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Regional drivers of industrial decarbonisation: a spatial 
econometric analysis of 238 EU regions between 2008 and 2020
Chiara Vagninia , Leticia Canal Vieiraa , Mariolina Longoa and Matteo Muraa

ABSTRACT
The European context of socio-economic integration and physical proximity likely plays an essential role in explaining the 
decarbonisation outcomes of industrial sectors. However, there is hardly any spatial regional analysis on CO2 emissions 
drivers in European countries. This study investigates the role of geographical space and regional determinants in 
industrial decarbonisation by analysing how socio-economic drivers and their interregional relationships impact 
industrial carbon emissions in European regions. We employ a spatial panel data econometric model to a novel panel 
dataset comprising 13 years (2008–20) of carbon emissions from hard-to-abate industrial sectors from 238 NUTS-2 
regions across 27 European Union countries. Results indicate the presence of endogenous spatial interactions and 
high-time persistence between CO2-eq emissions in European Union regions. As such, industrial carbon emissions of 
regions follow similar patterns to their neighbours, supporting the evolutionary economic geography and growth 
theory assumptions of the spatial interaction of carbon emissions between regions. Furthermore, the use of a spatial 
econometric model illustrates the negative direct and spillover effects that higher levels of education and regional 
investment in research and development have on industrial CO2-eq emissions.
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1. INTRODUCTION

Carbon emissions have become a global issue. They are the 
primary driver of climate change and their alarming 
atmospheric concentrations threaten the future of life on 
this planet (Intergovernmental Panel on Climate Change 
(IPCC), 2021). Reducing carbon emissions is particularly 
critical for the European Union (EU), one of the world’s 
largest CO2 emitters, along with China, the United States, 
India, Russia and Japan.

The EU has gained international recognition in recent 
decades for its leadership in decarbonisation efforts (Oli-
vier & Del Lo, 2022). European policies have focused 
on emissions from fossil fuels and industrial processes 
that account for 78% of the overall increase in greenhouse 
gas emissions since 1970. Seeking to incentivise compa-
nies to reduce their emissions and facilitate a transition 
to a low-carbon economy, the EU established the world’s 
first international emissions trading system (ETS) in 2005. 
The European Commission has also devised various policy 
instruments to promote the use of energy-efficient 

technologies and practices in the industrial sector (Vieira 
et al., 2022). As a result, several European countries 
have implemented policies to encourage the use of renew-
able energy (Olivier & Del Lo, 2022), such as feed-in tar-
iffs, tax incentives and grants. In 2021, the EU reinforced 
its climate commitment through substantial investments 
in the Green Deal. This growth strategy aims to make 
Europe the first carbon-neutral continent by 2050 and 
requires a 55% reduction in greenhouse gas emissions by 
2030 and an 80–95% reduction by 2050 compared with 
1990 levels (IPCC, 2021). Although EU emissions fell 
by 5% in the last four years and continue in a downward 
trend, significant reductions are still required to achieve 
the net-zero objective (Crippa et al., 2022). Decarbonising 
energy-intensive industries is especially critical to this goal 
(Vieira et al., 2021).

Energy-intensive industries are deeply connected with 
their territories, which means that industrial outcomes are 
impacted by regional characteristics and dynamics. 
Regional data can help reveal the complete – and often 
complex – picture of decarbonisation drivers in industrial 
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sectors, including the role of local dynamics. However, 
previous econometric studies have largely abstained from 
using regional data – a gap this article seeks to address. 
The significant variation in CO2 emissions between differ-
ent regions can be obscured by national figures, thus rein-
forcing the need to consider regional data (Mura et al., 
2021; 2023). Such an analysis also needs to weigh a second 
aspect that is often neglected by econometric studies: the 
existence of spatial dependency among carbon emissions 
trajectories.

Indeed, despite the remarkable surge in academic 
research on the subject of CO2 emissions drivers, most 
studies have ignored the importance of the spatial dimen-
sion. The existing literature has almost exclusively focused 
on studies at the country level using linear models (the 
only exceptions are the United States and China); there 
are hardly any spatial regional analyses on CO2 emissions 
drivers for European countries (Balado-Naves et al., 
2018). However, the physical proximity of locations is 
likely crucial for CO2 emissions, as spatial spillovers can 
occur due to the underlying integration of economies 
(You & Lv, 2018). In the European context of socio-econ-
omic integration – which encompasses interregional trade, 
capital flows, migratory movements, and technology- and 
knowledge-transfer processes – geographical location and 
spatial connectivity are likely relevant for a decarbonisation 
process (Rios, 2017). In recent years, a growing body of 
studies has shown that CO2 emissions drivers could be 
found not only within the region’s administrative borders, 
but also in the dynamics of neighbouring areas (You & Lv, 
2018). This regional integration also likely plays an impor-
tant role in explaining the CO2 emissions outcomes of 
industrial sectors. The transfer of cleaner technologies, 
distinct regulation settings that stimulate transboundary 
pollution flows, or the imitation of development models 
are examples of regional dynamics that can affect industrial 
carbon emissions (Rios & Gianmoena, 2018).

This study explores the role of geographical space and 
regional determinants in industrial decarbonisation. To 
that end, we analysed how socio-economic drivers and 
their interregional relationships impact industrial carbon 
emissions in European regions. We used a novel panel 
dataset comprising 13 years (2008–20) of carbon emissions 
from hard-to-abate industrial sectors in 238 NUTS-2 
regions from 27 EU countries. The existence of spatial 
dependence for the carbon emissions of the aforemen-
tioned sectors justifies using a spatial panel econometric 
model to perform spatial lags on our dependent variable. 
We then elaborated a spatial panel econometric model 
with a range of drivers to investigate their direct effects 
(on regions’ industrial CO2-eq emissions) and indirect 
effects (in terms of spatial spillovers on the industrial 
CO2-eq emissions of neighbouring regions). The pro-
posed drivers were gross domestic product (GDP), edu-
cation, service sector productive specialisation, and 
research and development (R&D) expenditures.

This study has three main contributions. First, using a 
spatial econometric model, we verify the presence of 
endogenous spatial interactions between CO2-eq 

emissions in EU regions. As such, spatial effects are a rel-
evant factor in the observed variability of CO2-eq emis-
sions: industrial carbon emissions from one region are 
impacted by neighbouring regions’ dynamics. Second, we 
provide new insights into the direct and spillover effects 
of socio-economic drivers on regional CO2 industrial 
emissions. The development of regional knowledge (i.e., 
education) and innovation (i.e., R&D expenditures), 
potentially leads to the creation and adoption of cleaner 
and more efficient industrial practices and technologies 
in heavy industries. Third, we contribute to evolutionary 
economic geography and growth theories by providing 
evidence of spatial interaction of carbon emissions 
among regions.

2. THEORETICAL FRAMEWORK

2.1. The role of space in industrial 
decarbonisation
Evolutionary economic geography, New Economic 
Geography and economic growth theories recognise the 
contribution of space in understanding why economic 
activities agglomerate and sustainability transitions unfold 
faster in certain locations than others (Hansen & Coenen, 
2015; Rios & Gianmoena, 2018). These theories concep-
tualise physical space as the geographical distribution of 
organisational routines (Nelson & Winter, 1982), which 
tend to cluster in regions endowed with abundant natural 
resources, favourable socio-political and technological fac-
tors, robust infrastructure, supportive formal and informal 
institutions, strategic urban and regional planning, and 
shared cultural visions (Le Gallo et al., 2003; Boschma 
et al., 2017; Hansen & Coenen, 2015). Thus, firms tend 
to agglomerate in particular regions: not only to leverage 
knowledge-generating activities and the resulting spil-
lovers (Duranton & Puga, 2005), but also to capitalise 
on the best labour pools and the most favourable insti-
tutional conditions (Storper, 1997). In other words, a 
company’s choice of place is linked to the concentration 
of other businesses in the area – a self-reinforcing process.

Evolutionary economic geography seeks to unravel the 
factors that enable the emergence of an industrial growth 
pathway and their links to the regional context (Boschma 
et al., 2017). It emphasises how assets, skills, connections, 
and local competencies shape present and future industrial 
dynamics (Baumgartinger-Seiringer et al., 2022). The lit-
erature identifies path dependency, that is, historical con-
tingencies and current state, as a significant determinant of 
an industrial growth pathway in a certain region (Martin 
& Sunley, 2006). For instance, the dependence of indus-
trial pathways on their regional context may explain the 
uneven distribution of green activities and why only cer-
tain regions undergo a transition towards sustainability 
(Antonioli et al., 2016). Place dependency can trap firms 
in regional–technological specialisation regimes that are 
environmentally harmful and impede the shift into diver-
sification practices with better environmental outcomes 
(Boschma et al., 2017). Place specificity can also delay 
the industrial adoption of environmental practices when 
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regions are not able to design successful environmental 
policies (Hansen & Coenen, 2015). As such, the place is 
a relevant factor in understanding what fosters industries 
to decarbonise and what drives interregional differences 
(Santoalha & Boschma, 2021). We recognise the impor-
tance of space in understanding economic growth mech-
anism and green transitions, as suggested by existing 
theory. For this reason, this study seeks to respond to 
calls for advancing the development of generalisable 
knowledge about place specificity and how it can impact 
the transition to low-carbon economies (Santoalha & 
Boschma, 2021).

Attention to the role of regional characteristics in sus-
tainability transitions literature is becoming increasingly 
important (Coenen et al., 2021). Regional capabilities 
are recognised to play a key role and low-carbon technol-
ogies are expected to develop more easily in regions with 
capabilities related to those technologies (Santoalha & 
Boschma, 2021). Studies have demonstrated how techno-
logical relatedness of the regional knowledge base 
increases regional diversification into cleantech (Tanner, 
2016; van den Berge et al., 2020). Our study takes into 
consideration the role regional capabilities can play in 
industrial low-carbon transitions; however, it also con-
siders that regions do not exist in a vacuum. Particularly 
in the European context, the interconnection among 
regions might mean that capabilities present in neighbours 
can produce spillover effects that affect other regions dec-
arbonisation. Together with the analysis of place depen-
dency in fostering green transitions, we also draw from 
the evolutionary economic geography emphasis on how 
spatial proximity between regions can shape interregional 
economic activities linkages which may also reflect on sus-
tainability transitions (Moreno & Ocampo-Corrales, 
2022). Linkages across regions have been marginally 
explored by transition studies, and those might play a rel-
evant role for industrial low-carbon transition. Geographi-
cal proximity might influence positive development 
pathways (industrial, economic or technological) due to 
the exchange of tacit knowledge through transfer mechan-
isms such as inter-firm collaborations, professional net-
works and labour mobility (Boschma & Frenken, 2006). 
However, this is not the norm: positive trajectories in 
one region can be intertwined with negative trajectories 
in other regions due to spatial divisions of economic activi-
ties (Blažek et al., 2020). Differences in environmental 
standards or industry incentives can reinforce a division 
of specific industrial activities across regions, which 
could result in transboundary pollution flows (Rios & 
Gianmoena, 2018). We content that such division could 
result in certain regions concentrating polluting activities 
that might be linked to economic activities from neigh-
bouring regions.

2.2 . Drivers of industrial CO2 emissions
In the following, we will examine some of the key regional 
development drivers that can impact industrial decarboni-
sation, but for which there is no consensus in the literature 
regarding their effects.

Our choice of variables, namely GDP, education, ser-
vice sector productive specialisation and R&D expendi-
tures, collectively aim to capture a holistic representation 
of the socio-economic regional environment and ecosys-
tem. By examining these variables and their intercon-
nected roles, we seek to comprehensively understand the 
economic, innovative, educational and sectoral aspects 
that contribute to or hinder the transition toward sustain-
able industrial practices.

We reviewed studies concerning spatial and non- 
spatial analyses, but exclusively focused on absolute CO2 
emissions – rather than carbon intensity. Studies cover 
the European context and other geographical locations. 
This choice was motivated by the limited number of 
studies interrogating the phenomena in the European con-
text and, more specifically, adopting regions as a unit of 
analysis.

Economic growth and development are considered 
predominant drivers of industrial carbon emissions. Scho-
lars have taken contrasting positions on the impact of 
GDP on industrial CO2 emissions. On one hand, both 
country- and region-level studies show that higher income 
leads to greater CO2 emissions (Jaunky, 2011; You & Lv, 
2018). Economic growth leads to greater consumption, 
and thereby production, which would seem to produce 
higher levels of industrial emissions. However, other 
studies have identified that an increase in GDP is associ-
ated with a decrease in emissions (Chen et al., 2018; Li 
et al., 2020). Studies on low-carbon transitions support 
the idea that European regions with higher economic 
development have greater access to resources, which can 
facilitate the development of technological alternatives or 
a low-carbon economy (Moreno & Ocampo-Corrales, 
2022; Olivier & Del Lo, 2022). This, in turn, can posi-
tively impact the decarbonisation process of industries. 
Regions with higher GDP levels also tend to have policy 
agendas with an amplified focus on environmental protec-
tion. Therefore, industrial sectors are decarbonised by 
implementing policies and initiatives, such as carbon pri-
cing mechanisms, energy efficiency standards, renewable 
energy targets, and sustainable production and consump-
tion practices (Baiardi & Soana, 2023).

The environmental Kuznets curve (EKC) hypothesis is 
one explanation for the causal nexus between CO2 emis-
sions and economic growth (Grossman & Krueger, 
1995). It suggests that the relationship between these 
two variables resembles an inverted ‘U’-curve: environ-
mental degradation rises during the early phases of econ-
omic growth, but then diminishes once a certain level of 
development is achieved (Ajmi et al., 2015). Such 
phenomena might be explained by a higher availability 
of financial resources that allow the investment in the 
infrastructure necessary to assist in industrial development 
toward low-carbon models (Blažek et al., 2020). Recently, 
both non-spatial and spatial econometrics studies have 
provided country- and region-level evidence for a robust, 
long-run, inverted ‘U’-shaped relationship between CO2 
emissions and economic development (Balado-Naves 
et al., 2018; Nan et al., 2022; You & Lv, 2018). However, 
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other studies contradict the inverted ‘U’-shape of the EKC 
by finding either a ‘U’-shaped relationship (Begum et al., 
2015; Lantz & Feng, 2006), an ‘N’-shaped EKC (Ajmi 
et al., 2015; Hossain et al., 2023; Kang et al., 2016), or a 
non-significance in the EKC pattern (Akbostancı et al., 
2009; Coondoo & Dinda, 2008; He & Richard, 2010).

Recent studies also recognise the influence of non- 
economic factors on industrial CO2 emissions. In particu-
lar, one stream of literature has posited that the level of 
education is an important driver of carbon emissions: 
some studies have reported a negative effect, while others 
have shown a positive effect. According to the first group, 
higher education levels are expected to alleviate CO2 emis-
sions due to facilitating the development and adoption of 
new technologies, practices and policies that are more 
energy-efficient, sustainable and less polluting (Li & 
Ullah, 2022; Liang et al., 2019; Zhao & Sun, 2022). In 
addition, some studies claim that higher education levels 
are associated with greater awareness of and concern for 
the environment (Zafar et al., 2020). A common finding 
of studies examining the emergence of green technologies 
is that they rely on a rich knowledge base drawing from 
fields both related and unrelated to these technologies 
(Santoalha et al., 2021). Therefore, individuals with 
higher levels of education are more likely to possess the 
skills and knowledge necessary to address environmental 
challenges. Conversely, another group of studies reports 
that education is a stimulant of environmental degradation 
(e.g., Zafar et al., 2022; Zhang et al., 2022). They argue 
that higher levels of education can lead to higher income 
and purchasing power for individuals, which can result 
in greater access to resource-intensive lifestyles (Zhang 
et al., 2022).

Empirical studies have also tested if the expansion of 
the service sector could impact industrial CO2 emissions. 
According to Grossman and Krueger (1991), transforming 
the economic structure from energy-intensive industries 
into knowledge-intensive service sectors can improve 
environmental quality. The service sector – which includes 
services such as education, healthcare, finance and tourism 
– is generally considered to be less carbon-intensive than 
other sectors such as manufacturing and transportation. 
The service sector has been pointed out as having a 
lower reliance on fossil fuels and is often characterised 
by lower energy and material intensity (Kaika & Zervas, 
2013). For instance, in recent years, BRICS countries 
(Brazil, Russia, India, China and South Africa) have 
actively promoted an economic structure shift towards 
the service industry, in the hopes of decoupling economic 
development from carbon emissions (Dudin et al., 2016). 
In contrast, some studies question this view and argue that 
the link between the service sector and carbon emissions 
reduction remains unclear. Al Mamun et al. (2014) and 
Zhang and Wang (2019) and Yang et al. (2019), for 
instance, explored the influences of service industry expan-
sion on CO2 emissions and found that the service sector 
output leads to an increase in carbon emissions. Zhang 
and Wang (2019) suggested that the service industry 
increases economic activity frequency and inefficiently 

uses resources, leading to greater waste and environmental 
degradation. Additionally, the development of the service 
industry has a strong ‘pulling effect’: although the direct 
CO2 emissions from the service sector are relatively 
small, the increasing demand for services can result in 
greater resource inputs from non-service sectors, ulti-
mately leading to more industrial CO2 emissions.

Economic geography emphasises that innovation is 
what contributes to the emergence of new industrial 
paths in regions (Santoalha et al., 2021). The sustainability 
transitions literature also mentions that the existence of 
transformative change is the crucial element that allows 
the development and adoption of low-carbon technologies 
that are disruptive and radical (Santoalha & Boschma, 
2021). As such, investments in R&D would be required 
not only to create new technological alternatives, but 
also to ensure technological acceptance and legitimation 
in socio-technical systems (Gibbs & Jensen, 2022). In 
recent years, there has been a particular focus on studies 
that aim to establish an empirical relationship between 
emissions and the innovation activity of economic actors, 
measured by R&D expenditures. The debate has gravi-
tated towards whether investing in R&D can drive econ-
omic growth that is less polluting. Several studies have 
found that R&D expenditures facilitate industrial low- 
carbon transition by promoting the development and 
adoption of new technologies, practices, and policies that 
are more sustainable and less carbon-intensive (Cole 
et al., 2013; Qunfang & Huang, 2023; Shahbaz et al., 
2018). Nevertheless, investments in R&D might also pro-
duce scale effects of higher growth and trade openness that 
result in increased CO2 emissions (Churchill et al., 2019). 
Negative effects of R&D investments in industrial decar-
bonisation also link to an increase in the demand for highly 
polluting energy resources that generate more CO2 emis-
sions (Fernández et al., 2018).

Overall, there is little consensus on the direct effect of 
those drivers on industrial CO2 emissions, and even fewer 
studies addressing their potential spillover effects. The 
existing controversies may reflect some endogeneity issues 
due to missing variables. Using different analytical 
methods and data from distinct geographical locations 
could alleviate some discrepancies in prior results (Rios 
& Gianmoena, 2018). By using a spatial model that 
assumes the existence of cross-regional interactions that 
can create spillover effects, our study hopes to advance 
the debate on the role of those drivers in industrial carbon 
emissions. As such, we seek to move the debate forward on 
the role regional drivers have in their own and nearby 
regions industrial decarbonisation.

3. DATA AND METHOD

Our empirical analysis utilised an original balanced panel 
dataset of 3094 observations. The dataset contains data 
on 238 regions belonging to 27 EU countries and com-
prises the period from 2008 to 2020. We retrieved the 
list of EU regions at the NUTS-2 level and used the 
2016 NUTS classification by EUROSTAT (see Appendix 
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A in the supplemental data online for dataset construc-
tion). The list of regions included in the analysis is 
reported in Table A1 online.

The dependent variable CO2-eq emissions was taken 
from the EU ETS database at the plant level and then 
aggregated at the NUTS-2 level. The independent and 
control variables were then taken from EUROSTAT at 
the NUTS-2 level. Table 1 contains summary statistics 
for 2020 (for a more comprehensive overview of the vari-
ables’ descriptive statistics, see Table A2 online).

3.1. The model
In this section, we present the econometric model used to 
assess the drivers of industrial CO2-eq emissions of EU 
regions. We first considered a non-spatial panel and 
then tested the possibility of extending this baseline 
model to include spatial interaction effects. We assumed 
that CO2-eq emissions depend on select drivers according 
to the following relationship:

yit = f (Xit) (1) 

where yit is CO2 emissions for region i ¼ 1, … , N in year 
t ¼ 1, … , T; and Xit is the vector of the explanatory 
variables.

From equation (1), we can write the fixed-effect speci-
fication as follows:

yit = bXit + hit (2) 

with:

hit = ai + 1it (3) 

where the ai parameter is the fixed effects of the region i, 
which is assumed to be INN (0; s2

a); it captures unob-
served heterogeneity across individuals that is fixed over 
time. b is the vector of parameters associated with the 
explanatory variable vector Xit .

The second step involves examining the joint signifi-
cance of individual fixed effects and time-period fixed 
effects through the likelihood ratio (LR) tests. However, 
equation (2) does not consider the potential for spatial 
dependence in the values of CO2-eq emissions. Inter-
actions between regions can result in spatial autocorrela-
tion, which, if ignored, can violate the assumption of 
error independence. The exclusion of spatial dependence 
in an econometric analysis when variables are spatially cor-
related would lead to bias, as pointed out by Anselin 
(1988) and Anselin et al. (2013). Therefore, we tested 
for the presence of spatial autocorrelation between the 
observation units. The cross-section dependence (CD) 
test advanced by Pesaran (2004) is very powerful against 
all forms of spatial dependence, but it does not allow 
one to discriminate between the two possible forms of 
autocorrelation (Anselin & Florax, 1995). For this reason, 
we used two Lagrange multiplier (LM) tests and their 
robust counterparts (Anselin, 1988; Anselin et al., 1996), 
which allow one to test the presence of an autoregressive 
spatial lag variable (LMlag and RLMlag) and a spatial 
autocorrelation of errors (LMerr and RLMerr).

These tests require the creation of a spatial weights 
matrix W, which is a n× n matrix where the spatial 
weights wij = 1 if regions i and j are neighbours, and 0 
otherwise. In most of the cases, the binary 0–1 weights 
are row-standardised, that is, divided by the row sum. 
As a result, each row sum of the row-standardised weights 
equals 1, and the sum of all the weights,



i



j
wij , equals 

the number of observations n. There are different spatial 
weight matrices available, and the choice of matrix is pivo-
tal considering the different results each can yield (Anse-
lin, 1988).

In this study, we used a 10-nearest neighbours (10nn) 
spatial weight matrix, calculated from the inverse squared 
distance between region centroids:

wij(k) = 0 if i = j, ∀k
wij(k) = 1 if dij ≤ di(k)
wij(k) = 0 if dij . di(k)

⎧
⎨

⎩
and wij(k) =

1
d2

ij
(4) 

where dij is the great circle distance between centroids of 
regions i and j; and di(k) is a critical cut-off distance 
defined for each region i. More precisely, di(k) is the kth 
order smallest distance between regions i and j such that 
each region i has exactly k neighbours. This matrix is pre-
ferred over the simple contiguity matrix often used in US 
and Chinese studies for several reasons. Compared with 
the United States and China, the sample of European 
regions is less compact, with an average of five to six con-
tiguous neighbours per region. Our choice of 10nn yields a 
ring around each region of approximately the first- and 
second-order contiguous regions, as well as connects 
some islands such as Sicilia, Sardegna and Baleares to con-
tinental Europe (Gallo & Ertur, 2005). We chose the 
inverse-squared distance feature to avoid spurious neigh-
bouring relations, because it assumes that the local influ-
ence of a region on its neighbours decays with the 
growing distance. Furthermore, the matrix was normalised 
according to row standardisation to interpret the spatial 
spillover effects as an average of all neighbouring regions.

In a panel data framework, W requires the following 
transformation:

W = In ⊗W (5) 

where It is the identity matrix.
After establishing a significant spatial autocorrelation 

between regions, we initiated the most common spatial 
econometrics models: the simultaneous autoregressive 
(SAR) and spatial error model (SEM) (Anselin, 1988). 
They differ in the way the spatial dependence is entered 
into the regression equation. The SAR assumes that the 
spatial dependence exists in the dependent variable: the 
value of the dependent variable observed at a particular 
region is partially determined by a spatially weighted aver-
age of neighbouring dependent variables. The SEM attri-
butes the spatial interaction in the error terms: here, 
regional interaction effects are caused by the omitted vari-
ables that affect both the local and neighbouring regions. 
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They are expressed as follows:

SAR: yit = a
N

i=0
wijyit + bXit + mi + yit (6) 

SEM : yit = bXit + si + wit

wit = l
N

i=0
wijw jt + nit

nit → N (0, s2
n)

(7) 

where a is the spatial autoregressive parameters for the 
spatially lagged dependent variable, and l is the spatial 
autoregressive parameter for spatially lagged error term. 
These parameters indicate the extent of spatial depen-
dence. The parameters mi and si capture the unobserved 
individual effect for the SAR and SEM models, respect-
ively. Thus, we assume that they represent the fixed 
effects. yit and nit are the error terms.

The spatial weight matrix incorporated in the spatial 
regression models can render the standard ordinary least 
squares (OLS) estimation biased or inefficient. To over-
come these issues, we adopted the maximum likelihood 
estimation procedure.

Various diagnostic tests can help illuminate which 
spatial panel data model better suits the data. In this 
study, we based our choice of model on the Akaike infor-
mation criterion (AIC) and Bayesian information criterion 
(BIC). Lower AIC and BIC values indicate a better model 
fit.

As the spatial models (SAR or SEM) do not account 
for the time-persistence effect, we also employed the 
Wooldridge test to confirm the presence of serial corre-
lation (Wooldridge, 2002). Additionally, we performed 
the one-dimensional conditional test for zero random 
region effects by Baltagi et al. (2007), which allows for 
both serial and spatial correlation. If these tests are not 
rejected, then we need to pursue a spatial model that can 
account for both spatial and serial correlation. We there-
fore will assume the presence of serial correlation in the 
remainder of the error term from the SAR and SEM 
models, following Olivier and Del Lo (2022). We will 
refer to these models as the SARsr and SEMsr models; 
in all of them we presumed that the error terms of 
equations (4) and (6) follow an autoregressive process of 

order 1:

SARsr: yit = vyit− 1 + et (8) 

SERsr: nit = vnit− 1 + rt (9) 

where yit and nit are independent and identically 
distributed.

Notably, the presence of spatial correlation in the 
spatial regression models complicates the interpretation 
of the coefficients of the explanatory variables. The change 
of one variable not only affects the local CO2 emissions, 
but also influences the CO2 emissions of nearby provinces, 
which then creates a feedback loop. In other words, when a 
model features the spatial lags of the dependent variable 
and independent variables, the true total effect of an expla-
natory variable’s unit change on a dependent variable does 
not accurately capture the marginal effect, such as in the 
standard regression models (b̂); it also reflects the spatial 
connections and simultaneous feedback that pass through 
the dependency system. It is thus possible to identify three 
effects: direct, indirect and total effects (LeSage & Pace, 
2008). In our study, the direct effect estimates the impact 
of changes in the independent variable(s) on CO2-eq 
emissions in a particular region. The indirect effect rep-
resents the impact of changes in an independent variable 
of other locations on the local CO2 emissions (spillover 
effect). The total effect is simply the sum of the direct 
and indirect effects.

Finally, we tested alternative spatial weights matrices 
(knn ¼ 15, 20, 25) to check the robustness of the esti-
mation results.

3.2. The variables
In this section, we outline the dependent, independent and 
control variables employed in our empirical analyses. Our 
dependent variable is CO2-eq emissions, measured as CO2- 
equivalent emissions in tons. To procure primary data, we 
accessed the EU ETS database in 2020 and aggregated 
data at the 2016 NUTS-2 classification level to derive 
emissions values for ETS industries in the region.

The independent variables comprised the drivers for 
industrial CO2 emissions described in the theoretical 
framework section, and data were retrieved from the 
EUROSTAT database at the 2016 NUTS-2 classification 
level. The first independent variable considered was GDP 
which indicates the outcome of production activities by 

Table 1. Variables summary statistics, 2020.
Variable Abbreviation Mean SD Minimum Maximum

Carbon dioxide equivalent emissions (tons) CO2 5,127,432.38 6,947,923.92 1763.00 54,016,639.00

Gross domestic product (€ millions) GDP 56,229.54 69,064.53 1508.54 710,090.66

Education (%) Educ 32.05 9.78 11.80 59.70

Service sector productive specialisation (n) Service 0.96 0.13 0.47 1.28

Research and development expenditures with 

a two-year lag (€ millions)

RDlag2 1118.98 1868.37 10.60 15,918.81

Industrial sector productive specialisation (n) Industr 1.06 0.44 0.21 3.17

Note: R&D, research and development.
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resident producer units in millions of euros. Education was 
the second independent variable, measured as the percen-
tage of population aged 25–64 years with a tertiary edu-
cation. We adopted the International Standard 
Classification of Education (ISCED) and considered indi-
viduals at levels 5–8 as those with a tertiary education. 
R&D expenditures was the third independent variable, 
measured by gross domestic expenditure on R&D in 
millions of euros, with a two-year lag. The impact of 
R&D spending on the economy may not be immediate 
and it is common for empirical studies to incorporate a 
delay in this variable when examining the relationship 
between R&D spending and environmental impacts 
(Fernández et al., 2018; Garrone & Grilli, 2010). We fol-
lowed this literature and adopted a two-year lag into the 
R&D expenditures variable in our model.1 Finally, we 
integrated service sector productive specialisation as an 
additional independent variable. EUROSTAT provides 
a sectoral breakdown of economic indicators homogenised 
to NACE revision 2 classifications. Service sector pro-
ductive specialisation contains the gross value added 
(GVA)2 of the NACE revision 2 sectors Wholesale Retail 
and Trade (G–J), Finance and Business (K–N), and Non- 
market Services (O–U). The variable was calculated using 
the sector specialisation index (S index), a tool designed by 
the European Commission to assess a region’s sectorial 
specialisation (Directorate-General for Enterprise and 
Industry (DGEI), 2011, pp. 39–42). This index compares 
the proportion of a given sector j in a specific region i with 
its representation within the entire EU, and it is calculated 
as follows:

Si,j =

GVAi,j


j GVAi,j

GVAEU ,j


j GVAEU ,j

(10) 

Service sector productive specialisation represents the 
comparison between the proportion of value-added from 
NACE revision 2 sectors G–U to total GVA in a specific 
region and its representation within the entire EU. Values 
above (below) 1 signify specialisation (lack of specialis-
ation) of the region in that sector, and the higher the 
value of the indicator, the higher the region’s specialisation 
compared with the EU average.

In our analyses, we controlled for the regional indus-
trial structure of the territories by introducing the indus-
trial sector productive specialisation variable. Previous 
literature has established a positive relationship between 
industrial sector and carbon emissions, given that indus-
trial activities are energy-intensive and a major source of 
these emissions (Liu et al., 2018; Nan et al., 2022; Shah-
nazi & Dehghan Shabani, 2019; Zhou et al., 2023). This 
variable was also calculated using the S index. It reflects 
the proportion of value-added from the Industrial (B–E) 
sector of the NACE revision 2 classification to total 
GVA in a specific region and its representation within 
the entire EU. Table A3 in Appendix A in the 

supplemental data online shows the correlation among 
the proposed variables.

4. RESULTS

Figure 1 displays the variation of industrial CO2-eq emis-
sions across the EU regions from 2008 to 2020 and high-
lights the different results. Among the 238 regions 
analysed, approximately 83% (197 regions) have decreased 
their emissions during this period. Conversely, about 17% 
(41 regions) have experienced increases in emissions, with 
seven regions presenting a growth higher than 50% com-
pared with their 2008 levels.

Table 2 presents the results of the OLS, SAR and 
SEM models. OLS model (1) omits industrial sector pro-
ductive specialisation, our control variable, while model 
(2) incorporates it. Table A3 in Appendix A in the sup-
plemental data online demonstrates the strong correlation 
between the variables service sector productive specialisation 
and industrial sector productive specialisation (r ¼ −0.892, 
p < 0.01). Also, Table A4 online shows high variance 
inflation factors (VIFs) associated with service sector pro-
ductive specialisation (VIF ¼ 7.466) and industrial sector 
productive specialisation (VIF ¼ 6.907). These results 
suggest potential multicollinearity between these two vari-
ables. We prioritised the examination of service sector pro-
ductive specialisation (our independent variable) over 
industrial sector productive specialisation (the control vari-
able). Consequently, we focus on the results derived 
from model (1).3

Tables A5 and A6 in Appendix A in the supplemen-
tal data online show the results of the different non- 
spatial panel data models – pooling, individual fixed 
effects, time-period fixed effects and their combination. 
These analyses revealed the presence of spatial and serial 
dependencies in the data. Specifically, the Pesaran (CD) 
and LM tests indicate the existence of spatial interde-
pendence, while the Wooldridge test confirms the pres-
ence of serial correlation. Further validation comes from 
the results of the one-dimensional conditional test, 
revealing the impact of both serial and spatial correlation 
on our model (without random effects) (see Table A5 
online). These results suggest that to achieve a more 
accurate analysis, we need to use a spatial econometric 
model that considers both spatial and serial correlation. 
Following Oliver and Del Lo (2022), we will now com-
ment on the models with spatial correlation (SAR and 
SEM) and direct readers to Table A7 online for the 
model estimations which also incorporate serial corre-
lation (SARsr, SEMsr).

Table 2 shows similar results for the SAR and SEM 
models. The estimated coefficients associated with the 
spatially lagged (SAR model) were positive and statisti-
cally significant. The same can be said for the spatial 
error term coefficient of the SEM model. After comparing 
these models using AIC, BIC and log-likelihood selection 
criteria, we found that the SAR model performed the best. 
However, given the statistically significant spatial autocor-
relation coefficient, the parameter estimates of the SAR 
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model cannot be interpreted as marginal effects of the cor-
responding explanatory variables on the dependent vari-
able, as in the case of non-spatial models. For this 

reason, Table 3 reports the direct and indirect effects of 
the independent variables to interpret the spatial spillover 
effects.

Figure 1. Percentage of industrial CO2-eq emissions variation across European Union regions, 2008–20.

Table 2. Estimation results.
OLS SAR SEM

(1) (2) (1) (2) (1) (2)

α 0.0804*** 0.0804***

(0.0264) (0.0264)

λ 0.0487* 0.0488*

(0.0274) (0.0274)

GDP 1.4675*** 1.4708*** 1.4240*** 1.4229*** 1.4460*** 1.4457***

(0.3779) (0.3789) (0.3619) (0.3629) (0.3658) (0.3668)

GDP2 −0.0776*** −0.0778*** −0.0751*** −0.0750*** −0.0772*** −0.0771***

(0.0185) (0.0186) (0.0177) (0.0178) (0.0179) (0.0180)

Educ −0.4185*** −0.4180*** −0.3855*** −0.3857*** −0.4049*** −0.4050***

(0.0376) (0.0379) (0.0368) (0.0371) (0.0369) (0.0372)

Service −0.7368*** −0.7542*** −0.6935*** −0.6878*** −0.7049*** −0.7033***

(0.1317) (0.1946) (0.1263) (0.1864) (0.1272) (0.1877)

RDlag2 −0.0126*** −0.0126*** −0.0120*** −0.0120*** −0.0122*** −0.0122***

(0.0043) (0.0043) (0.0041) (0.0041) (0.0042) (0.0042)

Industr −0.0107 0.0035 0.0010

(0.0876) (0.0839) (0.0844)

R2 0.1013 0.1013

AIC −272.6113 −270.6131 −259.1642 −257.1609

BIC −236.388 −228.3525 −216.9036 −208.8631

Individual FE Yes Yes Yes Yes Yes Yes

Note: Standard errors are reported in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01. In model (1), the control variable is not taken into account, while 
model (2) integrates the control variable. 
AIC, Akaike information criterion; BIC, Bayesian information criterion; FE, fixed effects.
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4.1. The spatial effect of CO2-eq emissions
Table 2 shows that the spatial autocorrelation parameters 
associated with the spatial lag of CO2-eq emissions are 
positive and statistically significant, no matter the econo-
metric specifications considered (α ¼ 0.080, λ ¼ 0.049, 
with pα < 0.01 and pλ < 0.1). In short, we uncovered posi-
tive geographical spillover and confirmed that physical 
proximity increases or decreases carbon emissions. As 
such, neighbour regions follow similar emissions patterns: 
the higher (or lower) the CO2-eq emissions of neighbour-
ing regions, the higher (or lower) the CO2-eq emissions 
for the focal region. The spatial dependence of carbon 
emissions can be attributed to the underlying integration 
of economies in the EU regions (Rios, 2017). This inte-
gration means that the production network of hard- 
to-abate industries relies on value chains that stretch across 
multiple regions or countries (de Bruyn et al., 2020). For 
instance, if a component used in producing goods from 
one region is manufactured in another region, it can create 
a spillover of emissions. As a result, a pollution transfer or 
leakage can occur where one region gains the economic 
benefits of a particular good, but the manufacturing emis-
sions of this good are linked to another region. Granted, 
production networks may not be the only culprit: The 
spatial dependence of emissions might speak to compe-
tition or imitation effects. For instance, one region may 
seek to emulate neighbouring regions’ industrialisation 
level and development patterns, even if that entails nega-
tive environmental consequences (Wang et al., 2018).

4.2. The direct and spillover effects of socio- 
economic variables on CO2-eq emissions
In this section, we examine how socio-economic drivers 
and their interregional relationships impact industrial car-
bon emissions in EU regions. We discuss the direct effects 
of these variables on a region’s emissions and their spil-
lover effects in nearby regions. We specifically analysed 

GDP and its squared term, education, service sector pro-
ductive specialisation, and R&D expenditures. Table 3
presents the results.

The first variable we analysed was GDP. We found 
that an increase in a given region’s GDP has a positive 
direct effect on local CO2-eq emissions (β ¼ 1.426, p <  
0.01) and a positive spillover effect in neighbouring 
regions (β ¼ 0.123, p < 0.05). Specifically, a 1% increase 
in GDP is associated with a 1.43% increase in direct 
CO2-eq emissions. One possible explanation is that econ-
omic growth often produces more industrialised regions. 
Obviously, industries dependent on fossil fuels will pro-
duce higher emissions as industrialisation increases. 
Additionally, wealthier populations tend to consume 
more goods and services, which can also increase hard- 
to-abate industries’ activity. Considering the spillover 
effect, a 1% increase in adjacent regions’ GDP can raise 
the neighbour region’s carbon emissions by roughly 
0.12%. As such, the spillover contributes to 8%4 of 
GDP’s total effect on CO2-eq emissions, underscoring 
the impact of one region’s economic activity on its neigh-
bours’ emissions.

Our analysis also included the squared GDP in the 
model to explore the existence of an inverted ‘U’-shaped 
relationship between economic growth and industrial car-
bon emissions. We obtained negative and significant coef-
ficients for the direct (β ¼ −0.075, p < 0.01) and spillover 
effects (β ¼ −0.007, p < 0.05), confirming the validity of 
an EKC relationship. Thus, there is a turning point after 
which economic growth has a negative effect on a region’s 
industrial carbon emissions. Reaching this turning point 
also has a negative spillover effect on nearby regions that 
contributes to 8% of a region’s total industrial emissions 
reduction.

Education also contributed to reducing the industrial 
carbon emissions of a given region (β ¼ −0.386, p <  
0.001) and had a negative spillover effect (β ¼ −0.033, 
p < 0.01). Specifically, a 1% increase in education was 

Table 3. Direct, indirect and total effects of the SAR model.
Direct effects Indirect effects Total effects

(1) (2) (1) (2) (1) (2)

GDP 1.4256*** 1.4245*** 0.1228** 0.1228** 1.5484*** 1.5473***

(0.3374) (0.3863) (0.0554) (0.0519) (0.3735) (0.4207)

GDP2 −0.0752*** −0.0751*** −0.0065** −0.0065** −0.0817*** −0.0816***

(0.0164) (0.0190) (0.0028) (0.0027) (0.0182) (0.0207)

Educ −0.3860*** −0.3861*** −0.0333*** −0.0333*** −0.4192*** −0.4194***

(0.0342) (0.0377) (0.0126) (0.0116) (0.0406) (0.0429)

Service −0.6943*** −0.6886*** −0.0598*** −0.0594** −0.7541*** −0.7479***

(0.1249) (0.1806) (0.0244) (0.0256) (0.1388) (0.1965)

RDlag2 −0.0120*** −0.0120*** −0.0010** −0.0010** −0.0130*** −0.0130***

(0.0040) (0.0041) (0.0005) (0.0005) (0.0044) (0.0045)

Industr 0.0035 0.0003 0.0038

(0.0849) (0.0073) (0.0918)

Note: Standard errors are reported in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01. In model (1), the control variable is not taken into account, while 
model (2) integrates the control variable.
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associated with a 0.39% reduction in direct CO2-eq emis-
sions. Skilled labour and specialised knowledge are not 
only crucial for the operation of hard-to-abate industries, 
but can also contribute to optimising industrial practices 
and promoting cleaner technologies. In addition, higher 
levels of education might spur greater awareness about 
environmental issues, which might then inform people’s 
political choices. This could lead to the election of policy-
makers who are more prone to implementing greener pol-
icies (Zafar et al., 2020) that target sustainability practices 
in hard-to-abate industries.

An increase in the service sector productive specialis-
ation presented a negative and significant direct effect on 
industrial emissions (β ¼ −0.694, p < 0.01). Thus, a 1% 
increase in the service sector productive specialisation 
was associated with a 0.69% decrease in regional indus-
trial emissions. The spillover effects of the service sector 
productive specialisation were also negative, but did not 
achieve a significant level (β ¼ −0.060, p < 0.01). Our 
finding aligns with the existing literature asserting that 
a transformation in economic structure from energy- 
intensive industries to knowledge-intensive service sec-
tors can lead to improvements in environmental quality 
(Grossman & Krueger, 1991). The service sector, encom-
passing services such as education, healthcare, finance 
and tourism, is generally recognised as less carbon-inten-
sive compared with sectors such as manufacturing and 
transportation, as it typically relies less on fossil fuels 
and exhibits lower energy and material intensity (Kaika 
& Zervas, 2013).

Investment in R&D is another factor that, together 
with education, contributes to reducing industrial carbon 
emissions. An increase in R&D investment had a negative 
and significant direct effect (with a lag of two years) in 
reducing a given region’s industrial carbon emissions 
(β ¼ −0.012, p < 0.01). Its spillover effect was negative 
and significant (β ¼ −0.001, p < 0.05). In other words, 
every 1% increase in R&D expenditures was associated 
with a 0.01% drop in industrial carbon emissions of the 
same region two years later and a 0.001% drop in neigh-
bouring regions. This result aligns with previous studies 
on the role of R&D in reducing carbon emissions (Cole 
et al., 2013; Qunfang & Huang, 2023).

4.3. Robustness checks
To offer a more robust and nuanced understanding of 
the spatial relationships and dynamics under investi-
gation, we conducted a sensitivity analysis by consider-
ing the spatial weight matrices of the 15nn, 20nn and 
25nn, calculated from the inverse squared distance 
between region centroids. The results are shown in 
Table A8 in Appendix A in the supplemental data 
online. The findings corroborated those obtained with 
the spatial weight matrix of the 10nn. The spatial lag 
coefficients were positive and highly significant, varying 
from 0.201*** (if we consider the 15-closest neighbours) 
to 0.213*** (20-closest neighbours), and 0.221*** (25- 
closest neighbours). These results confirm the CO2-eq 

emissions are interdependent and considerably clus-
tered. The results for the explanatory variables were 
qualitatively unchanged.

5. CONCLUSIONS

As societies seek to reduce their industrial emissions 
rapidly, the academic literature has scrutinised intensely 
the drivers of carbon emissions. Adding to this stream, 
this study explored the role of geographical space and 
regional determinants in industrial decarbonisation. 
Specifically, we analysed how socio-economic drivers and 
their interregional relationships impact industrial carbon 
emissions in European regions. The EU has attracted par-
ticular interest among academics because it remains one of 
the largest emitters in the world despite its international 
recognition for leadership in decarbonisation efforts. 
However, research has almost exclusively focused on 
studies at the country level and few studies have examined 
this issue through spatial econometric models. To address 
that gap, we conducted a spatial analysis using an original 
panel dataset composed of 238 regions from 27 EU 
countries for the period 2008–20. As such, we produced 
generalisable knowledge on the role of spatial proximity 
and regional characteristics in reducing heavy industries’ 
carbon emissions.

Our study presents three contributions. First, it vali-
dates the endogenous spatial interactions between 
CO2-eq emissions in EU regions for all the econometric 
specifications considered. In short, the industrial carbon 
emissions in a given region are shaped by the activities 
of neighbouring regions. Thus, the underlying integration 
of economies in EU regions likely results in carbon emis-
sions spillovers. The spatial dependence of carbon emis-
sions might also indicate competition or imitation effects 
that result in neighbouring regions with similar industrial-
isation and development patterns.

Second, using a spatial econometric model, we provide 
new insights into various drivers’ direct effects on regional 
CO2-eq industrial emissions and spillover effects. Our 
findings demonstrate that increased GDP results in higher 
levels of industrial emissions in regions and their neigh-
bours, but only up to a certain threshold. This inverse- 
‘U’ pattern likely stems from the development of regional 
knowledge (i.e., education) and innovation (i.e., R&D 
expenditures), which leads to the creation and adoption 
of cleaner and more efficient industrial practices and tech-
nologies in heavy industries. Notably, having drivers 
linked to knowledge capacity (allowing for the develop-
ment of low-carbon industrial activity) seems to be critical 
to decarbonisation. Additionally, replacing carbon- 
intensive industrial activity with service industries seems 
to hinder industrial emissions, facilitating decarbonisation 
outcomes. Granted, we recognise that EU regions vary 
considerable in their emissions reductions (from 10% to 
50%). Thus, the relative impact of cleaner technologies 
and the service industry might become clearer at higher 
levels of mitigation.
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Third, we contribute to evolutionary economic geogra-
phy and growth theories. We confirmed previous results 
about the role of the analysed variables in shaping CO2 
emissions within the immediate geographical area, as 
well as generated new insights regarding the spillover 
effects on neighbouring regions.

These findings call for coherent policy-related 
instruments that consider direct and spillover effects. 
Given the existence of endogenous spatial interactions 
between carbon emissions in EU regions, policymakers 
need to focus their efforts on avoiding pollution trans-
fers and achieving absolute emissions reductions. Each 
region has territorial specificities that require specific 
local policies; thus, coordinated policy instruments 
may be needed to prevent undesirable spillover effects. 
Regional governments can play a key role in mobilising 
resources, fostering innovation and facilitating the 
development of sustainable practices. Our findings 
suggest that coordinated investments in tertiary edu-
cation and R&D expenditures may be promising start-
ing points.

Of course, this paper contains some limitations that 
may inspire future research. First, our study collected 
data from the hard-to-abate industrial sectors. Expanding 
the scope to include data sources from other sectors 
(industrial or otherwise) could offer a more complete 
understanding of the obstacles and prospects facing our 
societies. Second, we only analysed four independent vari-
ables. Further research could employ additional variables 
in order to better represent the drivers of carbon emissions, 
such as institutional variables (e.g., institutional quality, 
regulations and standards) and those specifically linked 
to the industrial sectors (e.g., energy consumption, num-
ber of industrial facilities, employment, technological 
innovation, environmental-related practices). Third, the 
current study does not encompass data pertaining to 
imports and potential exports beyond the EU. In order 
to provide a more comprehensive analysis, future research 
should explore carbon emissions associated with inter-
national trade activities, placing a specific emphasis on 
imports from major contributors, notably China. More-
over, future studies could benefit from integrating 
endogenous and imported technologies into their analyti-
cal frameworks, as these play a crucial role in facilitating 
the transition towards cleaner structures and industries 
in Europe. Fourth, this study was centred on the regional 
level. Future research could refine the unit of analysis by 
shifting to a lower geographical scale, such as industrial 
hotspots, poles or hubs, or by concentrating on representa-
tive clusters. This would allow for the analysis of signifi-
cant processes of industrial plant relocation and 
production fragmentation that have occurred in recent 
decades.
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NOTES

1. We also carried out robustness checks using different 
temporal delays (t – 1, t – 2 and t – 3) and found no sig-
nificant differences in the results.
2. Total GVA denotes the output value at basic prices 
less intermediate consumption valued at purchasers’ prices 
for the secondary and tertiary sectors.
3. Tables A9 and A10 in Appendix A in the supplemen-
tal data online provide further details on the effect of 
industrial sector productive specialisation on carbon emis-
sions when service sector productive specialisation is not 
considered.
4. To determine the spillover magnitude of a variable on 
its total effect in percentage, we calculated the product of 
the variable’s spillover effect times 100 and divided the 
result by the variable’s total effect; that is, for GDP: 
(0.123 × 100)/1.548 ≈ 8%.
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