
Computer Networks 254 (2024) 110750

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Softwarized and containerized microservices-based network management
analysis with MSN
Sisay Tadesse Arzo a, Domenico Scotece b,∗, Riccardo Bassoli c, Michael Devetsikiotis a,
Luca Foschini b, Frank H.P. Fitzek c,d

a Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, USA
b Department of Computer Science, University of Bologna, Bologna, Italy
c Deutsche Telekom Chair of Communication Networks, Institute of Communication Technology, Faculty of Electrical and Computer Engineering, Technische
Universität Dresden, Dresden, Germany
d Centre for Tactile Internet with Human-in-the-Loop (CeTI), Cluster of Excellence, Dresden, Germany

A R T I C L E I N F O

Keywords:
Microservice
Containerization
Cloudification
5G
Beyond 5G
6G

A B S T R A C T

Microservice architecture is a service-oriented paradigm that enables the decomposition of cumbersome
monolithic-based software systems. Using microservice design principles, it is possible to develop flexible,
scalable, reusable, and loosely coupled software that could be containerized and deployed in a distributed
edge/cloud environment. The flexible deployment of microservices in an edge environment increases system
performance in terms due to dynamic service function placement and chaining possibly resulting in latency
reduction, fault tolerance, scalability, efficient resource utilization, cost reduction, and energy consumption
reduction. On the other hand, virtualization and containerization of microservices add processing and
communication overheads. Therefore, to evaluate end-to-end microservices-based system performance, we
need to have an end-to-end mathematical formulation of the overall microservice-based network system.
Incorporating the virtualization overhead, here we provide end-to-end mathematical formulation considering
system parameters: latency, throughput, computational resource usage, and energy consumption. We then
evaluate the formulation in a testbed environment with the Microservice-based SDN (MSN) framework that
decomposes the Software-defined Networking (SDN) controller in microservices with Docker Container. The
final result validates the presented mathematical modeling of the system’s dynamic behavior which can be
used to design a microservice-based system.
1. Introduction

Microservice is a Service Oriented Architecture (SOA) that is being
used and deployed in the industry and research community [1,2]. It is a
software development paradigm that decomposes a cumbersome mono-
lithic system into smaller manageable loosely-coupled services. More-
over, microservices-based decomposition of functionalities is adopted
by companies managing big cloud services and infrastructures [3,4].

As we have presented in our previous research work, there are
two competing paradigms for decomposing monolithic-based systems:
microservices-based architecture and multi-agents-based architecture
[1]. Both architectures break monolithic software systems into small
services, whose instances may run independently in virtual environ-
ments or containers. As outlined in [1], the main difference between
microservices and agents is that the former act reactively while the
latter act both reactively and proactively.

∗ Corresponding author.
E-mail address: domenico.scotece@unibo.it (D. Scotece).

Along with the service-oriented technology, Network Function Vir-
tualisation (NFV) [5] and Software-defined Networking (SDN) [6] are
the two most promising paradigms for network softwarization, de-
composition, and orchestration in edge/cloud-based distributed envi-
ronment. This paves the way for network services cloudification [7]
that allows deploying network services in the edge/cloud environment
as virtual entities such as Virtual Machine (VM) and containers. Fur-
thermore, it gives network management system flexibility in terms of
dynamic service scaling, dynamic deployment, dynamic instantiation,
and decoupling for spatial and temporal flexible deployment. The
decoupled microservices-based network functions could be deployed in
a cloud or edge/fog using containers such as Docker Container.

In a softwarized networking environment, network devices could
host multiple virtual entities like containers. In particular, these con-
tainers could be network functionalities developed as microservices
https://doi.org/10.1016/j.comnet.2024.110750
Received 2 October 2023; Received in revised form 17 June 2024; Accepted 23 Au
vailable online 26 August 2024
389-1286/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a
gust 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:domenico.scotece@unibo.it
https://doi.org/10.1016/j.comnet.2024.110750
https://doi.org/10.1016/j.comnet.2024.110750
http://creativecommons.org/licenses/by/4.0/

S.T. Arzo et al.

e
t
f
t
D
c
v
a

g

Computer Networks 254 (2024) 110750
or multi-agents. Even end-user devices could host multiple containers.
Since the networking technological trend is in the direction of service
decoupling and containerization, we need a comprehensive study of
microservices-based and containerized network systems. Moreover, fu-
ture networks such as beyond 5G and 6G are expected to have more
modular and distributed deployments, employing in-network intelli-
gence of autonomous and atomic functions for network management,
orchestration, and operations [8]. In particular, network functions
are going to be deployed mainly as decomposed, softwarized, and
containerized functions. New requirements of future networks like 6G
have been preliminarily defined through some projects’ deliverables
like the ones from the EU flagship Hexa-X [9]. This documents [9,10]
has started the characterization of the future 6G Key Performance
Indicators (KPIs). It mainly suggested full network softwarization with
microservice-based and agent-based implementation and in-network
intelligence play a key role [8]. However, the existing works mostly
focus on microservices’ placement or resource allocation in an edge
data center or load-balancing in microservices chain [11–13].

Therefore, to analyze and design the microservices-based commu-
nication system, an analytical framework is required. Moreover, the
microservices could be deployed in geographically distributed edge
data centers, which may significantly affect the end-to-end latency,
throughput, energy, and resource usage. To calculate these parameters,
a more accurate mathematical model is required that considers the
containerization of microservices. In [14], an end-to-end mathemati-
cal model of the overall Cloud Radio Access Network (C-RAN), also
considering edge data centers, is presented, using six representative
parameters for the characterization and performance evaluation. How-
ever, the article only considers generalized Virtual Network Functions
(VNFs) in the data center for the service function chain. The end-to-
end latency is affected when the microservices chain becomes longer
as each deployed microservice uses containers that incur an additional
delay due to virtualization and containerization. To the best of the
authors’ knowledge, there is no work that considers the characteri-
zation of the overhead delay in a microservice-based containerized
network system deployment providing an accurate description with
an end-to-end realistic system model. We used the Microservice-based
SDN (MSN) framework which is our implementation of a decomposed
SDN controller functions designing the subfunctions as independent
containerized units that are chained to create a decoupled and flexible
SDN system [15].

Therefore, this article deals with microservices in containers, de-
ployed in the edge and/or the cloud. We provide a mathematical
formulation considering multiple parameters, such as end-to-end la-
tency, throughput, and energy consumption. The contribution of this
article can be summarized as follows:

• comprehensive review of microservices-based services and net-
working functions;

• comprehensive mathematical model for containerized microser-
vices used as building blocks for network management systems;

• performance evaluation of the proposed mathematical using the
MSN framework. We have also evaluated nested dockers incorpo-
rating docker inside docker. We have evaluated the latency and
validated the formulation for added latency per a layer of docker.

Finally, this work serves as a valuable reference for both math-
matical and experimental evaluations of next-generation networks
hat utilize microservices chains. In particular, the methodologies and
indings presented in this paper offer practical tools for assessing con-
emporary system deployments. This includes environments leveraging
ocker Containers, VMs, and Kubernetes orchestration. By providing
omprehensive evaluation techniques, this research can guide the de-
elopment and optimization of modern, scalable, and efficient network
rchitectures based on microservices.

The rest of the article has the following structure: Section 2 or-

anized and presented the literature survey. Section 3 defines and

2
describes the end-to-end system model for analyzing the problem of
microservice-based management. The mathematical formulation of the
overall system that considers latency, throughput, resource utilization,
and energy consumption is presented in Section 4 and Section 5. The
performance results of the mathematical formulation based on both
simulation and testbed are presented in Section 6. Final concluding
remarks are presented in Section 7.

2. Related work

This section reviews the existing work on microservices-based sys-
tems, focusing on networking functions used in building network man-
agement systems.

2.1. Microservices modeling

The authors in [16] presented a mathematical model for
microservices-based systems considering smart manufacturing as a
target application. The work focuses on the placement methods for
microservices considering latency in edge and cloud collaboration using
an accurate data-driven end-to-end latency estimation. The article
in [17] discusses about microservices scheduling to optimize end-
to-end delay, average price, satisfaction level, Energy Consumption
Rate (ECR), failure rate, and network throughput. The authors claim
that the proposed scheduling algorithm is able to improve the per-
formance in the aforementioned evaluation matrix. Even if the work
is comprehensive in considering a number of relevant matrices, the
article did not consider the containerized environment that imposes
additional virtualization overhead delay. A performance modeling for
a microservices platform is studied and evaluated in [18]. They used
Amazon EC2 cloud to build the microservices platform. Using the
platform, they developed a performance mode to make analysis and
plan the required microservices capacity scaling.

Finally, in [2] a decomposition architecture for microservices is
introduced in a formal language called ‘‘Sarch‘‘, which enables to
describe software using modules and sub-modules. The work enables
microservices architecture by utilizing component and connector-based
architectural decomposition. The evaluation does not consider the de-
composition and containerization challenges in terms of latency and
energy consumption.

2.2. Modeling of functions in a virtual environment

With virtualization, it is necessary to model the virtual functions
using mathematical formulations to evaluate for system parameters
such as latency, reliability, resource utilization, energy consumption,
and Quality-of-Service (QoS) parameters. Considering latency the au-
thors in [19] presented an interesting analysis of the virtual environ-
ment. The authors performed an in-depth experimental evaluation of
the impact of virtualization on processing and communication. They
have also presented delay breakdown of the virtualization components
of the hypervisor. However, the study is limited to the delay of a single
function.

The authors in [1] proposed agents as smallest and autonomous
building block for software design. The agents are atomic units with
complete functionality in delivering a given service without external
intervention and they have communication capability to speak with
other agents. The authors presented a mathematical model for agent-
based network management systems. The agents could be considered
VNFs that are deployed into containers in an edge/cloud environment.
The paper only focused on multi-agent systems and mainly focused on
the theoretical development of the overall system.

S.T. Arzo et al. Computer Networks 254 (2024) 110750
2.3. Microservice resource allocation

The authors, in [11] proposed a resource allocation technique for
microservices for efficient utilization of resources in an edge and cloud
environment. They used an economic approach to allocate and re-
allocate resources from a microservice across multi-tenants based on
online auction mechanism incentives microservices. A supervised ma-
chine learning-based autoscaling of microservices is presented in [20].
The authors provided a hybrid dynamic microservice scaling targeting
elastic applications. The model is an auto-scaling system that responds
reactively or proactively depending on the workload or resource usage
dynamically which could be horizontal scaling; adding or removing
applications instances or vertical scaling computing resources like CPU
or memory as per the workload demand.

2.4. Microservice scheduling

A heuristic-based scheduling of incoming services for microservices-
based edge computing is presented in [21] which considers latency
optimization in the scheduling process. The author developed a sched-
uler named FLAVOUR by formulating services latency reduction prob-
lem. The stochastic latency problem minimization considers microser-
vice completion time constraints and network stability. Solving the
formulated problem, they derived an optimized latency scheduler.

Another interesting microservices scheduler in heterogeneous
edge/cloud environments is presented in [22]. The authors used a
mathematical formulation to describe the architecture. Using realistic
environments and examples, they evaluated the proposed scheduling al-
gorithm and they claim that frequently used legacy scheduling methods
could perform well in a microservices-based environment.

The work in [23] presented a scheduling algorithm to improve the
fault tolerance of edge computing platforms. The work introduced a
heuristic services binding algorithm using cache-based edge devices.
The problem is formulated as constrained optimization services based
on network graphs and composition. Moreover, the author provided
heuristic solutions for the function using action values and graph-based
state. The system performance and robustness is balanced by the fitting
combination.

2.5. Microservice and container placement

Some works have been started focusing on container placement
and migration considering the scheduling models [24]. The authors
showed the algorithms and framework used to build the scheduling
models based on a graph model. Also, for solving the multi-objective
optimization problem, a heuristic approach is utilized, which enables
the evaluation of the final sub-optimal outcome faster. The scheduling
of containers could be at the cloud or in a distributed local edge to
satisfy the QoS requirements.

Not only network functions but also the newly designed functions,
such as IoT protocol translator [25], new QoS monitoring functions,
etc, that could also be developed as microservices or multi-agents.
They could be dynamically orchestrated and deployed to provide the
required functionality. The work in [26] developed a QoS-aware model
for VNF placement and provisioning that guarantees the latency re-
quirements of the service chains. However, the authors did not consider
containerization.

3. Graphic modeling of a softwarized system

In order to analyze and study the characteristics of the end-to-end
softwarized network continuum of future generation networks, a proper
theoretical model is necessary. This model requires the description
and characterization of the hardware and software components of the
network. An analytical model with these properties was first published
in [14] to study virtual network functions’ placement.
3
This article now enhances the characteristics of that original model
for the study of microservices-based networks. The mathematical model
consists of a multi-layer hypergraph as depicted in Fig. 1. As can be seen
from the graph, we assume the network infrastructure to be described
by several layers, which represent the abstractions of the resources
(communication, computing, and storage) available. These layers are
the virtual networks sliced from the actual network infrastructure.
These slices (layers) represent the end-to-end softwarized network con-
tinuum of communication. The softwarized continuum embraces the
resources at the end communicating devices, the Radio Access Network
(RAN), the edge network and data centers, and the cloud. They can also
be mapped to different layers of the hypergraph. As already mentioned
in the literature [14], this mathematical structure can provide a more
accurate description of how communicating services could connect via
multiple data centers or the cloud to build a microservice chain to
perform a complex communication operation, task, functionality, etc.

The end-to-end system resource is considered a multi-layer hyper-
graph. The graph is defined as 𝐻(𝑋𝑚, 𝐿𝑚, 𝑆, 𝐿), where 𝑋𝑚 represents
the set of node elements, that are abstracting and slicing the resources
of each network node of the infrastructure. 𝐿𝑚 is the set of edge
elements, which consists of the links that connect the network nodes.
Next, 𝑆 represents the set of network nodes in the actual network
infrastructure. Finally, 𝐿𝑦 = 𝐿1,… , 𝐿𝑎 are the sets of layers according
to the number 𝑎 of aspects. The aspects indicated the number of
elementary layers that compose a specific layer.

Fig. 1 depicts the general visual representation of the hypergraph 𝐻
for mapping the end-to-end network infrastructure and communication.
The RAN is mathematically described by a random distribution of
points and the coverage is modeled using the specific Voronoi tessel-
lation [27]. These points are then connected to other layers, which
can model the edge and core network and the Internet. Within these
network areas, data centers can be further layers since they are net-
works themselves. Next, each computing node of the network can run
several virtual environments that can host several other virtual entities
and processes respectively. These virtual networks and interconnec-
tions within the actual computing network nodes are represented by
other layers and elementary layers. All these entities, softwarized or
hardware-based, own a set of parameters that describes the resources
used. This becomes important for the performance evaluation and the
characterization of the KPIs in such a complex scenario.

4. Microservice based system modeling

In this section, we formulate the overall microservices-based work-
load processing system considering the following aspects. First, we
defined a mathematical model for services (i.e., tasks or workload)
definition; second, we characterized the workload arrival modeling in
the edge and cloud environments; third, we modeled the incoming
throughput for services; finally, we defined a mathematical model for
microservices-based function chains.

4.1. Service definition and mathematical representation

First, let us define some terminologies. To differentiate between
the two types of services, incoming user workload to be processed at
the data center by functions(services), we refer to the user services
as incoming user workload, whereas the processing function as func-
tions of microservices. In the data center, various types of services
could be deployed as indicated in the above section. Here we focus
on network services or functions that are designed as microservices
including authentication, routing function, QoS monitoring function,
security function, mobility management, serving/packet gateway, etc.

Now let us present the definition and mathematical model for
services (workload/tasks). A user’s service workload (𝑊𝑖) is represented
using the 𝑖th commodity flow with a quadruple constraint parameters
(𝑆𝑟 , 𝛽 , 𝛾 , 𝐷), where 𝑆𝑟 ∈ 𝑊 is the source, where 𝑊 is the set of
𝑖 𝑖 𝑖 𝑖 𝑖

S.T. Arzo et al. Computer Networks 254 (2024) 110750
Fig. 1. System Scenario and Model.
Table 1
Table for Notations.

Notation Description

𝑊𝑖 User’s service workload, represented as the 𝑖-th commodity
flow

(𝑆𝑟𝑖 , 𝛽𝑖 , 𝛾𝑖 , 𝐷𝑖) Quadruple constraint parameters of the service workload

𝑆𝑟𝑖 ∈ 𝑊 Source of the 𝑖-th commodity, where 𝑊 is the set of sources

𝛽𝑖 ∈ 𝛽 Sink of the 𝑖-th commodity, where 𝛽 is the set of sinks

𝛾𝑖 Indicator function 1𝐾 ∶ 𝐾 → {0, 1}, which indicates a value of
1 if the commodity 𝑘𝑖 is in the subset 𝐾 ⊆ 𝐾 of commodities
with elastic demand, and 0 if inelastic

𝐷𝑖 Demand set, defining service requirement parameters such as
priority, workload demand, latency, reliability, and
throughput

𝐾 Set of commodities, where 𝐾 = {𝑘𝑖} for 𝑖 = 1,… , 𝑚

sources, 𝛽𝑖 ∈ 𝛽 is the sink where 𝛽 is the set of sinks, and 𝛾𝑖 is the
indicator function 1 ∶ 𝐾 → {0, 1}, which indicates a value of 1 if
the commodity 𝑘𝑖 in the subset  ∈ 𝐾 of commodities having elastic
demand set and value 0 indicates inelastic demand. 𝐷𝑖 is demand set,
defining the service requirements parameters such as service priority
indicator, user’s workload demand, latency, reliability, and through-
put. For an elastic commodity 𝐷𝑖 = {𝛼, 𝐿𝑖𝑗 , [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥], [𝜌̃𝑚𝑖𝑛, 𝜌̃𝑚𝑎𝑥],
[̃𝑇 ℎ𝑟𝑚𝑖𝑛, ̃𝑇 ℎ𝑟𝑚𝑎𝑥]}. The three service parameters with ranges indicate
services Type 2 and Type 3, otherwise inelastic cases indicate service
Type 1. The set becomes 𝐷𝑖 = {𝑐, 𝜏, 𝜌̃, 𝛼}, with constant first three
members. The priority 𝛼 has a value in the range of [0, 1] and it can be
used in classifying the services according to their priority in the service
commodity. The sum of all the priorities must be 1. The coexistence
of multiple user’s applications is called a multi-commodity flow and
𝐾 = {𝑘 } (with 𝑖 = 1,… , 𝑚) is the set of 𝑚 commodities (see Table 1).
𝑖

4
4.2. Workload arrival modeling

In an edge/cloud data center(s) services arrive for processing. Here
we are assuming such processing functions to be designed as a group
of microservices to process the user’s incoming workload. Multiple
services arrive at the data center requiring processing. Since we are
considering only arriving workloads that require network function
processing.

The workload arrival modeling is assumed to be Poisson arrival with
arrival rate 𝜆. The total workload arrival rate is the sum of active users
requesting a workload to a given edge/cloud data center at a given
time.

𝜆𝑡𝑜𝑡 =
𝑁𝑈𝑠𝑟
∑

𝑖=1

𝑁𝐴𝑝𝑝
∑

𝑘=1
𝜆𝑖𝑘 (1)

where 𝑁𝐴𝑝𝑝 number of active applications from a given user requesting
workload processing at a given time. 𝑁𝑈𝑠𝑟 is the number of active
users at a given time. 𝜆𝑖𝑘 is the workload processing demand in Giga
Operations Per Second (GOPS) of a given application from a particular
user at a given time. 𝜆𝑡𝑜𝑡 is the total workload in GOPS.

4.3. Arrival throughput modeling

The total throughput of the arrival services is the sum of throughput
requested by all active applications in the active users, requesting a
given workload to that particular data center at a given time. We also
would like to calculate the total throughput arriving at the data center
at a given time, which is given by:

𝜓𝑡𝑜𝑡 =
𝑁𝑈𝑠𝑟
∑

𝑖=1

𝑁𝐴𝑝𝑝
∑

𝑘=1
𝜓𝑖𝑘 (2)

where 𝜓𝑖𝑘 is the throughput of the applications from a given user and
𝜓𝑡𝑜𝑡 is the total throughput arriving at a data center. To simplify the
formulation, the total arrival to a given data center is assumed to be a

S.T. Arzo et al.

𝐼
t

m
d
i
w
f
v
s

𝑀

a
l
r

5

d
G
l

5

c
s
t
d
t
s
q
w
o
a
g
l
s
s
c
m
e
a
m

q
s
t
c
p
m

𝑅

Computer Networks 254 (2024) 110750
single aggregation node such as the gateway of the edge/cloud data
center just before incoming traffic authentication to access the data
center network.

4.4. Modeling microservices-based network functions

As discussed in the introduction section, the trend in software de-
velopment is to build a softwarized system with loosely coupled units.
The network is also being softwarized using SDN and NFV. The archi-
tectures help in building a softwarized network, softwarizing network
functions such as Network Address Translator (NAT), routing, firewall,
serving gateway (s-gateway), packet gateway (p-gateway), Mobility
Management Entity (MME). These network functions can be developed
as a monolithic system or using SOA such as loosely-coupled mi-
croservices and multi-agent systems [1]. Here we focus on formulating
microservices-based softwarized network systems.

In an SOA the legacy monolithic system is disaggregated into
loosely-coupled small and specific services. The developed
microservices-based network functions are usually encapsulated in VMs
or containers and deployed in a distributed environment such as the
edge/cloud. VM and containers facilitate scalable, flexible, and efficient
deployment of network functions in an edge and/or fog and/or cloud
environment. However, the desegregation comes at the cost of the
added distance between the disaggregated functions. This could result
in additional delay. On the other hand, the possibility of deploying only
the required function near to user or application such as an edge data
center could reduce the delay with a reduced resource and energy cost.
Moreover, flexible deployment could enable a reduction in the end-to-
end delay and improve reliability if careful design and deployment are
followed.

Therefore, formulating the complete decomposed microservices-
based system is necessary. This is because, to calculate and perform
analysis of microservices-based systems deployed in a distributed en-
vironment, we need to have a complete mathematical model for the
system. The mathematical model should be comprehensive to consider
the overall system behavior when microservices-based service decom-
position is employed in the system design. Moreover, containerization
and cloudification also alter and may impose further constraints due to
added overheads and recomposition possibilities such as decomposition
delay, instantiation delay, and overhead delays in the virtual environ-
ment. Furthermore, reliability improvement through backup microser-
vices could also reduce delay if possible services can be deployed in the
vicinity of the user’s spiky workload processing demand.

4.4.1. Microservice modeling
Here we present a mathematical model formulating the overall sys-

tem for latency as the main parameter while also considering through-
put, resource utilization, and energy consumption. First, let us provide
a mathematical model for the microservice. A microservice 𝑀𝑆 can be
modeled as

𝑀𝑆𝑓 = [𝑃𝑐 , 𝑃𝑙 , 𝐸𝑐 , 𝐼𝑛𝑤𝑙 , 𝑂𝑢𝑡𝑤𝑙 , 𝐼𝑛𝑡ℎ𝑢, 𝑂𝑢𝑡𝑡ℎ𝑢] (3)

where 𝑀𝑆𝑓 is a microservice based function with a processing ca-
pacity 𝑃𝑐 , processing load 𝑃𝑙, energy consumption 𝐸𝑐 , input workload
𝑛𝑤𝑙 and output workload 𝑂𝑢𝑡𝑤𝑙, input throughput 𝐼𝑛𝑡ℎ𝑢 and output
hroughput 𝑂𝑢𝑡𝑡ℎ𝑢.

Depending on the workload processing requirement, we could have
ultiple microservices that are chained to provide the required service
emanded by a given user. The microservices chain could be arranged
n parallel or in series depending on the possibility of parallel or series
orkload processing. Depending on the arrangement, the formulation

or latency varies. The mathematical formulation of latency in microser-
ices chain will be presented in the later section. Here the cumulative
ervices are the combination of individual microservices.
𝑆𝑇 𝑜𝑡 =𝑀𝑆𝑓1,𝑀𝑆𝑓2,𝑀𝑆𝑓3,𝑀𝑆𝑓4,… ,𝑀𝑆𝑓𝑛 (4)

5
𝑀𝑆𝑇 𝑜𝑡 is the number of microservices required to be instanti-
ted to create a microservices chain to execute a given user’s work-
oad. The structure of a microservices-based chain is dependent on the
equirement of the application/user.

. Overall system mathematical model formulation

As discussed above the physical and virtual network, the edge
ata center, and cloud infrastructure are considered in the Multi-Layer
raph. Now we will formulate the resource utilization, end-to-end

atency, throughput, energy consumption, and containerization.

.1. Formulating resource constraints

We considered the presence of multiple edge data centers and
loud data centers. The end-to-end latency of a given workload is the
um of the latency incurred in the physical and virtual network, at
he processing server, and in the waiting queues. These latencies are
ependent on the scheduling algorithm: which determines where the
ask should be scheduled, and available resources at scheduled sites
uch as nearby data centers: which determines waiting time in the
ueue as well as the processing capacity to be availed for that particular
orkload, the number and type of users: which determines the amount
f workload to be handled and priority class if the scheduler is using
prioritization in the scheduling process. The available resource in a

iven data center is finite. Which means there is a capacity constraint
imiting the utilization of resources. Moreover, active resources such as
ervers and switches consume energy. Energy consumption is expen-
ive and there is associated carbon emission [28]. Therefore, energy
onsumption should be minimized. There are various techniques to
inimize resource usage and energy consumption [14,29–31]. How-

ver, none has considered microservices-based function decomposition
nd containerization details in the resource and energy consumption
odeling.

Here, we consider containerization of microservices that are re-
uired to perform a given workload. The granularity of a decomposed
ystem that is containerized may add further resource demand in
erms of memory and CPU. That should be considered in the resource
onstraint formulation. We extend the resource constraint formulation
resented in [14]. In general, the total resource required by a group of
icroservices to process incoming service is given by:

𝑐𝑝𝑢−𝑡𝑜𝑡−𝑠𝑟𝑣 =
𝑁𝑀𝑆
∑

𝑗=1
𝑃𝑐−𝑗 (5)

where 𝑅𝑐𝑝𝑢−𝑡𝑜𝑡−𝑠𝑟𝑣 is the overall resource consumption of a given service
without considering containerization of services, and 𝑃𝑐 is processing
capacity related to the 𝑗th microservice.

Microservices can be deployed in multiple edge or cloud data cen-
ters. The resource consumption and latency should be modeled con-
sidering this distribution. Fig. 2 depicts the path an incoming task or
service is required to pass for execution traversing multiple microser-
vices. Some services may only need to use a microservices chain in
a single data center and others may have more. Considering multiple
edge data centers, the total available CPU that could potentially be used
for workload scheduling is given by:

𝑅𝑐𝑝𝑢−𝑡𝑜𝑡 = 𝑅𝐸𝐷𝐶−1 + 𝑅𝐸𝐷𝐶−2 + 𝑅𝐸𝐷𝐶−3 +⋯ + 𝑅𝐸𝐷𝐶−𝑛 (6)

where 𝑅𝑐𝑝𝑢−𝑡𝑜𝑡 is the total processing power of a group of edge data
centers working together to perform collaborative service processing.
𝑅𝐸𝐷𝐶−𝑛 processing power of the 𝑛th edge data center.

The resource utilization by a group of microservices is formulated
in Eq. (5). Using this equation, the total resource demand is dependent
on the incoming workload that requires processing in the microservice.
Depending on the demand and the available resource in a given data

center, the required microservices are instantiated. Assuming the total

S.T. Arzo et al. Computer Networks 254 (2024) 110750
Fig. 2. Microservices-based chains containerization/virtualization delay.
available edge data center is allocated for instantiating container-
ized microservice, the maximum number of microservices that can be
instantiated is constrained as

𝑅𝑐𝑝𝑢−𝑡𝑜𝑡−𝑣𝑖𝑟 >
𝑁𝑀𝑆
∑

𝑗=1
𝑃𝑐−𝑗 +

𝑁𝑀𝑆
∑

𝑗=1
𝑃𝑜𝑣−𝑗 (7)

where 𝑅𝑐𝑝𝑢−𝑡𝑜𝑡−𝑣𝑖𝑟 is the overall resource consumption of a given ser-
vice considering containerization of services, 𝑃𝑐 is processing capacity
related to the 𝑗th microservice and 𝑃𝑜𝑣−𝑗 is processing overhead due to
containerization of microservices.

5.2. Modeling latency constraint

Here we present the formulation for the end-to-end latency of the
system that will be imposed by the workload, which is dependent on the
scheduler that considers geographically distributed edge data centers in
the scheduling of the workload. The overall latency is the sum of the
delays from the source (user) to sink (edge data center) which is given
as

𝐿𝑒2𝑒 = 𝐿𝑇 𝑟𝑛−𝑛𝑡𝑘 + 𝐿𝑄𝑢 + 𝐿𝑣𝑟 + 𝐿𝑇 𝑟𝑛−𝑒𝑑𝑔𝑒 + 𝐿𝑇 𝑟𝑛−𝑏𝑤𝑛−𝑒𝑑𝑔𝑒 + 𝐿𝑃𝑟𝑜 (8)

where 𝐿𝑇 𝑟𝑛−𝑛𝑡𝑘 is the transmission latency of the workload in the
network before arriving at a scheduling data center. 𝐿𝑄𝑢 is the latency
in the scheduling queue. 𝐿𝑇 𝑟𝑛−𝑒𝑑𝑔𝑒 is the delay incurred in the edge
data center, which is the network delay between the scheduling server
and microservices hosting servers and/or between microservices hosted
on different servers. The workload may require traversing multiple
microservices that could be hosted on different servers. 𝐿𝑇 𝑟𝑛−𝑏𝑤𝑛−𝑒𝑑𝑔𝑒
is the transmission delay between the scheduling data center and the
processing data center. Our scheduling assumption is, if there is an
available resource and required microservices chain in the scheduling
edge data center (where the workload first arrived), the workload
is scheduled in the same data center. Otherwise, the workload is
forwarded to the next best available edge data center considering
added latency between the edge data centers and the available resource
in the edge data center. Suppose the workload is scheduled in the
same data center as they arrived. In that case, the 𝐿𝑇 𝑟𝑛−𝑏𝑤𝑛−𝑒𝑑𝑔𝑒 value
becomes zero as there is no additional transmission latency to other
edge data centers or the cloud. 𝐿𝑣𝑟 is the virtualization latency due
to containerization or virtualization of microservices. The following
section discusses how to formulate the virtualization delay.

5.2.1. Virtualization latency
The authors in [26] provided an accurate formulation of the virtu-

alization delay overhead involved in a containerized environment. It is
the sum of the delay in the virtual NIC (vNIC), vSwitch, VMKernel, and
NIC driver. It is given by [26]:

𝐿 = 𝐷 +𝐷 +𝐷 +𝐷 (9)
𝑣𝑟 𝑣𝑁𝐼𝐶 𝑣𝑆𝑊 𝑉𝑀𝐾𝑒𝑟𝑛𝑒𝑙 𝑃𝑁𝐼𝐶𝐷𝑟𝑖𝑣𝑒𝑟

6
Using the above formulation, we have calculated the virtualization
delay, in the case of Ryu controller decomposition based on the MSN
implementation. The decomposed functions are containerized and the
virtualization delay is modeled as depicted in Fig. 3 which shows three
stages of the decomposed and containerized Ryu controller functions
showing the virtualization latency. The virtualization delay depends on
the number of VM hosted in a single server and the total workload of
that server. First, the total workload is calculated as:

(𝑃𝑇 𝑜𝑡) =
𝑁𝑉
∑

𝑛=1
(𝑃𝐿)𝑛 (10)

So the virtualization overhead delay as a function of co-located VM
and workload is given by [26]:

𝐹 (𝑁𝑉 , 𝑃𝐿) = 0.338 ×𝑁𝑉 × (𝑃𝐿)12.15 + 0.51 × (𝑃𝐿) (11)

5.2.2. Physical link latency
The physical latency in the data center is the sum of the delay

in each link, each switch and associated queues. This is given by the
following equation [14]:

𝐷𝑝ℎ𝑦 =
𝑂𝑝𝑦𝑙𝑖𝑛𝑘
∑

𝑜=1
𝐷𝑛 +

𝐾𝑝𝑦𝑠𝑤
∑

𝑘=1
𝐷𝑘 +

𝑁𝑄𝑢𝑒
∑

𝑚=1
𝐷𝑚 (12)

5.2.3. Processing latency
The processing latency in a serving microservice is:

𝐿𝑝𝑟𝑜𝑐 =
𝑁𝑀𝑆
∑

𝑖=1

𝐿𝑖𝑗
𝑈𝑐𝑜𝑛𝑡

(13)

The processing delay 𝐿𝑝𝑟𝑜𝑐 is variable depending on the given ser-
vice workload (𝑊𝐿𝑖𝑗), serving rate of each containerized microservice
(𝑈𝑐𝑜𝑛) from a group of microservices (i.e. a so called microservices
chain) and number of microservices 𝑁𝑀𝑆 of a given type.

5.2.4. End to end latency

𝐿𝑒𝑛𝑑 = 𝑆𝑜𝑢𝑟𝑐𝑒𝑛𝑜𝑑𝑒 − 𝑆𝑖𝑛𝑘𝑛𝑜𝑑𝑒 (14)

The end-to-end latency is calculated as [14].

𝐿𝑒𝑛𝑑 = 𝐿𝑅𝐴𝑁 + 𝐿𝑇 𝑟𝑎𝑛 + 𝐿𝐷𝐶 (15)

Moreover, the data center latency can be calculated as

𝐿𝐷𝐶 = 𝐿𝑁𝑡𝑘 + 𝐿𝑃𝑟𝑐 + 𝐿𝑄𝑢𝑒 (16)

However, since the microservice is hosted in a virtualization en-
vironment or container, there is an overhead delay that should be
considered for each network function that is part of the service function
chain. Therefore, using Eq. (2), the processing latency is given by:

𝐿 = 𝐿 + 𝐹 (𝑁 ,𝑃) + 𝐿 (17)
𝐷𝐶 𝑁𝑡𝑘 𝑉 𝐿 𝑄𝑢𝑒

S.T. Arzo et al.

i
t
u
m
a
b
O
d
t
m

𝐿

5

c
e
t
f
a
c
t

𝜓

w
t
b

5

f
3
s
m
c
m
n
f
m
p

𝑃

n
c

𝑃

Computer Networks 254 (2024) 110750
Fig. 3. Virtualization Delay in the MSN microservices Chain.
w

which can also be written as:

𝐿𝐷𝐶 = 𝐿𝑁𝑡𝑘 + 0.338 ×𝑁𝑉 × (𝑃𝐿)12.15 + 0.51 × (𝑃𝐿) + 𝐿𝑄𝑢𝑒 (18)

Assuming the placement of the microservices to the nearest server
nterns of latency or a server with the least load, we now calculate
he cascaded delay in the Service Function Chaining (SFC). A given
ser application task is constrained to pass through a given sequence of
icroservices chain. Depending on the application requirements, there

re different possibilities for chains. Accordingly, some chains could
e in parallel which means some tasks could be performed in parallel.
n the other time, they are in series. In a parallel case, the delay is
ependent on the path that incurred the highest latency. However, in
he series chain case, the delay is calculated as a sum of the cascaded
icroservices chains. This is formulated as:

𝑀𝑆𝐶 =

{

∑𝑁𝑀𝑆𝐶
𝑜=1 𝐿𝑀𝑆 , if series MS chain

𝐿𝑀𝑆−𝐶 , parallel MS chain
(19)

.3. Modeling throughput in virtual environment

The throughput in a virtual environment can be formulated using
lassical throughput aggregation or desegregation formulation. How-
ver, when the service function node is a microservice processing node,
he classic formulation could be different. For instance, in a service
unction chain, given an input throughput, the output throughput
mount may be higher or lower or even zero since the nodes in the
hain could respond according to the functionality they are designed
o perform:

𝑜𝑢𝑡 =

⎧

⎪

⎨

⎪

⎩

𝜓𝑜𝑢𝑡 < 𝜓𝑖𝑛,
𝜓𝑜𝑢𝑡 = 0,
𝜓𝑜𝑢𝑡 > 𝜓𝑖𝑛

(20)

here 𝜓𝑜𝑢𝑡 throughput in the output interface and 𝜓𝑖𝑛 throughput in
he input interface. Therefore, the throughput can only be determined
y the incoming task request and the processing microservice node.

.4. Modeling energy constraint

Power consumption of data centers hosting network management
unctions is significant that should be considered in the design [30,
1]. In this regard, microservices-based functions consume power that
hould be modeled to account for the power consumption of the
odularized and containerized functions. Processing and hardware

onsumption are well studied subjects. However, the modularization of
onolithic systems and virtualization/containerization of the modules
eed a thorough investigation to understand the impact. Here, we have
ormulated the overall consumption considering each portion of the
odularized and containerized function. Processing consumption of a
hysical server is given by [31]:

𝑊𝐿 = 𝑃𝑖𝑑𝑙 −
𝑃𝑝𝑘 − 𝑃𝑖𝑑𝑙

2
× (1 +𝑊𝐿 − 𝑒

𝑊𝐿
𝛾) (21)

Total power consumption is the sum of the physical server and
etworking device power consumption. Therefore, the total energy
onsumption of undecomposed monolithic systems is given by:
𝑡𝑜𝑡 = 𝑃𝑝𝑟𝑜 + 𝑃𝑐𝑜𝑚 (22)

7
However, when we consider a microservices-based decomposition
along with containerization, the consumption would be different. In
general, the consumption of a given containerized microservice be-
comes the sum of processing, communication, and virtualization power
consumption, which is given by:

𝑃𝑡𝑜𝑡 = 𝑃𝑝𝑟𝑜 + 𝑃𝑐𝑜𝑚 + 𝑃𝑣𝑖𝑟 (23)

where 𝑃𝑣𝑖𝑟 is the additional power consumption due to the container-
ization.

In general, placing a given microservice in a server has an impact
on the overall energy consumption of the system. Therefore where
to place the microservice to minimize energy consumption has to be
studied, e.g placing a microservice considering energy cost or without
instantiating new server as much as possible. Load concentration on the
given physical server without congesting the physical link. Such aspects
are crucial for the efficient deployment of microservices-based systems.
The study of placement considering power consumption is beyond the
scope of this work and is left for future work.

5.5. Modeling nested containers latency

The containerization of functions has added additional delay. To
improve the organization and security of decoupled functions, it could
be necessary to put two functions in different containers and place
these containers in another container. Such kind of organization could
be more useful for service function chaining. However, the added
latency must be considered. Here we formulate the latency in terms of
the number of containerization layers. Let 𝐶𝑙𝑖 be the containerization
latency of the 𝑖th container in the nested containerization series. The
total latency 𝐶𝑙𝑡𝑜𝑡 of 𝑖th level function becomes:

𝐶𝑙𝑡𝑜𝑡 = 𝐿𝑝𝑟𝑜 +
𝑁𝑐𝑜𝑛
∑

𝑖=0
𝐶𝑙𝑖 (24)

here 𝐿𝑝𝑟𝑜 is the processing latency of the 𝑖th level function, i = 0, 1, 2,
3...
𝑁𝑐𝑜𝑛 i = 0 indicate that the function is not containerized.

6. Experimental evaluation

This section presents our experimental evaluation of the proposed
models for microservices-based service chains. First, we introduce
some preliminary results on the Docker Container networking in Sec-
tion 6.1. Second, the latency evaluation of our proposed models for
microservices-based service chains based on the Ryu SDN Framework is
presented in Section 6.2. Third, in Section 6.3 we present the evaluation
of the throughput model based on a video streaming application. Fi-
nally, we show the experimental evaluation of the energy consumption
in Section 6.4.

For the evaluation purpose, we have run all the experiments in
a micro datacenter machine which is equipped with 32-cores AMD
Opteron(TM) 2.3-GHz PC with 32-GB RAM. Moreover, the machine

provides a specific Docker version such as the 20.10.17 version.

S.T. Arzo et al.

t
n
s
s
v
(

6

p
s
p
t
D
t
t
p
o
a
s
a

6

t
w
t
e
t
D
t

Computer Networks 254 (2024) 110750
Table 2
Latency comparison between the Docker bridge and host mode.

Payload (bytes) Bridge Host

median (μs) std (μs) median (μs) std (μs)

1 47.41 4.92 46.03 4.90
2 49.00 4.39 47.59 3.64
4 49.04 3.36 47.57 4.57
8 49.08 4.00 47.61 3.86
16 49.06 3.86 47.65 3.64
32 48.94 5.89 47.63 3.81
64 49.03 3.37 47.64 3.72
128 49.23 3.69 47.98 3.31
256 49.07 3.47 47.97 3.20
512 49.20 3.35 48.06 3.11
1024 49.39 3.73 47.96 3.32
2048 57.64 3.23 48.12 2.98
4096 57.99 5.33 48.45 4.85
8192 59.68 4.30 49.03 3.52
16384 69.07 4.36 50.16 3.11
32768 71.43 5.72 52.31 4.74

6.1. Preliminary results

Before delving into the actual results, we make a few clarifying
statements on the impact of Docker Container on the network I/O
performance. As already stated and proofed for VNF, packet I/O and
processing operations inside the VMs introduce latency [32]. Similarly,
containers run in an isolated way on top of the operating system’s ker-
nel. Having this additional layer of abstraction may lead to performance
degradation. Docker offers two different networking setups: (i) bridge
hat is the default network in Docker where each container has its own
etwork namespace; (ii) host that does not create a separated network
tack for containers, instead, each container shares the same network
tack with the host. Finally, we calculated the delay introduced by a
irtualization layer when we have multiple levels of Docker containers
i.e., nested Docker containers).

.1.1. Docker latency evaluation
To measure latency over a network we used the software sfnt-

ingpong 1 that measures ping-pong latency over a range of message
izes by using standard network protocols including TCP and UDP. In
articular, we measured the ping-pong time between a request made at
he host level by the client towards the server that is instantiated in a
ocker Container in both network modes (i.e., bridge and host). Note

hat we reported only results about TCP because is the most used for
he majority of the applications. Results are reported in Table 2. These
reliminary results show that latency times are a bit lower in the case
f Docker host network configuration. This is justified by the fact that
s mentioned above, the Docker host configuration shares the network
tack with the host, while the Docker bridge creates a virtual network
nd a virtual bridge named docker0.

.1.2. Nested docker evaluation
To assess the model defined in Eq. (24), we focus on the latency

imes introduced by nested levels of Docker Container. To ensure this,
e leveraged the DinD Docker image2 that contains the Docker daemon

o instantiate a new Docker Container inside it. Note that, for this
valuation, we present only the Docker bridge network mode because
he Docker host network mode does not allow the instantiating of the
ocker daemon at the same port. The results shown in Fig. 4, represent

he latency times for a simple Docker Container httpd server3 at several
different virtualization levels. In particular, we calculate the latency

1 https://github.com/Xilinx-CNS/onload
2 https://hub.docker.com/_/docker
3
 https://hub.docker.com/_/httpd

8
time for nine different levels of virtualization. The requests always start
from the host level (L0) while the server is shifted at each level over
time (from L1 to L9). Moreover, we used Apache ab4 for testing the
average time per request over 1000 requests. Finally, the request time
seems to be linear with the virtualization layers.

6.2. Latency evaluation

In this section, we evaluate the latency model as described in
Section 5.2 by leveraging the MSN implementation. Fig. 5 shows the
setup of our MSN evaluation environment. In the MSN architecture, we
decomposed each SDN functionality as a microservice and successively
encapsulated it in a Docker container. The basic MSN configuration is
composed of three microservices including the ofp_handler (for event
handler functionalities), the two internal applications ofp_emitter and
ofctl_rest (we called middleware) and, the external Ryu application
(in our case the simple_switch application). Note that to work properly
MSN needs at least a service chain composed of the three mentioned
microservices. The workflow of the MSN microservices chain is as
follows. When a host in the network tries to communicate with another
host, the packet_in event is created. There is no rule installed in the SDN
controller for the first time, so the packet_in event is transformed into
a REST request for the simple_switch routing application. Finally, the
packet returns via the send_packet event.

For each microservice, we evaluated the virtualization latency (if
present) and the processing latency, while we included the network
latency for the entire service chain evaluation. Moreover, we tested
MSN in three different scenarios such as No Docker (no virtualization),
Docker host network mode, and Docker bridge network mode. A sum-
mary of obtained results are shown in Fig. 6. We did these tests in a
Mininet network with a standard three-levels topology composed of 10
hosts and 5 switches. Each evaluation took around 50 runs. Overall,
the No Docker scenario has shown to drop down the end-to-end latency
time to around 25% compared to the Docker Bridge implementation.

6.3. Throughput evaluation

With the experiments, we analyze the impact of the virtual en-
vironment of our microservices-based SDN controller on the aver-
age throughput during operation. As in the previous experiments, we
leverage our MSN implementation depicted in Fig. 5. In particular,
we recorded the control plane traffic incoming and outgoing at the
MSN service chain with the Wireshark tool. For each microservice, in
this case, the ryu_middleware and the simple_switch, we evaluated the
incoming and outgoing throughput.

To assess the throughput evaluation, we devise a Smart City ap-
plication aligned with one of the ETSI MEC use cases [33], such as
video streaming. Specifically, we focus on a scenario where a user
in a locality is connected to the 5G infrastructure to send continuous
video streaming. To emulate this, we created a virtualized network
with the Mininet simulation tool which creates the network topology
composed of 10 hosts, 5 switches, which provide a 1 Mbits bandwidth,
and the MSN controller. For the video streaming task, we use the
ffmpeg software which is a Linux-based standard tool for video/audio
streaming.

Fig. 7 shows the observed throughput of the control plane traffic on
the link interconnecting the MSN middleware dockerized microservice.
Fig. 7(a) shows the average incoming throughput while Fig. 7(b) de-
picts the average outgoing throughput. On the contrary, Fig. 8 shows
the observed throughput of the control plane traffic on the simple_switch
microservice. As in the previous case, Fig. 8(a) shows the incoming
traffic, while Fig. 8(b) shows the outgoing traffic. The performance re-
sults show the throughput during the processing of the video streaming

4 https://httpd.apache.org/docs/2.4/programs/ab.html

https://github.com/Xilinx-CNS/onload
https://hub.docker.com/_/docker
https://hub.docker.com/_/httpd
https://httpd.apache.org/docs/2.4/programs/ab.html

S.T. Arzo et al. Computer Networks 254 (2024) 110750
Fig. 4. Nested Docker containers latency.
Fig. 5. Microservices-based Ryu SDN Framework implementation.
Fig. 6. MSN service chain latency evaluation for each stage.
application. In particular, from Fig. 7 and Fig. 8, is possible to note that
the SDN traffic is only for the first packets and for the update packets.

6.4. Energy evaluation

To assess energy consumption, we leverage a tool named Scaphan-
dre5 which allows calculating the electrical power consumption of soft-
ware services. Specifically, we focus on the MSN power consumption in
both non-dockerized and dockerized fashion.

5 https://hubblo-org.github.io/scaphandre-documentation/index.html
9
Fig. 9 shows the comparison of the power consumption between
the MSN non-dockerized and dockerized one. We recorded the power
consumption during the operation of the network. In particular, we
leverage the same Mininet network described for the other experi-
ments and we run the pingall command on the entire network for
around 30 s. Overall, it is possible to conclude that the non-dockerized
version of the MSN consumes around 10% less than the dockerized
version. Table 3 shows detailed power consumption per process in
correspondence with the maximum peak of power consumption. As
observed, running MSN in a containerized environment with Docker
involves multiple interconnected processes, each contributing to the
overall power consumption.

https://hubblo-org.github.io/scaphandre-documentation/index.html

S.T. Arzo et al. Computer Networks 254 (2024) 110750
Fig. 7. Throughput observed for control plane traffic in the MSN middleware microservice during video streaming operation.
Fig. 8. Throughput observed for control plane traffic in the MSN simple switch microservice during video streaming operation.
Table 3
Comparison of peak energy consumption per process in non-dockerized versus
dockerized MSN environments.

Non-dockerized Dockerized

Process Power (W) Process Power (W)

ryu-manager 12.65 ryu-manager 11.40
simple-switch 11.46 simple-switch 10.31
ovs-vswitchd 3.74 ovs-vswitchd 3.07
– – dockerd 2.35
– – containerd-shim 1.98
– – docker 1.08
– – docker-proxy 0.18

Total cons. 27.85 Total cons. 30.37

7. Discussion and conclusion

In this paper, the microservices-based decomposition architecture
for future 6G networks is proposed and evaluated. To the best of the
authors’ knowledge, this is the first performance evaluation in terms
of major KPIs (e.g. latency, throughput, and energy) of communica-
tion in the end-to-end softwarized network continuum. The theoretical
modeling based on hypergraphs makes it more accurate in representing
the characteristics and the behavior than the revised state-of-the-art.
The theoretical description of the latency of softwarized environments

and the tests in the real MSN environment to make the analysis more

10
accurate are used to make the evaluation and the theoretical work
more solid and closer to describe a real network behavior. The MSN
framework, evaluated in this paper, paves the way to a new generation
of microservices-based approaches for the next generation 5G-ready
and beyond SDN networks. Microservice-based networks will be the
first pillar of future 6G architecture and this work tries to highlight
important design guidelines in that perspective. The results presented in
this paper are focused on latency, throughput, and energy consumption.
Obtained results demonstrate the feasibility of applying microservices-
based modeling for 5G and beyond networks including virtualization
and containerization aspects.

Boosted by obtained results, we are now working along different
ongoing work directions. First, we are working on the inclusion of in-
network intelligence both centralized and distributed in the form of
multi-agents. The multi-agent system is the key enabler for the next
6G network generation. In particular, we are defining and propos-
ing multi-agent-based autonomic network architecture along with the
mathematical modeling of the autonomic network management system.
In parallel, we are working on the introduction of intelligent agent
support for the MSN framework. In particular, we are creating a new
functionality named topology_learning as an extension of the SDN topol-
ogy manager for enabling the shortest_path agent. To the best of the
author’s knowledge, we claim that could pave the way for supporting
intelligent agents into microservice-based SDN networks.

S.T. Arzo et al.

d

C

o
F
P
V
R
V
C
F
o
C

D

i
i

D

A

d
E
E
o
f
o
p
h
u
a
b
s
m
J

R

Computer Networks 254 (2024) 110750
Fig. 9. Comparison between energy consumption for MSN non-dockerized and
ockerized.

RediT authorship contribution statement

Sisay Tadesse Arzo: Conceptualization, Methodology, Writing –
riginal draft. Domenico Scotece: Conceptualization, Data curation,
ormal analysis, Funding acquisition, Investigation, Methodology,
roject administration, Resources, Software, Supervision, Validation,
isualization, Writing – original draft, Writing – review & editing.
iccardo Bassoli: Conceptualization, Data curation, Supervision,
alidation, Writing – original draft. Michael Devetsikiotis:
onceptualization, Supervision, Writing – original draft. Luca
oschini: Conceptualization, Supervision, Validation, Writing –
riginal draft, Writing – review & editing. Frank H.P. Fitzek:
onceptualization, Supervision.

eclaration of competing interest

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgments

This work has been partially funded by the German Research Foun-
ation (DFG, Deutsche Forschungsgemeinschaft) as part of Germany’s
xcellence Strategy – EXC2050/1 – Project ID 390696704 – Cluster of
xcellence ‘‘Centre for Tactile Internet with Human-in-the-Loop’’ (CeTI)
f Technische Universität Dresden. The authors also acknowledge the
inancial support by the Federal Ministry of Education and Research
f Germany in the programme of ‘‘Souverän. Digital. Vernetzt.’’. Joint
roject 6G-life, project identification number: 16KISK001K. This work
as also been partially funded by the US National Science Foundation
nder the New Mexico SMART Grid Center - EPSCoR cooperative
greement Grant OIA- 1757207. This work was partially supported
y the European Union under the Italian National Recovery and Re-
ilience Plan (NRRP) of NextGenerationEU, partnership on ‘‘Telecom-
unications of the Future’’ (PE00000001 - program ‘‘RESTART’’) CUP:

33C22002880001.
11
eferences

[1] S.T. Arzo, R. Bassoli, F. Granelli, F.H. Fitzek, Multi-agent based autonomic
network management architecture, IEEE Trans. Netw. Serv. Manag. (2021) http:
//dx.doi.org/10.1109/TNSM.2021.3059752, 1–1.

[2] E. Berrio-Charry, J. Vergara-Vargas, H. Umaña-Acosta, A component-based
evolution model for service-based software architectures, in: 2020 IEEE 11th
International Conference on Software Engineering and Service Science, ICSESS,
2020, pp. 111–115, http://dx.doi.org/10.1109/ICSESS49938.2020.9237747.

[3] CodeandPepper, 10 Companies Using Microservices. Who is Using Them?, 2021,
URL https://codeandpepper.com/companies-using-microservices/.

[4] NordicAPIS, 4 Examples of Microservices Architectures Done Right, 2021, URL
https://nordicapis.com/4-examples-of-microservices-architectures-done-right/.

[5] R. Mijumbi, J. Serrat, J.L. Gorricho, N. Bouten, F. De Turck, R. Boutaba, Network
function virtualization: State-of-the-art and research challenges, IEEE Commun.
Surv. Tutor. 18 (1) (2016) 236–262, http://dx.doi.org/10.1109/COMST.2015.
2477041.

[6] H. Farhady, H. Lee, A. Nakao, Software-defined networking: A survey, Comput.
Netw. 81 (2015) 79–95, http://dx.doi.org/10.1016/j.comnet.2015.02.014, URL
https://www.sciencedirect.com/science/article/pii/S1389128615000614.

[7] Q. Duan, S. Wang, N. Ansari, Convergence of networking and cloud/edge
computing: Status, challenges, and opportunities, IEEE Netw. 34 (6) (2020)
148–155, http://dx.doi.org/10.1109/MNET.011.2000089.

[8] S.T. Arzo, D. Scotece, R. Bassoli, F. Granelli, L. Foschini, F.H. Fitzek, A new
agent-based intelligent network architecture, IEEE Commun. Stand. Mag. 6 (4)
(2022) 74–79, http://dx.doi.org/10.1109/MCOMSTD.0001.2100053.

[9] Hexa-X, D1.2 – Expanded 6G vision, use cases and societal values — including
aspects of sustainability, security and spectrum, 2021, URL https://hexa-x.eu/
wp-content/uploads/2021/05/Hexa-X_D1.2.pdf.

[10] Hexa-X, D5.1 – Initial 6G Architectural Components and Enablers, 2021,
URL https://hexa-x.eu/wp-content/uploads/2022/01/Hexa-X_D5.1_full_version_
v1.0.pdf.

[11] A. Samanta, L. Jiao, M. Mühlhäuser, L. Wang, Incentivizing microservices
for online resource sharing in edge clouds, in: 2019 IEEE 39th International
Conference on Distributed Computing Systems, ICDCS, 2019, pp. 420–430, http:
//dx.doi.org/10.1109/ICDCS.2019.00049.

[12] R. Yu, V.T. Kilari, G. Xue, D. Yang, Load balancing for interdependent IoT
microservices, in: IEEE INFOCOM 2019 - IEEE Conference on Computer Com-
munications, 2019, pp. 298–306, http://dx.doi.org/10.1109/INFOCOM.2019.
8737450.

[13] Y. Niu, F. Liu, Z. Li, Load balancing across microservices, in: IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, 2018, pp. 198–206,
http://dx.doi.org/10.1109/INFOCOM.2018.8486300.

[14] S.T. Arzo, R. Bassoli, F. Granelli, F.H.P. Fitzek, Study of virtual network function
placement in 5G cloud radio access network, IEEE Trans. Netw. Serv. Manag.
17 (4) (2020) 2242–2259, http://dx.doi.org/10.1109/TNSM.2020.3020390.

[15] S.T. Arzo, D. Scotece, R. Bassoli, D. Barattini, F. Granelli, L. Foschini,
F.H.P. Fitzek, MSN: A playground framework for design and evaluation of
MicroServices-based sdn controller, J. Netw. Syst. Manage. 30 (1) (2021)
1573–7705, http://dx.doi.org/10.1007/s10922-021-09631-7.

[16] Y. Wang, C. Zhao, S. Yang, X. Ren, L. Wang, P. Zhao, X. Yang, MPCSM:
Microservice placement for edge-cloud collaborative smart manufacturing, IEEE
Trans. Ind. Inform. 17 (9) (2021) 5898–5908, http://dx.doi.org/10.1109/TII.
2020.3036406.

[17] A. Samanta, J. Tang, Dyme: Dynamic microservice scheduling in edge computing
enabled IoT, IEEE Internet Things J. 7 (7) (2020) 6164–6174, http://dx.doi.org/
10.1109/JIOT.2020.2981958.

[18] H. Khazaei, N. Mahmoudi, C. Barna, M. Litoiu, Performance modeling of
microservice platforms, IEEE Trans. Cloud Comput. (2020) http://dx.doi.org/10.
1109/TCC.2020.3029092, 1–1.

[19] D.B. Oljira, A. Brunstrom, J. Taheri, K.J. Grinnemo, Analysis of network latency
in virtualized environments, in: 2016 IEEE Global Communications Conference,
GLOBECOM, 2016, pp. 1–6, http://dx.doi.org/10.1109/GLOCOM.2016.7841603.

[20] N. Cruz Coulson, S. Sotiriadis, N. Bessis, Adaptive microservice scaling for elastic
applications, IEEE Internet Things J. 7 (5) (2020) 4195–4202, http://dx.doi.org/
10.1109/JIOT.2020.2964405.

[21] A. Samanta, Y. Li, F. Esposito, Battle of microservices: Towards latency-optimal
heuristic scheduling for edge computing, in: 2019 IEEE Conference on Net-
work Softwarization, NetSoft, 2019, pp. 223–227, http://dx.doi.org/10.1109/
NETSOFT.2019.8806674.

[22] I.D. Filip, F. Pop, C. Serbanescu, C. Choi, Microservices scheduling model over
heterogeneous cloud-edge environments as support for IoT applications, IEEE
Internet Things J. 5 (4) (2018) 2672–2681, http://dx.doi.org/10.1109/JIOT.
2018.2792940.

[23] C. Lei, H. Dai, A heuristic services binding algorithm to improve fault-tolerance
in microservice based edge computing architecture, in: 2020 IEEE World
Congress on Services, SERVICES, 2020, pp. 83–88, http://dx.doi.org/10.1109/
SERVICES48979.2020.00031.

[24] O. Oleghe, Container placement and migration in edge computing: Concept and
scheduling models, IEEE Access 9 (2021) 68028–68043, http://dx.doi.org/10.
1109/ACCESS.2021.3077550.

http://dx.doi.org/10.1109/TNSM.2021.3059752
http://dx.doi.org/10.1109/TNSM.2021.3059752
http://dx.doi.org/10.1109/TNSM.2021.3059752
http://dx.doi.org/10.1109/ICSESS49938.2020.9237747
https://codeandpepper.com/companies-using-microservices/
https://nordicapis.com/4-examples-of-microservices-architectures-done-right/
http://dx.doi.org/10.1109/COMST.2015.2477041
http://dx.doi.org/10.1109/COMST.2015.2477041
http://dx.doi.org/10.1109/COMST.2015.2477041
http://dx.doi.org/10.1016/j.comnet.2015.02.014
https://www.sciencedirect.com/science/article/pii/S1389128615000614
http://dx.doi.org/10.1109/MNET.011.2000089
http://dx.doi.org/10.1109/MCOMSTD.0001.2100053
https://hexa-x.eu/wp-content/uploads/2021/05/Hexa-X_D1.2.pdf
https://hexa-x.eu/wp-content/uploads/2021/05/Hexa-X_D1.2.pdf
https://hexa-x.eu/wp-content/uploads/2021/05/Hexa-X_D1.2.pdf
https://hexa-x.eu/wp-content/uploads/2022/01/Hexa-X_D5.1_full_version_v1.0.pdf
https://hexa-x.eu/wp-content/uploads/2022/01/Hexa-X_D5.1_full_version_v1.0.pdf
https://hexa-x.eu/wp-content/uploads/2022/01/Hexa-X_D5.1_full_version_v1.0.pdf
http://dx.doi.org/10.1109/ICDCS.2019.00049
http://dx.doi.org/10.1109/ICDCS.2019.00049
http://dx.doi.org/10.1109/ICDCS.2019.00049
http://dx.doi.org/10.1109/INFOCOM.2019.8737450
http://dx.doi.org/10.1109/INFOCOM.2019.8737450
http://dx.doi.org/10.1109/INFOCOM.2019.8737450
http://dx.doi.org/10.1109/INFOCOM.2018.8486300
http://dx.doi.org/10.1109/TNSM.2020.3020390
http://dx.doi.org/10.1007/s10922-021-09631-7
http://dx.doi.org/10.1109/TII.2020.3036406
http://dx.doi.org/10.1109/TII.2020.3036406
http://dx.doi.org/10.1109/TII.2020.3036406
http://dx.doi.org/10.1109/JIOT.2020.2981958
http://dx.doi.org/10.1109/JIOT.2020.2981958
http://dx.doi.org/10.1109/JIOT.2020.2981958
http://dx.doi.org/10.1109/TCC.2020.3029092
http://dx.doi.org/10.1109/TCC.2020.3029092
http://dx.doi.org/10.1109/TCC.2020.3029092
http://dx.doi.org/10.1109/GLOCOM.2016.7841603
http://dx.doi.org/10.1109/JIOT.2020.2964405
http://dx.doi.org/10.1109/JIOT.2020.2964405
http://dx.doi.org/10.1109/JIOT.2020.2964405
http://dx.doi.org/10.1109/NETSOFT.2019.8806674
http://dx.doi.org/10.1109/NETSOFT.2019.8806674
http://dx.doi.org/10.1109/NETSOFT.2019.8806674
http://dx.doi.org/10.1109/JIOT.2018.2792940
http://dx.doi.org/10.1109/JIOT.2018.2792940
http://dx.doi.org/10.1109/JIOT.2018.2792940
http://dx.doi.org/10.1109/SERVICES48979.2020.00031
http://dx.doi.org/10.1109/SERVICES48979.2020.00031
http://dx.doi.org/10.1109/SERVICES48979.2020.00031
http://dx.doi.org/10.1109/ACCESS.2021.3077550
http://dx.doi.org/10.1109/ACCESS.2021.3077550
http://dx.doi.org/10.1109/ACCESS.2021.3077550

S.T. Arzo et al. Computer Networks 254 (2024) 110750
[25] S.T. Arzo, F. Zambotto, F. Granelli, R. Bassoli, M. Devetsikiotis, F.H. Fitzek,
A translator as virtual network function for network level interoperability
of different IoT technologies, in: 2021 IEEE 7th International Conference on
Network Softwarization, NetSoft, 2021, pp. 416–422, http://dx.doi.org/10.1109/
NetSoft51509.2021.9492677.

[26] D.B. Oljira, K.J. Grinnemo, J. Taheri, A. Brunstrom, A model for qos-aware VNF
placement and provisioning, in: 2017 IEEE Conference on Network Function
Virtualization and Software Defined Networks, NFV-SDN, 2017, pp. 1–7, http:
//dx.doi.org/10.1109/NFV-SDN.2017.8169829.

[27] L. Liu, M.T. Özsu (Eds.), Voronoi tessellation, in: Encyclopedia of Database
Systems, Springer US, Boston, MA, 2009, http://dx.doi.org/10.1007/978-0-387-
39940-9_3981, 3440–3440.

[28] M. Mursleen, Y. Kothyari, An energy-efficient allocation technique for distribut-
ing resources in a heterogeneous data center, in: 2019 International Conference
on Advances in Computing and Communication Engineering, ICACCE, 2019, pp.
1–3, http://dx.doi.org/10.1109/ICACCE46606.2019.9079973.

[29] P. Nehra, A. Nagaraju, Sustainable energy consumption modeling for cloud
data centers, in: 2019 IEEE 5th International Conference for Convergence in
Technology, I2CT, 2019, pp. 1–4, http://dx.doi.org/10.1109/I2CT45611.2019.
9033927.

[30] D. Kliazovich, S.T. Arzo, F. Granelli, P. Bouvry, S.U. Khan, Accounting for load
variation in energy-efficient data centers, in: 2013 IEEE International Conference
on Communications, ICC, 2013, pp. 2561–2566, http://dx.doi.org/10.1109/ICC.
2013.6654920.

[31] D. Kliazovich, S.T. Arzo, F. Granelli, P. Bouvry, S.U. Khan, e-STAB: Energy-
efficient scheduling for cloud computing applications with traffic load balancing,
in: 2013 IEEE International Conference on Green Computing and Communica-
tions and IEEE Internet of Things and IEEE Cyber, Physical and Social Com-
puting, 2013, pp. 7–13, http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.
2013.28.

[32] Z. Xiang, F. Gabriel, E. Urbano, G.T. Nguyen, M. Reisslein, F.H.P. Fitzek,
Reducing latency in virtual machines: Enabling tactile internet for human-
machine co-working, IEEE J. Sel. Areas Commun. 37 (5) (2019) 1098–1116,
http://dx.doi.org/10.1109/JSAC.2019.2906788.

[33] ETSI, Mobile-Edge Computing – Introductory Technical White Paper, 2014, URL
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-
_introductory_technical_white_paper_v1%2018-09-14.pdf.

Sisay Tadesse Arzo is a PostDoc Fellow at the University
of New Mexico, USA. He got his Ph.D. in Information and
Communication Technology and MSc. in Telecommunication
Engineering from the University of Trento, Italy. He received
his BSc. from Hawassa University, Ethiopia. He has more
than five years of industrial experience in the Telecom
industry. He has more than ten journals and papers in cloud
computing, network softwarization, and network automa-
tion. His research interest included Network Softwarization.
Internet of Things(IoT), Network Automation, SmartGrid,
Quantum Computing, and Communication and Computing
in Space.

Domenico Scotece is an Assistant Professor at the Univer-
sity of Bologna. He received his Ph.D. and M.Sc. degrees
in Computer Science Engineering from the University of
Bologna in 2020 and 2014, respectively. His research in-
terests include pervasive computing, middleware for fog
and edge computing, IoT, management of cloud computing
systems, Software-defined Networking, 5G and 6G.
12
Riccardo Bassoli is a Junior professor (US Assistant Pro-
fessor, UK Lecturer) at the Deutsche Telekom Chair of
Communication Networks and Head of the Quantum Com-
munication Networks Research Group, at the Faculty of
Electrical and Computer Engineering, at Technische Uni-
versitat Dresden. He is also ‘‘member of the Centre for
Tactile Internet with Human-in-the-loop (CeTI), Cluster of
Excellence, Dresden. He got his Ph.D. from 5G Innovation
Centre at University of Surrey (UK), in 2016. Between 2016
and 2019, he was postdoctoral researcher at Università
di Trento (Italy). He is IEEE and ComSoc member. He
is also member of Glue Technologies for Space Systems
Technical Panel of IEEE AESS. His research interests include:
quantum communication networks and their integration
with 6G and the Tactile Internet, 6G three-dimensional
networking, network virtualization, and low-latency resilient
communications.

Michael Devetsikiotis (FIEEE) received the Diploma degree
in electrical engineering from the Aristotle University of
Thessaloniki, Greece, in 1988, and the M.S. and Ph.D.
degrees in electrical engineering from North Carolina
State University, Raleigh, NC, USA, in 1990 and 1993,
respectively. He joined the University of New Mexico,
Albuquerque, NM, USA, in July 2016, as a Professor and
the Chair of the ECE Department, School of Engineering.
His work has received well over 7,000 citations. In 2017, he
was inducted to the NC State ECE Alumni Hall of Fame. His
research work has resulted in 50 refereed journal articles,
130 refereed conference papers, and 61 invited presenta-
tions, in the area of design and performance evaluation
of telecommunication networks, complex sociotechnical and
cyber–physical systems, efficient simulation, and smart grid
communications.

Luca Foschini graduated from the University of Bologna,
where he received a Ph.D. degree in computer science
engineering in 2007. He is now an associate professor of
computer engineering at the University of Bologna. His
interests span from integrated management of distributed
systems and services to wireless pervasive computing
and scalable context data distribution infrastructures and
context-aware services. Currently, he is working on mobile
crowdsensing and crowdsourcing and management of cloud
systems for smart city environments.

Frank H. P. Fitzek (Senior Member, IEEE) is currently a
Professor and the Head of the Deutsche Telekom Chair of
Communication Networks, TU Dresden. He is the spokesman
of the DFG Cluster of Excellence CeTI and the BMBF 6G Hub
‘‘6G-life.’’

http://dx.doi.org/10.1109/NetSoft51509.2021.9492677
http://dx.doi.org/10.1109/NetSoft51509.2021.9492677
http://dx.doi.org/10.1109/NetSoft51509.2021.9492677
http://dx.doi.org/10.1109/NFV-SDN.2017.8169829
http://dx.doi.org/10.1109/NFV-SDN.2017.8169829
http://dx.doi.org/10.1109/NFV-SDN.2017.8169829
http://dx.doi.org/10.1007/978-0-387-39940-9_3981
http://dx.doi.org/10.1007/978-0-387-39940-9_3981
http://dx.doi.org/10.1007/978-0-387-39940-9_3981
http://dx.doi.org/10.1109/ICACCE46606.2019.9079973
http://dx.doi.org/10.1109/I2CT45611.2019.9033927
http://dx.doi.org/10.1109/I2CT45611.2019.9033927
http://dx.doi.org/10.1109/I2CT45611.2019.9033927
http://dx.doi.org/10.1109/ICC.2013.6654920
http://dx.doi.org/10.1109/ICC.2013.6654920
http://dx.doi.org/10.1109/ICC.2013.6654920
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.28
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.28
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.28
http://dx.doi.org/10.1109/JSAC.2019.2906788
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge_computing_-_introductory_technical_white_paper_v1%2018-09-14.pdf

	Softwarized and containerized microservices-based network management analysis with MSN
	Introduction
	Related Work
	Microservices Modeling
	Modeling of Functions in a Virtual Environment
	Microservice Resource Allocation
	Microservice Scheduling
	Microservice and Container Placement

	Graphic Modeling of a Softwarized System
	Microservice Based System Modeling
	Service Definition and Mathematical Representation
	Workload Arrival Modeling
	Arrival Throughput Modeling
	Modeling Microservices-based Network Functions
	Microservice Modeling

	Overall System Mathematical Model Formulation
	Formulating Resource Constraints
	Modeling Latency Constraint
	Virtualization Latency
	Physical link latency
	Processing latency
	End to end latency

	Modeling Throughput in Virtual Environment
	Modeling Energy Constraint
	Modeling Nested Containers Latency

	Experimental Evaluation
	Preliminary Results
	Docker Latency Evaluation
	Nested Docker Evaluation

	Latency Evaluation
	Throughput Evaluation
	Energy Evaluation

	Discussion and Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

