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1 Introduction
Problem:

Dgu(t) = Au(t) + fot k(t — s)Bu(s)ds + F(t), te€][0,T],

u(0) = o, (1)

D(u(t)) = g(t), t<[0,T].

Unknowns: u, k.
Basic assumptions:

(A1) X is a complex Banach space with norm ||- ||, « € (0,2), Du is the Caputo derivative of u with
respect to t.

(A2) A : D(A) — X is a linear operator; there exist, M, R € RT, such that {\ € C : |\| >
R, |Arg(N)| < &} € p(A), and, for X in this set,

I = A) ey < MIATY
B e L(D(A), X).
(A3) ® € X'.
Notation: if 8 € (0, 2),
(XaD(A)>¢,oo if ¢e (Ov 1)7
Dy(A) =4 D(A) if ¢=1,
{r € D(A): Az € (X,D(A))p-1,00 if ¢€(1,2).

The following characterization of Dg(A) (0 < 6 < 1) holds (see ....)

*The author is member of GNAMPA of Istituto Nazionale di Alta Matematica



Theorem 1.1. Suppose that S satisfies the condition (A2). Let 6 € (0,1). Then

Dg(A) = {z € X : sup £?||A(§ — A)~'z|| < oo}
§>2R

An equivalent norm in Dg(A) is
Izllo := sup{l|l + €| A€ — A) " x| : € > R} = sup{[l|| + €| A€ — A) " z] : £ 2 R, € € Q)

Lemma 1.2. Let (Q, 1) a measure space and let f : Q — X be measurable. Then
(I) the function t — ||f(t)||e is measurable (||f(t)||o = oo if f(t) & Dy(A));
(1) if Jo If(D)llodn < 00, [ f(t)dp € Do(A) and

I [ wdula < [ 17@)ads
Q Q
Proof. (I) It follows from || f(t)[l¢ = sup¢s g eeq 9¢(t), with

9e(®) = ILF@Ol + €I A€ = A)HF (@)
(D) If &> R.E€Q,

|| / F(t)dul) + €| A(E — ) / f(t)du] < / ge(t)dp < / 1£(8)lodpe.

Taking the supremum in &, we obtain the assertion.

We shall employ the following

Theorem 1.3. Let o € (0,2). Consider system
Dio(t) = Av(t) + f(t), t€[0,T],
v (0) = v, k<a,

0

supposing that (A1)-(A2) hold; then:

(I) (??) has, at most, one solution, for every f € C([0,T];X), up € D(A), u1 € X in case a > 1
(solution means Dfv € C([0,T]; X), v € C([0,T]; D(A))).

(II) Let 0 € (0,1), af # 1. Then necessary and sufficient conditions implyng that (??) has a strict
solution v such that Dgv and Av are bounded with values in Do(A)) are :

u € Dyyo s (A)E <), f € O(0,T]; X) 1 B0, T]; Dy(A)).
(IIT) If Ty € RY, there exists C(Ty) € RT such that, if 0 < T < Ty,

I DF vl B(o,11;:06 (A)) + 1Vl B((0,77:D156(4)) < C(To)(z vkl o ) + 1l B0, 11: D6 (4)))-

140k
k<o «

Proof. Concerning (I)-(II), see ... . We show (III). We set F : [0,Tp] — Dg(A)), F(t) = f(t) if0 <t < T,
F(t) = f(to) if T <t <Tp. Let V be the solution of

{ DeV(t) = AV (t) + F(t), te][0,Tol,

VE0) =v, k<a.



Then v = Vjjo,1}, so that
Dol (10,7706 (4)) + 101 B (10,7706 (1))
<DV | B(o,11;06(4)) + IV | B([0,77: D6 (A))

< C(To) Xpeallvrllp,,, )+ IFlB0,m01:00(4))

= C(To) X pea llvelp ) + 1 flB(0.11:06 (A)))-

k
1+6- £

Moreover, by ...
[vllce (o, 71:00(4)) < C(@)| D[ B((0,7];D0(4))
and D(A) € J1_9(Dg(A), D149(A)), so that, if 0 < s <t <T,

lo(£) = v(8) [ pay < Cllv(t) = ()], ) [0(E) = v()N 5, )

< C1(To)(t = 8)* (X jea llvrllp ) + 1l Bo,11: D6 (4)))-

k
14—k

v can be represented in the form

v(t) = Z Sk (t)vg +/O T(t—s)f(s)ds, (1.3)

k<a
with )
Si(t) = — / MATITR (Y — A) L),
27'(’71 T
1
Tt) = — [ e(\* = A)"tax
(1) = 3 [ M0 =4 an

and I' describing the boundary of
A€ C: Al > R, |ArgV)| < 5 + ¢},

with e positive suitably small, oriented from oce~*Z1¢) to coei(z*e)

Lemma 1.4. Suppose that (A1)-(A2) hold. Let fo € Dg:(A), with 6 < 0" and let

z(t) = /0 T(t—s)f(s)ds.

Then Av € CH((0,T); X) and [ (Av) ()| p,(a) < Cre@'—0)—1
Proof. From (??), we have 2/(t) = T(¢) fo and, if € (0,77,

1
A7) = 5 [ AR - 47 foan
21 T
We can assume 6’ € (0,1). So, Dg:(A) = (Dg(A), D14+9(A))g'—9.00. This implies, for, |u| > R, |Arg(p)| <
5
1AG = A) " follpy(ay < Clul”~7
So .
AL (t) = —— [ AN — A)7lan.
2mit r’
|42 (#) D () < Cot™ / e NP dA| < Oy @O
r‘/



Lemma 1.5. Suppose that (A1)-(A2), a € (1,2), 0 < 1. Let fo € Do (A), with ¢ >60+1— 1 and let

Z(t) = Sl (t)fo.

Then Av € CY((0,T); X) and [|(Av)' (t)[| py(a) < Cte(8'—6-1) Consequently, if ¢/ >0 +1 — é,

T
/ 142/ (1) |odt < oo
0

Proof. If t > 0, we have
A (t) = 5= Jr eMATLANY — A) L fod.

27

= 27&% fr e)\)‘ail((%)a — A)7! fodA
so that

”Azl(t)ne < C«Ot—a/ €Re(>\)‘)\|a_1_a(9/_0)ta(9/_9)||.13||9/|d/\| < Clta(e'—e—l).
r

Proposition 1.6. We consider the problem
Dgu(t) = Au(t) + F(t), tel0,T],
u®(0) = ug,

with the following conditions:

(a) F(t) = G(t) + phayvia), with G € CH([0,T); X), G' € B([0,T]; Dy(A)), vja) € D

(b) ug € D1yg(A), Aug + F(0) € Dg:(A), for some 0’ > 0.

Then u(t) = U(t) + z(t), with:

(I) U € CH[0,T); X), v=U" solution of
D>y(t) = Av(t) + G'(t), tel0,T],
v(0) = wo;

(II) z solution of
{ D2z(t) = Az(t) + Aug + F(0), t€]0,T],

z(0) = 0.

1+0—%(

A);

0

i

Proof. By Theorem ?7, (?7?) has a unique solution v, with D%v, Av € C([0,T]; X)NB([0,T]; Dg(A)). We

deduce
(1 D) (t) = A(1 xv)(t) + G(t) — G(0), te]0,T].

We set .
1
Jag(t) := —/ t—s)*"tg(s)ds.
(0= e | (6= ol
Then D% = (J,) (v — vo). We deduce that
Jo(1+ D) =1%Jo (D) =1%(v—1v9) =1%v—tug

and 1

I'2-—a)
1

I2-a)

D*(1 % v) = D*(tvg) + 1% D = 1% + 1 % D%,

D1 ) = A(1 % v)(t) + G(t) — G(0) + L

Settin,
’ U(t) = (1 *v)(t) + uo,

Vo, te [O,T]



we deduce

DOU(t) = AU(t) + G(t) — F(0) — Aug + ﬁtl_avo — F(t) = F(0) — Auo, te€[0,T).

The conclusion follows.

Corollary 1.7. Suppose that (A1)-(A2) hold. Suppose, moreover, that
(a) k€ C(0,T)),

(b) ue C'((0,T); D(A)), |Av/(t)||p,ay < Ctt, for some e € RT;
(¢) u is a strict solution to

{ Deu(t) = Au(t) + [y k(t — s)Au(s)ds + F(t), t € [0,T],
U(O) =ug, l€ [OaT]a
with F(1) = G(0) + cly-syvo, G € C(0.T):X), & € B(0.T1 Do(4)), v € DisolA), o € DrsolA),
Aug + F(0) € Dy (A), 6/ > 6.
Then u(t) = U(t) + 2(t), with
(I) U € CH[0,T); X), v=U" solution of

Dy(t) = Av(t) + G'(t) + k(t) Auo + [} k(t — s)Au/(s)ds, t€[0,T],
{ (t) (t) (t) + k(t) Aug + [o k(t — s)Au/(s) (0,71 16) [
v(0) = wo;

(II) z solution of
{ Dz(t) = Az(t) + Aug + F(0), t€[0,T],

Proof. From the assumptions,

(e Au)(t) = k(t) Auo + /O k(t — 5) Au/ (s)ds

belonging to C([0,T7; X) N B([0,T]; Do(A)). So the conclusion follows from Proposition ??

O
Remark 1.8. On account of Lemma ??, (??) can be written also in the form
Du(t) = Av(t) + G'(t) + k(t) Aug + [ k(t — s)Av(s)ds + [} k(t — s)AZ'(s)ds, t € [0,T],
an
v(0) = wp.

We set

S, k)(t) := (kx A(v+ 2"))(t). (1.8)
Lemma 1.9. Suppose that the assumptions of Corollary 7?7 are satisfied. Let ® € X'. We set

We suppose ®(Aug) # 0 and set

Then h € C1([0,1]), D*h' is defined and

k(t) = Ko(t) — x®(Av(t)) — R(v, k)(t), t€][0,T],
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with
Ko(t) = x[DW (t) — ©(G'(1))], (1.10)

R(v,k) = —x{k * ®[A(v + 2")]}(t) = —xP[S (v, k)(t)]. (1.11)
®(ug) = h(0), ®(vg) = h'(0). (1.12)

On the other hand,suppose that

Let (v, k) be a strict solution to (7?)-(??), withv € C(]0,T); D(A))NB([0,T]; D119(A)) and k € C([0,T1]).
We set
u:=up+1xv+ 2.

Then, v € C*([0,T]; D(A)), [|Av/ ()] pya) < Cte0'=0-1 vt € (0,T] and (u, k) is a solution to (?7).

Proof. Applying ® to the first equation in (??), we easily deduce (77).

On the other hand, let (v, k) be a strict solution to (??)-(??), with v € C([0,T]; D(A))NB([0,T]; D1+6(A))

and k € C([0,T]). Then
k(-)Aug + k* A(v + 2') = k(-)Aug + k * Au'.

So, by Corollary ??, the two first conditions in (??) are satisfied.
It remains to show that ®(u) = g. Applying ® to the first equation in (??) and comparing with (?7?),
we deduce
D*(®v)(t) = ®(Dv(t)) = D*K'(t), t€]0,T).
From (??), we deduce v = h’ and ®U = h. We deduce that
O(u) =2(U)+ @(2) =g.
O
In conclusion, we are reduced to study the system (?7)-(??), which we write in the equivalent form
Dv(t) = Av(t) + G1(t) + U (Av(t))Aug + S1(v, k)(t), t€[0,T],
v(0) = v, (1.13)

k(t) = Ko(t) + U(Auv(t)) — R(v, k)(t), te0,T],

with
Gl(t) = G/(t) + Ko(t)AuO,
U =—xo,
S1(v, k)(t) = R(v, k) (t) Aug + S(v, k)(t), (1.14)

Lemma 1.10. Suppose that (A1)-(A2) hold. We consider the problem

{ Dou(t) = Au(t) + W(Au(t) fo + (1), t€[0,T],
(1.15)
v(0) = vo,

Assume that U € X', fo € Do(A), f € C([0,T]; X) N B([0,T]; Dg(A)), vo € D149(A). Then (??) has a
unique solution v in C([0,T]; D(A))NB([0,T]; D14e(A)). Moreover, If Ty € RT, there exists C(Tp) € RT
such that, if 0 < T < Ty,

[vllco(o,71:00(A)) + [[Vllces o, 11:004)) + 1Vl B0,71:D146 (1)) < C(To)(lvoll Dy yocay + 1 £l B(10.11:06 (A)))-



Proof. We set, for 0 <7 < T,
X, == {V € C((0,7); D(A)) : V(0) = vo},
which is a complete metric space with the distance
d(V1,Va) = Vi = Valleqo,m:pa))- (1.16)
If Ve X(7), we consider the problem
D%o(t) = Av(t) + W(AV (1)) fo + f(1), t€]0,7],

0

which, by Theorem ??, has a unique solution v = v(V'), belonging to B([0,T]; D14¢(A)), with D%v €
B([0,T); Dg(A)). Clearly, the solutions in [0,7] are the fixed points of the mapping V. — o(V). If
V1, Va € X;, we have, setting v; := v(V}),

v(0) = v,

d(vy,v2) < C(To)T* | W(A(V2 = V2))lle(o,71) < C(To)T*d(Va, Va).

So, if 7 is sufficiently small, (??) has a unique solution in [0, 7].

In order to extend it, we show that a solution with the desired regularity ¢ is given in [0, o], with
o € (0,T), it can be extended in a unique way to a solution, again with the prescribed regularity, in
[0, (0 + &) AT]. So we set now, for 6 € (0,7 — o],

Y5 === {V € C((0,0 +8]; D(A)) : Vi[o,0) = T},

again equipped with the distance (??) (replacing T' with o+ ). If V' € Y5, we consider again the problem
(??) in the interval [0,0 + ¢]. Again, by Theorem ?? we have a unique solution v = v(V); by the
uniqueness guaranteed by this theorem in [0, o], we deduce V|j0,0] = U, s0 that v € Ys. If v; = v(V}), with
Vj €Y5, j =1,2, we deduce from Theorem ?7 (III)

d(v1,v2) = [[v1 — V2|l e (0,048, DAy < 3V — V2l cae (o.018):p(ay < C(T0)8*d(V1, Va).

Choosing § so small that C(T)6*? < 1 (independently of o), we can extend in a unique way the solution
to [0,0 + 4].
The remaining part of the proof is analogous to that of Theorem ?77.

Now we study problem (?7). We indicate with V4 the solution of the problem

DaVy(t) = AVp(t) + G1(t) + (AW, (¢)), te[0,T],

(119

v(0) = g

and set
Ki(t) = Ko(t) + U (AV(t)), te0,T],

Of course, the existence and uniqueness of a solution Vj in B([0,T]; Dp(A)) is guaranteed by Lemma ?7.
We begin with the existence and, to some extent, uniqueness of a solution in a small interval:

Lemma 1.11. Let § € RT. Then there exists 7(8) € (0,T)], such that, if 0 < 7 < 7(8) (??) has a unique
solution (v, k) with D*v, Av in B([0,0]; Dg(A)), k € C([0,9]) and

max{|[v — Vol B([0,71;06 (4)) |1E — Kollc(o,7)) < 0



Proof. We set, for T € (0,T],
Xsr:={(V,H) € (C([0,7]; D(A))NB([0, 7]; D146 (A))) x C([0, 7]) : max{|[v=Voll B(jo,r);:06 (4)) IH =K1l c(0,71) < 6}
which is a complete metric space with the distance
d((V1, H1), (V2, Hz)) = max{|[V1 — V2| 50,7101, 0(a)), 1K1 — K2l (0,7 }-
Given (V, H) in X5 ,, we consider the problem

Dou(t) = Av(t) + G1(t) + W(Av(t) Aug + Sy (V, H)(t), t € [0,T],

v(0) = vo, (1.19)
k(t) = Ko(t) + U(Av(t)) — R(V,H)(t), te][0,T],

By Lemma ?7?, (??) has a unique solution (v, k) with the prescribed regularity. Clearly, as usual, solving
(??) is equivalent to find a fixed point of (V, H) — (v, k).
From (?7), we get

D (v = Vo)(t) = A(v — Vo) (t) + W(A(v — Vo) (1) Aug + S1(V, H)(1), ¢ € 0.7,
(v —V)(0) =0,
k(1) — Ky(t) = U(A(v — Vo)(1) — ROV H)(t), t€0,T],

so that
[v = VollB(o.7:01464)) < C(DS1(V, H)| B((0,71:D0 (A))

We estimate ||||S1(V, H) | B(jo,71;0s(A))- By (?7), (?7), (??) and Lemma ??we have
1S1(Vy H)|| B((o,1:0s(4)) < CollS(Vy H)|| B(10,71:06(4)) < CrllH (0,1 (TIV | B(10,7:01_s(a) + 70 =9)

< Ci(IK1lleqo,ry + O)T(IVoll B(lo,r1:0y o4y + 8) + 70 =] 1= w (6, 7).

So
[ =VollB(o.71:010(4)) < C(T)wo(0, 7).

We have also
Ik = Killegqo,) < Cillv = Voll B(o,71;:0140(4)) + IRV, H) || e (0,7 < Cawo(6, 7).

As lir%wo(& 7)=0,if 7 <79(0) and (V,H) € X5, (v,k) € Xs.-.
T—

Let now (V1, Hy), (Va, Hz) belong to Xs,. We indicate with (vj,k;) (j = 1,2) the corresponding
solutions of (?7?). It follows

Da(’l)l — Ug)(t) = A(’Ul - ’Uz)(t) + \IJ(A(Ul - ’l)g)(t))AuO + Sl(Vl,Hl)(t) - Sl(‘/g, HQ)(t), te [0, T],
(v1 —v2)(0) =0,

ka(t) = ka(t) = W(A(v1 — v2)(t)) = (R(V1, H1)(t) — R(V2, Ho)(t)), t € [0,7].



We have
lv1 = vallB(jo,71:D1 46 (4)) < Co(T)[[S1(Va, H1)(t) — S1(Va, H2) || B(j0,7):D6 (A))

< CL(T)||S(Vi, Hy)(t) — S(Va, Ha)| | B(j0,7);06 (A))
< CUT)([(Hy = Hz) * A(Vi + 2) | B(0,71:06(4)) + [1H2 x A(V2 = Va) [ 5(10,71: D4 (4)))
< Co(T)|1Hy = Hall (o (T(Voll (o130 4o (4)) + 0) + 72 =)
+7([[ K[l + OIIVi = Vall Bo,71;01 40 (a)]

< wl(é, T)d((‘/ly H1)7 (‘/Qa HQ))7

with limw (d,7) = 0. It follows
70

k1 = k2l (o,m)
< Co[lvr = vallB((0,7): D140 () T |1R(VA, H1) — R(Va, Ha)| ¢ (j0,7)))
< Cs([lvr = vall B((0,7): D146 (a)) + 1S(VA, H1)(t) — S(Va, H2) | B([0,7]; D6 (A)))

< 03(.4.}1 (5a T)d((‘/la Hl)a (‘/27 HQ))
So the conclusion follows from the contraction mapping theorem. O

We want to show that, in fact, (??) has a unique global solution. The key step is the following

Lemma 1.12. Suppose that (A1)-(A3) hold. Consider problem (??), with G; € C(]0,T]; X) N B([0,T);
Dy(A)), uo,vg € D149(A). Let 0 < 19 < 71 < min{27,T} and let (V,K) be a solution in [0,71],
with V- € B([0,71]; D1+0(A)), K € C([0,71]). Then there exists § positive, independent of 11, such that
(7?) has a unique solution (v,k) in [0, (T1 + ) A 219 AT) with v € B([0, (71 + 0) A 270 A T); D149(A)),
ke C([0,(m1 + 0) A 279 AT]) and coinciding with (V, K) in [0, 71].

Proof. Let § € RT. We set
7(0):=(m+0)ANQ2m) AT

and

Xs :={(W,H) € (C([0,7(6)]; X) N B([0, 7(6)]; D1+6(A))) x C([0,7(5)])
:Wiom) =V Hipor) = K-
For (W, H) € X5, we consider the problem
Dv(t) = Av(t) + G1(t) + U (Av(t))Aug + S1 (W, H)(t), t€]0,(m+d)A27]l,

v(0) = vy, (1.20)
k(t) = Ko(t) + ¥ (Av(t)) — R(V,H)(t), t€0,(m +6)A2m,

For any (W, H) € X5, (??) has a unique solution (v, k) with v € B([0,7(d)]; D119(A)), k € C([0,7(5)]).
We observe that, by the uniqueness of the solution of (??), vjjo,-,; = V and kjjo ,; = K. We deduce that
(v, k) € X5, which we equip with the usual distance

d((V1, Hy), (Va, H2)) = max{||[V1 — Va| B([0,7(5): D110(A)))s |11 — Hallc(o.r5)) }-

Now we look for conditions ensuring that the mapping (W, H) — (v, k) is a contraction in Xs. As usual,
we get
d((v1, k1), (v2, k2)) < C(T)||1S(V1, H1) — S(Va, H2)|| B(j0,7(5)]: Do (A)))-



Let 71 <t < 7(d). Then
1S(Va, H1)(t) — S(Va, H2) (1)l Dy (a)

< || fy (Hi(t — ) — Ha(t — $))A(Vi(s) + 2'(5))ds pyay + | fyy Ha(t — 8)(A(Vi(s) — Va(5))ds Dy ()

We set v := V]jg,7,], h := Hjjp,r,]- Then we have, on account of t — 7 < 79,

[ =)~ (e = ) AW ) + 2 (s)as = | (= 5) — Ha(t — ) AG5(s) + 2/ (5))ds,
so that
H/O (Hi(t—s)—Ha(t—3))A(Vi(s)+2'(5))ds|| py(ay < [ Hi—Halle 0,5y (7] B([0,70)s D1 1o (A1) 0+ Co6E =)

Analogously,
I fy Ha(t = s)(A(Vi(s) = Va(s))ds| pyca) = || [1, Bt = ) (A(Vi(s) = Va(s))ds|| b, ()

< dmax(|h) IV = Vall B(0,7(5));D11a(a))
We deduce that
[v1 = V2l B(j0,7(5));D1s0(4)) < wo(0)d((Vi, H1), (Va, Hz)),
with gii% wp(d) = 0. We observe that w(d) does not depend on 7,. We have also

Ik1=k2llcqo,@y < N (AVA=V2))llo(o,- (o) +IIR(VA, Hi)—R(Va, Ha)l[c(o,r(5)) < wi1(8)d((Vi, H), (Va, H2)),
with ;in(l) w1(d) = 0, and the conclusion follows.
—
O

Now we are able to prove the main result of the paper:

Theorem 1.13. Suppose that (A1)-(A3). Consider problem ??, with u, k unknown. Assume that the

following further conditions are fulfilled:

(a) o € (0,1];

(b) F(t) = G(t) + phvg, with G € C1([0,T}; X), &' € B0, T}; Dy(A)), 6 € (0,1), vo € Dyso(A);

(¢) ug € Di4g(A);

(d) Aug + F(0) € Do/ (A), with 0 < 0';

(e) @€ X';

(f) if z if the solution of (7?) and h(t) = g(t) — ®(2(t)), D**h € C([0,T]), h(0) = ®(ug), h'(0) =
(I)('UO);

() ®(Aup) 0.

Then (??) has a unique solution (u, k) such that u—z € C1([0,T]; D(A)), (u—=z)" € B([0,T]; Dy(A)),
ke C([0,T]).

Proof. If (u,k) is a solution with the required properties, k x Au € C([0,T]; X) and (k * Au)’ €
B([0,T]; Dg(A)). So, by Corollary ??, u = U + z, with v = U’ solution of (??), or, equivalently (??).

On the other hand, if v is a solution of (??), u := U + z, with U := ug + 1 x v, satisfies the two first
equations in (??). From (??) we have also ®(U) = h and ®(D%) = D'**h. Applying ® to the first
equation in (??), on account of (g), we deduce (?7?).

O

[?] Problem of determination from final data (not convolution kernels).

Paper [?] Reconstruction of a kernel m such that k = a + m, applicable in case o < 1. Even in this
case needed not so mich regularity, but also more compatibility conditions than here.

[?] Determination of order of derivation o and coefficient of the second order space derivative « € (0, 1).
Hilbert space setting. The operator A with conditions on the spectrum which are satisfied by a positive
self-adjoint compcat operator. Assumptions on the Fourier coefficients on the data.

Determination of source term: [?],
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