
23 September 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Gómez-delaHiz, J., Herrera, J.L., Scotece, D., Galán-Jiménez, J., Berrocal, J., Di Modica, G., et al. (2024).
Evolutionary Computation for Latency Minimization in SDN Microservice Architectures
[10.1109/icc51166.2024.10622476].

Published Version:

Evolutionary Computation for Latency Minimization in SDN Microservice Architectures

Published:
DOI: http://doi.org/10.1109/icc51166.2024.10622476

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/980787 since: 2024-09-03

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/icc51166.2024.10622476
https://hdl.handle.net/11585/980787


Evolutionary Computation for Latency
Minimization in SDN Microservice Architectures
José Gómez-delaHiz∗, Juan Luis Herrera†, Domenico Scotece†, Jaime Galán-Jiménez∗, Javier Berrocal∗,

Giuseppe Di Modica†, and Luca Foschini†
∗ Dept. of Computer Systems and Telematics Engineering, University of Extremadura, Spain. e-mail: jagomezdh@unex.es
† Dipartamento di Informatica Scienza e Ingegneria, University of Bologna, Italy. e-mail: juanluis.herrera@unibo.it

Abstract—In recent years, Software-Defined Networking (SDN)
research literature has proposed the integration of multiple SDN
controllers into the same network, improving the scalability and
reliability of the network. However, while this evolution has
focused on control plane hardware, the architecture of SDN
controller software is still monolithic, and its communication
with the application plane through the northbound interface
is done by the integration of the network-level applications’
codebase with the controller software. The proposal of SDN Mi-
croservices Architectures (SDN MSAs) is aimed at transforming
the application plane, from a monolithic architecture to a set
of independently deployable modules named SDN microservices.
However, the promising paradigm of SDN MSAs also increases
the complexity of network management, as these microservices
must be placed through the SDN controllers. This placement
is especially complex due to its NP-hard nature. In this work,
we present Genetic Algorithm for SDN MSA (GASM), an
evolutionary computation-based heuristic to solve this issue in
tractable times. Experimental results show that GASM represents
an average speed-up of 846.33× compared to optimal solvers.

Index Terms—Software-Defined Networking, Microservices,
Optimization, Evolutionary Computation

I. INTRODUCTION

The Software-Defined Networking (SDN) paradigm has
revolutionized networks by enabling network programmability
and enhancing flexibility.In SDN, network switches represent
only the data plane, forwarding traffic according to the rules
installed in them. These rules are installed by the control
plane, embodied by SDN controllers, which communicate with
switches through their southbound interface.Moreover, each
SDN controller exposes a northbound interface, allowing the
application plane to interact with the network.The application
plane thus enables network-level applications, such as service
discovery, firewalls, or traffic engineering, to define the be-
havior of the network. Although the original SDN definition
proposes the SDN controller as a centralized entity, such an
approach can lead to issues such as a single point of failure
and limits the scalability of the network [1]. Therefore, the
recent literature on SDN proposes deploying multiple SDN
controllers, enabling a distributed control of the network [2].

In practice, the northbound interface of each of these
SDN controllers is commonly offered through SDN controller
frameworks, i.e., specialized software that is installed in SDN
controllers [2]. The northbound interface is often available as
a set of programming libraries that allow developers to define

the behavior of the SDN controller in response to certain
events (e.g., through callbacks that integrate into the SDN
framework’s runtime loop) [2]. In these cases, the northbound
interface requires the integration of the network-level applica-
tions with the code of the SDN framework itself. Hence, from
a software architecture perspective, SDN controller software is
monolithic: a single program that, while modifiable, holds all
the logic for the framework and all network-level applications
in a single process. This approach clashes with having distrib-
uted control of the network, as the multiple SDN controllers
must run full replicas of the same monolithic software.

In the field of software engineering, Microservice Architec-
tures (MSAs) were introduced as an architecture designed for
distributed systems, in contrast with the traditional monolithic
architecture [3]. An MSA-based application is structured as a
set of loosely-coupled modules, named microservices, that can
be deployed independently, where each microservice is only
responsible for a small subset of the complete application’s
functionality [3]. The microservices in an MSA can collaborate
to perform complex functionalities, thus providing the same
functionality as a monolithic application [3]. MSAs allow
microservices to be replicated across multiple devices without
requiring each device to host every microservice, enable col-
laboration across microservices developed with different tech-
nologies, can be deployed in a massively distributed manner,
and are highly evolvable [3]. All these characteristics are also
desirable for the SDN application layer, and thus, there is an
ongoing research effort on the development of SDN controller
frameworks based on MSAs [2]. This new architecture is an
SDN MSA, i.e., an SDN network whose controller is based
on an MSA. The data plane, which contains the network
topology (i.e., switches and links) does not suffer changes w.r.t.
a monolithic SDN, nor does the southbound interface or the
control plane. Nonetheless, the northbound interface changes
the application plane, as each network-level application is
now developed as a microservice, enabling each controller
to deploy a different set of microservices. Moreover, these
microservices can be replicated across the controllers, and the
instantiation of new or different microservices does not require
a modification of the SDN controller framework, enabling the
microservice deployment to be modified in runtime.

However, while the properties of MSAs are beneficial to
SDN, they also bring an increase in the complexity of the



management of SDN controller software. Rather than having
a monolithic software that must be deployed and replicated in
all controllers at the same time, it is necessary to decide on the
number of replicas for each microservice, as well as on which
SDN controller to deploy each replica, as these decisions
affect the Quality of Service (QoS) of the network [4]. The
problem of deciding on the replication of microservices and
where to place them to optimize QoS in the software domain
is known to be NP-hard [4], and hence, its SDN analogous
is also NP-hard. Although it is possible to use techniques
such as mathematical programming to solve this problem, its
scalability is limited, as the computational resources required
to solve the problem and the time taken to find a solution grow
factorially with the size of the network and the number of
SDN microservices [4]. Therefore, it is necessary to develop
heuristics, able to obtain near-optimal solutions in tractable
times and with a smaller resource footprint.

In this paper, we present Genetic Algorithm for SDN MSA
(GASM), a heuristic based on evolutionary computation to
replicate and place the microservices of SDN MSAs in short
times and with a small resource footprint. GASM optimizes
the latency experienced by the flows of the network, and its
short execution time allows network operators to quickly adapt
the microservice placement and replication to changes in the
distribution of traffic. The main contributions of this paper
are: i) the description of the SDN microservice placement and
replication problem, ii) the proposal of GASM, a heuristic
based on evolutionary computing for the solution of the
problem, iii) the evaluation of GASM’s performance in a
realistic network scenario, and iv) the comparison of GASM’s
performance with alternative solutions.

The remainder of this paper is structured as follows. Sec-
tion II introduces related works on SDN MSAs. Section III
describes the model of an SDN MSA as used by the heuristic.
The design of the heuristic is detailed in Section IV, and its
implementation is evaluated in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORKS

Traditionally, the research community has focused on the
study and development of SDN networks with centralized
control in a single SDN controller, for example, implementing
a proactive rule installation mechanism to decrease the delay
of rule requests between network devices and the controller
[5]; performing tasks such as improving IoT data analysis by
using Machine Learning to unify SDN and virtual network
functions [6]; and even combining these last two paradigms
with multi-access edge computing, thereby reducing latency
and increasing capacity at the network edge, thus meeting the
requirements of the IoT ecosystems [7].

However, the decentralization of SDN control by having
multiple SDN controllers in the same network rather than a
single controller is currently advised as a good practice in the
literature [1], [8]. Nonetheless, the use of multiple SDN con-
trollers also brings a higher complexity to their management.
In this regard, one of the most important problems is to decide

where to place the different SDN controllers in the network
topology [8]. This problem is known in the literature as the
SDN Controller Placement Problem (CPP), and its solution is
currently an open research topic [8].

Multiple authors have proposed the use of different tech-
niques to solve the CPP. In [9], Zhang et al. present a heuristic
solution for the CPP that considers three objectives: latency
minimization, reliability maximization, and load balancing.
Load balancing is especially interesting: it states that, as the
computing capacity of SDN controllers is limited, it is neces-
sary to split the processing of flows across controllers. SDN
MSAs provide a more effective manner to split the processing
by deploying different microservices. Another approach to
the CPP is presented in [10], which proposes the term of
capacitated CPP, extending the CPP to consider the limit in
the computational capacity of SDN controllers as a crucial
feature. Overall, the CPP is a related, but different problem,
tackled at the network planning phase, and that must be
solved before an SDN MSA is deployed. Nonetheless, the
considerations in the capacitated CPP and the interest in load
balancing highlight the relevance of SDN MSAs.

On the other hand, it is also important to highlight the
similarities and differences between SDN MSAs and Service
Function Chaining (SFC) [11]. SFC is an architecture that
leverages SDN to perform multiple operations over traffic
flows as they are routed over the network. SFC considers the
existence of different service functions, which are similar to
SDN microservices, as they perform complex functionalities
over traffic flows. These service functions can be requested by
flows to be executed as part of a chain, that is, in a given order.
To do so, service functions are installed on switches, and traffic
flows must be routed through a certain path (Service Function
Path), that must traverse switches with the corresponding
service functions installed, and in the corresponding order.

SDN MSAs have two similarities to SFC: they propose
the use of functional modules that perform operations over
traffic flows (service functions and SDN microservices) and
require traffic to be steered according to the deployment
of these modules. Nonetheless, SDN MSAs and SFC have
key differences that make them different architectures and
paradigms. The main difference between SDN MSAs and SFC
is their network plane: SDN MSAs are an architecture for
the application plane, and SDN microservices are deployed
to SDN controller hardware [2], while SFC is a data plane
architecture whose service functions are deployed to SDN
switches [11]. Moreover, SDN microservices are more open in
their functionality, as their behavior can change dynamically,
while service functions are, by nature, static (e.g., a firewall
implemented as an SDN microservice can block different
ports at different points of time by querying an external
database in execution time, while SFC would require different
firewall service functions). Finally, SDN microservices are
commutative, while service functions must be executed in
a certain order. Therefore, while works like [12] propose
heuristics for latency optimization in SFC, unlike GASM, they
cannot be applied to SDN MSAs due to their differences.



III. SYSTEM MODEL

To understand the design of GASM, including the decisions
it must take, the information it should have, and its objective,
it is crucial to first understand its model of an SDN MSA.
Concretely, the system model should describe the SDN mi-
croservice model, the traffic flow model, and the SDN control
model. This section details each of these elements.

Before managing the microservices in an SDN MSA, it is
necessary to know where these microservices can be deployed,
i.e., what is the placement of the SDN controllers in the net-
work topology. As the decision of SDN controller placement
is made in an early stage, namely in the network planning
phase [8], the SDN MSA model assumes that the placement
of controller hardware has already been decided. Moreover,
we assume that this placement complies with the classic SDN
controller placement model: all SDN controllers have the same
hardware, are co-located with an SDN switch, and each SDN
switch communicates with exactly one controller [8].

The SDN MSA will therefore execute on these control-
lers. To do so, the SDN MSA defines the set of available
microservices or microservice types that can be instantiated
in the topology. To better illustrate the model, we will use
a running example for the SDN MSA, fully depicted in
Fig. 1. In this running example, there are two SDN controllers
(shown as boxes), five switches (each assigned to the controller
of the same color), and three microservice types: topology
management (denoted T), service discovery (S), and firewall
(F). Each of these types also declares the amount of computing
resources an instance consumes in an idle state, as well as the
resources it consumes to handle a request. The types will then
be instantiated in the SDN controllers as decided by GASM,
always considering that each controller can have up to one
instance per type (e.g., a controller may or may not host the
firewall, but it should not host two or more firewalls, as a
single instance will process all the necessary requests). In
terms of resources, the capacity of SDN controllers should
not be exceeded: the sum of the resources consumed by mi-
croservices, including both those consumed by idle instances
of microservices and those consumed by handled requests,
must not be higher than the total resources of the controller.
Moreover, as the hardware of all SDN controllers is equal, the
execution time of a microservice is constant across controllers.

Next, it is important to consider that the microservices
are requested by the traffic flows in the network, which can
be referred to collectively as the traffic matrix, where each
demand of the traffic matrix is a traffic flow. Each of these
flows has an ingress node, which serves as the source of the
flow in the network, and an egress node, which can be seen
as its destination. These are denoted as I and E, respectively,
in Fig. 1. The flow must go from the ingress node to the
egress node, through a certain route. GASM must, thus, decide
the routes of all flows (traffic routing). To do so, it must
consider that each link in the network topology has a certain
capacity that cannot be exceeded, while each traffic flow has
a certain size. Moreover, each flow can request one or more

Figure 1: Example of a flow’s routing and microservice
execution in SDN MSA.

SDN microservices. In our running example, we consider
a flow that requests the topology management microservice
and the service discovery microservice. These microservices
must be executed for the flow by the time it reaches the
egress node, although it is not necessary to execute them in
any strict order. When the flow is routed through a switch
connected to an SDN controller that hosts the microservice,
the SDN switch will communicate with the SDN controller to
execute the microservice. This communication is denoted as
the control flow between the switch and the controller, and its
size is also considered towards link capacity consumption. If
the route of the flow includes a switch co-located with an SDN
controller that hosts the microservice, it is executed on that
switch without the need for control flow. In Fig. 1, the flow is
first routed to an SDN switch connected to the pink controller
(1). This switch establishes a control flow communication with
the controller (2), while the controller executes the topology
management microservice (3) and returns the result to the
switch (4). Next, the flow, which now only requests the
firewall is sent to the switch co-located with the grey controller
(5). Hence, the firewall microservice is executed locally (6).
Finally, the flow arrives at its destination (7).

The objective of GASM is, therefore, to decide where to
instantiate microservice replicas, how to route traffic, and
how to route control flows, to minimize the total latency
experienced by the system. This latency is the sum of all the
latencies of the links traversed by the flow (1, 5, and 7 in
Fig. 1), as well as the latencies of control flows (2 and 4 in
Fig. 1), and the execution time of microservices (3 and 6 in
Fig. 1). This model is the blueprint used to build GASM, and
thus, it is compliant with the presented system model.

IV. HEURISTIC DESCRIPTION

The use of heuristic algorithms allows for obtaining approx-
imately optimal solutions to optimization problems, trading
off a small part of the solution’s optimality by a significant
decrease in execution time and resource footprint. The pro-
posed framework, GASM, is based on a genetic algorithm, an
evolutionary computation heuristic technique inspired by the
reproduction of living beings that imitates biological evolution
as a strategy to solve problems [13]. Genetic algorithms
have been successfully used in computer networks research
for problems such as energy efficiency optimization [14].
This technique is based on the generation of several possible
solutions or a population of chromosomes, that are composed
of a set of genes that will change their value throughout the



Algorithm 1 Pseudo-code of GASM.
Require: Network graph: G = (N ,L), data of the controllers installed: ϵ,

available microservices: µ, traffic matrix: T , number of shortest paths
calculated per pair of nodes: np, population size: κ, max. generations: θ,
max. stagnation (generations): ϖ, number of parents to the tournament:
nt, crossover rate: rc, highest mutation rate: rhm, lowest mutation rate:
rlm

1: create gen ← 0, Pgen ← ∅, solbest ← ∅, fvalbest ← 0, children∗ ←
∅, stag ← 0, gen← 0

2: paths, latencies← shortestsPaths(G, np)
3: Pgen ← createPopulation(dim(ϵ), dim(µ), κ)
4: for all chromosome c in Pgen do
5: if fitness(c,G, T , ϵ, µ, path, latencies) > fvalbest then
6: solbest ← c
7: fvalbest ← fitness(c,G, T , ϵ, µ, path, latencies)
8: end if
9: end for

10: while gen ≤ θ ∨ stag ≤ ϖ do
11: parents← selectParents(Pgen,tournament, nt)
12: elitist← solbest
13: while len(children∗) < κ− 1 do
14: children← runCrossover(parents, rc,scattered)
15: children← runMutation(children, rlm, rhm,adaptive)
16: children∗ ← children∗ ∪ children
17: end while
18: for all chromosome c in children∗ do
19: if fitness(c,G, T , ϵ, µ, path, latencies) > fvalbest then
20: solbest ← c
21: fvalbest ← fitness(c,G, T , ϵ, µ, path, latencies)
22: stag ← −1
23: end if
24: end for
25: stag ← stag + 1
26: Pgen ← elitist ∪ children∗

27: gen← gen+ 1
28: end while
29: return solbest, fvalbest

execution of the algorithm to find a better solution, evaluating
the fitness of each chromosome to determine the best solutions
in each generation. In the case of GASM, each chromo-
some defines the placement of microservices on each of the
controllers installed on the network. These chromosomes are
then generated and modified with the objective of reducing
the maximum latency of all the flows in the network. To
do so, each gene in a chromosome represents whether a
microservice is deployed on a controller or not. The routing
is not directly encoded in the genotype of the chromosome
(i.e., its genes), and is instead algorithmically calculated and
considered in the fitness function as part of its phenotype.
In the following, the logic of GASM, whose pseudocode is
specified on Algorithm 1, is detailed:

Phenotype Interpretation: One of the key design choices
of GASM is that traffic routing is not in the genotype of each
chromosome, instead, it is interpreted as its phenotype. This
interpretation depends on some pre-computed data: the paths
across nodes and their latencies. Concretely, given the value
of the np parameter, the phenotype computes the np shortest
paths between each pair of nodes n, n′ ∈ N , n ̸= n′, and
the latency of each of these paths is also stored (line 2).
Once this information is computed, the phenotype can be
described on a flow-by-flow basis. To do so, for each of the
flows, the phenotype interpretation algorithm determines the

most suitable controller: the controller with the largest subset
of microservices of those requested by the flow, and with a
calculated path with a higher capacity than the flow’s size. If
multiple controllers are considered most suitable, the one with
the shortest path (i.e., lowest latency) to the ingress node is
chosen. If all microservices requested by the flow are executed
at the most suitable controller, the flow is routed to the egress
node through the shortest route with enough capacity available.
Otherwise, the process is repeated, finding the most suitable
controller considering the current controller instead of the
ingress node, and only those microservices that have not yet
been executed. Once the complete route is calculated, from
the ingress node to the egress node through all the suitable
controllers, the phenotype is considered to be interpreted.

Fitness Function: Before describing the algorithm itself,
it is also crucial to describe the fitness function that will
govern it. This fitness function first checks that the solution
encoded in the chromosome is valid: all microservices requests
must be satisfied, each controller can run no more than one
replica of each microservice, the controller capacity must not
be exceeded, and the total size of the flows routed through each
link must not exceed the link’s capacity either. If at least one of
these constraints does not hold, the fitness of the chromosome
will be considered as -1 (i.e., the solution is invalid). If these
constraints hold, the fitness function interprets the phenotype
of the chromosome. For, the phenotype of each of the flows,
the total latency of its route is calculated and stored in an array
(latflows). Finally, once the phenotype is interpreted for all the
flows in the traffic matrix, the fitness of the chromosome is
calculated as 1

1+max(latflows)
.

Initialization: The initial population of the algorithm is ran-
domly generated, its dimension governed by the value of the
parameter κ (line 3). Each chromosome is a binary array of a
size equal to the product of the number of controllers installed
on the network times the number of microservices available.
Once generated, the fitness of each of the generated individuals
is calculated, also determining the best chromosome in the
initial population (lines 4-9).

Parent Selection: Chromosomes will be chosen to combine,
mutate, and form new chromosomes (children) for the next
generation. Among all the existing selection mechanisms [15],
GASM uses the tournament mechanism, in which tournaments
are held between nt random chromosomes, with the winner
(i.e., the chromosome with the highest fitness in the tourna-
ment) becoming a candidate for the crossover (line 11).

Crossover and Mutation: The chromosomes selected in the
previous step, with a probability equal to rc, will be crossed
to generate a child that will be mutated with a probability
between rlm and rhm. As far as the crossover operator is
concerned, a scattered combination is performed: the genes
of the two parents are considered and, with a probability of
rc, randomly exchange genes with each other to generate new
chromosomes (line 14). On the other hand, an adaptive muta-
tion is applied, i.e. each generated offspring has a different
mutation probability, depending on its fitness (line 15).

Next Generation: The above process is repeated until κ−1



chromosomes are obtained (lines 13-17), which joins with the
best solution of the previous generation (line 12) to give rise
to the new generation (line 26).

Stop Condition: At this point, it is checked if some of
the following stopping conditions are met (line 10): exceed
the maximum number of generations (θ), or the number of
successive generations that have not improved the solution
is greater than ϖ. If so, the algorithm is terminated by a
stagnation of the algorithm to save time.

V. PERFORMANCE EVALUATION

This section evaluates GASM under a realistic network
environment. The setup used to evaluate the heuristic is
presented in Section V-A, and the obtained results are then
described in Section V-B.

A. Evaluation setup

The evaluation has been performed on an SDN MSA with
a total of five microservice types: topology management, fire-
wall, encryption, service discovery, and IoT data aggregation.
In the scenarios used for evaluation, all flows are considered
to request the topology manager microservice, as well as the
security microservices (encryption and firewall). Some of the
flows are considered calls to application services, and thus,
also request for service discovery. Moreover, flows coming
from IoT devices also request data aggregation. Hence, each
traffic flow requests between 3 and 5 microservices. The
MSA is considered to be implemented under the Ryu runtime,
which can be divided into microservices [2]. In terms of
hardware, the evaluation scenarios consider between 3 and
5 SDN controllers to be placed, with a computing capacity
extracted from [16]. The evaluation has been performed on
data extracted from real network topology [17]: Abilene.
The traffic matrices for these scenarios were also extracted
from [17], considering four traffic matrices, each of them
representing a quartile of the total traffic volume across all the
traffic matrices available. It is important to note that, as the
traffic matrices are obtained from real data, the microservice
requests and traffic distribution may vary from one to another.

The evaluation has three objectives: the assessment of the
optimality gap in terms of latency between an optimal solution
and the heuristic, the impact of the use of the heuristic
over link loads w.r.t. the use of the optimal solution, and
the comparison of execution times between the heuristic and
the optimal solution. To achieve such objectives, GASM has
been implemented using PyGAD1, while the optimal solution
has been implemented with Gurobi2. In relation to GASM,
the parameters of the heuristic have been set as follows:
np = dim(ϵ), κ = 50, θ = 50, ϖ = 5, nt = 3, rc = 0.9, rhm =
0.9, rlm = 0.1. Moreover, due to the memory consumption
of this type of solver, the implementation of the optimal
solution may finish by either finding the global optimum or by
consuming all the available memory, yielding the best solution
it was able to find, if any. Both GASM and the optimal solution

1https://pygad.readthedocs.io/en/latest/
2https://www.gurobi.com/

have been executed in the same machine, with an Intel Xeon
Gold 6238R CPU and 16 GB of RAM, under Ubuntu 22.04,
to ensure the fairness of the comparison.

B. Evaluation results

The first analysis is aimed at comparing the latencies that
the network flows experience with GASM and those of the
optimal solutions, as shown in Fig. 2. It is important to note
that in some cases (e.g., 4 controllers, traffic matrix Q1), the
optimal solver cannot find a valid solution before filling up
the machine’s memory completely, and hence. It is important
to note that there are no cases where GASM does not find
a solution but the optimal solver does. In these results, the
latencies obtained by the flows are only slightly impacted by
the number of controllers deployed, with a reduction of 1 ms
in average per additional controller in the optimal case, and a
2 ms average difference in GASM. The traffic matrix has also
negligible effects on the experienced latencies which fluctuate
more on different distributions of traffic than on different
volumes. Overall, the standard deviation of the latencies is
small, approximately 1.68 ms for GASM, and 3.6 ms for the
optimal solution. The optimality gap between GASM and the
optimal solution is slightly higher, at 7.6 ms on average, but
still very low considering the average link latency of 3.11
ms. Thus, the solutions that GASM yields are considered
acceptably similar to the optimal solutions.

The next analysis, depicted in Fig. 3, addresses the average
link load of the network in the same cases, i.e., scenarios
where either GASM or the optimal solver are able to find a
solution. In the case of the link load, it is greatly affected by
the traffic matrix, especially in scenarios with a very high
load (i.e., Q4). The number of controllers slightly affects
the load as well, with a higher number of controllers being
correlated with a higher link load, especially on the optimal
solution. This phenomenon appears because a higher number
of controllers makes it more efficient in terms of latency to
route traffic through switches with SDN controllers, and hence,
to increase the load in such links. Nonetheless, the link load
is rather low in general terms (1.34% in the optimal case, and
2.07% with GASM), with a significant increase in Q4 traffic
matrices, but still very low, with a maximum load of 4.1% in
the optimal case and 6.87% with GASM. On average, GASM
loads the links 0.73% more than the optimal solution, which is
a negligible increase. Hence, the heuristic approach of routing
traffic directly through SDN switches with controllers at all
times does not reflect a great impact on the link load.

Finally, the last analysis from Fig. 4 shows the execution
time of GASM and the optimal solver, labeled optimization
time to avoid confusion with the execution time of SDN
microservices. Starting with the optimization times of the
optimal solver, they are all very similar, ranging between
3570 and 3660 seconds (3639.23 seconds on average). These
similarities are due to the memory of the machine, which the
optimal solver tends to fill completely after approximately one
hour of execution time.. GASM, on the other hand, requires
between 2 and 5.1 seconds to find a solution (4.3 on average),

https://pygad.readthedocs.io/en/latest/
https://www.gurobi.com/


Q1 Q2 Q3 Q4
Traffic matrix

26
28
30
32
34
36
38
40

Av
er

ag
e 

flo
w 

la
te

nc
y 

(m
s)

Figure 2: Comparison of the
latencies achieved by GASM
and the optimal solution.

Q1 Q2 Q3 Q4
Traffic matrix

1

2

3

4

5

6

7

Av
er

ag
e 

lin
k 

lo
ad

 (%
)

3 controllers, Optimal
4 controllers, Optimal
5 controllers, Optimal
3 controllers, GASM
4 controllers, GASM
5 controllers, GASM

Figure 3: Comparison of the
link load in GASM’s solutions
and in optimal solutions.

Q1 Q2 Q3 Q4
Traffic matrix

101

102

103

Av
er

ag
e 

op
tim

iza
tio

n 
tim

e 
(s

)

Figure 4: Comparison of the
execution time of optimizations
in GASM and the optimal solu-
tion.

generally taking more time on cases with more loaded traffic
matrices, or with a higher problem size (e.g., more controllers).
In terms of speed-up, GASM achieves an average speed-up of
846.33× w.r.t. the optimal solution. Hence, GASM is notably
faster and more efficient than an optimal solver.

VI. CONCLUSIONS AND FUTURE WORK

Due to the rise in interest of decentralizing the SDN control
plane through the deployment of multiple, distributed SDN
controllers in networks, proposals for the decentralization of
the application plane have appeared in the literature. One of
the most promising proposals in this regard, SDN MSAs,
are promising, bringing the characteristics of MSA-based
applications to the network. However, leveraging SDN MSAs
also comes with the increasing complexity in management
that characterizes software MSAs, including the problem of
placing SDN microservices across a network topology. In this
paper, we presented GASM as an evolutionary computation-
based heuristic to address this NP-hard problem. The evalu-
ation shows that GASM achieves near-optimal latencies and
a 846.33× average speed-up w.r.t. optimal solvers. In the
future, we expect to compare GASM with other meta-heuristic
approaches to the problem. Furthermore, we also expect to
perform experiments in real or emulated network testbeds.

ACKNOWLEDGEMENTS

This work was partially funded by the project
PID2021-124054OB-C31 and the grant CAS21/00057
(MCI/AEI/FEDER, UE), by the grant PDC2022-133465-
I00 and the project TED2021-130913B-I00 funded by
MCIN/AEI/10.13039/50100011033 and by the “European
Union NextGenerationEU/PRTR“, by the Department of
Economy, Science and Digital Agenda of the Government
of Extremadura (GR21133), and by the European Regional
Development Fund. This work was partially supported by
the European Union under the Italian National Recovery and
Resilience Plan (NRRP) of NextGenerationEU, partnership on
“Telecommunications of the Future” (PE00000001 - program
“RESTART”). CUP: J33C22 002880001.

REFERENCES

[1] F. Bannour, S. Souihi, and A. Mellouk, “Distributed sdn control: Survey,
taxonomy, and challenges,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 1, pp. 333–354, 2018.

[2] S. T. Arzo, D. Scotece, R. Bassoli, D. Barattini, F. Granelli, L. Foschini,
and F. H. Fitzek, “Msn: A playground framework for design and
evaluation of microservices-based sdn controller,” Journal of Network
and Systems Management, vol. 30, pp. 1–31, 2022.

[3] K. Indrasiri. Microservices in practice - key architectural concepts
of an MSA. (visited on Aug. 28, 2023). [Online]. Available:
https://tinyurl.com/msa-architecture

[4] J. L. Herrera, J. Galán-Jimnez, J. Garcia-Alonso, J. Berrocal, and J. M.
Murillo, “Joint optimization of response time and deployment cost in
next-gen iot applications,” IEEE Internet of Things Journal, vol. 10,
no. 5, pp. 3968–3981, 2022.

[5] L. Sanabria-Russo, J. Alonso-Zarate, and C. Verikoukis, “Sdn-based pro-
active flow installation mechanism for delay reduction in iot,” in 2018
IEEE Global Communications Conference (GLOBECOM). IEEE, 2018,
pp. 1–6.

[6] J. Serra, L. Sanabria-Russo, D. Pubill, and C. Verikoukis, “Scalable
and flexible iot data analytics: When machine learning meets sdn and
virtualization,” in 2018 IEEE 23rd International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks
(CAMAD). IEEE, 2018, pp. 1–6.

[7] I. Sarrigiannis, K. Ramantas, E. Kartsakli, P.-V. Mekikis, A. Antono-
poulos, and C. Verikoukis, “Online vnf lifecycle management in an mec-
enabled 5g iot architecture,” IEEE Internet of Things Journal, vol. 7,
no. 5, pp. 4183–4194, 2019.

[8] G. Deep, V. Tripathi, and A. Dumka, “A review on controller placement
problem in software defined networking,” in AIP Conference Proceed-
ings, vol. 2521, no. 1. AIP Publishing, 2023.

[9] B. Zhang, X. Wang, and M. Huang, “Multi-objective optimization con-
troller placement problem in internet-oriented software defined network,”
Computer Communications, vol. 123, pp. 24–35, 2018.

[10] A. K. Singh, S. Maurya, and S. Srivastava, “Varna-based optimization:
a novel method for capacitated controller placement problem in SDN,”
Frontiers of Computer Science, vol. 14, no. 3, p. 143402, 2020.

[11] M. Polverini, J. Galán-Jiménez, F. G. Lavacca, A. Cianfrani, and
V. Eramo, “A scalable and offloading-based traffic classification solution
in nfv/sdn network architectures,” IEEE Transactions on Network and
Service Management, vol. 18, no. 2, pp. 1445–1460, 2020.

[12] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, and B. Akbari,
“Joint energy efficient and qos-aware path allocation and vnf placement
for service function chaining,” IEEE Transactions on Network and
Service Management, vol. 16, no. 1, pp. 374–388, 2018.

[13] D. E. Goldberg, “The genetic algorithm approach: why, how, and what
next?” in Adaptive and learning systems: Theory and applications.
Springer, 1986, pp. 247–253.

[14] J. Galán-Jiménez, M. Polverini, F. G. Lavacca, J. L. Herrera, and
J. Berrocal, “Joint energy efficiency and load balancing optimization
in hybrid ip/sdn networks,” Annals of Telecommunications, vol. 78, no.
1-2, pp. 13–31, 2023.

[15] L. M. Schmitt, “Theory of genetic algorithms,” Theoretical Computer
Science, vol. 259, no. 1, pp. 1–61, 2001.

[16] F. Benamrane, R. Benaini et al., “Performances of openflow-based
software-defined networks: an overview,” Journal of Networks, vol. 10,
no. 6, p. 329, 2015.

[17] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable Network Design Library,” in Proceedings of INOC 2007,
April 2007.

https://tinyurl.com/msa-architecture

	Introduction
	Related works
	System model
	Heuristic description
	Performance evaluation
	Evaluation setup
	Evaluation results

	Conclusions and future work
	References

