for the
Italian language (see [30]), implemented using the PyTorch
framework [31].

A comparison of these approaches will be discussed in Section 5.3.
All features are given as input to our Machine Learning model,

which is a Feed-forward Deep Network classifier, implemented in Py-
Torch. In particular, all hidden layers are handled by means of a simple
architecture using ReLU neurons. Indeed, ReLu is the most frequently
used activation function in feed-forward networks since it has some
nice properties, including simplicity and short execution time while
preventing vanishing gradient effects (see, [32]). As to the output layer,
a SoftMax activation function is used, so as to allow a normalization of
the output of the network and, therefore, its use as a mass probability
function.

The model is trained to approximate the probability of the next
package, conditioned on the information encoded by the model input.
Within this setup it is easy to sample the next package at random, with
a distribution defined by the model output. As an alternative, a deter-
ministic behavior can be obtained by considering the class (i.e., the
package) with the highest estimated probability as the only prediction.
We will consider both these operating modes in our experimental
evaluation.

3.1.1. Limitations
A known limitation of our factorized approach consists in its in-

ability to account for future packages when making predictions: cor-
relations between such packages may arise due to hidden variables,
e.g., the actual patient ailment at arrival time. However, in practice,
packages (i.e., groups of services) are assigned based on information
that becomes available only as a result of the services themselves. For
example, a medical exam may reveal additional information, which is
then used to define the next package for the patient. For this reason,
we expect our factorization to be a reasonably good approximation. Our
preliminary experiments aimed at training a model for the non-factored
distribution seem to confirm this conjecture.

Moreover, in our historical dataset, prescribed packages are affected
by service availability in addition to the patient condition (e.g., a
particular exam or medical specialist may not be available at a specific
time). Since we are not providing availability information as input to
our model, these effects will act as noise on the training distribution,
thus making the learning problem more complex.

3.2. Predicting arrivals and pathways for future patients

Since no observed information is available for patients that might
enter the ED in the future, we need to predict both their arrival times
and pathways.
5

Fig. 2. ED daily arrivals.

In an emergency department, arrivals are not scheduled in ad-
vance (non-elective), hence, they are best modeled as a stochastic
phenomenon. Nevertheless, the large amount of historical data that
is typically available allows to forecast with good approximation the
number of patients who will arrive during a specific time period.

Under the reasonable hypothesis that, for a limited time interval
(e.g., one hour), arrivals are independent and occur with constant mean
rate, the arrival count is well described by a Poisson process (see [33]).
An analysis of our dataset confirmed the validity of this assumption,
and showed that using time-dependent rates consistently leads to better
estimates. In particular, the rate seems to be driven by three factors:
the hour of day, the day of week, and the month, the first having by
far the largest impact. Fig. 2 shows the average number of arrival 𝜆ℎ
as a function of the hour of the day ℎ.

Accordingly, in our DSS we modeled inter-arrivals as independent
events, following an exponential distribution with time-dependent rate,

𝑃 (𝑇𝑖+1 − 𝑇𝑖) = 𝜆ℎ𝑒
−𝜆ℎ(𝑇𝑖+1−𝑇𝑖), (2)

i.e, the probability of an inter-arrival delay equal to (𝑇𝑖+1 − 𝑇𝑖) is
controlled by a parameter 𝜆ℎ which depends on the hour ℎ of the day.
By assuming 𝑇1 = 0, this is sufficient to characterize the full arrival-time
sequence.

As a consequence of our modeling choice, the number of arrivals
per hour is a Poisson process, with rate dependent on the hour of the
day. As a direct consequence, we can calibrate 𝜆ℎ values by simply
computing means over historical data. More in details, 𝜆ℎ is computed
as the average number of arrivals in time interval [ℎ, ℎ + 1).

Moving to the problem of predicting the pathways, we generate
those by adopting a simple statistical approach.

• First, we generate urgency code by sampling from a discrete
probability distribution, that has been calibrated by computing
historical frequencies for all urgency code values.

• Then, we sample packages (i.e., all {𝑌𝑖𝑗}𝑗) recursively according
to Eq. (1), using conditional probabilities that have been cali-
brated via historical frequencies, computed separately for each
urgency code.

The alternative would be to build a data generator for the 𝑋𝑖
distribution, then use the neural approach. However, this approach
introduces an additional source of noise. In principle, we could have
introduced additional conditioning factors that are easy to determine
even within a simulation, such as the hour of the day, the day of the
week and the month. However, in our case study, we did not observe

strong influence of these drivers on the prediction.
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3.3. Predicting activities duration

The state of the ED also depends on the duration of services,
which influences the availability of resources, the patients flow and the
waiting time.

We adopted a traditional statistical approach to model and sample
service duration. In particular, we use a parameterized LogNormal dis-
tribution, with no conditioning factor, as it turned out to be the choice
giving the best fitting compared with other distributions (e.g., expo-
nential or normal). We estimate the distribution type (from a pre-
defined set) and the distribution parameters via classical approaches
(e.g., sample mean and sample variance computation) over historical
data.

3.3.1. Limitations
Given the highly dynamic environment of an ED, it may happen that

duration information for some services is not properly registered, thus
reducing data quality. Typical issues arise, for example, for services that
are not registered or are only partially registered (e.g., the starting time
but not the ending time are registered), or are registered in a wrong
way. These issues can be handled by means of a preprocessing step,
aimed at identifying outliers, activities with incomplete information,
etc.

4. Simulation-optimization DSS

In this section we present the logic of our DSS: it includes a
simulation tool which integrates the aforementioned predictors and can
be used to test a portfolio of alternative policies for managing the ED.
By selecting the best policy, the DSS performs an improvement of the
ED.

4.1. DSS functional architecture

Each predictor of the DSS addresses a specific source of uncertainty.
Those predictors are embedded within a simulator, so as to model
the dynamic behavior of the ED, including patients flow, resources
utilization, and evolution of queues.

We have developed a discrete-event simulator of the ED, having the
level of detail discussed in Section 2.2. The simulator reads the current
state of the ED (hour of the day, availability of the resources, length of
the associated queues, patients within the ED and their features) and
uses the predictors to forecast the system evolution under a specific
policy. The simulator functional scheme is shown in Fig. 3. In the
figure, the yellow block highlights the state information taken from
the ED, the green blocks indicate the predictors that are used, and
the blue block represents the simulation system. Finally, the red block
represents the expected result. Through the DNN new packages are
assigned so as to complete the pathways of the patients within the ED.
Meanwhile, new arrivals are generated by the arrival predictor, and
the corresponding pathways are defined through the process described
in Section 3.2. Each service of the pathway is assigned a duration
through the procedure described in Section 3.3. Both types of pathways
are passed to the discrete-event simulator and used to evaluate the
evolution of the ED system. The simulator was implemented within
SimPy [34], a process-based discrete-event simulation framework based
on Python.

The DSS is designed with the goal of dynamically identifying the
most suitable policy to be implemented in the real system. To this
end, it must replicate the ED behavior, while evaluating the impact
of alternative policies. Indeed, the DSS allows the decision maker to
test different policies and to choose the most appropriate one based on
suitable metrics. Fig. 4 shows the integration of the DSS with the ED
system. The DSS tool is triggered every 𝛥𝑧 time units, when it is fed
with the actual state of the real ED. It simulates the behavior of the
6

ED under different policies, for a time interval 𝛥𝑇 , denoted as search
depth. Each simulation is repeated 𝜔 times, so as to obtain statistically
relevant information. The simulation returns, after a limited time, the
selected policy to the policy-maker (red arrow), who can either accept
or reject the proposal.

Parameters 𝛥𝑇 and 𝜔 affect the computing time needed to run the
simulation. Clearly, having a fast answer is mandatory in order to be
able to implement the suggested policy before the real ED has changed
too much. In addition, using a too large 𝛥𝑇 value is counterproductive,
s the resulting prediction is mostly based on hypotheses about future
rrivals. Concerning the trigger time 𝛥𝑧, the lower the value of this
arameter, the better the uncertainties of prediction are addressed.
owever, if the trigger time is too short, the implemented policy can
hange too often, thus confusing the decision maker.

.2. Alternative policies

Since overcrowding is the major issue we want to approach by
eans of our DSS, when selecting the best policy to implement within

he ED we consider a KPI which is a proxy of overcrowding, as detailed
n the next section. Our framework is easily adaptable in case the
ecision maker is interested in analyzing different KPIs.

We consider alternative policies which are related to the way in
hich queues are handled, and dynamically select the one which
erforms at best with respect to our KPI. In detail, each patient can be
rescribed one or more services within the current package. Services
ypically require the access to some scarce resource, and are associated
ith queues where patients wait for the resource to be available. All

onsidered policies treat in the same way patients requiring multiple
ervices within the same package, and assign the patient to the queue
f the service having the shortest (expected) waiting time. The expected
aiting time depends on the characteristics of other patients in the

ame queue, their forecast service times, and on the queue handling
olicy. In our DSS, we implemented three simple policies for selecting
he next patient of a given queue to be served. Although the prediction
f patients’ pathway is a complex task and is handled by means of
ophisticated statistical methods, the actual policy used for operating
he ED is defined by a combination of these simple policies. We believe
hat simplicity of those policies is important for two reasons: first, the
mplemented policy can change each time the DSS is invoked, and
hus considering more involved rules would probably have a negligible
mpact on the system performance. Second, simplicity is a plus when
olicies have to be understood, accepted, and implemented by human
ecision makers. The same argument suggests the adoption of a small
et of policies: increasing the size of the policy pool or the degrees
f freedom of their combination would considerably add complexity
o the system, making its behavior less transparent and acceptable.
onversely, the prediction of future events, which directly implies the
ost suitable policy to be implemented given the current state of

he ED, is outside the decision maker’s control, and is handled with
ophisticated techniques. Finally, the dynamic combination of those
imple policies allows to obtain an overall flexible policy whose a priori
tatic definition would be far from trivial.

In all policies, priority is given according to the urgency code. In
rder to avoid patients starvation, the ED implements a mechanism to
ush forward patients who are experiencing a too long waiting time.
his is obtained by increasing the urgency of a patient who has spent
certain amount of time in a queue. Ties in priority are then broken

s follows:

olicy 1 selects the patient with smallest expected time for the not
yet performed services of the current package, breaking ties by
smallest expected time for future packages. This policy gives pri-
ority to patients who are likely to complete their current service
package shortly, and can be useful in case of overcrowding.
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Fig. 3. DSS functional scheme. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Integration between ED and DSS tool. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Policy 2 selects the patient with largest expected time for the not
yet performed services of the current package, breaking ties
by largest expected time for future packages. This policy gives
priority to patients with long expected service times and can be
useful to process resource-demanding patients when the ED is
not under pressure.

Policy 3 selects the next patient according to a FIFO rule. This policy
is commonly used in EDs, including the one in our case study.

Regardless of the selected policy, a patient cannot change the queue
to which they are assigned and move to a different queue (before being
served). This constraint follows from the design of hospitals, where
ambulatories for different services can be far from each other, and
moving a patient can take time. In our analysis of the real case, we
will also consider an additional policy that violates this constraint,
i.e., where we assume that a patient can change their queue (in no
time). Although this additional possibility is in general infeasible, its
evaluation provides an optimistic estimate of the ED performance. It
should be kept in mind that an implementation of such a policy could
however require a redefinition of the hospital layout and logistics. We
will refer to this policy as fixed-queue relaxation (FQR) policy in the
rest of the paper.

5. Empirical evaluation and validation

In this section we present a quantitative study of the introduced DSS
and provide a detailed analysis of its capabilities, based on a real-world
use case.
7

5.1. Validation on a digital twin of the real ED

The integration of the developed DSS with the real ED requires a
preliminary phase of validation and fine tuning, and a non-negligible
investment in terms of time, human and financial resources. In order to
assess the capability of the system before the integration is performed,
and to perform such a tuning, we validate the tool and study its
effect on the system through a second simulation model, which in our
experiments plays the role of the real system in Fig. 4. This digital twin
(DT) is implemented as a discrete-event simulator, and it is intended
to be a tight approximation of the real ED: for this reason, it is fed
with historical observations of the past ED behavior, i.e., real arrivals,
patients’ features (urgency, triage information etc.), clinical pathways,
duration of the activities, and resource availability information.

The digital twin can be configured either with the same policy used
within the real ED, so as to assess its capability in replicating the latter,
or can follow the prescription of the DSS, so as to evaluate the impact
of the DSS on the system.

The experiments performed on our case study showed that the digi-
tal twin, in the former configuration, provides a tight approximation of
the real ED: the mean LoS recorded within the DT and the real one, for
the whole available period (from January 2018 to October 2019), differ
by 2% (Student’s t-tests revealed a non-significant difference between
the two statistics), and they have a similar resource occupation (global
mean error equal to 5%, with a non-significant difference between the
two statistics).

Once we have verified the performance of the digital twin, we can
switch to the second configuration, which is used to replace the real
ED in our tuning and experiments, so as to estimate the impact of the
proposed DSS.
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Table 1
Structure of the dataset providing information on ED accesses.

Case_ID Arrival time First visit time Discharge time Fast-track Age Sex Urgency code Diary Symptoms

numerical numerical numerical numerical binary numerical binary numerical string string

Random key
identifying the
single ED access
of a specific
patient

Timestamp of
the ED access,
i.e., after the
triage

Timestamp of
the first visit

Timestamp when
the patient is
discharged

Whether patient
follows a
fast-track or not

Age of
the
patient

Sex of the
patient

Code
denoting the
urgency of
treatment

Nurse’s
diary

Main symptoms
registered at
triage according
to a regional
encoding

100% filled in 100% filled in 100% filled in
but for patients
who died before
arrival and
LWBS patients

100% filled in
but for patients
who died before
arrival and
LWBS patients

100% filled in 99.9%
filled in

99.9%
filled in

100% filled
in

99% filled
in

99% filled in
5.2. The case study

The proposed DSS has been tested on a data set derived from real
observations from one of the largest metropolitan EDs of a northern
Italian region. The considered ED is classified as a second-level emer-
gency acceptance department (DEA 2), the highest complexity level
within the Italian classification (see, [35]). Such an ED provides a
number of highly specialized services, and a 24/7 radiology.

5.2.1. Internal organization
After arrival, patients undergo the triage process, which is per-

formed by two nurses working in parallel. Low-urgency patients with
specific needs (e.g., oculist problems) are enrolled in so-called fast-track
pathways, and sent to a specialist. After the triage, patients undergo the
first visit in two different rooms, depending on their needs and urgency,
while a shock room is available for caring severely urgent patients.
Close to the ED there are dedicated radiology clinics, as well as an MRI
and a CT scan, serving the ED and the whole hospital. In addition, the
hospital provides laboratory services and 24/7 specialist consultancy.

Once a patient has completed their urgency treatments and has
received a diagnosis, they may have different destinations:

• discharged, in case the there is no immediate need for further
clinical treatments or assistance;

• hospitalized, in case further complex clinical treatments are
needed;

• transferred to a SSO, in case short stay observation and/or low
intensity care is needed;

• transferred to another hospital;
• other possible results (including death).

.2.2. Retrospective data analysis
In this section we analyze the available historical data from the ED

t study. We considered anonymized real information registered for
atients treated between January 1st 2018 and October 31st 2019, for
total of 109 201 accesses (this figure includes also patients who died
efore arriving to the ED).2

Raw data were accessed through 5 different datasets.
The first dataset provides all general information on the ED access

f patients. Information is organized as described in Table 1. Missing
alues in numerical columns were replaced with median values. As
or the binary ones, a random value was generated based on the
istribution of the existing values, when needed.

The remaining 4 datasets refer to services provided to patients
uring the ED pathway, and are related to different medical areas:

2 All data were treated according to the European GDPR 2016/679. All
tructured and unstructured data were cleansed of information that might
ake patients recognizable to themselves or others.
8

• ED dataset: contains information on services delivered directly
within the ED (e.g., therapies), whereas it does not include the
first visit (found in the previous dataset), and check-ups (see
5.2.3);

• Laboratory dataset: contains information on services provided by
the laboratory;

• Radiology dataset: contains information on radiological services;
• Ambulatory specialty dataset: contains information on other types

of specialist services (e.g., surgical examination).

All these 4 datasets share the same structure, which is described in
Table 2. In this table, missing values in the request timestamp were
filled in with the timestamp of the start of the service. Missing data
concerning the timestamp of the start of the service were filled in
by subtracting the median duration of the service from the ending
timestamp (this figure being always available). Concerning missing
data in the Resource field, in some cases the team that provided the
service could be inferred with good approximation from similar services
performed in the same time slot; when this was not possible (less than
1% of the cases) a generic resource was assigned to the service, with 8
AM–8 PM availability in the simulation.

The data was then cleaned, under clinical manager guidance, by
removing compilation errors, i.e., life-threatening patients who left
without being seen or patients with a LoS greater than 48 h. This way,
a sample of 109 176 accesses was obtained.

Table 3 shows the number and percentage share of patients for each
of the 5 urgency codes, from the most to the least urgent.

Table 4 reports the different kind of pathways of each patient who
entered the ED, disaggregated by urgency code. Accordingly, we do not
report figures for patients who died before arrival.

The table shows that most of the patients follow a pathway within
the ED, with the exceptions of those following the fast-track pathway
or leaving the ED without being seen (LWBS). It is well-known (see,
e.g., [36–38]) that the number of LWBS is strongly correlated with over-
crowding and waiting time for the first visit. However, unfortunately,
the time when people leave an ED without being seen is typically not
registered, the only timestamp available being the one when an ED
operator notices the patient be missing. This time is probably a coarse
upper bound of the true timestamp when the patient left, especially
during periods of overcrowding. Thus, the time spent in the ED by
LWBS patients is unknown and cannot be forecast. For this reason, these
patients are not further considered in our analysis, also because they do
not use the ED resources and leave it after the triage.

Accordingly, we focus on the remaining 81 771 accesses (49% Fe-
male and 51% Male), with an average age of 59.5 ± 22.9, which include
patients who left before end-of-treatment (LBET); for the considered
patients, we registered an average of 122.4 daily accesses, with a
median of 123, a minimum of 86 and a maximum of 153.

Fig. 5 reports the daily 5(a) and weekly 5(b) trend of arrivals for
each urgency code. The figure shows that, while the trend of arrivals
for each urgency code is almost independent on the day of the week, it
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Fig. 5. Trend of arrivals.
Table 2
Structure of the dataset providing information on services.

Case_ID Activity Request
timestamp

Starting
timestamp

Ending
timestamp

Resource

numerical string timestamp timestamp timestamp string

Random key identifying
the single ED access of a
specific patient

Description of
the service
provided

Service request
timestamp

Start of service
timestamp

End of service
timestamp

Team that
provided the
service

100% filled in 100% filled in 70% filled in 92% filled in 100% filled in 98% filled in
Table 3
Urgency codes: description, number and percentage share.

Urgency code Type of patients # %

1 Life-threatening patients 6 193 5.7
2 Patients who need an urgent visit 27 249 25.0
3 Patients who need a not-urgent visit 56 381 51.6
4 Patients with minor injuries 19 301 17.6
5 Patients who died before arrival 52 0.1

Table 4
Type of treatment based on urgency code.

Treatment ED pathways LBET Fast-Track LWBS
urgency code

1 6 193 0 0 0
2 26 879 174 0 196
3 45 767 282 94 10 238
4 2 419 57 12 011 4 814

Sum 81 258 513 12 105 15 248

Table 5
Frequency of main symptoms.

Symptom Frequency

Other injuries 50.5
Trauma 17.2
Abdominal pain 8.7
Dyspnea 5.1
Chest pain 4.0
Stroke 3.1
Different from the previous 11.4

is strongly affected by the hour of the day, with a peak in late morning,
and 68% of arrivals between 8 AM and 8 PM.

The main symptoms registered for the patients at triage are shown
in Table 5. In the majority of the cases, the nurse selected a generic
‘‘Other injuries’’ entry, and provided more unstructured information in
the nurse diary (compiled in about 99% of cases). This observation
witnesses the importance of the nurse diary as a source of valuable
information for forecasting the patients’ pathways.

Table 6 reports the average and median waiting time for the first
visit, and length-of-stay within the ED, disaggregated by urgency code.
This table will be the basis for evaluating the effect of our DSS on the
9

Table 6
Patients’ waiting time and LoS.

Urgency code Waiting time [min] LoS [min]

Mean Median Mean Median

1 11 8 154 124
2 34 19 219 191
3 210 183 361 334
4 276 230 373 326
Total 139 77 298 263

ED; in particular, it shows that critical aspects refer to low-urgency code
patients, who may experience long waiting time and LoS.

5.2.3. Assumptions
In this section we describe some assumptions introduced in our

analysis, which derive from data availability.

• As to the first visit, only the timestamp associated with the start
of the visit is registered. In order to estimate the duration of the
visit, we assume its ending time be the instant in which the last
request for a service in the first package is registered;

• Similarly, the duration of the check-up visit taking place right
after each package of services is not registered. Based on an
empirical observation, the duration of each check-up is set to
15 min;

• For what concerns the services, timestamps are registered both
at the beginning and at the end, which allows to compute their
duration. If this information is missing, the median value for other
occurrences of the same service is used;

• Services are grouped into packages according to their request
timestamp. We assume that requests registered within 15 min
belong to the same package;

• We only consider services that are performed during the stay
of the patient within the ED, i.e., we ignore services that are
prescribed in the ED but that are performed after the patient is
discharged (for example, services requested by the ED physician
but performed during hospitalization or SSO);

• We exclude non-traceable events that were not digitally reg-
istered. These events represent a marginal fraction of the to-
tal, and typically include non-critical treatments or prescriptions
(e.g., dietary prescriptions);
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• Although we only consider the patients’ pathways within the ED,
the availability of resources beyond the ED may have an impact on
the LoS within the ED itself. A relevant case is bed-blocking, which
can force a patient to remain within the ED after their pathway is
terminated, because no immediate hospitalization is possible. Our
DSS has no effect on activities beyond the ED. However, in order
to have a fair comparison with the real behavior of the system, in
the following analysis all figures are obtained by assuming that,
after the last registered activity, each patient may have an extra
waiting time in the ED depending on their pathway and final
destination;

• A package requiring the physical presence of a patient can only
start upon completion of the previous package. In addition, we
assume that any physical movement of the patients occurs in zero
time.

.3. Performance of the pathway predictor

We now evaluate the performance, in terms of accuracy, of the two
athway predictors embedded within the DSS. For training and testing
urposes, we considered all historical data but those from 01/10/2019
o 15/10/2019, which were reserved for evaluating the DSS.

.3.1. Performance of the predictor for patients within the ED
Concerning patients within the ED, our historical data include more

han 195 000 packages, combined into 3704 distinct pathways. Among
hem, the 130 most frequent pathways cover 90% of the occurrences;
hese pathways are composed by 46 different packages of services.

e restrict our attention to those packages. Accordingly, the Deep
earning Classifier predicts the next package of services within these
6 variants only, the ‘‘End’’ of the pathway being represented as a
ingle package. The complete list of the 46 packages, together with
heir frequencies in the selected pathways, is reported in Table 7.

ithin the selected pathways, the number of packages always ranges
etween 1 and 4, with an average value equal to 2.7 and a standard
eviation equal to 0.7. Pathways with a single package correspond to
atients who are discharged right after the first visit, in which case the
ackage corresponds to the ‘‘End’’. Some packages have a relatively
arge frequency compared with other packages which appear quite
arely; however, we decided not to use re-sample techniques within
ur DNN, which is intended to be used as a generator of the patient’s
ubsequent packages and thus must learn the true distribution of the
ata (prediction based on the knowledge domain).

In order to train, validate and test the classifier, the dataset of
ackages was randomly divided into three parts with a ratio 80-10-
0. As mentioned, prediction of the next package is based on both
tructured and textual information, as well as the packages prescribed
p to now. Concerning the text processing, we used 𝑛-grams with length

up to two, so as to represent semantic concepts such as ‘‘not-something ’’.
At the end of processing, we obtained three different vocabularies
(one for each preprocessing approach described in Section 3.1) with a
different number of terms. For each considered vocabulary, we tested
different configurations of the DNN in terms of number of layers,
their size, and training parameters. In our study, we did not observe
significant improvements by using more than 4 layers. Hyperparameter
tuning was conducted manually, as preliminary experiments showed
the system be robust with respect to alternative configurations. This
also allowed us to avoid overfitting over the validation data.

Table 8 reports, for each vocabulary, the best network setup and
the associated accuracy result over the test set, computed by using
the predictor in a deterministic fashion (i.e., by returning the class
with the largest estimated probability as output). The results show that
all approaches are capable of correctly predicting the next package
among the 46 existing variants in more than 50% of the cases. The
best accuracy level is obtained by Approach 3, which makes the right
10

prediction in more than 60% of the cases. Indeed, these results are
Table 7
Package frequencies.

Packages Frequency

End 37.00
Laboratory 13.24
X-ray 10.63
Laboratory, X-ray 8.63
CT scan 5.49
Laboratory, CT scan 3.33
Ultrasound, Laboratory 2.33
Ultrasound 2.15
Ent examination 2.11
Therapy 1.91
Laboratory, X-ray, CT scan 1.64
Ultrasound, Laboratory, X-ray 1.44
Ultrasound, X-ray 1.44
X-ray, CT scan 1.27
Laboratory, CT scan, Neurological examination 0.68
Neurological examination 0.68
Therapy, X-ray 0.65
Laboratory, Therapy 0.63
Orthopedic examination 0.62
Laboratory, Therapy, X-ray 0.62
Ultrasound, Laboratory, X-ray, CT scan 0.46
Laboratory, Ent examination 0.46
CT scan, Neurological examination 0.28
Eye examination 0.27
Ultrasound, X-ray, CT scan 0.26
Laboratory, Neurological examination 0.19
X-ray, Ent examination 0.16
Ultrasound, Laboratory, Therapy 0.16
Dermatological examination 0.15
Urological examination 0.13
Therapy, CT scan 0.12
Laboratory, Therapy, CT scan 0.10
Ultrasound, Laboratory, Therapy, X-ray 0.09
Ultrasound, Therapy 0.08
Ultrasound, Therapy, X-ray 0.07
Laboratory, X-ray, Ent examination 0.07
Surgical examination 0.07
Laboratory, Therapy, X-ray, CT scan 0.05
X-ray, Orthopedic examination 0.05
Therapy, X-ray, CT scan 0.04
Other treatments 0.04
Laboratory, X-ray, CT scan, Neurological examination 0.04
Ultrasound, CT scan 0.04
Therapy, Ent examination 0.04
Laboratory, CT scan, Ent examination 0.04
Ultrasound, Laboratory, CT scan 0.04

satisfactory, given that many packages are very similar each other in
terms of composing services and frequency, and quite often a wrong
prediction is indeed partially correct. In other words, in our application,
some ‘‘different’’ packages are not ‘‘that different’’, and predictions that
are evaluated as wrong in a binary classification, are not completely
wrong if one performs a more refined analysis. For example, predicting
a package that includes ‘‘Laboratory, Therapy, X-ray, CT scan’’ while
the real package is ‘‘Laboratory, X-ray, CT scan’’ is an error, though not
as severe as if the real package were ‘‘Neurological examination’’. Being
our case a multiclass classification where many classes have a high
degree of similarity, a better evaluation of the classifier can be obtained
with a different approach. We computed the similarity of the packages
through the Jaccard index [39] applied to their component services,
and represented it through a diagonalized heatmap (Fig. 6). The color
distribution of the figure shows that several very similar packages
exist, confirming the hardness of performing a perfect prediction. By
reporting, within each cell in the figure, the actual frequencies of the
packages shown on the 𝑦-axis, against the packages predicted by the
network on the 𝑥-axis, we are able to obtain a finer information about
the behavior of the network when the prediction is not ‘‘perfect’’.
Indeed, the figure shows a good accuracy on the packages with the
highest frequency (e.g., ‘‘End’’) and, at the same time, a tendency for

errors to spread to packages with the highest similarity. In other words,
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Table 8
Predictor results based on the NLP approach.
Approach parameter 1 2 3

Vocabulary size 42 034 34 932 8919
Layer size 4004, 2000, 500, 46 4004, 6500, 2500, 46 6004, 3500, 1500, 46
Opt. alg. Adam Adam Adam
Batch size 32 32 32
Epochs 10 3 1
Learning rate 0.005 0.005 0.005
Test set accuracy 55% 54% 62%
Fig. 6. Packages distribution of prediction, grouped by Jaccard similarity. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
when the prediction is not perfect, still the network has the capability
of selecting packages which are very similar to the one that is observed
in the real data.

In the next section, we will show that the obtained accuracy predic-
tion performances are appropriate and allow to obtain a reliable DSS
built on top of the predictor.

5.3.2. Performance of the predictor for future patients
Concerning the future arrivals, we only have statistical information

based on historical data. Figs. 5(a) and 5(b) show that the hour of the
day strongly affects the number of arrivals, which is only marginally
affected by the day of the week.

For a given hour of the day, the distribution of arrivals is well
approximated by a Poisson distribution, as witnessed by Fig. 7, showing
the tight fitting of that distribution with observed arrivals at given
hours of the day (2 AM, 11 AM, 2 PM and 8 PM).

In order to evaluate the tightness of the distributions, the dataset
was split in training set and test set, with a ratio 80-20. We computed
the parameters of each hourly distribution on the training set, and
measured the Mean Absolute Error (MAE) on both subsets, obtaining
values equal to 1.64 and 1.68, respectively, thus confirming that the
Poisson distribution has a good fit with observed data.
11
5.4. DSS performance

In this section we study the capability of the DSS of performing tasks
of increasing complexity.

• First, we assess its accuracy in predicting the ED future state
under the current policy. The DSS is fed with the initial state of
the ED, and its capability of correctly forecasting the ED evolution
over time is tested;

• Second, we assess its accuracy in identifying the best policy over
a set of possible policies. The DSS is fed with the initial state of
the ED and, in turn, a fixed policy. Then, the DSS capability of
correctly forecasting the ED evolution over time under the fixed
policy is evaluated. This allows the decision maker to identify the
best policy for the initial state;

• Finally, we assess its capability of improving the ED performance.
In this experiments, the DSS dynamically selects the best policy
to be implemented in the ED in the next time period.

In the following, all experiments were carried out with a number of
simulation repetitions 𝜔 = 50. Although smaller than what is reported
in other discrete-event simulation studies, this number allows us to
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Fig. 7. Poisson distribution fitting with arrivals at different hours of the day.
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derive a fast DSS, which is capable to provide indication to the decision
maker in a real time. In addition, as the period to be simulated is
very short, any error can be corrected at the next run, and the overall
number of simulation runs is much larger than 50. A preliminary tuning
process showed that this value provides good results while requiring
a short execution time (less than 8 min for all 50 runs), while only
marginal improvements are obtained by largely increasing this figure.

5.4.1. ED future state prediction
In order to evaluate the accuracy in predicting the ED future state,

we randomly selected 100 different days and took snapshots of the ED
state at 2 AM (the time when ED has minimum overcrowding), 11 AM
(one hour after the arrival peak, when decisions have a critical effect on
overcrowding), 2 PM (typically, the hour of maximum overcrowding),
and 8 PM (a second critical time in the day, due to the staff change
of shift). These snapshots were used to initialize the ED state, and to
predict the number of patients in the ED after 1, 2, and 3 h by following
the policy currently used in our ED, i.e., the third one described in
Section 4.2. The obtained predictions were compared with the real
historical values.

Table 9 gives the number of patients in the ED (mean value and
standard deviation) and reports data on the accuracy in predicting
the number of patients in the ED, measured by the MAE between the
predicted number and the observed figure. Data are reported sepa-
rately for each of the three approaches introduced in Section 5.3.1,
both in their deterministic (considering the package with the highest
estimated probability) and stochastic versions (extracting a random
package based on the estimated probability). The MAE of the best
configuration is reported in bold.

The results show that our approaches are capable of producing tight
predictions, as MAE values are smaller then the corresponding standard
deviations (std). The best accuracy is obtained with Approach 1 in the
deterministic mode, and with Approaches 2 and 3 in the stochastic
mode. In all cases, the performance worsens by increasing the search
depth 𝛥𝑇 , thus showing that 3 h is probably a too long time period for
being simulated.

5.4.2. Best policy prediction for improving the ED performance
The ED performance can be evaluated under different metrics whose

relevance varies for different stakeholders. A first performance indica-
tor we consider is overcrowding, for which a good proxy is given by
12

the average number of patients within the ED. Overcrowding affects
Table 9
ED future state prediction results: historical data and Mean Absolute Error of the
considered prediction approaches.

Hour 𝛥𝑇 # patients MAE Appr. 1 MAE Appr. 2 MAE Appr. 3

Mean std Det. Stoc. Det. Stoc. Det. Stoc.

2 AM 1 18.3 5.5 1.6 1.7 1.9 1.8 1.8 1.8
2 16.6 5.7 2.7 2.9 3.0 2.8 3.0 2.9
3 15.2 5.9 2.8 3.0 3.3 3.0 3.2 3.0

11 AM 1 30.2 8.2 3.2 3.4 3.9 3.5 3.7 3.0
2 31.5 7.7 4.5 4.6 5.9 5.0 5.7 5.8
3 30.3 7.8 5.4 5.5 7.2 6.8 7.1 7.1

2 PM 1 32.2 7.1 2.4 2.4 3.2 2.5 3.2 2.6
2 32.6 7.4 3.9 4.0 5.3 3.9 5.2 4.0
3 31.3 6.4 4.0 4.3 5.7 4.2 5.6 4.3

8 PM 1 26.1 6.1 2.7 2.6 3.2 2.7 3.1 2.7
2 26.3 6.6 3.6 3.6 3.9 3.9 3.7 3.8
3 25.0 6.2 4.0 4.4 4.4 4.4 4.3 4.4

the stress level of the operators and hence the quality of the service
provided within the ED. From the patient’s perspective, a very relevant
indicator is instead represented by the overall length of stay. Clearly,
under the reasonable assumption that arrivals are independent of the
ED state, these indicators are two faces of the same phenomenon: the
smaller the average length of stay of patients, the smaller the average
number of patients in the ED. However, while the number of patients
can be measured for each instant, thus being a meaningful figure even
for small time intervals, the average length of stay is typically some
hours; thus, its value is meaningful only when a sufficiently large time
interval is considered. As the simulated interval (search depth) 𝛥𝑇 is

uch smaller than the average length of stay, within the DSS we use
he average number of patients in the simulated interval, computed as

𝑎𝑣𝑔 =
∫𝛥𝑇 𝑐(𝑡)𝑑𝑡

𝛥𝑇
,

where 𝑐(𝑡) is number of patients in the ED at time 𝑡. Our DSS is aimed
at minimizing this internal KPI through policy selection.

In order to evaluate the accuracy in selecting the best policy in the
portfolio of available strategies, we designed a second set of experi-
ments using the same setting (100 days and four snapshots) as that in
the previous section. In particular, for each day and snapshot, we first
run the DSS for each policy and determine the best one according to the
internal KPI; then, we ‘‘run’’ the real ED (i.e., we run its digital twin) in
the same setting, and determine the best policy for the real system. In
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Table 10
Accuracy of each approach in identifying the best policy.
𝛥𝑇 Approach 1 Approach 2 Approach 3

% Det. % Stoc. % Det. % Stoc. % Det. % Stoc.

1 73.00 70.00 72.50 76.00 75.00 82.00
2 73.50 71.00 75.50 71.50 77.50 82.00
3 62.00 67.50 69.50 62.50 68.50 73.50

Table 11
𝛥𝑧 vs. 𝛥𝑇 , Det. configuration.
𝛥𝑇 Real 30 min 1 h 2 h 3 h 4 h
𝛥𝑧

30 min 44.36 38.58 37.85 37.24 41.23 42.40
1 h 44.36 37.14 37.17 36.20 35.46 34.40
2 h 44.36 37.30 38.71 37.15 35.34 35.80
3 h 44.36 37.26 38.77 35.80 34.58 35.59
4 h 44.36 41.44 42.52 41.68 40.82 38.79

Table 12
𝛥𝑧 vs. 𝛥𝑇 , Stoc. configuration.
𝛥𝑇 Real 30 min 1 h 2 h 3 h 4 h
𝛥𝑧

30 min 44.36 38.20 39.51 37.61 43.86 42.06
1 h 44.36 37.44 34.60 37.50 35.35 35.63
2 h 44.36 38.37 37.74 35.40 36.44 35.93
3 h 44.36 37.73 38.31 36.63 35.23 35.44
4 h 44.36 41.47 42.68 42.52 46.35 38.23

our tests, we assume that the policy maker of our DT always accepts and
follows the policy suggested by the DSS. Finally, we count the number
of times in which the resulting strategies coincide, meaning that the
DSS was able to identify the best policy for the real ED. Table 10
reports the results obtained with different values of 𝛥𝑇 = {1, 2, 3} hours
or both the deterministic and the stochastic versions of the DSS. As
ay be expected, performances get worse when increasing the value of
𝑇 . In addition, the results confirm that Approach 3 in the stochastic
perating mode provides the best policy prediction, with more than
0% of success for 1 and 2 h.

.4.3. Improving performance
In this section we present the experiments performed in order to

valuate the capability of the DSS to improve the ED performance.
or this aim, we set-up an experimental environment replicating the
onfiguration depicted in Fig. 4, where we replaced the real ED by its
T. The system was populated with data of the patients that arrived
etween 01/10/2019 and 15/10/2019, an interval which was excluded
rom the previous experiments. We tested the DSS for the whole period
f 15 days, thus evaluating the potential cumulative effect of decision.
ollowing the indication provided by the previous experiments, the DSS
mbedded Approach 3 for the predictor.

Our first order of business is to determine the best setting for
arameters 𝛥𝑇 and 𝛥𝑧. To this aim, we tested the DSS in both the
eterministic and stochastic configurations, for different values of 𝛥𝑇
nd 𝛥𝑧. Tables 11 and 12 show the results in terms of mean number of
atients within the ED during the 15 days. The best value for each 𝛥𝑧
s shown in bold, while the best overall is underlined.

The tables show that, in both configurations, the best results are
btained when 𝛥𝑇 ≥ 𝛥𝑧, although in all cases the DSS is able to reduce
he mean number of persons compared to the real ED.

Fig. 8 plots the number of patients in the real ED and the same
igure obtained through the DSS, in the best Deterministic configuration
𝛥𝑇 = 4h, 𝛥𝑧 = 1h), and in the best Stochastic configuration (𝛥𝑇 = 1h,
𝑧 = 1h).

Summarized statistics, also reporting the average Length of Stay and
aiting Time for the first visit (WT), can be found in Table 13. The

esults confirm that, although internally optimizing the mean number
13
Table 13
15 days analysis results.

Indicator Real Det. Stoc. Det. gain % Stoc. gain %

𝐶𝑎𝑣𝑔 44.36 34.40 34.60 −22.45 −22.00
LoS [min] 322 263 268 −18.29 −16.80
WT [min] 146 128 139 −12.68 −4.86

Table 14
LoS performance in minutes on the basis of the patients’ urgency.

Urgency code Real LoS [min] Det. LoS [min] Stoc. LoS [min]

Mean Median Mean Median Mean Median

1 173 144 174 146 176 158
2 261 224 242 203 245 206
3 385 356 290 276 295 288
4 379 280 273 263 290 262

Table 15
Waiting time performance in minutes on the basis of the patients’ urgency.

Urgency code Real W. T. [min] Det. W.T. [min] SM W.T. [min]

Mean Median Mean Median Mean Median

1 9 6 2 1 3 1
2 35 33 22 21 30 28
3 223 197 201 191 218 195
4 312 176 289 200 291 201

Table 16
Daily analysis results.

Day Real Det. Stoc. Det. gain % Stoc. gain %

2019-10-01 50.28 47.34 47.55 −5.85 −5.43
2019-10-02 47.78 43.12 43.40 −9.75 −9.17
2019-10-03 49.78 43.97 45.45 −11.67 −8.70
2019-10-04 43.24 39.82 41.87 −7.91 −3.17
2019-10-05 38.25 34.17 33.70 −10.67 −11.90
2019-10-06 48.24 46.88 48.94 −2.82 1.45
2019-10-07 62.54 62.88 62.99 0.54 0.72
2019-10-08 32.13 27.98 28.77 −12.92 −10.46
2019-10-09 26.28 21.25 22.16 −19.14 −15.68
2019-10-10 33.03 28.17 29.47 −14.71 −10.78
2019-10-11 39.69 30.51 30.47 −23.13 −23.23
2019-10-12 42.58 33.68 33.67 −20.90 −20.93
2019-10-13 52.15 46.25 49.02 −11.31 −6.00
2019-10-14 63.44 63.84 63.60 0.63 0.25
2019-10-15 36.15 33.24 33.63 −8.05 −6.97

of patients, the DSS also considerably improves over the real ED for
what concerns the LoS of patients. Although to a lesser extent, an
improvement can also be achieved on the patients’ WT. In Table 14
the mean and median LoS of patients are disaggregated by urgency
code, showing that introducing the DSS has a major impact on the low
priority patients, without affecting the (already short) LoS of urgent
ones. The same statistic with reference to WT is shown in the Table 15
and again shows a considerable improvement for the less urgent codes.

In order to assess the quality of our results, we evaluate the average
number of patients within the ED obtained by applying the (ideal)
policy which can move patients through different queues, as many
times as needed and with null transfer time (FQR). By using this ideal
policy, figure 𝐶𝑎𝑣𝑔 reduces from 34.40 to 33.02, showing that only
a marginal improvement could be obtained by a redefinition of the
hospital layout and logistics.

Finally, we run the DSS for each day of the period individually,
for both the Deterministic and Stochastic configurations in their best
settings. Table 16 shows the mean number of patients within the
ED, highlighting the best figure each day. In all but two cases the
DSS provides a considerable improvement; in the remaining two days,
the DSS results are only slightly worse than the historical ones, thus

confirming the robustness of the proposed approach.
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Fig. 8. Comparison between the real trend of the patients present and those obtained with DSS.
6. Conclusions

In this paper we described a decision support system (DSS) to
improve the performance of an ED by addressing the serious problem of
overcrowding. This complex task involves a non-univocal definition of
the metrics to be considered, and the management of stochastic events.

The DSS includes 4 main elements, namely a predictor for patients
arrivals, a predictor for the patients pathways, a predictor for activities
duration, and a discrete-event simulator. The DSS includes different
policies that are dynamically tested, and identifies the one that provides
the best expected performance for the actual ED state. In addition to
structured information collected at triage, the predictor for the patients
pathways also exploits unstructured information from the nurse’s diary,
processed through a Natural Language Processing module.

An experimental application of the DSS to a digital twin of a major
real ED in northern Italy has demonstrated that a dynamic selection
of the best policy, among a limited set of simple alternatives, allows a
relevant reduction of the number of patients within the ED, as well as
a noticeable reduction of the Length of Stay of low priority patients.

The presented DSS is ready for being used in the ED of our case
study. In addition, as the prediction-simulation modules implement a
quite general framework, we expect the adaptation of the DSS to other
EDs to require limited effort.

A first line for future development concerns the evaluation of the
results obtained by assuming a partial rejection of the tool ‘‘sugges-
tions’’ by the decision-maker. This would make it possible to assess the
rejection rate under which the ED performance could still be improved
by the DSS.

The study on the selection rate of each policy is another interesting
area for improvement. This indicator and the organizational patterns in
which a given strategy is selected would make it possible to reduce the
set of strategies to be tested by excluding those that historically showed
less effective in that condition.

Finally, expanding the set of available policies, including, e.g., the
First Consultation Priority Rule or the Second Consultation Priority Rule
[40,41], appears to be an other promising direction of future research,
still reminding that explicability and acceptance by human decision-
makers is a relevant issue. One may wonder if our DSS would still
be able to identify the best policy in case of a larger policy pool.
Since our DSS is based on predicting arrivals, service packages, and
service duration and then inferring the performance of each policy via
simulation, we do not expect the introduction of additional policies to
14

significantly affect the system ability to make recommendations.
In a more challenging perspective, instead of expanding the policy
pool with predefined policies, it is even possible to enable the system
itself to discover policies through learning.
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