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A cortical surface template for human 
neuroscience
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Neuroimaging data analysis relies on normalization to standard anatomical 
templates to resolve macroanatomical differences across brains. Existing 
human cortical surface templates sample locations unevenly because of 
distortions introduced by inflation of the folded cortex into a standard 
shape. Here we present the onavg template, which affords uniform sampling 
of the cortex. We created the onavg template based on openly available 
high-quality structural scans of 1,031 brains—25 times more than existing 
cortical templates. We optimized the vertex locations based on cortical 
anatomy, achieving an even distribution. We observed consistently 
higher multivariate pattern classification accuracies and representational 
geometry inter-participant correlations based on onavg than on other 
templates, and onavg only needs three-quarters as much data to achieve 
the same performance compared with other templates. The optimized 
sampling also reduces CPU time across algorithms by 1.3–22.4% due to less 
variation in the number of vertices in each searchlight.

Various functions of the cerebral cortex are systematically organized 
on its highly folded surface1–4. Functional magnetic resonance imaging 
(fMRI) data, which were acquired as three-dimensional (3D) volumes, 
can be projected onto this surface for analysis and visualization in a 
two-dimensional (2D) space5. Compared with the 3D volumetric analysis 
of fMRI data, surface-based analysis affords better inter-participant 
alignment, higher statistical power, more accurate localization of func-
tional areas and better brain-based prediction of cognitive and personal-
ity traits6–13. Due to these advantages, surface-based analysis has been 
widely adopted by the neuroimaging community, including software14–17, 
large-scale datasets18–20 and cortical atlases and parcellations21–25.

To account for individual differences in macroanatomy, it is key to 
normalize all participants’ data based on an anatomical template, so 
that the cortical mesh comprises the same number of vertices across 
brains, and the same vertex corresponds to the same macroanatomi-
cal location. The most commonly used template spaces are fsaverage5 
and fs_LR26, which were created based on 40 brains. In these standard 
spaces, the locations of cortical vertices are not based on the anatomi-
cal surface, but rather on the spherical surface—a surface obtained by 
fully inflating each cortical hemisphere to a sphere (Fig. 1c). Then, a 

geodesic polyhedron—usually a subdivided icosahedron—is used to 
define the locations of cortical vertices. This procedure allows the 
vertices to be approximately uniformly distributed on the spherical 
surface; however, because the geometry of the spherical surface dif-
fers from the original surface, the distribution of cortical vertices is 
far from uniform on the original anatomical surface. For example, 
cortical vertices are much denser in the central sulcus and the lateral 
sulcus than in ventral temporal and prefrontal cortices (Fig. 1a and 
Extended Data Fig. 1).

In this work, we present the onavg (short for OpenNeuro Aver-
age) surface template, a human cortical surface template that affords 
uniform sampling of the cortex. The onavg template was created using 
high-quality MRI scans of 1,031 participants from 30 OpenNeuro data-
sets27—25 times more participants than previous surface templates5,26. 
We optimized the vertex locations of the onavg template based on the 
cortical anatomy of the 1,031 participants, so that these vertices were 
evenly distributed on the anatomical surface instead of on the spherical 
surface, affording uniform sampling of the cerebral cortex.

In a series of analyses based on an independent naturalistic 
movie-viewing dataset28, we demonstrate the advantages that onavg 
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and neighbors. We performed all our analyses using both the ico32 
(also known as icoorder5 or 10k, with mean inter-vertex spacing of 
approximately 4 mm) and ico64 (icoorder6 or 41k, approximately 
2 mm) resolutions and observed consistent results. We focus on the 
ico32 results in the main text and provide the ico64 results in the Sup-
plementary Information.

For both fsaverage and fs_LR (fsavg and fslr for short, respectively, 
here and thereafter), the inter-vertex distance varied substantially 
throughout the cortex, and the pattern was similar for both templates 
(Fig. 1a and Extended Data Fig. 1a). The inter-vertex distance was smaller 
(denser sampling) in the central sulcus, the postcentral sulcus, the 
superior temporal sulcus, the lateral sulcus and much of the cingulate 
cortex and the medial wall; the inter-vertex distance was larger (sparser 
sampling) in the lateral and medial occipital cortex, the lateral and ven-
tral temporal cortex and the lateral and medial prefrontal cortex (Sup-
plementary Fig. 6). In other words, many brain regions that respond in 
synchronization across participants30,35,39–42 and regions that involve 
high-level cognition43–47 are not sufficiently sampled based on these 
traditional surface template spaces.

To resolve these issues caused by traditional templates and 
sphere-based sampling, we created the onavg surface template using 
anatomy-based sampling. That is, instead of placing the vertices on 
the spherical surface based on a geodesic polyhedron, we chose the 
locations of the vertices based on cortical anatomy: we placed all 
the vertices on the anatomical surfaces of the 1,031 participants and 
penalized a pair of vertices if they were too close. After minimizing 
the distance-based loss function, the vertices were approximately 
uniformly distributed throughout the cortex.

The anatomy-based sampling of the onavg template reduced 
the heterogeneity of vertices in many ways. For inter-vertex distance, 
the variance decreased from 0.41 mm2 (fsavg) and 0.43 mm2 (fslr) to 
0.03 mm2 (onavg). For the cortical area occupied by each vertex, the 
variance decreased from 11.90 mm4 (fsavg) and 12.29 mm4 (fslr) to 

offers using various multivariate pattern analysis (MVPA) tech-
niques29–31. On one hand, the anatomy-based sampling of onavg affords 
better access to the information encoded in spatial response patterns, 
leading to higher accuracy for multivariate pattern classification32 
and higher inter-participant correlation of representational geom-
etry33,34. By switching to onavg, the same classification accuracy and 
inter-participant correlation can be achieved with three-quarters 
of the original number of participants (Fig. 2). On the other hand, 
anatomy-based sampling eliminates large searchlights caused by geo-
metric distortions, leading to consistently reduced computational time 
for computational algorithms30,35,36 that rely on searchlight analysis11,37. 
We replicated these analyses using different spatial resolutions, dif-
ferent alignment methods, different numbers of participants and two 
additional datasets38, and we observed consistent results across all 
conditions and datasets (Extended Data Figs. 2–5 and Supplementary 
Figs. 1–5).

Results
Not all vertices were created equal
The sphere-based sampling procedure used by traditional surface tem-
plates unavoidably leads to inhomogeneous sampling of the cortical 
surface, as a result of the geometric distortion when each hemisphere 
is fully inflated to a sphere. The vertices are approximately uniformly 
distributed on the spherical surface, which means that cortical regions 
that were expanded during the inflation will be sampled more densely, 
and cortical regions that were shrunk during the inflation will be sam-
pled more sparsely.

To quantify the distribution of vertices on the cortical surface, 
we computed the inter-vertex distance for each cortical vertex, where 
smaller inter-vertex distance indicates denser sampling in the region, 
and larger distance indicates sparser sampling. For each vertex, we 
computed the Dijkstra distance between the vertex and its neighbors 
for each of the 1,031 participants and averaged across participants 
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Fig. 1 | Variation in vertex properties across the cortex. a, The distribution  
of vertices in fsavg, fslr and onavg, as measured by inter-vertex distance.  
b, Standard deviation of inter-vertex distance, vertex area and number of vertices 
in a 20-mm searchlight for fsavg, fslr and onavg. c, Classic surface templates 
sample the cortical surface based on the spherical surface, which was obtained 

by fully inflating the original anatomical surface. For these templates, the 
distribution of vertices is almost uniform on the spherical surface (right), but far 
from uniform on the anatomical surface (left), due to the geometric distortion 
introduced by inflation. Vertices of the same color (red/green; also in zoomed-in 
views) are homologous for the two surfaces.
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0.55 mm4 (onavg). For the number of vertices in a 20-mm searchlight, 
the variance decreased from 1,723.14 (fsavg) and 1,858.20 (fslr) to 81.58 
(onavg). For all these three vertex properties that we assessed, the vari-
ance across the cortex decreased substantially from other templates 
to onavg (mean decrease of 94.23%; range 91.59–95.61%).

Better cortical sampling improves MVPA results
Multivariate pattern analysis (MVPA) comprises algorithms commonly 
used in computational neuroscience, such as multivariate pattern 
classification (MVPC)29,32 and representational similarity analysis 
(RSA)31,33. MVPA relies on the fact that the spatial response pattern for 
a certain stimulus or condition is stable across repetitions within the 
same participant or across participants when their data are function-
ally hyperaligned30,36,42. Therefore, the quality of the spatial patterns 
formed by cortical vertices is key to successful MVPA.

When resampling neuroimaging data using a traditional 
sphere-based template, the uneven distribution of vertices on corti-
cal surface creates a systematic bias: brain regions that have smaller 
inter-vertex distance are densely sampled and overrepresented, and 
brain regions that have larger inter-vertex distance are sparsely sam-
pled and underrepresented. Note that undersampling a brain region 
permanently discards certain information, especially the information 
encoded in fine-grained spatial patterns. Moreover, each vertex has the 
same weight when computing the pattern vector, and thus the over-
sampled regions have more influence on the pattern vector compared 
with the undersampled regions. In other words, the uneven sampling 
applies an artificial reweighting to cortical regions based on sampling 
density, which can affect subsequent computational algorithms.

To assess the effects of different surface templates on MVPA, we 
performed MVPC and RSA on a naturalistic fMRI dataset28 for each sur-
face space and compared the results. The dataset was collected from 15 
participants when they watched the audiovisual movie Forrest Gump 
in a 3T MRI scanner. We preprocessed the dataset with fMRIPrep14, 
which aligns all participants’ data based on cortical folding patterns 
using FreeSurfer. To control for potential confounds from idiosyncratic 
functional–anatomical correspondence, we repeated the analysis 
using functionally aligned data based on Procrustes hyperalignment 
and warp hyperalignment, and we found similar differences between 
surface templates (Extended Data Figs. 2 and 3 and Supplementary 
Figs. 1–5). Note that the information loss due to undersampling hap-
pened during the resampling step of preprocessing, and thus it affects 
the results regardless of the alignment method. All analysis was per-
formed using the second half of the movie, independent of the data 
used for hyperalignment training (first half of the movie).

In the MVPC analysis, we tried to classify which time point of 
the movie the participant was watching among all 1,781 time points 
(TRs; 2 s each) based on the whole-brain response patterns. We used 
a leave-one-participant-out cross-validation and left out a test par-
ticipant each time. For each time point of the movie, we computed 
the average response pattern across all other participants as the pre-
dicted response pattern of the test participant. Therefore, for each 
test participant, we had 1,781 measured response patterns and 1,781 
predicted response patterns. We examined whether the measured 
response pattern for a certain time point had the highest correlation to 
the predicted pattern for the same time point among all 1,781 predicted 
response patterns (chance accuracy < 0.1%). The average accuracy 
across participants significantly increased from 13.3% (fsavg) and 13.2% 
(fslr) to 15.7% (onavg), both t(14) > 10.0, Cohen’s d > 2.60, P < 10−7 (paired 
t-tests). For all 15 out of 15 participants, the accuracy based on onavg 
was higher than based on other templates (Fig. 2a).

The classification accuracy for between-participant MVPC 
depends on the number of participants. Averaging across a larger 
number of participants reduces the noise in the predicted response 
patterns of the test participant, which improves classification accuracy. 
For all three surface templates, MVPC accuracy consistently increased 

with more participants (Fig. 2b). Note that the same accuracy for fsavg 
and fslr with n = 15 (13.3% and 13.2%, respectively) is approximately the 
same as the accuracy for onavg with n = 11–12 (12.8–13.5%) or n = 11.7 and 
n = 11.5, respectively, based on spline interpolation. In other words, the 
onavg surface template only requires 77.9% and 76.9% of the number 
of participants for fsavg and fslr, respectively, to achieve the same 
classification accuracy.

In the RSA analysis, for each searchlight (20 mm), we computed a 
time-point-by-time-point representational dissimilarity matrix (RDM) 
for each participant using correlation distance. We computed the 
Pearson correlation between each participant’s RDM and the aver-
age of others, which is the inter-participant correlation (ISC) of rep-
resentational geometry35 that is often used as the lower-bound of 
noise ceiling estimation34. We refer to this correlation as RSA-ISC here 
and thereafter. We averaged the RSA-ISCs across all searchlights and 
obtained an average RSA-ISC for each participant. The average RSA-ISC 
based on the onavg template was consistently higher than the average 
RSA-ISCs based on fsavg and fslr for all 15 participants, and the average 
RSA-ISC significantly increased from 0.094 (fsavg) and 0.094 (fslr) 
to 0.104 (onavg), both t(14) > 28.2, Cohen’s d > 7.30, P < 10−13 (paired 
t-tests; Fig. 2c).

Similar to between-participant MVPC accuracy, the RSA-ISC also 
benefits from the reduction in noise by averaging over a larger number 
of participants. For all three surface templates, the RSA-ISC consistently 
increases with more participants (Fig. 2d). The same RSA-ISC for fsavg 
and fslr with n = 15 (0.094 and 0.094, respectively) is approximately 
the same as the RSA-ISC for onavg with n = 11 (0.094) or n = 11.0 and 
n = 10.9, respectively, based on Spearman–Brown interpolation. In 
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Fig. 2 | Better cortical sampling improves MVPA results. a, The between-
participant classification accuracy of movie time points based on fsavg, fslr and 
onavg. Bars denote the average accuracy across all 15 participants and gray lines 
denote the accuracies of individual participants. b, Classification accuracy as a 
function of the amount of data (the number of participants). Dashed horizontal 
lines denote accuracies when n = 15. c, RSA-ISC, computed as the correlation 
between one participant’s RDM and the average of others’, based on fsavg, fslr 
and onavg. Bars denote the average RSA-ISC across 15 participants and gray lines 
denote those of individual participants. d, RSA-ISC as a function of the amount of 
data. Dashed horizontal lines denote RSA-ISC when n = 15.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02346-y

other words, the onavg surface template only requires 73.5% and 72.8% 
of the number of participants for fsavg and fslr, respectively, to achieve 
the same RSA-ISC.

In both between-participant MVPC and RSA-ISC, improvements 
in performance were unevenly distributed, with greater improvement 
in sparsely sampled and inhomogeneously sampled cortical fields (for 
example, medial occipital, ventral temporal, premotor and insular 
cortices; Extended Data Fig. 6), indicating that other templates bias the 
anatomical distribution of results from multivariate pattern analyses.

The improvement of MVPC accuracy and RSA-ISC was consistent 
across individuals—onavg outperformed fsavg and fslr for all 15 par-
ticipants (Fig. 2a,c). This was likely because anatomy-based sampling 
improved every participant’s data. We repeated our analysis using 
different resolutions, different alignment methods, different sample 
sizes and two additional datasets, and we observed consistent results 
(Extended Data Figs. 2–5 and Supplementary Figs. 1–5).

In the analyses above, we demonstrate the advantages of the onavg 
template using MVPA, which by definition relies on spatial patterns. 
These advantages, in theory, generalize to any neuroscientific data 
analysis which involves sampling density, uniformity or spatial pat-
terns on the cortical surface. To demonstrate the broad applicability 
of the onavg template, we used the Human Connectome Project (HCP) 
dataset to showcase the advantages of the onavg template on three 
key topics of neuroscience: (1) resting-state functional connectivity, 
which is commonly used to study the intrinsic functional organization 
of the brain (Extended Data Fig. 7); (2) functional contrast maps, which 

is often used to localize functional regions of interest (Extended Data 
Fig. 8); and (3) individual differences in brain functional architecture, 
which is key to precision neuroscience and translational neuroscience 
(Extended Data Fig. 9). Together, these results demonstrate that the 
onavg template affords various advantages for a wide range of neuro-
scientific studies, and these advantages are consistent across datasets 
and methodological choices.

Expedited computations for searchlight-based algorithms
Searchlight analysis11,37 is widely used in combination with MVPC or RSA 
to assess which part of the brain contains the information of interest, 
and it serves as the backbone of computational algorithms such as 
searchlight hyperalignment35,36,39. Searchlights are defined as the group 
of vertices that are within a certain distance (the searchlight radius) 
from a center, and analyses are computed for overlapping searchlights. 
Traditional surface templates have large variation in inter-vertex dis-
tance across the cortex and, as a result, large variation in the number 
of vertices in a searchlight (Fig. 1b). The densely sampled brain regions 
have more vertices in each searchlight, causing prolonged computa-
tions in these searchlights.

We systematically assessed the computational time for various 
searchlight-based algorithms, and we observed a consistent effect 
that the computational time based on the onavg surface template was 
shorter than the computational time based on fsavg and fslr, with a 
1.3–24.4% reduction in CPU time (Fig. 3; see Extended Data Fig. 10 for 
results based on ico64 resolution). For creating the common space 
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and multivariate pattern classification (e). f–j, These algorithms rely on basic 
matrix operations (f) and the computational time of these matrix operations 
is longer when there are more vertices in a searchlight (g–j). Each light blue 
curve represents the power function fitted between the number of vertices in a 

searchlight (the base) and the computational time. The exponent varies between 
0.73 and 2.82 for different matrix operations. The vertical blue lines denote the 
interquartile range of 100,000 repetitions and the central black dots denote the 
median of the distribution. SVD, singular value decomposition; COV, covariance 
matrix; INV, inverse of covariance matrix; GRM, Gram matrix. Dot plots represent 
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for hyperalignment, the CPU time decreased from 3.13 h (fsavg) and 
3.10 h (fslr) to 2.77 h (onavg). For hyperalignment of each partici-
pant to the common space, the CPU time decreased from 4.60 min 
(fsavg) and 4.38 min (fslr) to 3.48 min (onavg), based on the classic 
Procrustes algorithm42 and from 8.60 min (fsavg) and 8.41 min (fslr) to 
7.22 min (onavg), based on the warp hyperalignment algorithm36. For 
searchlight-based RSA analysis, the CPU time decreased from 39.7 min 
(fsavg) and 38.9 min (fslr) to 36.9 min (onavg). For searchlight-based 
classification analysis, the CPU time decreased from 12.8 min (fsavg) 
and 12.5 min (fslr) to 12.4 min (onavg). On average across conditions, 
switching to onavg led to a 11.5% reduction in CPU time.

The reduction in CPU time is because these computational algo-
rithms rely on matrix operations of the input data matrix (Fig. 3f), 
and the time required by these matrix operations grows exponen-
tially with the number of vertices (Fig. 3g–j). As a result, a searchlight 
with an excessive number of vertices will lead to prolonged matrix 
operations, and eventually, prolonged CPU time for computational 
algorithms. For example, if the computational time is proportional to 
the number of vertices squared (quadratic complexity), doubling the 
number of vertices requires four times as much computational time. 
For representative matrix operations, the exponent varies between 0.73 
and 2.82, and the computations are up to 7.07 times as long when the 
number of vertices is doubled (Fig. 3g–j). The onavg template avoids 
making searchlights with an excessive number of vertices created by 
geometric distortions and uneven sampling (Fig. 1b) and, therefore, 
it avoids the unnecessary prolonged computations and speeds up 
computational algorithms substantially.

Discussion
In this work we introduce the cortical surface template onavg, which 
was built to achieve uniform sampling of cortical vertices based on 
high-quality structural scans of 1,031 brains. Compared with classic 
templates that rely on sphere-based sampling, onavg reduces bias in 
searchlight analyses, facilitates the efficient use of neuroimaging data 
and improves the results of various MVPA algorithms. Furthermore, 
onavg avoids searchlights with an excessive number of vertices caused 
by uneven sampling and expedites computational methods based on 
searchlight analysis.

Classic templates create searchlights in densely sampled regions 
with an excessive number of vertices and searchlights in sparsely sam-
pled regions with too few vertices. Uneven sampling applies an artificial 
reweighting to cortical regions based on sampling density. For exam-
ple, ventral and inferior temporal and prefrontal cortices are consist-
ently undersampled in these templates, systematically biasing results 
of searchlight multivariate analyses in these regions by diminishing 
power. The more homogeneous searchlight sampling of cortex in the 
onavg template largely remedies this bias by reducing the variance in 
number of vertices per searchlight by over 95%.

Replicability and reproducibility are key to neuroscientific 
research48–52, and one of the best practices to increase replicability 
and reproducibility is to use larger amounts of data53–55; however, 
this is often infeasible in practice due to the cost and human effort 
needed to collect and curate fMRI data. Alternatively, making more 
efficient use of existing data also increases statistical power, and 
in turn, better replicability and reproducibility45,56. The onavg tem-
plate provides a way to make better use of neuroimaging data in 
surface-based analysis. It consistently improved the results of MVPA 
algorithms across different participants, different data resolutions, 
different alignment methods, different amounts of data and differ-
ent datasets. Compared with commonly used surface templates, 
onavg only requires three-quarters of the amount of data to achieve 
the same level of performance. Therefore, onavg has the potential to 
both improve the replicability and reproducibility of future neuro-
scientific research and reduce the cost and effort of neuroimaging  
data collection.

Besides improved performance, onavg also reduces the computa-
tional time of various MVPA algorithms, which depend on the number 
of vertices in a searchlight. The geometric distortion of sphere-based 
sampling creates searchlights in densely sampled regions with an 
excessive number of vertices, which can be avoided by switching to 
anatomy-based sampling, which we used to create onavg. Therefore, 
onavg avoids prolonged computations in large searchlights. Due to the 
size of movie time point RDMs (1,781 × 1,781), we only benchmarked 
the RSA computational time based on correlation distance, whose 
effect size might be smaller than those of alternative distance metrics. 
For example, the crossnobis distance57 requires the computation of 
the covariance matrix and its inverse. These operations have higher 
time complexity, which could benefit more from avoiding the sizable 
searchlights created by geometric distortion.

The onavg template was created based on high-quality structural 
scans of 1,031 brains, more than 25 times more brains as compared with 
previous surface templates. This was a direct benefit from open science, 
especially the datasets hosted on OpenNeuro27 and managed by Data-
Lad58. We have made the onavg template openly available under the 
Creative Commons CC0 license and released it as a DataLad58 dataset 
on GitHub (https://github.com/feilong/tpl-onavg). The onavg template 
is also integrated into TemplateFlow59 (https://github.com/template-
flow/tpl-onavg), the standard repository for neuroimaging templates.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02346-y.
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Methods
OpenNeuro datasets
We built the onavg surface template based on high-quality structural 
scans of 1,031 brains aggregated from 30 OpenNeuro datasets27. The 
datasets and participants were selected based on a few criteria:

 1. The participant has at least a high-quality T1-weighted scan and 
a high-quality T2-weighted scan. That is, the T1-weighted and 
T2-weighted scans both have (1) whole coverage of the cerebral 
cortex; (2) a spatial resolution of 1 mm or less in all directions; 
and (3) no major quality issues.

 2. The participant’s structural scans show no visible lesion or ab-
normality. For ‘ds002799’ only preoperative scans are included.

 3. The structural workflow of fMRIPrep successfully finishes 
within 100 h of CPU time and without errors, and the recon-
structed cortical surface has no major artifacts. Longer sessions 
are predominantly caused by prolonged ‘mris_fix_topology’ and 
that usually indicates problematic structural images.

 4. The dataset is released under the CC0 license or the Public 
Domain Dedication and License.

After screening, 1,154 participants passed our criteria. We noted 
that some of the participants were duplicates. For example, the same 
individual might have participated in multiple experiments and appear 
in multiple datasets. To find these duplicates, we compared the similari-
ties of reconstructed cortical surfaces and found 1,031 unique partici-
pants. The duplicate participants identified by reconstructed surfaces 
are consistent with the documentation of the corresponding datasets.

During analysis, we averaged the multiple reconstructed sur-
faces of the same participant and created an average surface for each 
participant.

Participant demographics
One advantage of using 30 OpenNeuro datasets to create the onavg 
template is that the participants are aggregated through diverse stud-
ies, making them representative of the general population of neuroim-
aging study participants. We did not recruit new participants for this 
study, and therefore it does not involve informed consent or participant 
compensation.

Among the 1,031 participants, 471 were female, 408 were male, 
2 were nonbinary and 150 were unknown. The mean age ± s.d. was 
28.42 ± 14.57 years, based on the 767 participants whose age informa-
tion was available. The participants were mainly young adults, with a 
small proportion of younger and older participants. The age range in 
years was 8–81 and the 10th and 90th percentiles were 18 and 43.76, 
respectively.

Preprocessing and surface reconstruction
We downloaded and managed the data files of the 30 OpenNeuro 
datasets using DataLad58, and preprocessed the structural scans of 
these 1,031 participants using fMRIPrep14 v.21.0.1. Specifically, we used 
the ‘--anat-only’ option and designated fsaverage as the output space. 
These settings allowed us to reconstruct the cortical surfaces of these 
participants using FreeSurfer15 (build stamp, freesurfer-Linux-centos6_
x86_64-stable-pub-v.6.0.1-f53a55a) while benefiting from the opti-
mized structural preprocessing workflow of fMRIPrep. To increase the 
replicability of our results, we also used the ‘--skull-strip-fixed-seed’ 
option with a random seed of 0. This ensures that anyone could regener-
ate identical cortical surfaces as those used in this work.

Optimize the template using anatomy-based sampling
We optimized the vertex locations of the onavg template, so that no ver-
tices were too close to each other, and the vertices were approximately 
uniformly distributed throughout the cortex. In the optimization, we 
used a distance-based objective function, which penalizes pairs of 
vertices if they were too close. We first performed a coarse discrete 

optimization based on a geodesic grid, which chose a set of vertex loca-
tions that minimized the loss function from a larger set of candidate 
locations. We then performed a fine optimization, which allowed the 
vertices to move freely nearby in small steps to further reduce the loss 
function. We implemented the optimization algorithm in Python using 
SciPy60 and NumPy61.

Objective function. We defined the objective function (loss function) 
of the optimization process as:

L =
i≠j
∑

di,j<dthr

1
dp
i,j

where di,j is the Dijkstra geodesic distance between a pair of vertices 
i and j. The distance was based on the anatomical surfaces of all 1,031 
participants, and therefore the objective of the optimization process 
was to make the vertices evenly distributed on the anatomical surface 
instead of the spherical surface. This distance was raised to a power 
of p to further penalize small distances (neighboring vertices being 
too close). In practice we used p = 4, which worked well, thus we didn’t 
explore other options. Our objective was to ensure the distance was 
not too small for vertices close to each other, and it is computationally 
heavy to compute and manage all pairwise distances between vertices. 
Therefore, we employed a cutoff distance dthr and only included vertex 
pairs whose distance was smaller than the cutoff distance dthr. We chose 
dthr to be 256 mm/ico, which was 8 mm for ico32 and 4 mm for ico64, 
approximately twice the average inter-vertex distance.

Occasionally, two vertices might appear at the same location 
during the optimization process, which makes the distance zero and 
the loss function ill-defined. To avoid this problem, we added a small 
number ε to the distance di,j in the steps where this problem might 
happen, and we used ε = 0.001 in practice.

L =
i≠j
∑

di,j<dthr

1
(di,j + ε)p

Coarse optimization of vertex locations. The coarse optimization 
was a discrete optimization, where we chose the vertex locations 
from a large set of candidate locations, so that the loss function was 
minimized. The candidate locations were the vertex locations of a 
high-resolution reference surface. We created the high-resolution 
reference surface by upsampling the fsaverage spherical surface to a 
higher resolution. Specifically, we used fsavg-ico256 (655,362 vertices 
per hemisphere) to optimize onavg-ico32 (10,242 vertices per hemi-
sphere) and fsavg-ico512 (2,621,442 vertices per hemisphere) to opti-
mize onavg-ico64 (40,962 vertices per hemisphere). In other words, the 
locations of the 10,242 vertices were chosen from the 655,362 candidate 
locations and the locations of the 40,962 vertices were chosen from the 
2,621,442 candidate locations. The number of candidate locations was 
approximately 64 times the number of vertices.

We initialized the vertex locations by randomly choosing can-
didate locations without replacement. Then, we tried to find better 
locations for them. Each candidate location had a loss value based on 
which vertex locations near it had been occupied, and this value was 
the same value that would be added to the loss function if the location 
was occupied by a vertex. For each vertex, we first removed it from its 
current location and updated the loss value of all candidate locations. 
We then placed the vertex to the location that had the minimal loss 
value. We looped through all vertices for up to 100 times and updated 
their locations accordingly. This process might have stopped early if 
the local optimum was reached before 100 iterations. The order of 
vertices was randomized during each iteration.

This coarse optimization process was a greedy algorithm. The local 
minimum might not be the global minimum, and the results depended 

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02346-y

on initialization. Therefore, for each hemisphere and each resolution, 
we repeated the process for 200 times with different random seeds 
(and different initializations accordingly). We chose the one that had 
the smallest loss value for further optimization.

Fine optimization of vertex locations. We refined the vertex locations 
after the coarse optimization to further reduce the loss function. This 
time, instead of predefined locations, we allowed the vertices to move 
freely nearby. For each vertex, we used numerical differentiation to 
find the direction of the gradient, and we moved the vertex along the 
direction to reduce the loss function. We computed new loss values 
for different step sizes ranging from 2−21 to 2−10 (4 × 10−7 and 1 × 10−3) 
and used the optimal step size multiplied by 0.5 as the final step size to 
update the vertex location. The factor of 0.5 was because the optimiza-
tion was performed simultaneously across vertices in parallel, and if 
the optimal was to reduce the distance between two vertices by 1 mm, 
each of them should only be moved by 0.5 mm.

It is difficult to compute the Dijkstra distance in this case, because 
the vertex locations of the new surface do not correspond to vertex 
locations of the high-resolution reference sphere. Therefore, we 
approximate the distance based on barycentric interpolation. Each 
vertex is located on a face of the triangular mesh, and its coordinates 
ci can be represented as a weighted sum of the three vertices of the 
triangle.

ci = wi,aca +wi,bcb +wi,ccc, wherewi,∗ ≥ 0andwi,a +wi,b +wi,c = 1

Similarly, say vertex j locates on a triangle whose vertices were 
x, y and z:

cj = wj,xcx +wj,ycy + wj,zcz, wherewj,∗ ≥ 0andwj,x +wj,y +wj,z = 1

We estimate di,j as

d̂i,j = ∑wi,kwj,ldk,l for k = a, b, c, and l = x, y, z

This allowed us to compute the distance between a pair of vertices 
at any locations and further fine-tune the vertex locations without 
being constrained by the reference sphere.

Optimization of triangular faces
After finalizing the optimization of vertex locations, we created an 
initial surface mesh based on these vertices. Specifically, we created 
a convex hull based on the vertex locations on the spherical surface, 
and the simplices of the convex hull were the triangular faces of the 
initial surface mesh.

We wanted to make each triangular face as similar to an equilateral 
triangle as possible and therefore we optimized the faces to avoid long 
edges and elongated triangles. Each pair of neighboring faces forms a 
quadrilateral ABCD. When AC < BD, we divide the quadrilateral into two 
triangles ABC and ACD; when AC > BD, we divide the quadrilateral into 
two triangles ABD and CBD. Note that the edge lengths were computed 
based on the anatomical surface of the 1,031 participants, rather than 
the spherical surface. We repeated this procedure until no further 
optimization can be performed.

For each triangular face, we also changed the order of its three 
vertices, A, B and C, so that the cross product of AB and BC is the same 
direction as the outward normal of the face. The purpose of the step was 
to make it easier to compute surface normals and make the generated 
faces more compatible with those generated by FreeSurfer (https://
surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki/SurfaceNormal).

Note that the optimization of triangular faces does not affect 
the vertex locations, the interpolated data or the analysis results. The 
purpose of the optimization was simply to make the triangular faces of 
the surface mesh better describe the geometry of the cortical surface.

Template evaluation
Inter-vertex distance and other vertex properties. The cortical sur-
face mesh comprises a set of cortical vertices, and the vertices are con-
nected by edges, forming triangular faces. For each vertex, we define its 
neighbors as the vertices connected to it by an edge. We computed the 
distance between each vertex and its neighbors and averaged across 
all 1,031 participants and all neighbors. We used this average distance 
as the inter-vertex distance of the vertex. Therefore, the inter-vertex 
distance measures the density of vertices in a local area, where 
smaller inter-vertex distance indicates denser vertices, and larger 
inter-vertex distance indicates sparser vertices. To evenly sample the 
cortex, the inter-vertex distance should have minimal variation across  
all vertices.

We computed the area of each triangular face and divided it equally 
among the three vertices of the face. In other words, the area occupied 
by each vertex was a third of the area of all faces comprising the vertex. 
Therefore, smaller vertex area indicates denser vertices and larger 
vertex area indicates sparser vertices. Similar to inter-vertex distance, 
ideally the variation of vertex area should be as small as possible.

For each vertex, we created a searchlight around it, which was the 
group of vertices that had a geodesic distance of 20 mm or less from 
the center vertex. The geodesic distance was computed as the average 
of all 1,031 participants. The number of vertices in a searchlight varies 
by brain region—the number is larger for regions with denser vertices 
and smaller for regions with sparser vertices.

All these three vertex properties (inter-vertex distance, vertex area 
and number of vertices in a 20-mm searchlight) measures the density of 
vertices in a local brain area. We expect these properties to have larger 
variation when the cortex is sampled unevenly, and smaller variation 
when the cortex is sampled evenly. We computed the s.d. of these 
properties and compared them across different surface templates, 
and we found the onavg template had much smaller s.d. compared 
with other templates (Fig. 1).

Test dataset for MVPA algorithms. We used the Forrest dataset28 to 
evaluate the surface templates. The dataset was part of the phase 2 
data of the studyforrest project (https://www.studyforrest.org/), and 
it includes fMRI data of 15 participants that were collected while the 
participants watched the feature movie Forrest Gump. We preprocessed 
the dataset with fMRIPrep14 and resampled them to different surface 
spaces. The movie was approximately 2-h long, and during the scan 
it was divided into eight runs. We used the first half of the movie (the 
first four runs; 1,818 TRs in total; TR = 2 s) to train hyperalignment 
models, and the second half of the movie (1,781 TRs) to perform the 
main analysis. Note that the Forrest dataset was not among the 30 
OpenNeuro datasets that we used to create the template and therefore 
it is completely independent of the template creation process.

We also replicated the analyses with two additional datasets, Raid-
ers (n = 23) and Budapest (n = 21)38 (Extended Data Figs. 2 and 3). These 
two datasets were collected with a different fMRI scanner, different 
protocols, different movies and different participants from the Forrest 
dataset28, which the main MVPA results were based on. With the two new 
datasets, we observed similar advantages of the onavg template as the 
results based on the Forrest dataset, demonstrating the robustness of 
onavg’s advantages.

Hyperalignment template creation. For each surface template space, 
we created a hyperalignment template, so that all participants’ data 
could be projected into this common template space. In the common 
template space, idiosyncrasies in functional–anatomical correspond-
ence are resolved and response patterns can be compared across partic-
ipants. We followed the procedure described previously36 to create the 
template. We first created a local template for each searchlight (20-mm 
radius), and we made both the representational geometry and the 
topography of the local template reflective of the central tendency of 
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the group of participants. We then aggregated the local templates and 
formed a whole-cortex template. This template creation process made 
heavy use of principal-component analysis (PCA) and the orthogonal 
Procrustes algorithm42, which rely on singular value decomposition 
(SVD) and the computation of covariance matrices (COV).

Hyperalignment to template. For each surface template space, we 
prepared three sets of data based on different alignment methods: 
surface alignment (no hyperalignment), Procrustes hyperalignment35 
and warp hyperalignment36. We performed all hyperalignment train-
ing based on the first half of the movie data and estimated the hyper-
alignment transformations. We then applied these transformations 
to the test data (second half of the movie), which was independent of 
the training data. We report the results based on surface alignment 
in the main text (Fig. 2), and the results based on Procrustes hyper-
alignment and warp hyperalignment in Supplementary Figs. 1 and 2,  
respectively. The classification accuracy and RSA-ISC were both higher 
for warp hyperalignment than Procrustes hyperalignment and sur-
face alignment, as a result of better alignment across individuals. 
The differences between surface templates were similar for all three 
alignment methods, and onavg consistently outperformed other 
surface templates.

Both Procrustes hyperalignment and warp hyperalignment 
used in this study are based on searchlight hyperalignment. For each 
participant, we obtained a local transformation for each searchlight 
(20-mm radius) and combined these local transformations to form a 
whole-cortex transformation. The estimation of the transformation 
made heavy use of ridge regression and the orthogonal Procrustes 
algorithm42, which rely on SVD and COV.

Multivariate pattern classification of movie time points. For 
each surface template space and each alignment method, we per-
formed a between-participant multivariate pattern classification 
of movie time points (TRs) based on the whole brain. We used a 
leave-one-participant-out cross-validation and a nearest neighbor 
classifier. We also trained a PCA model based on the first half of the 
movie (training data) and applied it to the second half of the movie 
(test data), so that the classification was based on normalized princi-
pal components (PCs). The number of PCs was also chosen based on 
the first half of the movie with a nested cross-validation. The test data 
comprises 1,781 time points, and therefore each participant had 1,781 
measured brain response patterns, one for each time point. Each time, 
we left out a test participant and computed 1,781 predicted response 
patterns of the test participant, one for each time point, by averaging 
the response patterns across other participants. For each measured 
response pattern, we computed its correlation with all 1,781 predicted 
response patterns and predicted which time point the participant was 
watching based on which predicted pattern had the highest correla-
tion. In other words, there were 1,781 choices for this classification 
task, and the classification was only correct if the corresponding pre-
dicted pattern had the highest correlation with the measured pattern. 
Therefore, the chance level was less than 0.1%. In practice, this clas-
sification task can be performed using a correlation-based similarity  
matrix (1,781 × 1,781), which is a Gram matrix based on the normalized 
response patterns.

A successful classification relies on the quality of the predicted 
patterns, and the quality can be improved by averaging over a larger 
amount of data (averaging over more training participants), which 
reduces the noise relative to signal. We repeated the classification 
analysis with smaller numbers of participants, and correspondingly, 
smaller numbers of training participants. There are multiple ways to 
choose a subset of participants from the entire set of 15 participants and 
therefore, for each number of participants, we repeated the sampling 
procedure for 100 times with different random seeds, and we averaged 
the results across the 100 repetitions.

Inter-participant correlation of representational geometry. Similar 
to the classification analysis, we repeated the RSA analysis for each 
surface template space and each alignment method. The RSA analysis 
was a searchlight analysis. For each searchlight (20-mm radius), we 
computed a time-point-by-time-point RDM for each participant based 
on correlation distance. The RDM was based on the test data (second 
half of the movie) and it comprised 1,781 × 1,781 elements. We computed 
the inter-participant correlation of representational geometry as the 
correlation between one participant’s RDM and the average of others’, 
which we refer to as RSA-ISC. For each left-out test participant, we aver-
aged the RSA-ISC across all searchlights and obtained a single average 
correlation. When we averaged across multiple correlation coefficients, 
we used the Fisher transformation to transform the correlation coef-
ficients to zs, which are approximately normally distributed, and we 
transformed it back after averaging.

Similar to the classification analysis, the quality of an RDM can be 
improved by averaging over larger numbers of participants, and the 
quality can be measured by the reliability of the RDM using Cronbach’s 
α coefficient.

Furthermore, based on the Spearman–Brown prediction formula, 
we can estimate how this reliability changes with the number of par-
ticipants used in averaging.

rn =
nr1

1 + (n − 1)r1

where rn is the reliability of the RDM obtained by averaging over n RDMs.
In this formula, r1 can be estimated using rn and n, and in this case 

n = 14 (15 participants in total, one left out). After obtaining r1, we can use 
it to estimate rn for different choices of n. By combining Cronbach’s α 
coefficient and the Spearman–Brown prediction formula, we estimated 
the reliability of the average RDM, for different numbers of participants.

The correlation between the average RDM and the left-out partici-
pant’s RDM is proportional to the square root of the average RDM’s reli-
ability. Therefore, by estimating the average RDM’s reliability, we can 
estimate the correlation between the two RDMs for smaller numbers 
of participants (Fig. 2d).

Computational time of MVPA algorithms. For all the MVPA algorithms 
that we performed, we recorded the CPU time with Python’s ‘time.pro-
cess_time_ns’ function, which affords nanosecond resolution. In this 
work, we ran the algorithms in single processes and made sure that the 
measured CPU time was accurate. In scenarios where recording CPU 
time is not necessary, it is often better to use parallel computing (for 
example, with Python’s ‘joblib’ package), which reduces the walltime 
of these algorithms substantially. For the same algorithm, the CPU 
time of different surface templates was computed on the same node of 
Dartmouth’s Discovery cluster to eliminate potential confounds from 
hardware and software differences. We repeated each algorithm for dif-
ferent surface template spaces and recorded the CPU time accordingly.

For each surface template space, we created a hyperalignment 
template for each hemisphere and recorded the CPU time. We summed 
over the CPU time across both hemispheres and obtained a total CPU 
time for each surface template space (Fig. 3a). When we estimated the 
hyperalignment transformations, we recorded the CPU time for each 
participant and each hemisphere. Similar to hyperalignment template 
creation, we computed the sum of the CPU time across both hemi-
spheres and obtained a total CPU time for each participant. We used 
two different hyperalignment algorithms in our analysis, and therefore 
we repeated this process for each algorithm (Fig. 3b,c, respectively).

We also performed searchlight classification and searchlight RSA 
for each template space. The searchlight classification analysis was 
similar to the whole-cortex classification analysis, except each time 
the data was from a 20-mm searchlight instead of PCs of the entire 
cortex and we classified 5-TR segments (10 s each) instead of single 
TRs (2 s each). We recorded the CPU time for each participant and each 
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hemisphere, and added together the CPU time of both hemispheres. 
For the searchlight RSA analysis, we recorded the total CPU time of 
all participants for each searchlight. This was because estimating the 
RSA-ISC requires all participants’ RDMs, and it is impractical to save 
these RDMs, and therefore we performed the analysis and recorded 
the CPU time for each searchlight separately, which does not require 
saving RDMs to storage. We performed searchlight classification and 
searchlight RSA for all three alignment methods and averaged the CPU 
time. This was because for the same surface template, the data matrix 
shape and the searchlights were the same across different alignment 
methods, and thus the theoretical computational complexity was the 
same. By averaging across these repetitions, we further reduce the 
noise in measured CPU time.

Computational time of basic matrix operations. Complex compu-
tational algorithms are based on basic matrix operations (Fig. 3f). 
For example, Procrustes hyperalignment relies on SVD of the COV; 
correlation-based RSA relies on computing the Gram matrix; RSA with 
alternative distance metrics, such as the crossnobis distance, requires 
the inversion of the COV.

The computational time of these matrix operations does not grow 
linearly with the number of vertices, instead, it takes much longer when 
the number of vertices is large. To better demonstrate this effect, we 
systematically evaluated the CPU time of these matrix operations as 
a function of the number of vertices of the data matrix. We generated 
random data matrices with different numbers of vertices, ranging from 
100 to 1,200 with steps of 100. All these matrices had 1,781 time points, 
which was the same as the test data. For each number of vertices, we 
executed these matrix operations 10,000 times each with different ran-
dom data matrices, which were generated with different random seeds.

To better illustrate the relationship between the CPU time and the 
number of vertices, we fit an exponential curve y ∝ xp, where y is the CPU 
time, x is the number of vertices and p is the exponent. The exponent 
p is often between 2–3 (Fig. 3g–j). As a result, if a searchlight contains 
twice as many vertices compared with the average, the computational 
time for the searchlight would be 4–8 times as long. When the cortex 
is unevenly sampled, there are densely sampled regions where the 
number of vertices is particularly high. Furthermore, there are also 
more searchlights in these regions, also because the region is densely 
sampled. As a result, all kinds of searchlight analysis spend prolonged 
computational time in the densely sampled regions, and when the cor-
tex is evenly sampled, the computational time is consistently reduced 
(Fig. 3a–e), up to 24.4%.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The onavg template is available at TemplateFlow, the standard reposi-
tory for brain templates, as a DataLad dataset (https://github.com/
templateflow/tpl-onavg). Additional group statistics based on the 1,031 
participants, such as average maps of sulcal depth, curvature, and vertex 
area, are available through GIN as a DataLad dataset (https://gin.g-node.
org/neuroboros/core). Files of the onavg template are released under 
the CC0 license. The data of the 1,031 participants that were used to cre-
ate the onavg template are available through OpenNeuro (https://open-
neuro.org/) as ds000031, ds000201, ds000221, ds000224, ds000256, 
ds001233, ds001399, ds001499, ds001597, ds002278, ds002320, 
ds002330, ds002345, ds002382, ds002634, ds002685, ds002702, 
ds002737, ds002766, ds002799, ds003242, ds003452, ds003465, 
ds003499, ds003653, ds003701, ds003745, ds003752, ds003787, and 
ds003849. The Forrest dataset is available through OpenNeuro as 
ds000113, and it can also be accessed through the studyforrest web-
site (https://www.studyforrest.org/). The Budapest dataset is available 

through OpenNeuro as ds003017. The HCP data are available through 
ConnectomeDB (https://db.humanconnectome.org/).

Code availability
The code used to create the onavg template and to perform the bench-
marking analyses are available through GitHub (https://feilong.github.
io/tpl-onavg/). This GitHub Pages website also contains detailed tutori-
als on how to use the onavg template and how to transform data between 
onavg and other templates. The code, along with other information 
provided on the website, is also archived as a Zenodo repository62.
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fsavg-ico64a fslr-ico64 onavg-ico64

b c inflate

Extended Data Fig. 1 | Variation in vertex properties across the cortex 
at ico64 resolution. a) Distribution of inter-vertex distance on the cortical 
surface based on fsavg, fslr, and onavg. b) The standard deviation of inter-vertex 
distance, vertex area, and the number of vertices in a 20 mm searchlight based 

on the three templates. c) Example of the distribution of cortical vertices on the 
anatomical surface and spherical surface based on traditional templates. Vertices 
of the same color (red/green; also in zoomed-in views) are homologous for the 
two surfaces.
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Extended Data Fig. 2 | Between-participant classification of movie time points. Classification accuracy as a function of the amount of data (the number of 
participants) for both the Raiders dataset (top) and the Budapest dataset (bottom), based on surface alignment (left), Procrustes hyperalignment (middle), and warp 
hyperalignment (right).
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Extended Data Fig. 3 | Inter-participant correlation of representational geometry (RSA-ISC). RSA-ISC as a function of the amount of data (the number of 
participants) for both the Raiders dataset (top) and the Budapest dataset (bottom), based on surface alignment (left), Procrustes hyperalignment (middle), and warp 
hyperalignment (right).
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Extended Data Fig. 4 | The number of participants for onavg (y-axis) and 
other templates (x-axis) to achieve the same classification accuracy. Panels in 
different rows are based on different data resolutions. Top row: results based on 
ico32 resolution (a–c); bottom row: results based on the ico64 resolution (d–f). 

Panels in different columns are based on different alignment methods. Left: warp 
hyperalignment (a,d); middle: Procrustes hyperalignment (b,e); right: surface 
alignment (c,f).
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Extended Data Fig. 5 | The number of participants for onavg (y-axis) and 
other templates (x-axis) to achieve the same RSA-ISC. Panels in different 
rows are based on different data resolutions. Top row: results based on the ico32 
resolution (a–c); bottom row: results based on the ico64 resolution (d–f). Panels 

in different columns are based on different alignment methods. Left: warp 
hyperalignment (a,d); middle: Procrustes hyperalignment (b,e); right: surface 
alignment (c,f).
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Inter-participant correlation of representational geometry (RSA-ISC)

Between-participant classification of 10-s movie segments

Extended Data Fig. 6 | Improvement by brain region. a) Searchlight 
classification accuracy of 10-s movie segments based on the onavg template. 
b) The difference of classification accuracy between onavg and traditional 
templates. c) The difference of classification accuracy as a function of the 
regional mean and standard deviation of inter-vertex distance (that is, sampling 

sparsity and sampling inhomogeneity of the searchlight). d) Searchlight RSA-ISC 
based on the onavg template. e) The difference of RSA-ISC between onavg and 
traditional templates. f) The difference of RSA-ISC as a function of the regional 
mean and standard deviation of inter-vertex distance.
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Local functional connectivity based on resampled synthesized noise

Local functional connectivity based on resampled real fMRI data

Extended Data Fig. 7 | Reduced bias in functional connectivity. When fMRI 
data are resampled from the initial volumetric acquisition onto the cortical 
surface, the resampling process creates a systematic bias of local functional 
connectivity63. a) Artificial local functional connectivity created by resampling 
synthesized noise onto cortical surface for fsavg, fslr (b), and onavg (c). d) Local 

functional connectivity as a function of sampling density (vertex area) based on 
synthesized noise. e) Local functional connectivity based on 3 T resting-state 
fMRI data of 888 participants from the Human Connectome Project (HCP) for 
fsavg, fslr (f), and onavg (g). h) Local functional connectivity as a function of 
sampling density based on resting-state fMRI data.
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a b

Extended Data Fig. 8 | Increased ISC of functional contrast maps. a) The 
difference of average ISC of functional contrast maps between onavg and 
fsavg (upper), and between onavg and fslr (lower). The ISC was computed as 
the correlation between one participant’s map and the average of others’. We 
used the task fMRI contrast maps of the HCP dataset, which includes 47 unique 
contrasts, covering a wide range of sensorimotor, cognitive, affective, and social 

regions of the brain. We averaged the correlation coefficients across the 47 
contrasts. The dashed line denotes the mean difference (n = 888 participants). 
The shaded region denotes the center 95% of the null distribution of the mean, 
based on 100,000 permutations. b) ISC of functional contrast maps as a function 
of the amount of data (the number of participants) for fsavg, fslr, and onavg.
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Extended Data Fig. 9 | Amplified individual differences in cortical functional 
architecture. For each of the 88 test participants, we obtained two estimates 
of their neural tuning, one based on each half of the data36. a) The estimated 
tuning matrices of the same participant were much more similar than those 
from different participants. Based on these within-participant and between-
participant similarities, we can estimate how distinctive each participant’s neural 

tuning is. b) For almost every participant, the distinctiveness based on the  
onavg template was higher than those based on fsavg and fslr (c) (86 and 84 out  
of 88, respectively; both t(87) > 17.8, P < 10−30). d) The average distinctiveness 
across participants as a function of the amount of fMRI data based on fsavg,  
fslr, and onavg.
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Extended Data Fig. 10 | Computational time of representative computational 
algorithms (ico64 resolution). (a–e) The anatomy-based uniform sampling 
of the onavg template affords expedited computations for various searchlight-
based algorithms, including creating hyperalignment common space (a), 
aligning individual participants to the common space (b and c), representational 

similarity analysis (d), and multivariate pattern classification (e). Dot plots 
represent participants for panels b, c, and e (n = 15 participants), and repetitions 
for panel d (n = 3 alignment methods). Error bars denote mean values ± SEM, and 
some error bars are too small to be visible.
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