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Co-mutations and KRAS G12C inhibitor efficacy in advanced 
NSCLC
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Abstract

Molecular modifiers of KRAS G12C inhibitor (KRAS G12Ci) efficacy in advanced KRASG12C-

mutant NSCLC are poorly defined. In a large unbiased clinico-genomic analysis of 424 NSCLC 
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patients, we identified and validated co-alterations in KEAP1, SMARCA4 and CDKN2A as 

major independent determinants of inferior clinical outcomes with KRAS G12Ci monotherapy. 

Collectively, co-mutations in these three tumor suppressor genes segregated patients into 

distinct prognostic subgroups and captured ~50% of those with early disease progression 

(PFS≤3 months) with KRAS G12Ci. Pathway-level integration of less prevalent co-alterations 

in functionally related genes nominated PI3K/AKT/MTOR pathway and additional baseline RAS 

gene alterations, including amplifications, as candidate drivers of inferior outcomes with KRAS 

G12Ci, and revealed a possible association between defective DNA damage response/repair and 

improved KRAS G12Ci efficacy. Our findings propose a framework for patient stratification and 

clinical outcome prediction in KRASG12C-mutant NSCLC that can inform rational selection and 

appropriate tailoring of emerging combination therapies.

Keywords

KRAS; KRAS p.G12C; co-mutations; KEAP1; SMARCA4; CDKN2A; sotorasib; adagrasib; non-
small cell lung cancer

Introduction

Activating mutations in the KRAS proto-oncogene are detected in 25%−30% of non-

squamous non-small cell lung cancer (NSCLC), and most frequently (~42%) involve a 

glycine to cysteine substitution at residue 12 (G12C) as a result of a smoking-related 

G>T transversion (1). Replacement of glycine in codon 12 of KRAS is thought to 

sterically hinder insertion of the arginine finger (R-finger) of canonical GTPase activating 

proteins (GAPs, such as neurofibromin and p120RasGAP) into the GTPase active site and 

impairs GAP-stimulated GTP hydrolysis (2), thus shifting the KRAS nucleotide cycling 

equilibrium towards the active, GTP-bound state. For over 30 years since its initial 

discovery, KRAS remained an elusive therapeutic target due to: 1) picomolar binding 

affinity for its guanine nucleotide substrates coupled with high intracellular concentration 

of GTP, thus precluding the development of competitive inhibitors; 2) a featureless protein 

surface devoid of deep pockets suitable for docking of small-molecule inhibitors; 3) on-

target toxicity from wild-type KRAS inhibition or concurrent targeting of the downstream 

effector RAF/MEK/ERK and PI3K/AKT/MTOR pathways; 4) paradoxical increase in RAS 

signaling with downstream pathway inhibitors due to release of negative feedback; 5) 

redundant prenylation pathways that control KRAS plasma membrane localization (3). 

The groundbreaking identification of compounds and subsequent development of covalent 

allosteric inhibitors that bind irreversibly to cysteine 12 and occupy a cryptic induced 

pocket in the switch II region of GDP-bound KRAS, trapping the oncoprotein in its 

inactive conformation, has enabled effective inhibition of KRAS G12C (4,5). Sotorasib 

(formerly AMG510), the first-in-class KRAS G12C inhibitor (KRAS G12Ci), and adagrasib 

(formerly MRTX849) both yielded robust single-agent clinical activity in previously treated 

patients with advanced KRASG12C-mutant NSCLC, producing objective response rates 

(ORR) of 37%−43% in single arm registration phase II studies (6,7). Based on these 

results, both sotorasib and adagrasib received FDA accelerated approval for previously 

treated patients with advanced KRASG12C-mutant NSCLC; furthermore, sotorasib improved 
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progression-free survival (PFS) and ORR compared with docetaxel in the randomized phase 

III CodeBreaK 200 trial (8). Several additional KRAS G12C inhibitors are undergoing 

clinical development, with initial reports indicating comparable single-agent activity (9–12).

Despite promising ORR, KRAS G12Ci produce median PFS of approximately 6–7 months 

(6,7), which is inferior to what has been reported for targeted therapies in other oncogene 

addicted NSCLC subsets (e.g., EGFR mutations or ALK re-arrangements) (13,14). For 

individual patients, clinical outcomes with KRAS G12Ci vary widely from long-term 

durable responses and prolonged survival - with 2-year OS rate of 32.5% reported 

in CodeBreaK 100 - to early disease progression seen in ~5–16% of treated patients 

(6,7,15). De novo as well as adaptive and acquired resistance collectively curtail the 

efficacy of KRAS G12Ci monotherapy (7,15–20), and support the need for improved 

patient selection for sotorasib or adagrasib monotherapy and for combination regimens 

directed at treatment intensification. However, molecular or clinical determinants of distinct 

clinical outcomes with KRAS G12Ci are hitherto poorly defined and validated markers 

for patient stratification prior to treatment initiation are lacking. Co-occurring genomic 

alterations in key tumor suppressor genes underpin the molecular diversity of KRAS-mutant 

NSCLC and impact both tumor cell-intrinsic as well as non-tumor cell autonomous cancer 

hallmarks including shaping its immune contexture (21,22). Critically, co-mutations can 

impact responses to standard of care systemic therapies, including both chemotherapy 

and immunotherapy (22–26). Here, we systematically dissected the impact of genomic 

and clinical features on outcomes with KRAS G12Ci in the largest cohort to date of 

NSCLC patients treated with sotorasib or adagrasib, encompassing 424 patients from 21 

centers in the U.S. and Europe. We demonstrate that prevalent co-alterations in KEAP1, 

SMARCA4 and CDKN2A are associated with inferior clinical outcomes with KRAS G12Ci 

therapy and collectively define a subgroup of patients with poor prognosis. In addition, we 

identify less prevalent candidate genomic modifiers of KRAS G12Ci efficacy and propose 

a framework for patient stratification with implications for treatment selection and clinical 

trial development for KRASG12C-mutant NSCLC.

Results

Clinical outcomes with KRAS G12Ci monotherapy in advanced NSCLC.

In order to comprehensively interrogate the impact of baseline clinico-genomic parameters 

on clinical outcomes with KRAS G12Ci, we assembled the largest cohort to date of 

patients with KRASG12C-mutant NSCLC that were treated with sotorasib or adagrasib, 

encompassing 424 unique evaluable patients across 21 centers in the U.S. and Europe 

(Supplementary Table S1). The study cohort was established by merging two independently 

collected retrospective cohorts [cohort A (N=330) and cohort B (N=94)], that were also 

analyzed separately to provide additional validation of key findings (Supplementary Tables 

S2 and S3, see Methods for detailed study eligibility criteria). In the overall cohort, median 

age was 68 years, patients were predominantly current or former smokers (96.9%), and most 

had ECOG performance status (PS) 0–1 (82.1%). Adenocarcinoma was the most common 

histology (92.7%). All patients had metastatic disease at start of KRAS G12Ci therapy, 

and 35.2% had history of brain metastases (26.2% previously treated, 9.0% untreated). The 
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majority of patients received treatment with sotorasib (83.3%). Most patients received prior 

treatment with PD-1/PD-L1 inhibitors and platinum-based chemotherapy (75.9%). This 

cohort was overall representative of the general population of KRASG12C-mutant NSCLC 

patients (6,7). Most patients had genomic profiling performed on tumor tissue (62.3%), 

18.2% had genomic profiling results from liquid biopsy, and 13.7% had both tumor and 

liquid biopsy profiling. 5.8% of patients had confirmed KRASG12C status from analysis of 

tumor DNA but did not undergo NGS-based profiling. Patient characteristics for the overall 

study cohort are summarized in Supplementary Table S1. In the overall cohort, ORR was 

34.0% (95% CI 29.4 – 38.8), median PFS was 5.2 months (95% CI 4.7–5.6), and median 

OS was 10.7 months (95% CI 8.8–12.6) (Figure 1A). The estimated 12-month PFS and 

OS rates were 22.2% and 46.3% respectively, whereas the estimated 24-month PFS and OS 

rates were 6.4% and 23.3%, respectively. We observed similar results when analyzing the 

individual cohorts separately (Supplementary Figure S1A–B). PS of 1 or 2 was associated 

with shorter PFS and OS compared with PS 0, and patients with history of brain metastases 

had worse PFS and OS with KRAS G12Ci therapy compared to those without prior history 

of brain metastasis (Figure 1B). No difference in PFS and OS was observed depending on 

the KRAS G12Ci used (Figure 1B). When the analysis was limited to previously treated 

patients with ECOG PS 0–1 and either absent or treated and stable brain metastases at start 

of KRAS G12Ci therapy [comparable to the patient population enrolled in the registrational 

CodeBreaK 100 and KRYSTAL-1 clinical trials (6,7)], the ORR was 35.0% (95% CI 

29.1 – 41.1), the median PFS was 5.5 months (95% CI 4.9–6.0) and the median OS 

was 11.4 months (95% CI 8.8–14.1) (Supplementary Figure S2A). Patients with untreated 

brain metastases had similar survival compared with those with previously treated brain 

metastases (PFS: 5.0 vs 4.3 months, log-rank p=0.964, multivariable [MV] hazard ratio 

[HR] 0.95 [95% CI 0.82–1.44]; OS: 8.8 vs 7.8 months, log-rank p=0.741, MV HR 1.13 

[95% CI 0.68–1.88]) (Supplementary Figure S2B). Tumor cell PD-L1 expression and 

exposure to immune checkpoint inhibitors in prior line(s) of therapy was not associated 

with PFS or OS (Figure 1B, Supplementary Figure S2C–D).

Co-alterations in KEAP1, SMARCA4, and CDKN2A are associated with early disease 
progression and poor clinical outcomes with KRAS G12Ci.

To dissect the impact of the tumor co-mutational landscape on clinical outcomes with 

KRAS G12Ci, we first classified patients into subgroups with durable clinical benefit (PFS 

≥ 6 months; N=131) or early progression (PFS ≤ 3 months; N=124) (total N=255) (18). 

Patients censored with less than 3 months of follow-up were excluded from this analysis. 

We then performed an unbiased enrichment analysis of the most prevalent co-alterations 

(detected in at least 5% of patients) in the overall study cohort (see Methods section 

for additional details). We found that co-mutations in three tumor suppressor genes were 

significantly enriched in the early progression subgroup: KEAP1 (Fisher’s exact p<0.001, 

false discovery rate [FDR] q=0.004), SMARCA4 (Fisher’s exact p=0.001, FDR q=0.010), 

CDKN2A (Fisher’s exact p=0.006, FDR q=0.034) (Figure 2A). Patients bearing KEAP1 
co-mutated tumors (KEAP1MUT) exhibited significantly shorter PFS (2.8 vs 5.4 months, 

log-rank p<0.001, MV HR 2.26 [95% CI 1.60 – 3.19]) and OS (6.3 vs 11.1 months, log-rank 

p<0.001, MV HR 2.03 [95% CI 1.38 – 2.99]) compared with those harboring KEAP1 
wild-type (KEAP1WT) NSCLC (Figure 2B). SMARCA4 co-mutations were associated with 
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markedly worse PFS and OS compared with SMARCA4 wild-type (SMARCA4MUT vs 

SMARCA4WT PFS: 1.6 vs 5.4 months, log-rank p<0.001, MV HR 3.04 [95% CI 1.80 – 

5.15]; OS: 4.9 vs 11.8 months, log-rank p<0.001, MV HR 3.07 [95% CI 1.69 – 5.60]) 

(Figure 2C). Co-alterations in CDKN2A were also associated with worse PFS and OS 

upon treatment with KRAS G12Ci compared with CDKN2A wild-type (CDKN2AMUT 

vs CDKN2AWT PFS: 3.4 vs 5.3 months, log-rank p<0.001, MV HR 1.98 [95% CI 1.32 

– 2.97]; OS: 6.4 vs 10.7 months, log-rank p=0.009, MV HR 1.66 [95% CI 1.03 – 

2.68]) (Figure 2D). Similar findings were observed when cohorts A and B were analyzed 

separately (Supplementary Figure S3A–C), and when limiting the analysis only to patients 

that received prior immune checkpoint inhibitor therapy (Supplementary Figure S4A–C). 

KEAP1 co-mutations were associated with numerically lower ORR compared with KEAP1 
wild-type, whereas there was no significant difference in ORR between patients with 

SMARCA4MUT vs SMARCA4WT and CDKN2AMUT vs CDKN2AWT NSCLC (Figures 

2B–D).

STK11 was the fourth most enriched somatically mutated gene in patients with early 

progression with KRAS G12Ci (Fisher’s exact p=0.019, FDR q=0.082) (Figure 2A). 

Patients with STK11MUT NSCLC had shorter PFS compared with patients that harbored 

STK11WT tumors (4.4 vs 5.5 months, log-rank p=0.010, MV HR 1.32 [95% CI 1.00 

– 1.73]). No significant difference was observed between patients bearing STK11MUT 

and STK11WT tumors for OS (9.8 vs 10.5 months, log-rank p=0.167, MV HR 1.18 

[95% CI 0.85 – 1.64]) or ORR (31.5% vs 34.3%, Fisher’s exact p=0.616) (Figure 3A). 

Because STK11 and KEAP1 mutations frequently overlap in KRAS-mutant NSCLC 

(21), we sought to de-convolute their individual impact by comparing outcomes with 

KRAS G12Ci in three distinct genomically defined subgroups: (1) KRASG12C/KEAP1WT/
STK11WT; (2) KRASG12C/KEAP1WT/STK11MUT; (3) KRASG12C/KEAP1MUT/STK11MUT 

or WT. The KRASG12C/ KEAP1MUT/STK11MUT or WT subgroup exhibited significantly 

shorter PFS and OS compared with the KRASG12C/KEAP1WT/STK11WT subgroup (PFS: 

2.8 vs 5.3 months, log-rank p<0.001, MV HR 2.30 [95% CI 1.60 – 3.30]; OS 6.3 vs 10.7 

months, log-rank p<0.001, MV HR 2.13 [95% CI 1.41 – 3.20]), and numerically lower 

ORR (22.0% vs 34.9%, Fisher’s exact p=0.114). The KRASG12C/KEAP1WT/STK11MUT 

and KRASG12C/KEAP1WT/STK11WT subgroups had similar PFS (KRASG12C/KEAP1WT/

STK11MUT vs KRASG12C/KEAP1WT/STK11WT PFS: 5.6 vs 5.3 months, MV HR 1.03 

[95% CI 0.74 – 1.46]), OS (12.3 vs 10.7 months, MV HR 1.05 [95% CI 0.69 – 1.61]), 

and ORR (40.6% vs 34.9%) (Figure 3B). Similar results were observed when cohorts A 

and B were analyzed separately (Supplementary Figure S5A–B). Further deconvolution of 

patients with KEAP1MUT NSCLC based on STK11 mutation status yielded similar findings; 

each of the KRASG12C/KEAP1MUT/STK11MUT and KRASG12C/KEAP1MUT/STK11WT 

subgroups exhibited worse PFS and OS when compared with KRASG12C/KEAP1WT/
STK11MUT or KRASG12C/KEAP1WT/STK11WT subgroups (Supplementary Figure S5C). 

We therefore conclude that STK11 co-mutations without concurrent KEAP1 mutations may 

not significantly influence outcomes with KRAS G12Ci monotherapy. This finding was 

also upheld when the analysis was limited to KEAP1WT, SMARCA4WT and CDKN2AWT 

(KSCWT) tumors (Supplementary Figure S5D).
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TP53 was the most frequently co-mutated gene in the overall cohort (45.7%), but TP53 
mutations were not associated with clinical outcomes with KRAS G12Ci (Supplementary 

Figure S6A). This was further validated when cohorts A and B were analyzed separately 

(Supplementary Figure S6B–C).

Exploratory analysis identifies additional co-mutations associated with distinct clinical 
outcomes with KRAS G12Ci therapy.

Next, we interrogated our patient cohort to determine less prevalent functionally related 

co-mutations that are enriched in patients with early progression or durable clinical benefit. 

We focused this analysis on an expanded set of genes that were co-mutated in at least 

3 patients. Due to the large-size dominant effects of KEAP1, SMARCA4, and CDKN2A 
(KSCMUT) this analysis was limited to patients whose tumor was KSCWT (N=128). CHEK2 
and ATRX co-mutations were enriched in patients with durable clinical benefit with KRAS 

G12Ci (OR≤−2.0) whereas tumors harboring (i) KRAS amplification; (ii) co-mutations in 

TSC1, TSC2, MTOR or PTEN, encoding components of the PI3K/AKT/MTOR pathway, 

and (iii) co-mutations in some additional driver oncogenes (such as ALK, ROS1, NTRK3) 

were enriched in patients with early progression (OR≥2.0) (Figure 4A).

We further examined the association of co-mutations in the identified candidate genes and 

clinical outcomes with KRAS G12Ci in the evaluable population for each individual gene. 

Patients whose tumor harbored co-mutations in CHEK2 had longer PFS compared with 

those whose tumor was CHEK2 wild-type, and median OS was not reached in CHEK2MUT 

patients (Supplementary Figure S7A). CHEK2 is a tumor suppressor gene that encodes 

a serine/threonine kinase involved in signal transduction in the cellular response to DNA 

double-strand breaks (DSBs) (27). We then further explored the impact of somatic genomic 

alterations in a group of well validated DDR genes – BRCA1/2, ATM, ATR, CHEK1/2, 
PALB2, RAD50/51/51B/51C/51D. Alterations in this group of DDR genes were present 

in 32.1% of patients. Patients whose tumor harbored DDR gene co-mutations had higher 

ORR (52.2% vs 27.7%, Fisher’s Exact test p=0.001) (Figure 4B), and significantly longer 

PFS with KRAS G12Ci compared with patients whose tumor was DDR gene wild-type 

(5.9 vs 4.6 months, log-rank 0.030, HR 0.68 [95% CI 0.48 – 0.97]), although there was no 

statistically significant difference in OS between patients harboring DDR gene-co-mutated 

and wild-type tumors (13.0 vs 8.4 months, log-rank p=0.075, HR 0.69 [95% CI 0.46 – 

1.04]) (Figure 4C). Somatic mutations in ATRX were also enriched in patients with durable 

clinical benefit with KRAS G12Ci therapy (Figure 4A), and were associated with longer 

PFS and OS with KRAS G12Ci therapy when compared with patients bearing ATRX wild-

type tumors (Supplementary Figure S7B). ATRX encodes an ATP-dependent chromatin 

remodeling protein, member of the SWI/SNF family, that interacts with the histone 

chaperone DAXX to deposit the variant histone H3.3 at sites of nucleosome turnover (28). 

The ATRX/DAXX complex has been implicated in transcriptional regulation and control of 

DNA replication, recombination and repair (28,29). Patients whose tumor harbored somatic 

mutations in the ATRX/DAXX genes had longer PFS and OS with sotorasib and adagrasib 

compared with patients whose tumor was ATRX/DAXX wild-type (Figure 4D).
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Patients with NSCLC harboring additional (beyond the qualifying KRASG12C mutation) 

co-alterations in RAS genes (KRAS/NRAS/HRAS, including both somatic mutations 

and/or gene amplifications) prior to starting KRAS G12Ci therapy exhibited worse PFS 

and OS compared with those bearing tumors without additional RAS gene alterations 

in the mutation-evaluable population (Figure 4E) as well as in the KSCWT population 

(Supplementary Figure S8A). Presence of co-mutations in a group of functionally related 

PI3K/AKT/MTOR pathway genes (including AKT1, PIK3CA, MTOR, TSC1/2, PTEN) was 

not associated with survival in the overall mutation-evaluable population (Supplementary 

Figure S8B). This may be attributable to the large-size dominant effects of co-occurring 

KEAP1, SMARCA4, and CDKN2A mutations on clinical outcomes with KRAS G12Ci 

therapy (Figure 2B–D). Therefore, we tested the association of PI3K/AKT/MTOR pathway 

genes with survival in the KSCWT population, and observed that patients whose tumors 

harbored PI3K/AKT/MTOR co-mutations had significantly shorter PFS with sotorasib and 

adagrasib compared with patients harboring PI3K/AKT/MTOR wild-type tumors (Figure 

4F). We also found that patients whose tumors harbored missense mutations in ROS1, ALK, 

and NTRK1–3 oncogenes - assessed together - had shorter PFS and OS with KRAS G12Ci 

therapy compared with patients whose tumors were ROS1, ALK, and NTRK1–3 wild-type 

(Supplementary Figure S8C–D). Additional co-mutated genes that were enriched in patients 

with early progression included LRP1B, KDM5C, FAT1, NOTCH2, NFE2L2, FLT1, and 

RAD50 (Figure 4A). However, none of these genes were associated with survival with 

KRAS G12Ci therapy (LRP1BMUT vs LRP1BWT: 3.0 vs 5.1 months, log-rank p=0.585, 

HR 1.24 [95% CI 0.57 – 2.67]; KDM5CMUT vs KDM5CWT: 2.2 vs 5.3 months, log-rank 

p=0.143, HR 1.83 [95% CI 0.80 – 4.19]; FAT1MUT vs FAT1WT: 4.1 vs 4.7 months, log-rank 

p=0.263, HR 1.66 [95% CI 0.68 – 4.09]; NOTCH2MUT vs NOTCH2WT: 1.9 vs 4.8 months, 

log-rank p=0.427, HR 1.39 [95% CI 0.61 – 3.16]; NFE2L2MUT vs NFE2L2WT: 5.5 vs 4.7 

months, log-rank p=0.701, HR 1.17 [95% CI 0.52 – 2.65]; FLT1MUT vs FLT1WT: 2.8 vs 

4.7 months, log-rank p=0.187, HR 1.93 [95% CI 0.71 – 5.24]; RAD50MUT vs RAD50WT: 

2.7 vs 4.7 months, log-rank p=0.832, HR 1.13 [95% CI 0.36 – 3.59]). These findings 

collectively suggest that baseline co-alterations in RAS genes and PI3K/AKT/MTOR 

pathway genes, may exert a deleterious effect on clinical outcomes with KRAS G12Ci. 

It remains unclear if individual missense mutations in oncogenic drivers such as ALK, 

ROS1 and NTRK1–3 are functional and expressed in the absence of corresponding gene 

rearrangements. Meanwhile, somatic mutations in genes involved in DDR and chromatin 

remodeling/epigenetic regulation may have favorable impact on treatment outcomes with 

KRAS G12Ci. Due to the exploratory nature of this analysis, these findings warrant 

validation in subsequent preclinical and clinical studies.

Genomic landscape of early progression and durable clinical benefit with KRAS G12C 
inhibitors.

Next, we aimed to determine the prevalence and overlap of enriched co-mutations in 

patients with either early progression or durable clinical benefit with KRAS G12Ci in 

order to further explore their clinical relevance and inter-relationships. For this purpose, 

we focused our analysis on patients whose tumor underwent comprehensive NGS profiling 

(≥400 covered genes). As expected, KEAP1, SMARCA4, and CDKN2A co-alterations 

were prevalent in patients with early disease progression (Figure 5A). In KSCWT tumors, 
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additional alterations in RAS genes (KRAS, NRAS, HRAS), mutations in PI3K/AKT/

MTOR pathway genes (AKT1, PIK3CA, MTOR, TSC1/2, PTEN), and somatic mutations in 

select driver oncogenes (ALK, ROS1, NTRK1/2/3) were identified in 11.1% (3/27), 18.5% 

(5/27), and 33.3% (9/27) of patients with early disease progression, respectively (Figure 

5B). Co-mutations in the individual pathway genes PTEN, TSC1, TSC2 and MTOR were 

identified in 2%, 4%, 2% and 4% of patients with early progression, respectively, and were 

absent in patients with durable clinical benefit (Figure 5A). Meanwhile, co-mutations in 

CHEK2, PALB2, and ATRX were present in 8%, 2%, and 6% of patients with durable 

clinical benefit, and were lacking in those with early progression (Figure 5A). Co-mutations 

in ATRX/DAXX were present in 10%, and co-mutations in a group of well validated DDR 

genes – BRCA1/2, ATM, ATR, CHEK1/2, PALB2, RAD50/51/51B/51C/51D - were present 

in 40% of patients with durable clinical benefit (Figure 5C).

Integration of KEAP1, SMARCA4 and CDKN2A co-mutations provides a framework for 
patient stratification and clinical outcome prediction with KRAS G12Ci monotherapy.

Through an unbiased approach, we identified genes that when co-mutated were associated 

with early progression with KRAS G12Ci therapy (Figure 2A). Prevalent alterations in 

KEAP1, SMARCA4, and CDKN2A (collectively identified in 32.0% of KRASG12C-mutant 

NSCLC in our overall cohort) were the most enriched in this group and captured 49.3% 

of patients with early disease progression with KRAS G12Ci (Figure 6A). Figures 6A and 

Supplementary Figure S9A show the overlap between KEAP1, SMARCA4, and CDKN2A 
co-mutations. The KSCMUT subgroup exhibited numerically lower ORR compared with 

the KSCWT subgroup (25.3% vs 38.1%, Fisher’s exact p=0.065) (Figure 6B). Despite 

approximately a quarter of patients achieving an early response, PFS and OS were 

significantly curtailed in the KSCMUT subgroup compared with the KSCWT subgroup (PFS: 

2.8 vs 5.9 months, log-rank p<0.001, MV HR 2.51 [95% CI 1.79 – 3.52]; OS: 6.9 vs 13.0 

months, log-rank p<0.001, MV HR 2.05 [95% CI 1.38 – 3.02]) (Figure 6C). Furthermore, 

the KSCMUT subgroup had markedly inferior 6- and 12-month PFS and OS compared with 

the KSCWT subgroup (estimated 6- and 12-month PFS rate: 15.7% vs 49.5%, and 3.3% 

vs 28.5%, respectively; estimated 6- and 12-month OS rate: 54.7% vs 75.2%, and 27.0% 

vs 54.6%, respectively) (Figure 6C). We also observed an incrementally detrimental effect 

based on co-mutation overlap of the KSC genes. Patients whose tumors harbored 2 or more 

co-mutations in any of the KSC genes exhibited significantly worse PFS and OS compared 

with patients with KSCWT NSCLC and with those with tumors bearing a single altered 

KSC gene upon treatment with KRAS G12Ci (Supplementary Figure S9B–C). Importantly, 

KEAP1, SMARCA4, and CDKN2A co-mutations were each independently associated with 

shorter PFS with KRAS G12Ci in a multivariable model that also incorporated key clinical 

characteristics (Supplementary Table S4). KEAP1 and SMARCA4 were also independently 

associated with shorter OS (Supplementary Table S5). Thus, co-mutations in KEAP1, 

SMARCA4 and CDKN2A are robust independent determinants of KRAS G12Ci efficacy 

that consistently segregate patients with advanced KRASG12C-mutant NSCLC into groups 

with markedly dissimilar clinical outcomes.
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Discussion

In this study we identified genomic modifiers of KRAS G12Ci efficacy in advanced NSCLC 

through an unbiased clinico-genomic analysis of the largest cohort to date of patients treated 

with sotorasib or adagrasib. Prevalent co-alterations in KEAP1, SMARCA4 and CDKN2A 
were each associated with early disease progression and poor clinical outcomes with KRAS 

G12Ci monotherapy - independently of key clinical covariates - and collectively define 

subgroups of KRASG12C-mutant NSCLC patients with markedly divergent therapeutic 

response trajectories and overall prognosis. Furthermore, in an exploratory analysis we 

identified less frequent baseline somatic alterations in RAS genes and PI3K/AKT/MTOR 

pathway genes as candidate mediators of inferior clinical outcomes with KRAS G12Ci, 

whereas grouped alterations in DDR genes and components of the ATRX/DAX chromatin 

remodeling complex were associated with prolonged clinical benefit. These findings shed 

light on the molecular underpinnings of KRAS G12Ci clinical response heterogeneity in 

NSCLC and suggest a framework for patient stratification as well as for personalization of 

KRAS G12C inhibitor-anchored combination therapeutic strategies (Supplementary Figure 

S10).

Examined individually, co-alterations in KEAP1, SMARCA4 and CDKN2A were 

consistently associated with significantly shorter PFS and OS with KRAS G12Ci in two 

independently established cohorts of patients with advanced KRASG12C-mutant NSCLC, 

as well as in the overall merged cohort. In contrast, their impact on ORR was more 

heterogeneous and did not reach statistical significance, although a trend towards lower 

ORR was observed for KEAP1 mutations. KEAP1 co-mutations were associated with 

numerically lower ORR with both sotorasib and adagrasib in the phase II component of 

the CodeBreaK 100 and KRYSTAL-1 clinical trials respectively, but in both cases the 

confidence intervals overlapped (6,7); surprisingly, higher ORR was reported with adagrasib 

in patients with CDKN2AMUT compared with CDKN2AWT NSCLC in KRYSTAL-1 (7). 

Biologically, this discrepancy may underlie the emergence of adaptive - rather than primary 

- resistance, that can develop expeditiously in response to KRAS G12Ci (16) and manifest 

as rapid disease progression after initial radiological response. Therefore, assessment of 

the impact of co-mutations based on ORR alone may underestimate or fail to adequately 

capture their effect on the efficacy of KRAS G12Ci monotherapy. When assessed together, 

KSC alterations were identified in 32.0% of patients in the overall cohort and accounted 

for approximately half (49.3%) of patients that exhibited early disease progression (PFS ≤3 

months) with sotorasib or adagrasib. The median PFS in patients with KSCMUT NSCLC was 

2.8 months (compared with 5.9 months in KSCWT) and the estimated 12-month PFS rate 

was 3.3% (compared with 28.5% in KSCWT). Thus, co-mutations in key tumor suppressor 

genes delineate subsets of KRASG12C-mutant NSCLC with strikingly dissimilar clinical 

outcomes with KRAS G12Ci.

A limitation of the current study is that it does not allow for separation of predictive from 

prognostic effects of individual genomic alterations. However, both KEAP1 and CDKN2A 
loss were previously identified as drivers of improved cellular fitness under adagrasib 

selection in CRISPR/Cas9-based in vitro and in vivo knockout screens, thus supporting a 

causal - albeit context-dependent - role in mediating KRAS G12Ci insensitivity (5). KEAP1 
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encodes an adaptor protein that engenders substrate specificity for the CUL3/RBX E3 

ubiquitin ligase complex and is critical for the ubiquitylation and proteasomal degradation 

of NRF2 (encoded by the NFE2L2 gene), a master regulator of cellular anti-oxidant, 

anti-inflammatory and cytoprotective signals (30). Importantly, NRF2 is involved in 

transcriptional control of genes encoding efflux transporters as well as several genes 

involved in xenobiotic detoxification (30). Inactivating KEAP1 somatic mutations have 

been associated with poor prognosis and inferior clinical outcomes with radiation therapy 

or chemo-radiation (31,32), platinum-doublet chemotherapy (22,24,33), PD-1 axis inhibitor 

monotherapy (24,33,34), and chemo-immunotherapy (25,26) in NSCLC, particularly in the 

context of KRAS-mutant tumors (22). Furthermore, KEAP1 depletion promoted resistance 

to multiple targeted therapies against components of the RTK/RAS/MAPK pathway in 

NSCLC cell lines by decreasing drug-induced generation of ROS and increasing glutathione 

synthesis (35). It should be noted that although NRF2 nuclear accumulation is considered 

the dominant molecular event downstream of KEAP1 loss in terms of carcinogenesis 

and therapeutic response, several NRF2-independent effects of KEAP1 inactivation have 

also been recognized (36). Inactivation of CDKN2A alone or in combination with the 

genetically and functionally related CDKN2B gene as a result of somatic mutation or 

bi-allelic deletion (frequently involving both genes as a result of an arm-level event in 

9p21) can ostensibly promote KRAS G12Ci resistance by decoupling cell cycle progression 

from signaling downstream of KRASG12C. In this context, it is plausible that less prevalent 

alterations in other components of the cell cycle machinery may also influence individual 

responses to KRAS G12Ci as a result of dysregulated cell cycle control. Finally, deleterious 

somatic mutations in SMARCA4 encoding BRG1, one of two possible and mutually 

exclusive ATP-dependent core catalytic subunits of mammalian SWI/SNF ATP-dependent 

chromatin remodeling complexes, were previously linked with dedifferentiated histology 

and an atypical club cell lung cancer cell of origin in genetically engineered mouse models 

(37). In addition, SMARCA4 somatic mutations portend poor prognosis in patients with 

both early stage and advanced NSCLC - particularly among those that harbor KRAS-mutant 

tumors - although reports of their impact on immune checkpoint inhibitor efficacy have been 

conflicting (38–40). The mechanism(s) by which SMARCA4 loss may modulate response 

to KRAS G12Ci are currently unknown but previously reported pleiotropic functions 

in the regulation of cellular differentiation, DNA replication and repair as well as cell 

cycle progression are likely to be involved (41). The SMARCA4 genomic locus resides 

on the short arm of chromosome 19 (19p13.2), in topological proximity to KEAP1 and 

STK11, thus increasing susceptibility to co-deletion events that contribute to the frequent 

co-occurrence of alterations in the three genes.

Co-mutations in STK11, when present in the absence of concurrent alterations in 

KEAP1 (or KEAP1/SMARCA4/CDKN2A) did not impact ORR, PFS or OS with KRAS 

G12Ci. This finding has implications for clinical trial design and interpretation, because 

STK11 alterations are drivers of poor clinical outcomes with first-line PD-(L)1 inhibitor-

encompassing chemo-immunotherapy regimens in advanced NSCLC (25,26) and constitute 

an eligibility criterion for clinical trials evaluating KRAS G12Ci in previously untreated 

patients (NCT04933695, NCT03785249). Furthermore, these results argue against a purely 

prognostic role for STK11 somatic mutations in NSCLC.
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In order to identify additional, less prevalent, candidate mediators of diverse therapeutic 

outcomes with KRAS G12Ci, we adopted a pathway-level approach by initially surveying 

individual somatically mutated genes that were enriched in either the durable benefit 

(PFS ≥6 months) or early progression (PFS ≤3 months) subgroups and subsequently 

assessing their combined impact on KRAS G12Ci clinical outcomes. This analysis revealed 

association of mutations in genes implicated in DNA damage response and repair with 

improved clinical outcomes with KRAS G12Ci. Recurrent mutations in two distinct groups 

of genes were enriched in the durable benefit group including: a) DDR pathway genes, such 

as CHEK2, and b) ATRX and DAXX. The ATRX/DAXX complex has been implicated in 

the maintenance of genomic integrity through diverse effects in DNA repair, replication, 

methylation, gene expression and telomere homeostasis; accordingly, ATRX or DAXX-

deficient tumors exhibit DNA repair defects and display genomic instability (28,29,42,43). 

Therefore, convergence on impaired DDR and genome maintenance pathways may underpin 

the increased KRAS G12Ci sensitivity of several low penetrance co-mutations. Notably, 

enrichment for DDR gene mutations in patients with durable clinical benefit was not 

uniform across individual genes and was not observed for ATM or RAD50; acquisition 

of secondary genomic alterations in this heavily chemotherapy-pretreated patient cohort may 

account for this discordant observation. Due to the exploratory nature of this analysis, these 

findings require further evaluation and validation in future studies.

Baseline co-alterations in RAS genes, including high level focal KRAS amplifications and 

co-existing oncogenic somatic mutations in KRAS/HRAS/NRAS, were enriched in patients 

with early progression, and were associated with worse PFS and OS with KRAS G12Ci. 

These results are aligned with prior pre-clinical and clinical work demonstrating that de 
novo and acquired RAS alterations are associated with and lead to resistance to single-agent 

KRAS G12Ci adagrasib and sotorasib (17,18). Co-occurring alterations in components of 

the PI3K/AKT/MTOR pathway were also associated with inferior PFS with KRAS G12Ci 

in KSCWT tumors; mutations in these genes can promote KRAS G12Ci insensitivity by 

establishing bypass signaling tracts, in agreement with direct effects in preclinical models 

(5). Finally, somatic mutations in some oncogenic kinase genes, including ROS1, ALK and 

NTRK1/2/3, were also associated with inferior PFS and OS with KRAS G12Ci in KSCWT 

tumors. Gradual expansion of subclonal mutations under the selective pressure imposed by 

KRAS G12Ci therapy may explain their more modest impact on clinical outcomes.

Taken together, our data establish co-mutations in KEAP1, SMARCA4 and CDKN2A 
as major independent determinants of inferior clinical outcomes with KRAS G12Ci 

monotherapy in advanced NSCLC. Additional granularity and accuracy in forecasting 

individual clinical response trajectories and patient stratification into distinct prognostic 

groups will likely be achieved by incorporation of less prevalent genomic as well as baseline 

and on-treatment transcriptomic and proteomic biomarkers (Supplementary Figure S10). For 

example, expression of RGS3, a non-canonical, mutant KRAS-inclusive GAP correlated 

with in vivo KRAS G12Ci sensitivity in a panel of NSCLC PDX models (44). Lineage- or 

cell state- specific as well as non-tumor cell intrinsic effects may also contribute to future 

integrated KRAS G12Ci efficacy predictive models. Finally, beyond patient stratification 

and individual clinical response prediction, our results are relevant for prioritization and 

precise tailoring of KRAS G12Ci-based combination therapeutic strategies – including 
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currently ongoing and planned combinations with CDK4/6, mTOR, DNA repair, SHP2, 

EGFR and MEK/ERK inhibitors - to the co-mutation status of individual tumors in order to 

maximize therapeutic benefit.

Methods

Study population

Electronic medical record review was performed for two independently collected patient 

cohorts from 21 academic institutions in the U.S. and Europe. Cohort A includes 

MD Anderson Cancer Center, Cleveland Clinic, University of Chicago, Yale University, 

University of Cologne, University of Heidelberg, Columbia University Medical Center, 

Gustave Roussy, Henry Dunant Hospital Center, Johns Hopkins, Ohio State University, 

Instituto Nazionale Tumori Regina Elena-Rome, Stanford University, University of Torino–

Orbassano, UC Davis, UCLA, UCSD, UCSF, Moffitt Cancer Center. Cohort B includes 

Dana Farber Cancer Institute and Massachusetts General Hospital. Patients with stage 

IV KRASG12C-mutant NSCLC who received treatment with single-agent KRAS G12Ci 

sotorasib or adagrasib, were alive for ≥14 days after start of treatment, had ECOG PS 

≤2, and had genomic profiling results available from tumor or blood prior to starting 

KRAS G12Ci were eligible. Patients with acquired KRAS mutation in the context of 

other oncogene-addicted NSCLC (e.g., EGFR, ALK) were excluded. Patients were treated 

between November 2018 and October 2022, and the dataset was locked on October 01, 

2022 for the outcome analysis. Patient information was collected through chart review. 

Cohorts A and B were analyzed separately and in combination (overall study cohort) for 

scientific rigor and transparency to provide further validation of key findings. Number of 

prior lines of therapy was defined as lines of systemic therapy received for metastatic 

disease. Tumor cell PD-L1 expression was determined with the Dako 22C3 (61.8%), E1L3N 

(23.6%), Ventana SP263 (12%), QR1 (1.2%), Ventana SP142 (0.6%) and IHC411 (0.6%) 

assays. The study was IRB approved at participating centers and included a waiver of patient 

informed consent. This study was conducted in accordance with ethical guidelines including 

the Declaration of Helsinki and U.S. Common Rule.

Genomic profiling

Patients must have had genomic profiling results from tumor and/or plasma prior to 

starting KRAS G12Ci to be included in the analysis. Tests performed through commercially 

approved assays or in a CLIA-certified laboratory were allowed (see Supplementary 

Table S6 for included assays). When available, we integrated results from tumor and 

plasma profiling for the analysis. Test results for each individual patient were curated 

and annotated for pathogenic somatic non-synonymous variants. Variants reported as 

germline were excluded. To be classified as pathogenic, a variant must meet at least 

one of four criteria: 1) be defined as pathogenic per Catalogue of Somatic Mutations 

in Cancer (COSMIC - RRID:SCR_002260) entry; 2) be defined as pathogenic on the 

ClinVar database (RRID:SCR_006169); 3) have PolyPhen (Polymorphism Phenotyping - 

RRID:SCR_013189) score ≥ 0.95 (45); 4) have SIFT (Sorting Intolerant From Tolerant 

- RRID:SCR_012813) score ≤ 0.05 (46). Biallelic (homozygous) copy number losses for 
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tumor suppressor genes, amplifications for oncogenes, and gene rearrangements - where 

reported - were considered relevant alterations and were included in the analysis.

Statistical analysis

To determine genomic modifiers of clinical outcomes with KRAS G12C inhibitors, we 

first classified patients into two subgroups: durable clinical benefit (PFS ≥ 6 months) 

or early progression (PFS ≤ 3 months) with sotorasib and adagrasib, following similar 

methodology as previously reported (18). Patients censored with less than 3 months of 

follow-up were excluded. We then performed an unbiased enrichment analysis of the most 

prevalent co-alterations (detected in at least 5% of patients) in the overall study cohort. 

If a given patient underwent profiling (tumor or plasma) with a NGS panel that did not 

cover a specific gene, then that patient was removed from the analysis of that specific 

gene. Differences between durable clinical benefit and early progression subgroups were 

assessed with Fisher’s exact test adjusted for multiple comparisons using false discovery rate 

(Benjamini-Hochberg procedure). Significance was established at p ≤ 0.05 and FDR q ≤ 

0.10.

To identify less prevalent co-mutations that might be associated with clinical outcomes upon 

treatment with KRAS G12Ci, we performed an exploratory analysis focusing on 1) KSCWT 

tumors, 2) genes with co-mutations present in at least 3 patients. Genes of interest were 

selected based on Log2 OR ≥ 2.0 or ≤ −2.0 for early progression (patients with PFS≤3 

months) relative to durable clinical benefit (patients with PFS≥6 months).

For the PFS analysis, patients who were alive and had no evidence of progression at the time 

of dataset lock or who were lost to follow-up were censored at the time of the last radiologic 

tumor assessment. For the OS analysis, patients who were alive or lost to follow-up at 

the time of dataset lock were censored at the time of the last documented patient contact. 

Kaplan-Meier method was used to estimate PFS and OS, and differences were assessed by 

log-rank test. Hazard ratios and corresponding confidence intervals were estimated with the 

use of stratified Cox proportional-hazards model adjusting for clinical variables (age, history 

of brain metastasis, prior lines of therapy for metastatic disease [0 vs ≥1], performance 

status [0–1 vs 2]). Univariate analysis was performed for the exploratory analysis of less 

prevalent candidate genes identified through the unbiased enrichment analysis and for 

gene groups established by biological significance. Best response was determined through 

investigator-assessed RECIST v 1.1 without central review. Patients who died ≥ 14 days 

after start of KRAS G12Ci, but prior to first restaging scan, were considered to have 

progressive disease. Differences in categorical variables were assessed by two-sided Fisher’s 

exact test. Significance was established at p ≤ 0.05. Statistical analysis was performed 

on IBM SPSS Statistics (RRID:SCR_002865), R (RRID:SCR_001905), Microsoft Excel 

(RRID:SCR_016137), and SAS 9.4 (RRID:SCR_008567).
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Refer to Web version on PubMed Central for supplementary material.
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Statement of significance

In this work, we identify co-occurring genomic alterations in KEAP1, SMARCA4 
and CDKN2A as independent determinants of poor clinical outcomes with KRAS 

G12C inhibitor monotherapy in advanced NSCLC and we propose a framework for 

patient stratification and treatment personalization based on the co-mutational status of 

individual tumors.

Negrao et al. Page 21

Cancer Discov. Author manuscript; available in PMC 2024 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Clinical outcomes with KRAS G12Ci monotherapy in the overall study cohort. A) 
Objective response, progression-free survival and overall survival upon treatment with 

KRAS G12Ci in advanced KRASG12C-mutant NSCLC. B) Forest plot representation of 

clinical characteristics and their impact on progression-free survival and overall survival.
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Figure 2. 
Co-mutations in KEAP1, SMARCA4, and CDKN2A are associated with inferior clinical 

outcomes with single-agent KRAS G12C inhibitor therapy. A) Volcano plot depicting 

relative enrichment of co-alterations in distinct clinical outcome subgroups [durable clinical 

benefit (PFS≥6 months) vs early disease progression (PFS≤3 months)]. Qualified genes 

were included based on p-value ≤ 0.05 (Fisher’s exact) and FDR q-value ≤ 0.10. Clinical 

outcomes in the overall study cohort according to co-mutation status of B) KEAP1, C) 
SMARCA4, and D) CDKN2A.
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Figure 3. 
STK11 co-mutations may not impact clinical outcomes with KRAS G12Ci in the absence 

of concurrent KEAP1 alterations. A) Clinical outcomes with KRAS G12Ci according to 

STK11 co-mutation status in the overall cohort; B) De-convolution of clinical outcomes with 

KRAS G12Ci in the KRASG12C/KEAP1MUT/STK11MUT or WT, KRASG12C/KEAP1WT/
STK11MUT and KRASG12C/KEAP1WT/STK11WT subgroups.
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Figure 4. 
Candidate low-prevalence genomic modifiers of clinical outcomes with KRAS G12Ci. A) 
Volcano plot of co-mutated genes enriched in the early progression (PFS≤3 months) or 

durable clinical benefit (PFS≥6 months) groups among patients with KSCWT tumors; B) 
Objective response rate according to co-mutation status of a group of established DDR 

genes – BRCA1/2, ATM, ATR, CHEK1/2, PALB2, RAD50/51/51B/51C/51D - in the 

overall mutation-evaluable population; C-F) Kaplan-Meier estimates of progression-free 

survival and overall survival with KRAS G12Ci depending on the mutational status of 
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C) DDR genes (overall mutation-evaluable population); D) ATRX/DAXX (overall mutation-

evaluable population); E) additional alterations (beyond KRASG12C) in RAS genes (KRAS/
NRAS/HRAS; overall mutation-evaluable population); F) PI3K/AKT/MTOR pathway genes 

(mutation evaluable KSCWT population). Only cases with available comprehensive genomic 

profiling that included all functionally related genes within a group were considered wild-

type for the grouped alterations.
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Figure 5. 
Genomic landscape of early disease progression and durable clinical benefit with KRAS 

G12Ci. This analysis only included patients whose tumor underwent comprehensive 

NGS profiling (≥400 covered genes). A) OncoPrint illustrating co-alterations in patients 

with early disease progression (left) and durable clinical benefit (right); B) Pie 

chart representation of the prevalence of RAS co-alterations (left), co-mutations in 

PI3K/AKT/MTOR pathway genes (middle), and somatic mutations in ROS1/ALK/NTRK1–
3 oncogenes (right) in patients with KSCWT NSCLC and early progression (PFS ≤3 

months) with KRAS G12Ci; C) Pie chart representation of the prevalence of co-alterations 

in ATRX/DAXX (left) and DDR genes (BRCA1/2, ATM, ATR, CHEK1/2, PALB2, 
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RAD50/51/51B/51C/51D) (right) in patients with durable clinical benefit (PFS ≥6 months) 

with KRAS G12Ci in the mutation-evaluable population.

Negrao et al. Page 28

Cancer Discov. Author manuscript; available in PMC 2024 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Combined evaluation of KEAP1, SMARCA4 and CDKN2A co-mutations defines a 

subgroup of KRASG12C-mutant NSCLC (KSCMUT) with poor outcomes with KRAS G12Ci 

therapy. A) Pie chart depicting the prevalence of KEAP1, SMARCA4, and CDKN2A co-

alterations in the mutation-evaluable population for all three genes (N=188) (left) and among 

patients with early disease progression with KRAS G12Ci (N=63) (right). B) Objective 

response to KRAS G12Ci in patients with KSCWT and KSCMUT NSCLC in the overall 

response-evaluable study population. C) PFS (left) and OS (right) with KRAS G12Ci 

according to KSC co-mutation status in the overall study population.
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