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Abstract: This work focuses on the well-known issue of mass conservation in the context of the finite
element technique for computational fluid dynamic simulations. Specifically, non-conventional finite
element families for solving Navier–Stokes equations are investigated to address the mathematical
constraint of incompressible flows. Raviart–Thomas finite elements are employed for the achievement
of a discrete free-divergence velocity. In particular, the proposed algorithm projects the velocity field
into the discrete free-divergence space by using the lowest-order Raviart–Thomas element. This
decomposition is applied in the context of the projection method, a numerical algorithm employed
for solving Navier–Stokes equations. Numerical examples validate the approach’s effectiveness,
considering different types of computational grids. Additionally, the presented paper considers
an interface advection problem using marker approximation in the context of multiphase flow
simulations. Numerical tests, equipped with an analytical velocity field for the surface advection, are
presented to compare exact and non-exact divergence-free velocity interpolation.
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1. Introduction

In the context of incompressible flow simulations, computational fluid dynamics codes
play a pivotal role. In particular, divergence-free fields are crucial for mass conservation
in numerical simulations of engineering applications (multiphase flows, porous-media
flows, etc.). Typically, commercial codes employ the finite element method (FEM) and
finite volume method (FVM) to approximate solutions of the physics problem, both widely
applicable across various engineering domains, while the FEM and FVM share popularity
and similar computational costs, the finite volume method is usually preferred for fluid
dynamic simulations due to concerns about mass conservation related to the finite element
method. Nevertheless, achieving the desired divergence-free field across the discrete
domain remains challenging for both methods.

This study addresses the challenge of obtaining a finite element approximation of the
solution for the Navier–Stokes system, specifically aiming for a divergence-free velocity
field over the discrete domain. This is achieved through the utilization of Raviart–Thomas
basis functions [1].

When dealing with fluid dynamics simulations, the mathematical analysis of the spe-
cific partial differential equations is fundamental for obtaining reliable numerical results [2].
Focusing on the incompressible Navier–Stokes equations, the literature of the past fifty
years has increasingly emphasized the use of mixed finite elements [3–6], where different
types of numerical discretizations are employed to represent different variables. Indeed,
this discretization approach has proven to yield convergent numerical schemes, theoretical
convergence rates, and other advantageous properties.
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Naturally, in the framework of finite element discretization, the flexibility of mixed
methods arises from the relaxation of the divergence constraint [7]. However, this relaxation
entails a cost, which becomes evident when considering a standard error estimate for the
considered equation. To provide a brief example, when dealing with error estimates
for the velocity field in the Navier–Stokes system, non-divergence mixed finite elements
present a connection between the discretized velocity and the continuous pressure [8]. This
mathematical connection became a numerical drawback for certain finite element families
that can lead to a loss of order of convergence.

In describing divergence-free discretization, various approaches have been proposed
in the literature, such as the Scott–Vogelius element and the discontinuous Galerkin
method [9–15]. Despite these efforts, the mathematical problem, commonly referred to
as poor mass conservation [16], remains a subject of ongoing interest. Indeed, some sta-
bilization techniques have been proposed to overcome this issue, such as the grad–div
stabilization [17] or a transformation on the continuous pressure [18].

Moreover, some remarks can be pointed out regarding the equations described by
the incompressible Navier–Stokes system. The existence of the solution depends on the
divergence operator, and specific surjectivity properties are required, such as the well-
known inf–sup condition, which is a sufficient condition to find a unique solution for a
saddle-point problem. In addition, the problem must also preserve the invariance property,
ensuring that a change in the external body force by adding a gradient field alters only the
solution of the pressure and not the velocity.

As pointed out in [19], a lack of L2-orthogonality between discretely divergence-
free vector and irrotational fields, such as the pressure gradient, may generate a poor
momentum balance, which translates into poor mass conservation.

In this work, we aim to exploit a finite element family designed to address the numeri-
cal challenges and maintain a divergence-free velocity field. Expressly, within the frame-
work of mixed problems, the Raviart–Thomas finite element family assumes an important
role, suitable for resolving partial differential equations subject to divergence constraints.

This problem is examined in the context of coupled and split pressure–velocity for-
mulations of the momentum equation. Indeed, the solution of the coupled incompressible
Navier–Stokes system is known for its high computational effort, leading to the devel-
opment of various numerical algorithms for treating the velocity and the pressure sep-
arately [20] and therefore decreasing significantly the computational burden. We recall
that the coupling between velocity and pressure is due to the incompressibility constraint,
resulting in saddle-point matrices in discrete form.

To address these challenges, Chorin and Temam first introduced the projection method
in the framework of finite element methods, splitting the Navier–Stokes system into two
distinct steps: one for resolving the velocity field and another for the pressure field [21,22].
This approach has proven to reduce the computational effort and has encouraged the
development of various projection methods. In fact, the use of a segregated solver implies
smaller matrices to be inverted in the solution algorithm. The use of a segregated algorithm
in the computation of the pressure and velocity fields introduces an irreducible error pro-
portional to the time step and the necessity to define an additional non-physical boundary
condition for the pressure. Details about the advantages and drawbacks of this approach
can be found in [23].

The requirement for a divergence-free velocity gains significance in specific fluid
dynamic simulations, especially in scenarios involving multiphase flows where mass
conservation is crucial for robust and accurate numerical results. This mathematical
constraint is addressed by leveraging a divergence-free representation of the velocity field
in multiphase flows. Specifically, the multiphase problem considered in this work involves
the interface advection of a single phase using marker technique approximation.

This paper is structured as follows: in the first section, we outline the mathematical
framework with a description of the problem related to the divergence-free constraint.
After that, we provide an overview of finite element discretization, with specific attention
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to the Raviart–Thomas finite elements within quadrilateral and hexahedral elements. Sub-
sequently, a focus on a multiphase flow advection problem is reported considering the
velocity orthogonal decomposition by using Raviart–Thomas basis functions. Finally, the
algorithm proposed for the resolution of the Navier–Stokes system by projection technique
is presented considering divergence-free finite elements for the projection step.

2. Mathematical Framework

In the following, the main basic properties regarding the numerical solution of the
Navier–Stokes equations are introduced. In particular, the mathematical framework is
described, with a major emphasis on the divergence-free constraint.

2.1. Notation

To present and describe the Navier–Stokes equation mathematically, the typical weak
formulation requires foundational concepts from variational calculus, such as appropriate
Sobolev spaces [24]. Let Ω be an open bounded subset of Rd where the boundary Γ = ∂Ω is
locally represented by a Lipschitz function. This contextual description leads us to introduce

L2(Ω) :=
{

f :
∫

Ω
| f 2|dΩ < ∞

}
, (1)

the space comprising square-integrable functions with the inner product and norm as
( f , g) :=

∫
Ω f g dΩ and || f ||20 := ( f , f ), respectively. Furthermore, we denote L2

0(Ω) as the
space of square-integrable functions with vanishing mean. The Sobolev spaces for integers
k ≥ 0 are defined as follows:

Hk(Ω) :=
{

f ∈ L2(Ω) : ∂α f ∈ L2(Ω), for |α| ≤ k
}

, (2)

where the non-negative integer indices α = (α1, α2, . . . , αd) denote the order of the partial
derivatives, i.e., |α| := ∑d

k=1 αk, and ∂α f = ∂α1
x1 ∂α2

x2 . . . ∂
αd
xd f . The respective norms and

semi-norms are defined as

|| f ||k :=

 ∑
|α|≤k

||∂α f ||20

 1
2

, | f |k :=

 ∑
|α|=k

||∂α f ||20

 1
2

. (3)

Additionally, by introducing the fractional-order Sobolev space on the boundary Γ,
we obtain

H
1
2 (Γ) :=

{
f ∈ L2(Γ) : | f | 1

2 ,Γ < ∞
}

, (4)

with the corresponding norm and semi-norm given by

| f | 1
2

:=
(∫

Γ

∫
Γ

| f (s)− f (t)|2
|s − t|2 ds dt

) 1
2

, || f || 1
2

:=
(
|| f ||20,Γ + | f |21

2 ,Γ

) 1
2 . (5)

For vector-valued functions such as u = (u1, u2, . . . , ud), we can consider the following
norms on (Hk(Ω))d:

||u||k := (||u1||2k + ||u2||2k + . . . + ||ud||2k)
1
2 , (6)

while for p ∈ H1(Ω) we can define on Γ a surjective trace map with continuous lifting
γ : H1(Ω) → H

1
2 (Γ) such that p|Γ = γp for all p ∈ H1(Ω). The space H

1
2 (Γ) is equipped

with the norm ∥p∥ 1
2 ,Γ = inf{∥w∥1,Ω|w ∈ H1(Ω), γw = p}. We denote by H− 1

2 (Γ) the dual

space of H
1
2 (Γ) with the norm ∥p∗∥− 1

2 ,Γ = sup{⟨p, p∗⟩/∥p∥ 1
2 ,Γ| p ∈ H

1
2 (Γ)}, where the

bracket ⟨·, ·⟩ denotes duality between the two spaces.
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In addition, for a vector field v ∈ Lp(Ω) (p ≥ 1) the functional

⟨∇ · v, ψ⟩ = −
∫

Ω
∇ψ · v dx ∀ψ ∈ C∞

0 (Ω) (7)

defines the distributional divergence in Ω. Moreover, if there exists a function ρ ∈ L1
loc

such that
⟨∇ · v, ψ⟩ =

∫
Ω

ψ ρ dx ∀ψ ∈ C∞
0 (Ω) (8)

then ρ is called weak divergence in L1
loc, which is the space of a locally integrable function.

With the term ‘locally’ we mean that the function is integrable on every compact subset
of its definition domain. If ρ = 0, the vector is called a divergence-free vector, namely, a
divergence-free vector on Ω is a vector that is orthogonal to all gradient fields with compact
support on Ω.

With the previously defined functional spaces, we can now introduce the space used
for the mixed formulation of second-order elliptic problems. Hence, considering a vector-
valued function, we define the space H(div, Ω) as

H(div, Ω) =
{

v ∈ L2(Ω) : ∇ · v ∈ L2(Ω)
}

, (9)

that is a Hilbert space equipped with the norm

||v||H(div) :=
(
||v||20 + ||∇ · v||20

) 1
2 . (10)

It is important to note that H1(Ω) is continuously embedded in H(div, Ω). On this
space, it is then possible to define a surjective map called normal trace γn : H(div, Ω) →
H−1/2(Γ) such that γnv = v · nΓ for all v ∈ H(div, Ω) and nΓ the normal unit vector to Γ.
We recall the divergence theorem∫

Ω
∇ · v p dx =

∫
Γ

v · n p dx −
∫

Ω
v · ∇p dx (11)

for all v ∈ H(div, Ω) and p ∈ H1(Ω). Furthermore, we remark that H1/2(Γ) does not
contain characteristic functions that are zero on a proper subset Γ0 ⊂ Γ, or in other words,
a function in H1/2(Γ0) cannot be extended by zero outside Γ0 to a function in H1/2(Γ).
This should be taken into account in (11) when the duality is used to characterize the trace
function γnv ∈ H−1/2(Γ). For details on Sobolev and divergence spaces, the reader can
refer to [24,25].

2.2. The Mixed-Method-Robustness Property

We briefly recall now the main mathematical issues related to the numerical solution
of the Navier–Stokes system. Let Ω be a subset of Rd, with d ∈ {2, 3}. We illustrate the
mixed-method-robustness property in the case for the Stokes for simplicity, but this can be
applied to all mixed-method systems.

The Stokes equations can be stated in strong form as

−ν∆u +∇p = f ,

−∇ · u = g ,

u|Γ = 0 .

(12)



Mathematics 2024, 12, 2514 5 of 25

Naturally, the incompressible formulation holds when g = 0. We recall that u|Γ
must satisfy the compatibility boundary condition

∫
Γ u · n dS =

∫
Ω g dx. The variational

formulation of (12), for the state (u, p) ∈ H1
0(Ω)× L2

0(Ω), can be written as∫
Ω

ν∇uT : ∇w dx +
∫

Ω
∇p · w dx =

∫
Ω

f · w dx ∀w ∈ H1
0(Ω) ,

−
∫

Ω
ψ∇ · u dx =

∫
Ω

ψ g dx ∀ψ ∈ L2
0(Ω) ,

u|Γ = 0 .

(13)

In this case, the compatibility boundary condition is satisfied when g is in L2
0.

Two fundamental properties of the mixed variable system (13) can be immediately
observed: the inf–sup condition and the pressure invariance property. Since we aim to
find a unique solution for (12), the inf–sup condition must be satisfied. Specifically, this
condition reads as

inf
q∈L2

0(Ω)\{0}
sup

u∈H1
0(Ω)\{0}

(∇ · u, q)
||∇u||L2(Ω)||q||L2(Ω)

≥ β > 0 . (14)

Differently, the constraint −∇ · u = g does not hold.
Furthermore, the invariance property must be preserved, ensuring that the velocity is

not affected by a gradient change in the external body force, namely,

f → f +∇ψ ⇒ (u, p) → (u, p + ψ) . (15)

In fact, an additional force that can be represented purely as the gradient ∇ψ must
be balanced by a pressure gradient when no-slip boundary conditions do not affect
the pressure.

The violation of (14) or (15) in the discretization leads to errors for the velocity field
that depend on the continuous pressure, i.e., the error depends on a possibly large constant
proportional to 1/ν, as detailed in [2]. Many finite element spaces satisfy (14) but not (15).

Consider now a finite element method on a pair of finite element spaces with piecewise
polynomials. Let Xh ⊂ H1

0(Ω) and Yh ⊂ L2
0(Ω) denote a pair of conforming spaces for a

partition Fh of Ω parametrized by the characteristic length h. The Stokes system for the
state (uh, ph) ∈ (Xh, Yh) becomes

a(uh, wh) + b(wh, ph) = (f, wh) ∀wh ∈ Xh(Ω) ,

b(uh, ψh) = (g, ψh) ∀ψh ∈ Yh(Ω) ,
(16)

where a(u, w) = ν(∇u,∇w) and b(w, p) = −(∇ · w, p). For this system of equations, an a
priori error estimate reads as

||u − uh||1,h ≤ C1hk|u|k+1 +
C2

ν
hk|p|k , (17)

where standard Lagrangian polynomial finite elements are considered. The order k is cho-
sen for the velocity discretization, while an order k − 1 is set for the discrete pressure [3,4].
The term C2

ν hk|p|k in (17) represents the drawback when dealing with non-divergence mixed
finite elements, showing the connection between the discrete velocity uh and the continuous
pressure p. The Stokes problem is said to have the mixed-method-robustness property
when the pressure cannot influence the velocity approximation. Similarly, we say that an
approximation of the Stokes problem does not have mixed-method-robustness property
when a change in pressure has a large impact on the velocity field. One can refer to [8] for
details on the mixed-method-robustness property for Stokes and Navier–Stokes problems.
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In order to have a finite element approximation with the mixed-method-robustness prop-
erty, we should construct an approximation that takes into account properties (14) and (15).
We recall the following [8]:

Proposition 1. Let Xh ⊂ H1
0(Ω) and Yh ⊂ L2

0(Ω) be a couple of finite element spaces that satisfy
the inf–sup stability property (14) with ∇ · Xh ⊂ Yh and let ΠYh q ∈ Yh be the L2 projection of q.
Then, for the solution (uh, ph) ∈ (Xh, Yh) of (16), we have the following:

(i) The velocity error is pressure-independent (mixed-method-robustness property holds).
(ii) Changing f → f +∇ψ ⇒ (uh, ph) → (uh, ph + ΠYh ψ) (the invariance property holds).

Standard finite element couples, such as the Taylor–Hood approximations, satisfy (14)
but not (15). The couple consisting of functions in Xh ⊂ H(div, Ω), such as linear Raviart–
Thomas functions, and its ∇ · Xh ⊂ Yh piecewise constant finite element may satisfy such a
requirement, and it can be considered to have the mixed-method-robustness property.

3. H(div, Ω) Function Space Approximations

This section introduces the function spaces required in the following for the construc-
tion of the divergence-free approximation fields.

3.1. Partition of Domain and H(div, Ω) Functions

In order to construct finite element approximations, fundamental insights into domain
partitioning are presented for H(div, Ω) space. Establishing a finite element approximation
within a domain Ω demands maintaining specific continuity properties at the interfaces
between its constituent elements.

Consider a domain Ω partitioned into subdomains, such that Ω = ∪m
r=1Kr, where

the generic element Kr can take the form of a triangle or a quadrilateral in the case of a
bidimensional domain (tetrahedron or hexahedron for three dimensions). We consider only
compatible meshes, so no hanging node is present. Additionally, following the literature
notation, the mesh size is represented by the index h, which is also used for the maximum
diameter of the element. Following [25], we now reformulate the continuous functional
spaces previously described in the context of a partitioned domain. Starting with a scalar
field q, we define X(Ω) as

X(Ω) :=
{

q ∈ L2(Ω) : q|Ki ∈ H1(Ki) , ∀i ∈ N, i ≤ m
}
= ∏

r
H1(Kr) , (18)

equipped with the norm ||q||2X(Ω) := ∑r ||q||21,Kr
. Regarding vector-valued fields, we define

also the space Y(Ω) as

Y(Ω) :=
{

v ∈ L2(Ω) : v|Ki ∈ H(div, Ki) , ∀i ∈ N, i ≤ m
}
= ∏

r
H(div, Kr) , (19)

with the norm ||v||2Y(Ω) := ∑r ||v||2div,Kr
.

Consider now a partition of the domain boundary such as Γ = D ∪ N|D ∩ N = ∅,
where the boundary Γ has been divided considering different types of boundary conditions,
i.e., D for Dirichlet and N for Neumann. Hence, we define

H1
0,D(Ω) :=

{
q ∈ H1(Ω) : q|D = 0

}
, (20)

where naturally we have H1
0,D(Ω) = H1

0(Ω) if D = Γ and H1
0,D(Ω) = H1(Ω) if D = ∅.

Likewise, we have

H0,N(div, Ω) :=
{

v ∈ H(div, Ω) : ⟨v · n, q⟩ = 0 , ∀q ∈ H1
0,D(Ω)

}
, (21)
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with H0(div, Ω) = H0,N(div, Ω) if N = Γ. Lastly, we recall another subspace of H(div, Ω)
defined as

H(div 0, Ω) := {v ∈ H(div, Ω) : ∇ · v = 0} . (22)

Considering now a function q ∈ H1(Ω) and a function v ∈ H(div, Ω), denoting the
vector normal to Γr = ∂Kr as nr, we have that

∑
r
⟨v · nr, q⟩Γr = ⟨v · n, q⟩Γ , (23)

where the operator ⟨·, ·⟩ represents the duality product between H
1
2 (Γr) and H− 1

2 (Γr).
Therefore, inside each element, we can apply the Green formula obtaining

⟨v · n, q⟩Γ = ∑
r

{∫
Kr
∇ · v q dx +

∫
Kr

v · ∇q dx
}

. (24)

As described in [25], we have the following proposition:

Proposition 2. The spaces H1
0,D(Ω) and H0,N(div, Ω) can be expressed as

H1
0,D(Ω) =

{
q ∈ X(Ω) : ∑

r
⟨v · nr, q⟩ = 0, ∀v ∈ H0,N(div, Ω)

}
, (25)

and

H0,N(div, Ω) =

{
v ∈ Y(Ω) : ∑

r
⟨v · nr, q⟩ = 0, ∀q ∈ H1

0,D(Ω)

}
, (26)

respectively.

We can conclude that a function v ∈ Y(Ω) is in H(div, Ω) if and only if the normal
trace is continuous at the interface. In order to preserve the normal trace continuity at
the interfaces, we need to use Piola’s transformation as the pullback in our finite element
approximation.

3.2. Piola’s Transformation

In the framework of finite element approximation, the coordinate changes play a
fundamental role, allowing the use of a reference element in which the computation
is performed.

Consider a reference domain K̂ ⊂ Rn. Let ∂K̂ be its boundary and denote by n̂ the
outward-oriented normal. Additionally, since we are dealing with integral relations, we
define dx̂ the Lebesgue measure on K̂ and with dσ̂ the surface measure on ∂K̂. We can
introduce a smooth mapping F : Rn → Rn, where smooth implies at least C1 continuity.
Consequently, the mapping, or pullback, between the element and the reference element is
defined by K = F (K̂). We say that the element K is the image of K̂ under the diffeomor-
phism F .

We indicate with DF (x̂) the Jacobian matrix of the transformation, assuming that
DF (x̂) is invertible for any x̂ and that F is globally invertible on the element K. Therefore,
the following relationship holds: DF−1(x̂) = (DF (x̂))−1. When the transformation F (x̂)
is linear, i.e., F (x̂) = x0 + Bx̂, the map is said to be affine. In addition, the Jacobian
matrix is constant, DF (x̂) = B. Finally, we define the determinant of the matrix as
J (x̂) := |detDF (x̂)|, for x̂ ∈ K̂.

One of the main features of functions in H(div, Ω) is the use of normal components on
the element faces as degrees of freedom. In fact, remembering Proposition 2, we understand
how a function belonging to H0,N(div, Ω) is defined as the summation over every element
such that the dot product between the fluxes of the function, i.e., v · nΓ, and the test function
is equal to zero. On the other hand, the transformation F previously described does not
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preserve the normal components, and besides, we are not able to map H(div, K̂) into
H(div, K). For this reason, it is necessary to introduce Piola’s transformation, which is
a contravariant transformation. For a vector-valued function q̂ ∈ H1(K̂), we consider
the mapping

G(q̂)(x) :=
1

J (x̂)
DF (x̂)q̂(x̂) , with x = F (x̂) . (27)

Since we have an invariance of the trace matrix with a change of variable, the following
relation holds: ∇ · q = J −1∇ · q̂. Following the idea presented in [26,27], we report other
important lemmas.

Lemma 1. Consider the transformations v = F (v̂) and q = G(q̂). The following integral
relations hold: ∫

K
q · ∇v dx =

∫
K̂

q̂ · ∇v̂ dx̂ ∀ v̂ ∈ L2(K̂) , (28)∫
K

v∇ · q dx =
∫

K̂
v̂∇ · q̂ dx̂ ∀ v̂ ∈ L2(K̂) , (29)∫

∂K
q · n vs. dσ =

∫
∂K̂

q̂ · n̂v̂ dσ̂ ∀ v̂ ∈ L2(∂K̂) . (30)

Note that from the last relation in Lemma 1, with the new transformation G the normal
trace in H− 1

2 is preserved.
With the definition of the transformation F we can also define the normal vector and

the tangent vector on ∂K. Considering the unit normal n̂ and the unit tangent vector t̂ to ∂K̂,
we have that n(x) = [DF ]−T · n̂(x̂)/||[DF ]−T · n̂(x̂)|| and t(x) = DF · t̂(x̂)/||DF · t̂(x̂)||.

3.3. Lowest-Order Raviart–Thomas Finite Element Approximation

In this section, we aim to describe a suitable criterion to understand if a finite element
space is a subspace of H(div, Ω). Therefore, considering the shape-regular triangulation Th
of the domain Ω, we define with εh the set of edges or faces, considering, respectively, a
bidimensional or a three-dimensional domain. Moreover, we define the set of boundary
edges/faces with εB

h ⊂ εh, namely, the variable e ∈ εB
h if e ∩ Γ ̸= 0, and the set of interior

edges/faces with εI
h := εh \ εB

h . An important lemma regarding the normal component of
finite element subspaces of H(div, Ω) is now reported; the proof can be found in [8].

Lemma 2. Let Th be the partitioned domain Ω and consider a space of piecewise polynomials
function wh. Since wh ⊂ H(div, Ω), we have continuity across interelement boundaries e ∈ ϵI

h of
the normal components.

Naturally, the space wh represents in the context of the Stokes equation the finite
element space for the velocity field. Furthermore, this lemma does not hold necessarily for
the tangential components. Among the finite element spaces satisfying the previous lemma,
i.e., conforming subspaces of H(div, Ω), we can introduce the Raviart–Thomas space of
order k ≥ 0 (RT k) [28–31]. This choice of finite elements is natural in the framework
of H(div) where the norm of the divergence must exist, and it furthermore guarantees
optimal convergence properties with respect to the order k [32]. Given an element K of the
partitioned domain Ω, the local Raviart–Thomas space of order k ≥ 0 is defined as

RT k(K) = Pk(K)n + xPk(K) . (31)

Therefore, we define the spaces as

RT k := {wh ∈ H0(div, Ω) : wh|K ∈ RT k(K) ∀K ∈ Th} , (32)
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where we have used the space H0(div, Ω) = {v ∈ H(div, Ω) : v · n|Γ = 0}. Moreover,
P k = Pn

k (Pk) represents the space of globally continuous vector (scalar)-valued piecewise
polynomials of a degree not exceeding k.

4. Divergence-Free Field for Two-Phase Flow

In this section, the first physical problem is discussed, i.e., the mass conservation issue
in the context of multiphase flow problems.

4.1. Problem Model

A key point for two-phase applications is the conservation of mass. In order to
introduce a typical two-phase problem, we consider an incompressible, viscous two-phase
flow over an open bounded domain Ω with continuous boundary Γ = ∂Ω, consisting of
two subdomains Ω1 ⊂ Ω and Ω2 ⊂ Ω, representing phase 1 and phase 2, respectively. We
can also define the indicator function χ as χ(x, t) that is, one over Ω1 and zero otherwise.
We may assume a single velocity u and pressure p field for both phases, the fluid motion to
obtain the one-fluid model equations governing the multiphase flow motion, which read

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p +∇ ·

[
µ(∇u +∇uT)

]
+ f , (33)

∇ · u = 0 , (34)
∂χ

∂t
+ u · ∇χ = 0 , (35)

where (33) represents the conservation of linear momentum, (34) the conservation of volume
(the phases are non-miscible and incompressible), and (35) the advection of the indicator
function χ. f is the volumetric or the surface tension force. The two considered fluids, the
reference phase 1 and the secondary phase 2, have both constant densities ρ1 and ρ2 and
viscosities µ1 and µ2 within each subdomain Ω1 and Ω2, respectively. Therefore, we set
ρ = χρ1 + (1 − χ)ρ2 and µ = χµ1 + (1 − χ)µ2.

Suppose that we use Taylor–Hood finite element approximation for the velocity–
pressure field (u∗

h, ph) ∈ Xh × Wh ⊂ H1(Ω)× L2
0(Ω). Once the Navier–Stokes equation is

solved with this finite element pair, the discrete solution u∗
h is not a divergence-free function

at each point, and a projection into H(div 0, Ω) is very important for the conservation
of the phase indicator. Thus, if we have u∗ ∈ H1, the objective is to find the velocity
u ∈ H(div 0, Ω) by minimizing

F (u) =
1
2

∫
Ω
(u − u∗)2dΩ ,

∇ · u = 0 ,
(36)

over the linear function subspace H(div, Ω). This is equivalent to project u∗ into H(div 0, Ω)
by using the Helmholtz–Hodge decomposition (HDD) considering the Raviart–Thomas
representation for u [8]. We recall now a lemma for the HDD.

Lemma 3. Let Ω be a connected domain and u∗be in L2(Ω); therefore, there exists a vector field
u ∈ H(div 0, Ω) and a scalar function p ∈ H1(Ω) with

(i) u∗ = u +∇p (37)

(ii)∇ · u = 0 (38)

(iii) (u,∇φ) = 0 , ∀φ ∈ H1(Ω) . (39)
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As a result of the minimization problem, we obtain the standard weak formulation∫
Ω

u · v dx −
∫

Ω
k∇ · v dx =

∫
Ω

u∗ · v dx ∀v ∈ H(div, Ω) ,∫
Ω

q∇ · u dx = 0 ∀q ∈ L2(Ω) ,
(40)

where k represents the Lagrange multiplier associated with the incompressibility constraint.
It is important to remark that (iii) in Lemma 3 is always satisfied when u ∈ H(div 0, Ω)
with correct boundary conditions.

4.2. Approximation over Cartesian Cells

In order to define velocity fluxes and divergence operators in the interior of a domain,
one needs to define an internal domain structure. Every approximation, preserving free-
divergence properties, needs an appropriate definition over its substructure domain. Let
Ω be a polyhedron with mesh Th that consists of N subdomains Kk (k = 1, . . .N). Each
element is assumed in the form of a polyhedron with four and six faces for two- and
three-dimensional geometry, respectively. Its maximum diameter h is obtained from the
reference element K̂ through the mapping Fk : K̂ → Kk. As shown in Figure 1 on the right,
the reference element K̂ is assumed to be a square (two-dimensional geometry) or a cube
(three-dimensional geometry). We recall the Jacobian matrix DF k associated with each
element and its determinant Jk. The mesh is a shape-regular and non-degenerate mesh by
assuming standard hypotheses. For details, the reader can refer to [3].

x1

x2

x3

x4

x1M

x2M

x3M

x4M

xM

t0,η

t0,ξ

Kk

1

(−1,−1)

2

(1,−1)

3

(1, 1)

4

(−1, 1)

ξ

η

Figure 1. On the left a quadrilateral element Kk and on the right the square canonical element K̂.

In R2, the partition of Ω consists of quadrilateral elements Kk of maximum diameter h
obtained from the reference element K̂ = [−1, 1]2 in agreement with standard piecewise
linear finite elements. As shown in Figure 1 on the left, we denote with xk

j the vertex

of the quadrilateral elements, with xk
f M the middle point of the face f , and with nk

∂K f
k

its

unit normal for f = 1, . . . , 4. In this case, each point x̂ = (x̂1, x̂2) ∈ K̂ ⊂ R2 sets a point
x = (x1, x2) ∈ Kk ⊂ R2 through the mapping Fk : K̂ → Kk ⊂ R2 defined by

x = Fk(x̂) =
4

∑
j=1

xk
j ϕj(x̂) = xk

0 + x̂1 tk
1,0 + x̂2 tk

2,0 + x̂1 x̂2dk
1,2 , (41)

for all x̂ ∈ K̂. The ϕj are the standard linear basis functions for the QUAD4 finite element.
The vectors tk

1,0 = (xk
2M − xk

M)/2 and tk
0,2 = (xk

3M − xk
M)/2 define the two middle point
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lines, while xk
M is the quadrilateral middle point and dk

1,2 = (xk
3 + xk

1 − xk
2 − xk

4)/4. For
dk

1,2 = 0, the quadrilateral is a parallelogram. The Jacobian matrix DFT
k becomes

DFT
k (x̂) = [ tk

1,0 + x̂2dk
1,2, tk

2,0 + x̂1dk
1,2] .

From the previous definitions, the global Raviart–Thomas finite element spaces can be
introduced. In this case, the mesh-size h has to be defined as h = maxK∈Th hK. Moreover,
we assume that the hypothesis of regularity condition is satisfied in any element K ∈ Th.
Therefore, the global space can be defined as

RT 0(Th) := {v ∈ H(div, Ω) : v|K ∈ RT 0(K) ∀K ∈ Th} , (42)

where RT 0(K) is defined as the space spanned by the basis functions. For two-dimensional
quadrilateral K̂, we set v = ∑4

i=1 p f b̂ f with

b̂1 =
x̂2 − 1

4
î2 , b̂2 =

x̂1 + 1
4

î1 , b̂3 =
x̂2 + 1

4
î2 , b̂4 =

x̂1 − 1
4

î1 , (43)

where î1 = (1, 0)T and î2 = (0, 1)T . The vectors are oriented in agreement with the outer
direction. In RT 0(K), applying the divergence theorem, we know that the continuity of
the normal component across the edge elements is a necessary condition for a piecewise
polynomial vector-valued function to be in H(div, Ω).

In order to complete the description of the finite element subspaces required for
the approximation of the mixed problem, it is important to introduce the approximating
subspace of the scalar variable. Note that (40) does not have any derivatives of the pressure,
and the continuity requirement does not hold. Given these considerations, we introduce
the standard space of piecewise polynomial functions with degree k = 0, not necessarily
continuous, as

P k(Th) := {q ∈ L2(Ω) : q|K ∈ Pk(K) ∀K ∈ Th} , (44)

where the superscript d considers the possibility of discontinuous functions. With these
spaces, the following identity holds: ∇ ·RT 0 = P0.

Having introduced the finite element subspace for the approximation of the elliptic
mixed problem (40), we introduce the finite element discretization for the solution pair
(uh, ph) ∈ RT 0 ×Pk∫

Ω
uh · v dx −

∫
Ω

ph∇ · v dx =
∫

Ω
u∗

h · v dx ∀v ∈ RT 0∫
Ω

q∇ · uh dx =
∫

Ω
f q dx ∀q ∈ P0 .

(45)

4.3. Numerical Tests

Now, we consider numerical results related to the multiphase advection problem
under a discrete divergence-free field, with markers and interface tracking. Since we
exploit the algorithm already described and validated in [33], our attention is focused only
on the velocity interpolation of the marker position to satisfy the orthogonal decomposition
reported in Lemma 3.

Flow fields characterized by uniform translations and rotations are usually employed
to move and advect the cell markers. In fact, simple advection movements are designed
to displace fluid bodies within a domain and verify the conservation of surface shape
and volume. For this reason, standard tests from the literature have been considered as
benchmark results to evaluate the goodness of the interface tracking algorithm [34–37].
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All the tests presented are two-dimensional problems, with a velocity field designed
so that the resulting vorticity is not uniform in the domain. Consequently, significant
distortions occur in the fluid body interface, making the maintenance of the interface not
straightforward. Finally, cosinusoidal time dependence analytical velocity functions are
used to return to the initial configuration at the end of the period [38].

The L1 error norms are considered to compare the results [34]. The relative mass error
Em(t1) is defined to compare the total volume of a phase, specifically the reference volume,
at the initial time t0 and the subsequent time t1

Em(t1) =
|∑Nel

i=1 AiCi(t1)− AiCi(t0)|
∑Nel

i=1 AiCi(t0)
. (46)

In this case, the color function value at the cell i at time t is represented by Ci(t), and
Ai represents the area of the cell i; meanwhile, the total number of the cells is Nel . Another
error, termed geometrical error Eg(t1), is introduced as

Eg(t1) =
Nel

∑
i=1

Ai|Ci(t1)− Ci(t0)| . (47)

The objective is to verify whether the final shape aligns with the initial configuration.
Therefore, we computed another type of error, considering a circular geometry as the initial
shape. Therefore, given the center (xc, yc) and the radius R, the distance between a marker
m with position (xm, ym) and the center is computed and compared with the radius R:

Eal =
Nm

∑
m=1

∣∣∣∣√(xm − xc)2 + (ym − yc)2 − R
∣∣∣∣sm . (48)

The quantity sm is the arc length. In all computations presented, the CFL = u∆t/h has
been considered, with u representing the velocity component along the x axis, ∆t the time
step simulation, and h the grid spacing. Each variable presented above can be computed
by considering the algorithm implemented in [39], whose description is omitted since it is
beyond the scope of this work.

Furthermore, an initial attempt to incorporate Raviart–Thomas basis functions into
the surface marker reconstruction framework was investigated. The primary goal was to
compare the advection test using two different representations of the velocity field.

Indeed, the numerical approximation of the velocity is naturally stored through finite
element discretization, such as the classical nine points of a biquadratic quadrilateral ele-
ment. In the same way, the analytical velocity is stored based on the specific data structure
arising from mesh discretization. The exact values of that field are found only in the
standard degrees of freedom of the mesh elements. Notably, the library for marker recon-
struction is designed to handle both kinematic and dynamic two-phase flow simulations,
accommodating scenarios where the velocity field is either imposed or fully solved.

In situations where we need to compute the velocity at points beyond the nodes of the
elements (such as marker coordinates), interpolation is used. This is essential for marker
advection, where the Runge–Kutta method requires varying velocity values at different
positions. This section compares two types of finite element interpolation techniques for
determining the velocity field at marker locations. The standard approach involves Lagrangian
interpolation, while the alternative method employs Raviart–Thomas interpolation.

Denoting umrk as the velocity field of the i-th marker in the cell with coordinates xp,
the comparison is performed using the following formulations:

umrk =

ndo f

∑
i=1

ui φi(xp) , umrk =

n f aces

∑
i=1

bi(xp)pi , (49)
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where ndo f represents the biquadratic nodes for a quadrilateral element and n f aces is the
number of faces of the same element. The functions φi and bi represent the biquadratic
Lagrangian basis functions and the Raviart–Thomas basis functions that act on the flux faces
pi, respectively. Since the computational domain is a classical two-dimensional Cartesian
mesh, any convergence issues related to using the lowest-order Raviart–Thomas finite
elements do not affect this context.

The reason behind the use of the Raviart–Thomas basis function for the velocity field
interpolation is motivated by two closely connected aspects:

• Mass conservation in multiphase flow: In multiphase flow simulations, maintaining
mass conservation is crucial. Since the density of both phases is assumed constant, it
is imperative to satisfy the mass conservation equation. The divergence-free velocity
constraint should be managed through appropriate discretization techniques. The use
of a divergence-free representation of the numerical velocity, facilitated by Raviart–
Thomas finite element discretization, addresses this constraint effectively.

• Divergence-free analytical velocity field: The analytical velocity fields implemented
for advection tests are sinusoidal functions derived from stream functions, which are,
by definition, divergence-free. Therefore, approximating these velocity fields using
H0(div) basis functions provides a more realistic representation at each physical point.
This approach helps avoid approximation errors that may arise when using standard
finite element Lagrangian interpolation.

From a computational perspective, only the function responsible for the Runge–Kutta
advection has been modified to allow both interpolations. The application was developed
by integrating two finite element libraries: the FEMuSTTU library [39], where routines
for surface marker reconstruction are implemented, and the ProXPDE library [40], which
provides the Raviart–Thomas finite element interpolation.

The approach for testing the Raviart–Thomas basis functions for velocity field in-
terpolation involves a single-bubble advection test. The analytical velocity field for this
simulation is given by

u = 2 sin2(πx) sin(πy) cos(πy) cos
(

πt
T

)
,

vs. = −2 sin(πx) cos(πx) sin2(πy) cos
(

πt
T

)
.

The domain considered is represented by Ω = [−L/2, L/2] × [−H/2, H/2], with
H = L = 1, and the initial circular geometry is located at (0, 0.25) with a radius R = 0.15.
The period T for this test is set to 4 s, implying that the maximum stretch of the bubble is
reached at t = 2 s. The purpose is to compare the performance of standard Lagrangian
interpolation with Raviart–Thomas interpolation for the velocity field with surface marker
reconstruction algorithms. The simulation evaluates how well each interpolation scheme
maintains the accuracy and conservation properties of the marker positions during advection.

In Table 1, the error values for the Lagrangian-type interpolation, denoted with the
superscript Q, are presented based on the number of mesh elements Nel , ranging from a
32 × 32 grid to a 128 × 128 grid. Every computed error shows a decrease by increasing
the mesh refinement, showing the same behavior as the previous tests. We notice that the
convergence error rates for pm and pg reach a value close to 2, while pal seems to have
a slightly larger value. We recall that the Eal error provides a geometrical measure of
the difference between the initial configuration and the corresponding final shape. For
this reason, an order of convergence of pal between 2 and 3 indicates a good behavior of
the algorithm.
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Table 1. Em, Eg, and Eal for different grids, with respective rates of convergence for the Q2 veloc-
ity interpolation.

Nel EQ
m EQ

g EQ
al pm pg pal

32 × 32 1.64× 10−2 1.00× 10−3 9.66× 10−4 - - -
64 × 64 9.88× 10−4 6.69× 10−5 8.52× 10−5 4.05 3.91 3.50

128 × 128 2.35× 10−4 1.65× 10−5 1.36× 10−5 2.07 2.02 2.64

The same error analysis has been performed for the RT 0 velocity interpolation, and
the results are reported in Table 2. Again, convergence errors decrease with the grid
refinement. Regarding the rates of convergence, similar values were obtained for the
RT 0, except for pal , which seems to be slightly lower than the one computed with the
Lagrangian interpolation.

Table 2. Em, Eg, and Eal for different grids, with respective rates of convergence for RT 0 veloc-
ity interpolation.

Nel ERT
m ERT

g ERT
al pm pg pal

32 × 32 6.43× 10−2 3.94× 10−3 2.24× 10−3 - - -
64 × 64 1.57× 10−2 1.07× 10−3 5.79× 10−4 2.03 1.89 1.95

128 × 128 3.73× 10−3 2.59× 10−4 1.42× 10−4 2.08 2.04 2.03

A comparison between the two techniques shows that the Q2 Lagrangian interpolation
provides better error results. The order of magnitude is lower almost by one compared to
the corresponding RT 0 interpolation on the same grid. However, we can note that these
errors consider the entire simulation and the final values of the color function. As such,
these errors, as defined, do not serve as a direct indicator of the approximation quality of
the velocity.

The numerical algorithm incorporates several functions for surface marker reconstruc-
tion. Therefore, while the velocity interpolations of the marker may be similar inside the
cell, a velocity field variation can lead to changes in the final position of the marker with
the Runge–Kutta advection scheme.

In Figure 2, the final positions of the markers are reported for different grid refinements
obtained with the standard Lagrangian Q2 interpolation. Some discrepancies from the
analytical circular geometry are present in the marker positions only for the coarse grid
(32× 32). As the grid refinement increases, the markers reach an end configuration in better
agreement with the initial shape.
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Figure 2. Single-bubble test with Q2 velocity interpolation: comparison of the final interface position
at t = 4 s (circular marker) with the initial circular geometry (dashed black line) for the meshes with
32 × 32 (left), 64 × 64 (center), and 128 × 128 (right) cells.

The same comments can be made for the RT 0 interpolation, which is shown in
Figure 3. The final marker positions match the initial circular geometry except for the
32 × 32 grid resolution. It is important to note that this aspect is not merely a graph-
ical consideration; it is represented by the Eal error, which measures the discrepancies
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from the initial shape. For both interpolation techniques, we observe orders of magni-
tude ranging from 10−3 up to 10−5, confirming the algorithm’s behavior in regaining the
initial circumference.
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Figure 3. Single-bubble velocity with RT 0 velocity interpolation: comparison of the final interface
position at t = 4 s (circular marker) with the initial circular geometry (dashed black line) for the
meshes with 32 × 32 (left), 64 × 64 (center), and 128 × 128 (right) cells.

As previously described, it is crucial to verify the shape configuration when the
maximum deformation is reached. For this reason, we now present the bubble configuration
at half of the period T, i.e., at t = 2 s, to check if the closed surface is preserved. Despite
the thin filaments in the bubble tail, we observe that the algorithm can reconstruct the
surface and rebuild the marker positions. This situation is depicted for both techniques,
in Figure 4 for the Q2 interpolation and in Figure 5 for the RT 0 interpolation, across the
three tested grids.
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Figure 4. Single-bubble test with Q2 velocity interpolation: interface position at maximum deforma-
tion (t = 2 s) for the meshes with 32 × 32 (left), 64 × 64 (center), and 128 × 128 (right) cells.
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Figure 5. Single-bubble test with RT 0 velocity interpolation: interface position at maximum defor-
mation (t = 2 s) for the meshes with 32 × 32 (left), 64 × 64 (center), and 128 × 128 (right) cells.

5. Projection Method for Navier–Stokes Equation

This section recalls the framework of the projection methods used for solving the
Navier–Stokes equations in incompressible flow simulations, also known in the literature
as the fractional step method.
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5.1. Model and Algorithm

This method broadly falls into three schemes: pressure-correction, velocity-correction,
and consistent splitting methods. In particular, some steps present in the projection algo-
rithm are essentially the same as the orthogonal decomposition of the velocity. Therefore,
since the decomposition is treated by using the mixed finite element tools presented in
Section 3.3, we establish a connection to fully resolve the Navier–Stokes system of equations.
For an exhaustive review of this method, the interested reader can consult the work of
Guermond et al. [23].

The projection method originates from the incompressibility constraint, which rep-
resents the main motivation of this work. In particular, one of the main issues related to
the numerical solution of momentum and mass conservation equations is the coupling
between velocity and pressure, imposed by the condition of zero divergence of velocity. The
solution of the coupled velocity–pressure system can be expensive from a computational
point of view, and this has led to the development of different numerical algorithms for the
treatment of the split system for velocity and the pressure fields. In order to overcome these
problems, many authors introduced the projection method by which the Navier–Stokes
system is subdivided into two separate steps, one for the velocity and one for the pressure.

The first idea that appeared in the literature is related to the work of Chorin and
Temam [21,22], where the time-dependent solution of incompressible viscous flow has
been proposed. Specifically, the idea is to build a sequence of decoupled elliptic equations
for the velocity and the pressure and solve them at each time step. Indeed, this numerical
method leads to an efficient simulation and reduces the computational effort.

Hereafter, the algorithm employed for the resolution of the Navier–Stokes system
in the multigrid finite element library FEMuS [41] is described, considering the standard
incremental pressure correction scheme. Thus, we recall the Navier–Stokes system for a
generic incompressible fluid flow, with constant physical properties and a smooth force f

∂u
∂t

+ (u · ∇)u = −∇p + ν∆u + f ,

∇ · u = 0 ,
(50)

where homogeneous Dirichlet boundary conditions are taken into account.
In order to define the time-dependent solutions, we can consider the time step ∆t > 0

and set tk = k∆t for 0 ≤ k ≤ K = [T/∆t], where T is the upper bound of the time interval
considered, [0, T]. To describe the adopted pressure–velocity split algorithm, the simple
Euler scheme for the time discretization is used. Specifically, a fictitious intermediate
velocity field un∗ is introduced, leading to

un∗ − un−1∗

∆t
+

un − un−1

∆t
+ (un · ∇)un = −∇pn + ν∆un + f . (51)

After that, following a standard approach, the equation can be subdivided into
two different equations by introducing the incremental pressure δp, and considering
pn = pn−1 + δpn,

un∗ − un−1

∆t
= −(un · ∇)un −∇pn−1 + ν∆un + f , (52)

un − un∗

∆t
= −∇δpn . (53)

The first equation considers the viscous effect solving the velocity un∗, which has a
divergence different from zero, while the second equation represents the L2 projection
between the two velocity fields, where the ∇ · u = 0 constraint is understood.

In this work, a different velocity–pressure split is proposed and analyzed with the
objective of exploiting the orthogonal decomposition of the velocity field [42]. Specifically,
the first equation, which solves the intermediate velocity un∗, remains the same, while the
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pressure equation is not transformed by applying the divergence operator as in standard
split algorithms. Thus, for the ‘pressure equation’, we solve directly the coupled system{

un − un∗ = −∆t∇δpn

∇ · un = 0 .
(54)

In this way, we avoid the resolution of the Poisson equation for the incremental
pressure, which would affect the imposition of the well-known non-physical homogeneous
Neumann boundary condition for δpn.

Therefore, we apply the orthogonal decomposition to (54) by using the properties of
the Raviart–Thomas finite element family. In particular, (54) is solved by considering the
same optimal minimization problem presented for the multiphase flow problem (36). The
objective is to find a field u which is the closest velocity to u∗ under the constraint of the
divergence equal to zero.

Differently, for the velocity u∗ the solution space can be found considering the standard
solution of the Navier–Stokes equations. In particular, consider the Taylor–Hood finite
element space Xh ⊂ H1(Ω). Thus, if we have u∗

h ∈ Xh, the objective is to find the velocity
uh ∈ RT 0 ⊂ H(div, Ω) by minimizing

F (uh) =
1
2

∫
Ω
(uh − u∗

h)
2dΩ ,

∇ · uh = 0 ,
(55)

over the linear function subspace RT 0 ⊆ H(div, Ω).
Naturally, for u∗

h, the velocity approximation is defined as u∗
h = ∑j u∗

jh φj(x), where u∗
jh

is the velocity field at the points j and φj(x) indicates the Lagrangian quadratic polynomial
basis functions. Instead, for uh, the approximation velocity reads as uh = ∑ f p f N f (x),
where p f represents the fluxes through the faces and n f (x) corresponds to the Raviart–
Thomas vector basis functions.

In order to derive the final system to be solved, we can consider now a piecewise
constant pressure, i.e., kh = δph ∈ Sh ⊂ L2(Ω). Therefore, the system to be solved is
described with the following two equations:∫

Ω
δkh∇ · un

h dΩ = 0 ∀δkh ∈ Sh ⊂ L2(Ω) ,∫
Ω
(un

h − u∗n
h )δun

h dΩ +
∫

Ω
kh∇ · δun

h dΩ = 0 ∀δun
h ∈ RT 0(Ω) ,

(56)

where kh can be interpreted as the discrete Lagrange multiplier of the divergence equation.
It is worth noting that (56) is only a step of the split algorithm. Indeed, the elliptic

equation for the velocity u∗n
h in (52) is still solved by considering standard Lagrangian finite

elements, in particular the Taylor–Hood type in our case.
We recall that by using the lowest-order RT element the velocity is determined con-

sidering only the fluxes through the element edges, i.e., four (six) degrees of freedom for a
bidimensional (three-dimensional) domain. Naturally, in this discussion, only quadrilateral
and hexahedral elements have been considered. Hence, the local matrix is equipped only
with five (seven) rows that represent the four (six) fluxes through the faces and the central
value for the pressure field, instead of using, for example, the nine nodes of a biquadratic
quadrilateral with Lagrangian basis functions.

5.2. Numerical Tests

In this section, we aim to test the employment of the Raviart–Thomas finite element
family in the framework of the projection method for the resolution of the Navier–Stokes
equation. Specifically, (56) was adopted, where we recall that the orthogonal decomposition
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of the velocity field is considered as the second step of the split algorithm, i.e., the resolution
of the pressure equation.

Three cases were investigated, considering a bidimensional and a three-dimensional
geometry: a channel, in both two and three dimensions, and a bidimensional cavity. For
these tests, the same comparison was performed, considering three different algorithms
for the numerical solution. The first one consists of a standard coupled algorithm for the
resolution of the velocity and pressure and by using classical Lagrangian finite elements
P2 −P1 for the field discretization. The second technique is based on the same finite element
family but employs a standard projection algorithm for the Navier–Stokes system. Lastly,
the third method is characterized by the employment of the Raviart–Thomas finite element
family for the resolution of the pressure equation in the context of the split technique.

The first analyzed case focuses on the resolution of the Navier–Stokes equation charac-
terized by a low Reynolds number inside a bidimensional channel, i.e., a laminar flow. It is
well-known that the solution of this kind of configuration is expressed by the Poiseuille
profile for the streamwise component of the velocity. Indeed, we expect to obtain the
classical parabolic profile.

In Figure 6, the investigated mesh discretizations of the channel geometry are reported.
Note that on the right is reported a channel discretization where non-affine elements have
been employed. On the other hand, the multigrid refinement produces elements that
converge to a parallelogram shape, which is an affine element since the opposite edges are
parallel, avoiding any convergence issue well documented in the literature [43,44].

Γi

Γo

ΓwΓw

Lx = 1

Ly = 2

x

y

Figure 6. Two-dimensional channel flow: geometry (left) and regular (center) and irregular (right)
coarsest mesh for the channel flow.

Considering the boundary conditions, at the inlet section Γi, a fixed velocity was
imposed, a standard no-slip boundary condition was imposed on the wall-side Γw, while
an outlet-type condition was imposed at the outlet section Γ0 to fix the pressure value. For
this kind of numerical simulation, it is not possible to have an analytical solution of the
velocity field. In fact, even though a Poiseuille flow type is searched, if we consider an inlet
boundary condition, the analytical solution for the Navier–Stokes system does not exist.
For this reason, the velocity error norm with respect to a reference solution does not have
numerical significance. On the other hand, in order to compare qualitatively the solutions
with the three types of numerical discretizations, the L2 norm of the velocity field over
the entire domain is reported for different grid refinements. In particular, for both regular
and irregular meshes, we compute the velocity norm as reported in Table 3. The different
methods are denoted with P c, P s, respectively, for the coupled and split technique with
Taylor–Hood finite elements and with RT 0 for Raviart–Thomas finite elements.
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Table 3. Two-dimensional channel test: L2-norm of the velocity field for different levels l of grid
refinement with nel number of elements, for regular and irregular mesh.

l nel
Regular Mesh Irregular Mesh

P c P s RT 0 P c P s RT 0

1 64 1.551 1.408 1.515 1.516 1.408 1.526
2 256 1.544 1.470 1.530 1.525 1.470 1.531
3 1024 1.539 1.502 1.532 1.530 1.501 1.532
4 4096 1.536 1.517 1.532 1.532 1.517 1.532
5 16,384 1.535 1.525 1.532 1.533 1.525 1.531
6 65,536 1.534 1.529 1.530 1.533 1.529 1.528

We can notice that with the increasing of the grid refinement, the velocity norm values
tend to the same value for every method, ensuring reliable numerical results for this test.
Consider that even if the second mesh is characterized by non-affine quadrilateral elements,
the numerical solution is sought considering a multigrid approach. Therefore, the initial
irregular mesh tends to asymptotically affine quadrilateral elements, allowing the use of
the standard Raviart–Thomas family of order 0. The last column of Table 3 confirms that
with this geometry, this spatial discretization is able to find the right numerical solution.

In addition, considering the framework of a laminar flow inside a channel, the main
variable of interest is the streamwise component of the velocity field, denoted with v. For
this reason, in Figure 7, the velocity profile of v is reported for the three different algorithms
as a function of the x coordinates. The plot has been performed considering a fixed y equal
to 1. Since the numerical solutions between the two different grids are very similar, we
report only the case with regular quadrilateral elements.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

v

uPc
uPs
uRTs

Figure 7. Two-dimensional channel flow (regular mesh): streamwise dimensionless velocity compo-
nent v for coupled algorithm, split algorithm, and split algorithm with Raviart–Thomas approxima-
tion along the dimensionless x-direction.

Considering Figure 7, the type of algorithm to solve the Navier–Stokes system is
denoted with the subscript, c for the coupled system and s for the split one. With the
superscript is denoted the type of finite element family employed for the velocity–pressure
discretization, P for standard P2 −P1 Lagrangian elements and RT the Raviart–Thomas
elements. The solid line represents the reference numerical result, that is, the numerical
solution obtained with a coupled algorithm and classical Taylor–Hood Lagrangian elements.
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With the markers, the numerical solutions of the split system are reported: the triangular
markers represent the case where P2 − P1 elements were employed in every equation,
while the circular markers represent the solution obtained by using an RT approximation
for the resolution of the pressure equation. We can notice a good agreement of the velocity
profiles obtained by employing the three different algorithms.

In the second test, we want to verify the convergence error rate by considering a cavity
configuration, i.e., a rectangular closed geometry. Specifically, the domain is described
with the same channel as the previous cases, i.e., the bidimensional channel described in
Figure 6, where the elements employed for the spatial discretization are standard regular
quadrilateral elements. Regarding the velocity field, the boundary condition imposed on
every edge is a homogeneous Dirichlet boundary condition in order to have u = 0 on
the walls.

In order to compute the L2 norm of the velocity error, the steady exact Navier–Stokes
solution was imposed on the right-hand side of the equation. In fact, given a generic
operator A which represents the left-hand side terms of the Navier–Stokes equation, we
aim to solve

Au = Au∗ (57)

for a specified u∗, which represents the desired solution. Specifically, the exact solution for
the velocity components reads as

u∗ =

[
u∗

v∗

]
=


π

2
sin2(πx) sin

(
π

y
2

)
cos

(
π

y
2

)
−π sin2

(
π

y
2

)
sin(πx) cos(πx)

 . (58)

In Table 4, the velocity error norm and the corresponding order of convergence for
different levels of refinement are reported for the RT 0 finite element approximation. The
order of convergence p is reported in the last column, computed as p = ln(ε l−1/ε l)/ln(2).
We can notice a linear trend for the velocity error norm, as expected by theoretical error
estimates for the Raviart–Thomas velocity approximation.

Table 4. Two-dimensional cavity test with projection method: velocity error norm and convergence
rate for different levels l of grid refinement and corresponding number of elements nel for RT 0 finite
element approximation.

l nel

RT 0

∥u∗ − uh∥0
εl−1

εl
p

1 64 9.59 × 10−1 - -
2 256 4.86 × 10−1 1.976 0.997
3 1024 2.44 × 10−1 1.994 0.997
4 4096 1.22 × 10−1 1.998 1.002
5 16,384 6.10 × 10−2 2.000 0.998
6 65,536 3.05 × 10−2 2.000 0.999
7 262,144 1.52 × 10−2 1.999 1.000

The same test was also computed considering the standard Taylor–Hood Lagrangian
basis function, with both a coupled and a split algorithm. The results are reported in Table 5.
We can notice a good convergence trend for the velocity error for both methods even though
the order of convergence p is not reported. In fact, despite these parameters appearing to
be equal to 3 for both simulations, we recall that the velocity error should be considered
together with the pressure error norm. For coupled systems or for Lagrangian-type basis
functions that are not pointwise divergence-free, we know that an error in the pressure
field produces an effect also the error in the velocity.
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Table 5. Two-dimensional cavity test with Taylor–Hood finite element approximation: velocity error
norm for different levels l of grid refinement and corresponding number of elements nel , for coupled
and split algorithm.

l nel

Coupled P2 −P1 Split P2 −P1

∥u∗ − uh∥0
εl−1

εl
∥u∗ − uh∥0

εl−1
εl

1 64 4.60 × 10−2 - 4.56 × 10−2 -
2 256 5.81 × 10−3 7.925 5.77 × 10−3 7.905
3 1024 7.25 × 10−4 8.018 7.23 × 10−4 7.982
4 4096 9.05 × 10−5 8.007 9.06 × 10−5 7.986
5 16,384 1.13 × 10−5 8.002 1.13 × 10−5 8.011
6 65,536 1.43 × 10−6 7.929 1.41 × 10−6 7.995

An interesting result was found considering the behavior of the velocity divergence.
As expected, for the coupled system solved by using the RT 0 approximation, the velocity
divergence reaches values close to machine precision, indicating that this technique is
equipped with an exact zero divergence in every point. Considering the other two methods,
the results are reported in Table 6.

Table 6. Two-dimensional cavity test with Taylor–Hood finite element approximation: velocity
divergence error norm for different levels l of grid refinement and corresponding number of elements
nel for coupled and split algorithm.

l nel

Coupled P2 −P1 Split P2 −P1

∥∇ · u∗ −∇ · uh∥0
εl−1

εl
∥∇ · u∗ −∇ · uh∥0

εl−1
εl

1 64 4.33 × 10−1 - 4.42 × 10−1 -
2 256 1.13 × 10−1 3.839 1.13 × 10−1 3.92
3 1024 2.83 × 10−2 3.978 2.83 × 10−2 3.98
4 4096 7.09 × 10−3 3.996 7.09 × 10−3 4.00
5 16,384 1.77 × 10−3 3.999 1.77 × 10−3 4.00
6 65,536 4.44 × 10−4 3.990 4.43 × 10−4 4.00

It is worth noting that the velocity divergence error is different from zero as expected.
On the other hand, these values seem to converge with a quadratic order.

The last test represents the extension of the bidimensional Poiseuille flow to a three-
dimensional configuration, i.e., a regular parallelepiped. The considered domain is repre-
sented in Figure 8, where the characteristic lengths have the same values (Lx = 1, Ly = 1 and
Lz = 4). Moreover, regular hexahedral elements were employed for the domain discretization.

The flow configuration follows the same path of the bidimensional case, and thus the
fluid enters at the inlet section Γi and exits through the outlet section Γo. On the remaining
boundaries, the standard no-slip boundary condition was imposed.

Regarding the reliability of the numerical solutions, the same comments of the two-
dimensional channel case can also be drawn for the case of a three-dimensional channel.
Therefore, since it is not possible to compare the numerical solution with an analytical field,
also in this case the L2-norm of the velocity field was computed for the three methods as an
indicator of the solution goodness. For this reason, in Table 7 the velocity norm values are
reported considering three levels of refinements for the three techniques. The notation is
the same as the two-dimensional channel test.
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Γi

Γo
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Γb

Lx

Ly
Lz

Figure 8. Three-dimensional channel flow geometry.

Table 7. Three-dimensional channel test: velocity norm for different levels l of grid refinement and
the corresponding number of elements nel .

l nel P c P s RT 0

1 512 2.147 1.962 2.301
2 4096 2.236 2.139 2.312
3 32,768 2.280 2.231 2.323

The L2-norm of the velocity field tends to the same value for each different algo-
rithm, confirming the good behavior of the numerical solution, as already shown in the
bidimensional case.

Furthermore, in this case, the same qualitative comparison between three types of
algorithms was performed on the numerical solution. Therefore, in Figure 9 the streamwise
velocity component w is reported, where the employed notation and symbols are the same
as the bidimensional channel. The w component is represented as a function of the x
coordinate, with a plot performed with a fixed y coordinate equal to 0.5.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.5

1.0

1.5

2.0

w

wPc
wPs
wRTs

Figure 9. Three-dimensional channel flow: streamwise dimensionless velocity component w for
coupled algorithm, split algorithm, and split algorithm with Raviart–Thomas approximation along
the dimensionless x-direction.
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Figure 9 shows good accuracy for the computed numerical solution. Indeed, the
velocity profile w obtained with a Raviart–Thomas approximation of the pressure equation
in a split system (56) has a similar trend to the velocity profile obtained with a standard
coupled (50) and split algorithm (52).

6. Conclusions

This work focuses on addressing the challenges of mass conservation in incompressible
flow simulations using Raviart–Thomas finite element basis functions. The main goal of this
paper is to achieve a divergence-free velocity field, which is crucial for accurate numerical
solutions in many applications, including multiphase flow and porous media. We provide
an overview of lowest-order Raviart–Thomas finite element discretization on quadrilateral
and hexahedral affine elements.

Further developments are needed to address non-affine hexahedral elements due to
convergence issues associated with the discretization of constant fields. We plan to explore
this aspect in future papers, along with numerical optimization techniques to improve the
time to solution.

A new velocity–pressure projection method is introduced to obtain a divergence-free
velocity field for solving the Navier–Stokes system. Numerical results on an orthogonal
velocity decomposition and the use of the projection method are presented, including a
laminar flow simulation inside a channel and a sinusoidal flow inside a cavity. Conver-
gence rates for velocity and pressure error follow theoretical convergence rates for both
bidimensional and three-dimensional geometries. The methodology guarantees robustness
against spillover of the divergence constraint into the velocity error, the so-called pressure
invariance property.

Furthermore, multiphase flow simulations are exploited to demonstrate the methodol-
ogy’s performance, highlighting the importance of maintaining a divergence-free velocity
in scenarios where mass conservation is critical, such as interface tracking problems. A
comparison is conducted, taking advantage of specific characteristics of the Lagrangian
and Raviart–Thomas finite elements in an advection multiphase problem using the marker
method to track the interface.

In summary, this work contributes to the understanding of keeping divergence-free
fields in incompressible flow simulations. The Raviart–Thomas finite element family is
identified as a valuable tool in addressing this challenge, with applications ranging from
the projection method for the Navier–Stokes equations to the advection of interfaces in
multiphase flows.
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