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S U M M A R Y 

The estimation of the slope ( b -value) of the frequency–magnitude distribution of earthquakes 
is based on a formula deri ved b y Aki decades ago, assuming a continuous exponential distribu- 
tion. Ho wever , as the magnitude is usually provided with a limited resolution, its distribution is 
not continuous but discrete. In the literature, this problem was initially solved by an empirical 
correction (due to Utsu) to the minimum magnitude, and later by providing an exact formula 
such as that by Tinti and Mulargia, based on the geometric distribution theory. A recent paper 
b y v an der Elst showed that the b -value can be estimated also by considering the magnitude 
differences (which are proven to follow an exponential discrete Laplace distribution) and that 
in this case the estimator is more resilient to the incompleteness of the magnitude data set. 
In this work, we provide the complete theoretical formulation including (i) the deri v ation 

of the means and standard deviations of the discrete exponential and Laplace distributions; 
(ii) the estimators of the decay parameter of the discrete exponential and trimmed Laplace 
distributions and (iii) the corresponding formulas for the parameter b . We deduce (iv) the 
standard 1 σ intervals for the estimated b . Moreover, we are able (v) to quantify the error 
associated with the Utsu minimum-magnitude correction. Fur ther more, w e ha ve discussed the 
formulas to produce statistically independent magnitude differences. We tested e xtensiv ely 

the b -value estimators on simulated synthetic data sets including complete catalogues as well 
as catalo gues af fected b y a strong incompleteness degree such as aftershock sequences where 
the incompleteness is made to vary from one event to the ne xt. We hav e also analysed the real 
aftershock sequence of the 30/10/2016 Norcia (central Italy) to integrate the finding of the 
simulations. To judge the performance of the various estimators w e ha ve introduced an index 

p that can be seen as a non-parametric extension of the Student’s t index. The main outcomes 
of this paper are that (1) the b -value estimators devised for continuous magnitude data are not 
adequate for binned magnitudes, (2) for complete data sets, estimators based on magnitudes 
and on magnitude differences provide substantiall y equi v alent results, (3) for incomplete mag- 
nitude data sets, estimators based on magnitude differences provide better results and (4) for 
incomplete aftershock sequences there is no evidence that methods based on positive magni- 
tude differences are superior than other methods using differences. This conclusion is further 
confirmed by our analysis of the above-mentioned Norcia seismic sequence. This last finding 

contrasts with the van der Elst’s claim that the so called b + 

method is the most adequate to 

treat real aftershock sequences. 

Ke y words: Earthquak e hazards; Earthquak e interaction, forecasting and prediction; Statis- 
tical seismology. 
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N T RO D U C T I O N  

he b -value of the frequency–magnitude distribution (Gutenberg &
ichter 1944 ) 

o g 10 N = a − bM (1) 
C © 2024 The Author(s). Published by Oxford University Press on behalf of Royal A
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s indicated by some researchers as a proxy of the level of differ-
ntial stress within the Earth (Scholz 1968 ; Amitrano 2003 , 2015 )
nd thus as an index of the state of preparation of future strong
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stronomical Society. This is an Open Access article 
reati vecommons.org/licenses/b y/4.0/ ), which permits 
inal work is properly cited. 433 

http://orcid.org/0000-0002-5750-1258
https://orcid.org/0000-0002-5314-0563
mailto:paolo.gasperini@unibo.it
https://creativecommons.org/licenses/by/4.0/


434 S. Tinti and P. Gasperini 

 

7) 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/238/1/433/7664401 by U

niversità di Bologna - Sistem
a Bibliotecario d'Ateneo user on 29 M

ay 2024
Petruccelli et al. 2018 , 2019a ) and with the source depth (Spada 
et al. 2013 ; Petruccelli et al. 2019b ). Ho wever , these results are 
controversial and others argued that b -v alue v ariations are statisti- 
cally insignificant as they are due to artefacts of the methods used 
to determine the b -value (Kagan 1999 , 2002 , 2003 ; Bird & Kagan 
2004 ). 

One of the most critical aspects in b -value computations is the de- 
termination of the magnitude completeness threshold for the seismic 
data set used (e.g. Woessner & Wiemer 2005 ; Mignan & Woess- 
ner 2012 ) because an underestimation of the threshold might bias 
(lowering) the estimated b -value, whereas an overestimation might 
reduce the sample size so much that the resulting b -value uncer- 
tainty results intolerable. 

Aki ( 1965 ), assuming a continuous exponential distribution of 
magnitudes, deduced the formulas for the estimation of the b -value 
and of its standard 1 σ interval by the maximum likelihood method 
as: 

b = 

1 

ln ( 10 ) 
(
M̄ − M c 

) (2) 

σb = 

b √ 

N 

, (3) 

where M̄ is the average magnitude, M c is the minimum (complete- 
ness) magnitude and N is the number of magnitude data in the 
sample. The eq. ( 2 ) w as also deri ved b y Utsu ( 1965 ) b y the method
of moments. Utsu ( 1966 ) evidenced that the value estimated by 
the eq. ( 2 ) is biased (higher) when magnitudes are binned (usually 
to one decimal digit) and proposed an approximate correction to the 
original formula: 

b = 

1 

ln ( 10 ) 
(
M̄ − M c + δ

) , (4) 

where δ is one half of the binning size (e.g. 0.05). 
Studying in detail the statistical distribution of b , Shi & Bolt 

( 1982 ) suggested the following formula for the standard deviation 
σb of the continuous distribution: 

σb = ln ( 10 ) b 2 

√ ∑ N 
i= 1 
(
M i − M̄ 

)2 
N 

( N − 1 ) 
. (5) 

Actually, if the magnitude data are binned, their distribution is 
not continuous anymore, but discrete and this implies changes in 
the estimators. 

Bender ( 1983 ) analysed the problem of estimating the b -value 
from magnitude grouped data and found that the maximum likeli- 
hood estimate of b is the value for which: 

q 

1 − q 
− n q n 

1 − q n 
= 

n ∑ 

i= 1 

( i − 1 ) k i 
N 

, (6) 

where q = exp [ −2 δln ( 10 ) b ] , k i is the number of earthquakes in the 
i th magnitude interval of width 2 δ and n is the number of magnitude 
intervals from M c to the maximum magnitude of the data set. An 
e xplicit e xpression for b was not derived by Bender ( 1983 ) and then 
Bender’s method implies the numerical solution of the eq. ( 6 ). 

Guttorp & Hopkins ( 1986 ) showed that the maximum likelihood 
estimate of b in case of magnitude data with limited accuracy 2 δ is: 

b = 

1 

2 δ ln ( 10 ) 
ln 

[
1 + 

2 δ

M̄ − M c 

]
= 

1 

2 δ ln ( 10 ) 
ln 

[
M̄ − M c + 2 δ

M̄ − M c 

]
(

Tinti & Mulargia ( 1987 ) derived the exact equation in the case of 
grouped magnitudes in a paper focused on the confidence intervals, 
providing the form: 

b = − 1 

2 δ ln ( 10 ) 
ln 

⎡ 
⎣ ( ̄M −M c + δ) 

2 δ − 0 . 5 
( ̄M −M c + δ) 

2 δ + 0 . 5 

⎤ 
⎦ (8) 

which is perfectly equivalent to the eq. ( 7 ). 
Marzocchi et al. ( 2020 ) suggested that, when data are binned, the 

b -value computed through the Utsu formula (eq. 4 ), say b Utsu , has 
to be corrected as follows: 

b corrected = 

1 

2 δ ln ( 10 ) 
ln 

[
1 + b Utsu δ ln ( 10 ) 

1 − b Utsu δ ln ( 10 ) 

]
(9) 

Observe that, by substituting eq. ( 4 ) in the eq. ( 9 ), we have: 

b corrected = 

1 

2 δ ln ( 10 ) 
ln 

⎡ 
⎣ 1 + 

1 
ln ( 10 ) ( ̄M −M c + δ) ln ( 10 ) δ

1 − 1 
ln ( 10 ) ( ̄M −M c + δ) ln ( 10 ) δ

⎤ 
⎦ 

= 

1 

2 δ ln ( 10 ) 
ln 

⎡ 
⎣ M̄ −M c + δ+ δ

( ̄M −M c + δ) 
M̄ −M c + δ−δ

( ̄M −M c + δ) 

⎤ 
⎦ (10) 

that is exactly equivalent to the eq. ( 7 ). 
Van der Elst ( 2021 ) showed that in case of discretized data, the 

exact formula for estimating b is: 

b = 

1 

δ ln ( 10 ) 
coth −1 

[
1 

δ

(
M̄ − M c + δ

)]
(11) 

where cot h −1 is the inverse of the hyperbolic cotangent function. 
Recalling the definition of cot h −1 , that is: 

cot h −1 ( x ) = 

1 

2 
ln 

(
x + 1 

x − 1 

)
, (12) 

it is easy to show that even such an equation is equi v alent to the eq. 
( 7 ). Note that Z öller et al. ( 2010 ), treating magnitudes affected by 
uncertainties modelled as a box function of size 2 δ, derived a for- 
mula close to the eq. ( 11 ) in their eq. (17) but did not derive an 
e xplicit e xpression for b o β and only provided the first-order ap- 
proximation eq. ( 4 ) already suggested by Utsu ( 1966 ). Van der Elst 
( 2021 ) also showed that the b -value can be consistently computed 
by using the absolute magnitude differences | �M | (since they fol- 
low the exponential discrete Laplace distribution) by means of the 
formula: 

b = 

1 

2 δ ln ( 10 ) 
csc h −1 

[
1 

2 δ
| �M | 
]

(13) 

where csc h −1 is the inverse of the hyperbolic cosecant and | �M | 
is the average of the absolute magnitude differences. Recalling the 
definition of csc h −1 , that is: 

csc h −1 ( x ) = ln 

( 
1 

x 
+ 

√ 

1 

x 2 
+ 1 

) 
(14) 

one finds that the eq. ( 13 ) can also be written in terms of natural 
logarithm as: 

b = 

1 

2 δ ln ( 10 ) 
ln 

⎡ 
⎣ 2 δ + 

√ 

4 δ2 + 

(| �M | )2 
| �M | 

⎤ 
⎦ (15) 

As incompleteness also affects the Laplace distribution of mag- 
nitude dif ferences, v an der Elst ( 2021 ) suggested discarding all 
�M = 0 and then only considering absolute differences not lower 
than the binning size �M 

′ 
c = 2 δ. In this case, he showed that the 

b -value estimator becomes formally equivalent to that of binned 
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agnitudes of the eq. ( 11 ) provided that | �M | and �M 

′ 
c replace

M̄ and M c , respecti vel y: 

 = 

1 

δ ln ( 10 ) 
coth −1 

[
1 

δ

(| �M | − �M 

′ 
c + δ
)]

(16) 

It is obvious that the eq. ( 16 ) can be written in terms of natural
ogarithm as: 

 = 

1 

2 δ ln ( 10 ) 
ln 

( 
| �M | − �M 

′ 
c + 2 δ

| �M | − �M 

′ 
c 

) 
(17) 

Van der Elst did not derive any expressions for the 1 σ intervals
ut suggested computing them by means of the bootstrap method
Hurvich & Tsai 1989 ). He also asserted that the estimation of the
 -value is more stable and robust if onl y positi ve magnitude dif-
erences are used in the eq. ( 16 ). Indeed, van der Elst ( 2021 ) did
ot give too many details either on his formulation or on his pref-
rence for the positive differences and this might cause somebody
o misapply the b -positive method and in particular to not correctly
onsidering the problem of magnitude incompleteness. Hence, in
his paper, we provide (see Appendices A –H ): (i) the complete theo-
etical deri v ation of the first two moments of the discrete exponential
istribution; (ii) the estimators of the decay parameter of the discrete
xponential as well as of the discrete Laplace distributions, even in
ase of distribution trimming; (iii) the corresponding formulas for
stimating the parameter b . Moreov er, as e xplained in Appendix H
e deduce (iv) the lower and upper sigma values, say σ1 and σ2 , for

he estimated b valid in the case of discrete exponential variables
s: 

1 = 

˜ b − b 1 , b 1 = 

1 

2 δ ln ( 10 ) 
ln 

[ 
c + 

√ 

c 
N 

1 + 

√ 

c 
N 

] 
(18) 

2 = b 2 − ˜ b , b 2 = 

1 

2 δ ln ( 10 ) 
ln 

[ 
c −√ 

c 
N 

1 −√ 

c 
N 

] 
, (19) 

here 

 = exp 
(
2 δ ln ( 10 ) ̃  b 

) = 10 2 δ
˜ b (20) 

nd ˜ b is the estimate of b. The above values of b 1 and b 2 are the
ndpoints of the 1 σ interval and the associated σ can be taken as
he half-amplitude of such interval, that is as the mean of σ1 and σ2 ,
hich leads to the formula: 

= 

σ1 + σ2 

2 
= 

b 2 − b 1 
2 

(21) 

This expression replaces the eq. ( 3 ) and the eq. ( 5 ) and applies
o estimates made through the eq. ( 7 ) and the eq. ( 17 ). In addition,
e derive v) the 1 σ interval also when b is estimated through

he formula (eq. 15 ), that is for the distributions of the absolute
alue of magnitude differences [see formulas ( H17a ), ( H17b ) and
 H17c ) in the Appendix H ]. In the Appendix F , we demonstrate that
vi) the Utsu correction (eq. 4 ) coincides with the expansion of the
xact formula (eq. 7 ) truncated to second order. 

In this paper, we will e v aluate the b-value and the corresponding
 σ interv als b y using the formulas presented in the introduction on a
arge number of simulated data sets, with particular attention given
o cases of incomplete magnitude samples. The details on how we
roduce complete and incomplete synthetic data sets and how we
odel aftershock sequences are given in Appendix I . Further, we
ill apply the methods also to a real earthquake sequence, taken

rom the Horus seismic catalogue (Lolli et al . 2020 ), consisting of
he aftershocks of the M w = 6.6 Norcia (central Italy) earthquake
ccurred on 30/10/2016 (Chiaraluce et al. 2017 ; Improta et al.
019 ). 

O M P U T I N G  M A G N I T U D E  

I F F E R E N C E S  

e point out that to compute magnitude differences in a N -size
agnitude sequence taken in chronological order one can proceed

ssentially in two ways: in the first case, one computes the difference
etween magnitudes of the second and the first shocks and then
etween the third and the second one and so on up to the last one: 

 M i = M i+ 1 − M i , i = 1 , 2 , . . . , N − 1 . (22) 

This maximizes the number of data (in all, N − 1), but the dif-
erences are not independent from one another since the magnitude

M i is used to compute two consecuti ve dif ferences, and this might
roduce some statistical bias. In the second way, one computes the
ifference between magnitudes of the second and the first shocks
nd then between the fourth and the third one and so on up to the
ast one, that is: 

 M i = M 2 i − M 2 i−1 , i = 1 , 2 , . . . , N/ 2 . (23) 

This grants that the differences are all independent from one
nother, but it halves the number of data. 

This issue has not been treated adequately in the literature and
ill be given the deserved attention later in this paper. 

E R F O R M A N C E  I N D E X  

o e v aluate the goodness of the various methods, we introduce an
ndex p we have devised specifically to this purpose, that, given a
andom sample, is suitable to measure how close a given ‘character-
stic v alue’ deri ved from the sample is to a gi ven ‘target v alue’. In our
ase, the sample is the set of the K estimators ̃  b i , ( i = 1 , 2 , . . . , K ) ,
erived through one of the estimation formulas given above, the
characteristic value’ we like to evaluate is the sample mean b̄ K ,
hile the ‘target value’ is the b-value used to generate the K ran-
om data sets. To compute the index p , let’s count the number K + 
f ˜ b i that are larger than b̄ K and the number L + of ˜ b i that are larger
han b . Fur ther, let’s count the number K − of ˜ b i that are smaller
han ̄b K and the number L − of ̃  b i that are smaller than b. Usually, we
xpect that K + + K − = K , and that L + + L − = K , but it can hap-
en that some of the ˜ b i accidentally equals b̄ K or b. Consequently,
he sums K + + K − and L + + L − might be smaller than K , and it
s more convenient to count all quantities separately. We define the
erformance index as: 

p = 1 if b̄ K = b 
p = 

L + 
K + if b̄ K < b 

p = 

L −
K − if b̄ K > b . 

(24) 

It’s easy to see that the index p takes values between 0 and 1.
ndeed, note that by definition, if b̄ K < b, then L + cannot be larger
han K + and therefore p cannot exceed 1. The same holds when
b̄ K > b. The way p is computed makes it a non-parametric index,
ery easy to obtain, and applicable to any kind of sample and to any
airs of variables, characteristic and target, one likes to compare. If
he sample data number K is so large that one can approximate the
ample frequency occurrences with a density probability curve, then
he above criterion (eq. 24 ) can be expressed in terms of probability
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ratios as: 

p = 

Prob ( ̃ b >b ) 
Prob ( ̃ b > ̄b K ) 

if b̄ K < b 

p = 

Prob ( ̃ b <b ) 
Prob ( ̃ b < ̄b K ) 

if b̄ K > b . 
(25) 

If variables ˜ b i happen to follow a symmetric distribution, 
then b̄ K coincides with the distribution median, implying that 
P rob( ̃ b < b̄ K ) = Prob ( ̃ b > b̄ K ) = 1 / 2 and the criterion simplifies 
further to: 

p = 2 Prob 
(
˜ b > b 
)

i f b̄ K < b; p = 2 Prob 
(
˜ b < b 
)

if b̄ K > b. (26) 

Further, if the distribution is Gaussian with standard deviation σ , 
the above formulas can be easily given in terms of the error function 
of the normalized variables and p identifies with the p-value of a 
two-sided Student’s t test, that is p = [ 1 − erf ( | b − b̄ K | / 

√ 

2 σ ) ] . 
In this paper, we will rely on the index p to express the e v aluation 

of the estimators. We will use it like the p-value of a null-hypothesis 
test, where the null hypothesis is that the estimator is acceptable. 
If p < α where α is the significance level, then we reject the null 
hypothesis and consider the estimator unacceptable. In this analysis, 
we take α = 0 . 05 . A further way we use p is assuming that the 
performance of the estimator method is an increasing function of p
and that if the index of a method is significantly larger than the one 
of another, then the former shows a better performance. 

R E S U LT S  F O R  S I M U L AT E D  C O M P L E T E  

DATA  S E T S  

We first compare the various estimators of eqs ( 2 ), ( 4 ), ( 6 ), ( 7 ), ( 15 )
and ( 17 ) on complete binned data sets simulated by the procedure 
specified by the eqs ( I1 )–( I3 ) given in the Appendix I . In this analy- 
sis the parameter M min used to generate the random samples and the 
parameter M c appearing in the estimator formulas are assumed to 
be equal. In Table 1 , we report the average values b̄ K and the corre- 
sponding standard deviations S K computed on a set of K = 10 000 
simulated samples each including N = 1000 magnitudes, with bin- 
ning size 2 δ = 0.1 and with b = 1. When applying methods that 
use magnitudes (i.e. eqs 2 , 4 , 6 and 7 ), all samples have the same 
number of data ( N = 1000). This is also true when untrimmed 
magnitude differences are used (see the eq. 15 ). In this case, how- 
ever, the data number depends on the way such differences are 
computed, since differences made through the eq. ( 22 ) and the eq. 
( 23 ) lead to N = 999 and N = 500, respecti vel y. When null differ- 
ences are trimmed away [as is required by the estimator of the eq. 
( 17 )], the number of remaining data changes from sample to sample, 
which gives the reason to introduce the mean number of data N̄ in 
Table 1 . 

The results shown in Table 1 allow us to state that all methods 
reproduce the true b- value ( b = 1) reasonably well with the exception 
of the simple Aki formula ( 2 ) for which the estimated b -value is 
significantl y dif ferent from the true one. Since the corresponding 
p is less than α = 0 . 05 , we confirm statistically the well-known 
finding that the Aki estimator is not acceptable for binned data 
(e.g. Utsu 1966 ; Bender 1983 ). This result contradicts Marzocchi 
et al. ( 2020 ) who asserted instead that the bias of the Aki ( 1965 ) 
formula ‘may be considered negligible in many applications when 
the binning is � M = 0.1 or smaller’. 

In Table 2 , we report the mean b̄ K and the standard deviation S K 
of the distribution of the K b-values computed with the aid of the eq. 
( 7 ). For each data set we have also computed the standard deviations 
estimated by using Aki’s and Shi-Bolt’s formulas and also by eqs 
( 18 ), (19) and ( 21 ) introduced in this paper. Their averages are 
also shown in Table 2. Note that the upper standard deviation σ̄2 ,K 

is systematically larger than the lower one, σ̄1 ,K , which reflects 
the known feature that the b-values distribution is not symmetric 
around its midpoint. It is remarkable that for all cases, the 1 σ
intervals estimated via Aki and Shi-Bolt formulas as well as the 
ones based on eq. ( 21 ) of this paper correspond very well to the 
standard deviation S K computed from the simulated data sets. 

Table 3 reports results of simulation experiments where the mag- 
nitude differences are computed through the formulas ( 22 ) and ( 23 ). 
The b -values are computed for trimmed magnitude differences by 
the eq. ( 17 ) and the corresponding standard deviations are computed 
by means of eqs ( 18 ), (19) and ( 21 ), as specified earlier. As for the 
dif ferences, we estimate b -v alues in three dif ferent w ays, that is (i) 
by considering their absolute values, (ii) by considering only the 
subset of positive differences and (iii) by using only ne gativ e differ- 
ences. These cases are, respecti vel y, denoted in the second column 
of Table 3 as ABS, POS and NEG. The last column of Table 3 
reports the ratio between the obtained standard deviations σ̄K and 
the standard deviation S K of the obtained b -value distribution. The 
analysis of the results leads us to some important observations. 
First, it is rele v ant to remark that when using absolute differences 
computed through the eq. ( 23 ), the ratio σ̄K / S K is very close to 1. 
On the contrary, when using non-independent differences computed 
via the eq. ( 22 ), the ratio is definitely less than 1 by about 22–23 
per cent. This can be interpreted as the consequence of some sort 
of data correlation that reduces the number of ‘ef fecti ve’ indepen- 
dent data, say N e , in the difference data set, so that the calculated 
dispersion is less than the experimental one. Considering that the 
standard deviation scales inversely with the square root of the num- 
ber of data, then the observed percentage discrepancy between σ̄K 

and S K corresponds to a decrease of about 40 per cent in the number 
of ef fecti ve data, that is N e ∼ 0 . 67 N . Then, we conclude that, when 
using absolute values, it is preferable to compute dif ferences b y 
means of the eq. ( 23 ). This will be our choice in all of the following 
computations shown in the paper and in the Supporting Informa- 
tion. Table 3 shows also that when using either only positive or only 
ne gativ e magnitude differences, the resulting ratio σ̄K / S K remains 
al wa ys very close to 1. This proves that the positive subsets and the 
ne gativ e subsets do not suffer of any significant level of correlation 
and that both formulas ( 22 ) and ( 23 ) can be used. Since using the 
latter implies halving the available data, and thus increasing the 1 σ
intervals, it follows that the eq. ( 22 ) is to be preferred. 

Tables 3 and 4 allows us to make a further consideration. If we 
look at columns showing the resulting b̄ K and S K , we can observe 
that all results are very good and that there are no significant dis- 
crepancies between values obtained by using various magnitude 
dif ference types: absolute, positi v e (or non-ne gativ e), ne gativ e (or 
non-positi ve) magnitude dif ferences. Recalling that our finding re- 
gards data sets that are complete, we will address this issue later in 
the paper when incomplete magnitude sequences will be dealt with. 

Even if, for most papers in the literature, the binning size is fixed 
to 0.1 as in Tables 1 –3 , larger bins can be assumed when the mag- 
nitude resolution is coarser, as it may occur for magnitudes derived 
from maximum macroseismic intensities. In Table 5 (which coin- 
cides with Table S14 ) we show the results for a binning size 2 δ= 0.5. 
We can note that in this case the eq. ( 4 ), that is the Aki ( 1965 ) esti-
mator as corrected by Utsu ( 1966 ), significantly underestimates the 
simulated b -value, and that the corresponding performance index 
p does not pass the threshold. Therefore, it cannot be accepted as 
a valid estimator. This underestimation is observ ed ev en by vary- 
ing the number of data N (100, 1000, 10 000) and the theoretical 
b -value (0.7, 1.0, 1.5) (see Tables S10 –S18 ). This confirms that 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae159#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae159#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae159#supplementary-data
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Table 1. Estimates from complete simulated sets with N = 1000 , 2 δ = 0 . 1 and b = 1 . 

Estimator Eq. b̄ K S K N̄ p 

Aki ( 1965 ) ( 2 ) 1.125 907 0.039 867 1000 0.000 587 
Aki ( 1965 ), Utsu ( 1966 ) ( 4 ) 0.996 582 0.031 225 1000 0.913 052 
Bender ( 1983 ) ( 6 ) 0.994 843 0.031 965 1000 0.869 062 
This paper, magnitudes ( 7 ) 1.001 003 0.031 644 1000 0.974 374 
This paper, absolute differences by eq. ( 22 ) ( 15 ) 1.001 331 0.040 499 999 0.974 819 
This paper, absolute differences by eq. ( 23 ) ( 15 ) 1.001 854 0.044 692 500 0.966 667 
This paper, trimmed absolute differences by eq. ( 22 ) ( 17 ) 1.001 663 0.043 709 885 0.970 893 
This paper, trimmed absolute differences by eq. ( 23 ) ( 17 ) 1.002 250 0.048 326 443 0.963 718 

b̄ K and S K are the average and the standard deviation of b -values computed for the K = 10 000 simulated data sets, N̄ is 
the average number of shocks in simulated data sets, p is the performance index computed by the eq. ( 24 ). The column ‘Eq.’ 
shows the equations used to estimate the b-values. Trimming with �M 

′ 
c = 0 . 1 . 

Table 2. Estimated b-values and standard deviations for complete simulated sets with 2 δ = 0 . 1 . 

b -Value N b̄ K Eq. (7) S K σ̄ b , K Eq. (3) σ̄ b , K Eq. (5) σ̄ 1 , K Eq. (18) σ̄ 2 , K Eq. (19) σ̄ K Eq. ( 21 ) 

0.7 1000 0.700 721 0.022 122 0.022 159 0.022 087 0.021 501 0.022 910 0.022 205 
1 1000 1.001 003 0.031 644 0.031 654 0.031 516 0.030 746 0.032 768 0.031 757 
1.5 1000 1.501 569 0.047 579 0.047 484 0.047 148 0.046 238 0.049 304 0.047 771 

b̄ K and S K are the average and the standard deviation of the distribution of the b -values estimated through the eq. ( 7 ) for 
the K = 10 000 simulated data sets, each with N magnitudes; the standard deviations σ̄K are the average of the sigma 
computed through the Aki formula ( 3 ), the Shi-Bolt formula ( 5 ) and the eqs ( 18 ), (19) and ( 21 ) proposed in this paper. 

Table 3. Estimates of b-values and standard deviations for complete simulated sets with 2 δ = 0 . 1 for trimmed absolute 
differences. 

b -value 
Diff. 
type Eq. N̄ 

b̄ K 
Eq. (17) S K 

σ̄ 1 , K 

Eq. (18) 
σ̄ 2 , K 

Eq. (19) 
σ̄ K 

Eq. ( 21 ) σ̄ k 
S K 

0.7 ABS ( 22 ) 919 0.701 100 0.029 949 0.022 415 0.023 950 0.023 182 0.774 
( 23 ) 460 0.701 498 0.033 097 0.031 288 0.034 360 0.032 824 0.992 

POS ( 22 ) 459 0.701 081 0.032 811 0.031 283 0.034 356 0.032 819 1.000 
( 23 ) 230 0.703 577 0.046 774 0.043 609 0.049 800 0.046 704 0.999 

NEG ( 22 ) 459 0.702 548 0.032 737 0.032 664 0.032 966 0.032 815 1.002 
( 23 ) 226 0.702 548 0.047 092 0.043 538 0.049 718 0.046 628 0.990 

1 ABS ( 22 ) 885 1.001 663 0.043 709 0.032 652 0.034 940 0.033 796 0.773 
( 23 ) 443 1.002 250 0.048 326 0.045 564 0.050 144 0.047 854 0.990 

POS ( 22 ) 442 1.001 574 0.048 015 0.045 555 0.050 136 0.047 845 0.996 
( 23 ) 221 1.005 455 0.068 193 0.063 497 0.072 730 0.068 113 0.999 

NEG ( 22 ) 442 1.003 723 0.047 707 0.047 428 0.048 243 0.047 836 1.003 
( 23 ) 219 1.003 723 0.068 949 0.063 383 0.072 600 0.067 992 0.986 

1.5 ABS ( 22 ) 828 1.502 808 0.068 133 0.050 696 0.054 403 0.052 549 0.771 
( 23 ) 415 1.503 491 0.074 984 0.070 703 0.078 125 0.074 414 0.992 

POS ( 22 ) 414 1.502 903 0.074 569 0.070 698 0.078 123 0.074 410 0.998 
( 23 ) 207 1.508 829 0.106 490 0.098 496 0.113 473 0.105 984 0.995 

NEG ( 22 ) 414 1.505 754 0.074 317 0.073 539 0.075 300 0.074 419 1.001 
( 23 ) 202 1.505 754 0.106 555 0.098 296 0.113 242 0.105 769 0.993 

b̄ K and S K are the average and the standard deviation of b -values for the K = 10 000 simulated data sets, N̄ is the average 
number of shocks. The b-values are computed through the eq. ( 17 ). The standard deviations σ̄1 ,K , σ̄2 ,K and σ̄K are the average 
of the values computed through the eqs ( 18 ), (19) and ( 21 ) proposed in this paper. The ratio σ̄K / S K is used to judge the 
correlation of the data. The column ‘Eq.’ shows the equations used to compute the magnitude differences. Trimming with 
�M 

′ 
c = 0 . 1 . 
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tsu ( 1966 ) correction to the Aki ( 1965 ) formula is approximate
nd is not adequate for large bin sizes. Table 5 also confirms that
he Bender method, though adequate, has a performance slightly
maller than the eq. ( 7 ) for magnitudes and the formulas ( 15 ) and
 17 ) for magnitude differences, but this might be due to a not fully
ccurate numerical minimization. It is rele v ant to note that the cor-
esponding standard deviation S K increases sensibly when passing
rom magnitudes to magnitude differences, since the number of data
ecreases, which means that the latter estimators can be considered

ess efficient. 

p  
E S U LT S  F O R  S I M U L AT E D  

N C O M P L E T E  DATA  S E T S  

xperimental magnitude data sets are al wa ys affected by some de-
ree of incompleteness. Therefore, e v aluating how the estimators
erform on incomplete data sets is of paramount importance. Van
er Elst ( 2021 ), on analysing incomplete binned magnitude se-
uences, concluded that magnitude difference estimators are more
obust if only the positive differences are used, since using also
he ne gativ e differences might produce biased results. One of the
urposes of this paper is to check this conclusion. Using a method
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Table 4. Estimates of b-values and associated standard deviations for complete simulated sets with 2 δ = 0 . 1 for untrimmed 
absolute differences and for untrimmed signed (non-ne gativ e, non-positiv e) differences. 

b -value Diff. type Eq. N̄ b̄ K S K σ̄ 1 , K σ̄ 2 , K σ̄ K 
σ̄ k 
S K 

0.7 ABS ( 22 ) 999 0.700 933 0.028 402 0.021 454 0.022 847 0.022 151 0.780 
( 23 ) 500 0.701 315 0.031 301 0.029 964 0.032 751 0.031 358 1.002 

NONNEG ( 22 ) 539 0.700 781 0.029 881 0.028 948 0.031 562 0.030 255 1.013 
( 23 ) 270 0.702 983 0.042 582 0.040 385 0.045 644 0.043 015 1.010 

NONPOS ( 22 ) 548 0.700 839 0.029 995 0.028 949 0.031 563 0.030 256 1.009 
( 23 ) 270 0.702 077 0.043 129 0.040 327 0.045 577 0.042 952 0.996 

1 ABS ( 22 ) 999 1.001 331 0.040 499 0.030 588 0.032 560 0.031 574 0.780 
( 23 ) 500 1.001 854 0.044 692 0.042 723 0.046 669 0.044 696 1.000 

NONNEG ( 22 ) 552 1.001 041 0.042 217 0.040 779 0.044 414 0.042 597 1.009 
( 23 ) 279 1.004 204 0.060 103 0.056 898 0.064 210 0.060 554 1.008 

NONPOS ( 22 ) 555 1.001 211 0.042 236 0.040 782 0.044 417 0.042 600 1.009 
( 23 ) 279 1.002 804 0.060 712 0.056 816 0.064 117 0.060 467 0.996 

1.5 ABS ( 22 ) 999 1.501 768 0.060 370 0.045 658 0.048 558 0.047 108 0.780 
( 23 ) 500 1.502 550 0.066 694 0.063 783 0.069 583 0.066 683 1.000 

NONNEG ( 22 ) 591 1.501 277 0.061 952 0.059 873 0.065 119 0.062 496 1.009 
( 23 ) 293 1.505 961 0.088 278 0.083 555 0.094 107 0.088 831 1.006 

NONPOS ( 22 ) 594 1.501 289 0.061 994 0.059 873 0.065 120 0.062 496 1.008 
( 23 ) 293 1.503 813 0.089 153 0.083 435 0.093 971 0.088 703 0.995 

b̄ K and S K are the average and the standard deviation of b -values computed for the K = 10 000 simulated data sets, N̄ is 
the average number of shocks. For the absolute differences, the b-values are computed through the eq. ( 15 ) and for the other 
differences through the eq. ( 17 ). The standard deviations σ̄1 ,K , σ̄2 ,K and σ̄K are the average of the values computed for the 
absolute differences through the eqs ( H17a )–( H17c ) and for the other differences via the eqs ( 18 ), ( 19 ) and ( 21 ) proposed in 
this paper. The ratio σ̄K / S K is used to judge the correlation of the data. The column ‘Eq.’ shows the equations used to compute 
the magnitude differences. Trimming with �M 

′ 
c = 0 . 1 . 

Table 5. Estimates from complete simulated sets with N = 1000 , 2 δ = 0 . 5 and b = 1 . 

Estimator Eq. b̄ K S K N̄ p 

Aki ( 1965 ) ( 2 ) 1.884 281 0.106 413 1000 0.000 000 
Aki ( 1965 ), Utsu ( 1966 ) ( 4 ) 0.903 155 0.024 395 1000 0.000 000 
Bender ( 1983 ) ( 6 ) 0.996 548 0.033 689 1000 0.916 258 
This paper, magnitudes ( 7 ) 1.001 296 0.033 480 1000 0.966 446 
This paper, absolute differences ( 15 ) 1.001 698 0.041 874 500 0.960 875 
This paper, trimmed absolute differences ( 17 ) 1.004 231 0.069 217 240 0.954 589 

b̄ K and S K are the average and the standard deviation of b -values computed for the K = 10 000 simulated data sets, 
N̄ is the average number of shocks and p is the performance index computed by the eq. ( 24 ). The column ‘Eq.’ 
shows the equations used to estimate the b-values. Trimming with �M 

′ 
c = 0 . 1 . 
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that is detailed in Appendix I we build K = 10 000 incomplete data 
sets by starting from 11 000 exponentially distributed magnitudes 
with M min = 0 . 4 and decay parameter b = 1 , and by applying a 
thinning model where the incompleteness function is assumed as 
a cumulative Gaussian with mean μ = 1 and standard deviation 
λ = 0 . 2 . After the reduction, the remaining magnitudes are less 
than 10 per cent. More precisely the mean number of earthquakes 
per data set is N̄ = 1093. The histogram of one of the simulated data 
sets is portrayed in Fig. 1 and is manifestly incomplete. Seismol- 
o gists usuall y refrain from estimating the b-v alue using all data of 
such incomplete data sets, and in common practice one discards the 
smaller magnitude classes that are visibly incomplete. Nonetheless, 
it is interesting to see the behaviour of the estimators in the extreme 
case where M c is taken to be equal to M min , although it is clear from 

Fig. 1 that such kind of samples are far from fitting an exponen- 
tial distribution. It is worth stressing that M c enters in all formulas 
based on magnitudes, namely eqs ( 2 ), ( 4 ), ( 6 ) and ( 7 ), but not in the
ones based on magnitude differences, that is eqs ( 15 ) and ( 17 ). The 

results are shown in Table 6 . 
As expected, all methods provide estimates quite far from 

the true value, and correspondingly the index p lies below the 
significance threshold α = 0 . 05 . But it is rele v ant to observe that 
on using differences one obtains better results. 

In Table 7 , we show the results considering exactly the same data 
sets as before, but assuming that M c is equal to 1.1, corresponding 
to the maximum curvature magnitude (say M mxc ) of the frequency 
magnitude distribution, as suggested by Wiemer & Wyss ( 2000 ). 
It is clear that increasing the value of the completeness magnitude 
improves the results for all methods. One common feature is that 
all estimates lie below the true value, with one exception. Indeed, 
the Aki ( 1965 ) estimator is seemingly better than the estimator 
corrected by Utsu ( 1966 ) and also than the exact formula using 
magnitudes. Ho wever , this is an artefact since the typical under- 
estimation due to incompleteness is overcompensated for the Aki 
method by the effect of magnitude binning. Most importantly, ob- 
serve that methods based on magnitude differences and either on 
the positi ve dif ferences or on the negati ve dif ferences produce the 
best results in terms of closeness to the true b and in terms of the 
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Figure 1. Histogram of one of the K incomplete simulated sets obtained by thinning with parameters: μ = 1 , λ = 0 . 2 ; M min = 0 . 4 , 2 δ = 0 . 1 , b = 1 . 

Table 6. Estimates for incomplete simulated data sets with μ = 1 , λ = 0 . 2 , 2 δ = 0 . 1 , b = 1 , M c = 0 . 4 . 

Estimator Eq. b̄ K S K N̄ p 

Aki ( 1965 ) ( 2 ) 0.460 944 0.006 947 1093 0.000 000 
Aki ( 1965 ), Utsu ( 1966 ) ( 4 ) 0.437 711 0.006 264 1093 0.000 000 
Bender ( 1983 ) ( 6 ) 0.387 450 0.024 053 1093 0.000 000 
This paper, magnitudes ( 7 ) 0.438 082 0.006 280 1093 0.000 000 
This paper, absolute differences—eq. ( 23 ) ( 15 ) 0.862 855 0.032 991 546 0.000 000 
This paper, trimmed absolute differences—eq. ( 23 ) ( 17 ) 0.890 224 0.036 483 506 0.005 059 
This paper, trimmed positive differences—eq. ( 22 ) ( 17 ) 0.890 039 0.036 662 506 0.005 283 
This paper, trimmed ne gativ e differences—eq. ( 22 ) ( 17 ) 0.891 447 0.036 558 506 0.002 304 

b̄ K and S K are the average and the standard deviation of b -values computed for the K = 10 000 simulated data sets, N̄ 

is the average number of shocks and p is the performance index computed by means of the eq. ( 24 ). The column ‘Eq.’ 
shows the equations used to estimate the b-values. Trimming with �M 

′ 
c = 0 . 1 . 

Table 7. Estimates for incomplete simulated data sets with μ = 1 , λ = 0 . 2 , 2 δ = 0 . 1 , b = 1 , M c = 1 . 1 . 

Estimator Eq. b̄ K S K N̄ p 

Aki ( 1965 ) ( 2 ) 1.026 523 0.037 518 786 0.478 636 
Aki ( 1965 ), Utsu ( 1966 ) ( 4 ) 0.917 912 0.029 991 786 0.008 349 
Bender ( 1983 ) ( 6 ) 0.911 953 0.031 097 786 0.006 099 
This paper, magnitudes ( 7 ) 0.921 364 0.030 332 786 0.012 220 
This paper, absolute differences—eq. ( 23 ) ( 15 ) 0.973 845 0.047 540 393 0.582 759 
This paper, trimmed absolute differences—eq. ( 23 ) ( 17 ) 0.986 348 0.051 871 353 0.788 916 
This paper, trimmed positive differences—eq. ( 22 ) ( 17 ) 0.986 018 0.051 915 353 0.788 513 
This paper, trimmed ne gativ e differences—eq. ( 22 ) ( 17 ) 0.988 299 0.051 836 353 0.815 571 

b̄ K and S K are the average and the standard deviation of b -values computed for the K = 10 000 simulated data sets, N̄ is 
the average number of shocks in simulated data sets and p is the performance index computed by means of the eq. ( 24 ). 
The column ‘Eq.’ shows the equations used to estimate the b-values. Trimming with �M 

′ 
c = 0 . 1 . 
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erformance index p. Such evidence seems to confirm the strategy
uggested b y v an der Elst ( 2021 ) that using magnitude differences is
referable than using magnitudes. Ho wever , his claim that positive
ifferences lead to better estimates than using ne gativ e differences
s not evident from this Table. 
In Table 8 , we show the results for the same parameters when the
inimum magnitude M c is increased up to 1.3 corresponding to the
agnitude of maximum curvature plus 0.2, that is the way M c is

ommonly set in the literature (Wiemer & Wyss 2000 ; Mignan &
oessner 2012 ). 

art/ggae159_f1.eps
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Table 8. Incomplete simulated sets with μ = 1 , λ = 0 . 2 , 2 δ = 0 . 1 , b = 1 , M c = 1 . 3 . 

Estimator Eq. b̄ K S K N̄ p 

Aki ( 1965 ) ( 2 ) 1.107 743 0.052 196 541 0.027 810 
Aki ( 1965 ), Utsu ( 1966 ) ( 4 ) 0.982 229 0.041 025 541 0.670 191 
Bender ( 1983 ) ( 6 ) 0.976 523 0.042 257 541 0.579 654 
This paper, magnitudes ( 7 ) 0.986 471 0.041 560 541 0.744 560 
This paper, absolute differences—Eq. ( 23 ) ( 15 ) 0.998 481 0.060 113 270 0.979 558 
This paper, trimmed absolute differences—Eq. ( 23 ) ( 17 ) 1.001 747 0.064 811 240 0.975 911 
This paper, trimmed positive differences—Eq. ( 22 ) ( 17 ) 1.001 059 0.064 781 240 0.986 776 
This paper, trimmed ne gativ e differences—Eq. ( 22 ) ( 17 ) 1.006 768 0.064 375 240 0.917 414 

b̄ K and S K are the average and the standard deviation of b -values computed for the K = 10 000 simulated data sets, N̄ is 
the average number of shocks in simulated data sets and p is the performance index computed by means of the eq. ( 24 ). 
The column ‘Eq.’ shows the equations used to estimate the b-values. Trimming with �M 

′ 
c = 0 . 1 . 
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Notice that increasing the value of the completeness magnitude 
M c has the effect of reducing the size of the samples and, conse- 
quently, of increasing the simulated standard deviation S K . Further, 
it lowers the degree of incompleteness, and therefore leads to better 
estimates. As for the rest, most considerations made for Table 7 
apply also to Table 8 . Most precisely, we can see that now the Aki 
( 1965 ) formula ( 2 ) clearly overestimates the b -value and is thus 
inadequate, whereas all other estimators using magnitudes as well 
as the estimators based on magnitude dif ferences gi ve acceptable 
results. In this case, the estimator using the differences (the last 4 
rows), either trimmed or not, irrespective of the difference type, 
gi ve equi v alent results. 

Fig. 2 displays the histogram of the absolute differences of the 
same data set plotted in Fig. 1 . It includes also the null differ- 
ences, which however are neglected in cases that the difference are 
trimmed. It is quite evident from this graph, that the histogram ex- 
hibits an exponential behaviour much more than the corresponding 
graph of Fig. 1 , and it is much more so if the first column on the 
left-hand side is discarded. This induces the expectation that meth- 
ods based on differences, rather than on magnitudes, can provide 
better estimates. 

The resilience of trimmed differences estimators to magnitude 
incompleteness can be further proven through the following exper- 
iment. We take exactly the same data sets analysed before and with 
estimates given in Table 6 : they have an average size N̄ = 1093 
and hav e M c = 0 . 4 . The y are strongly incomplete (see the exem- 
plary sample in Fig. 1 ). Let us estimate the b-value through the eq. 
( 17 ) and change the value of �M 

′ 
c . The last three rows of Ta- 

ble 6 show the results for trimmed differences estimators (absolute, 
positive and negative) when we apply the basic trimming, which 
means that we set �M 

′ 
c = 2 δ, so discarding the differences equal 

to 0. 
In Table 9 , we show the results obtained by increasing �M 

′ 
c 

up to �M 

′ 
c = 10 δ (i.e. 5 times the bin size). In the Table we also 

include the outputs for �M 

′ 
c = 2 δ for the sake of comparison. 

Very remarkably, it can be seen that the deviations of the estimated 
b -values from the theoretical one progressively decrease when in- 
crementing the amount of trimming, and at the end, they become 
almost negligible for all of the three estimators. It is also worth 
stressing that increasing the trimming threshold �M 

′ 
c obviously 

reduces the number of available data and leads to larger standard 
deviations, but less dramatically than when a similar increment is 
applied to the magnitude threshold M c . Even in this experiment, 
for a given trimming one cannot find any significant discrepancy 
among the methods based on magnitude differences, in particular 
the van der Elst’s claim ( 2021 ) that positive differences should be 
preferred to absolute or ne gativ e differences is not supported by 
these simulations. 

R E S U LT S  F O R  S I M U L AT E D  DATA  S E T S  

W I T H  I N C O M P L E T E N E S S  C H A N G I N G  

W I T H  T I M E  

It is known that incompleteness affects seismic catalogues system- 
atically after a strong main shock, owing to the superposition of the 
waveforms in the recorded seismograms that prevents the correct 
location and size determination of many small shocks in the hours 
or days after the main shocks. It is also known that under these 
circumstances, incompleteness is time-dependent since it tends to 
decrease in time, which means that the completeness magnitude can 
be modelled as a decreasing function of time. 

We generate the synthetic data sets following the procedure de- 
scribed in Appendix I and that can be found in the literature (see 
e.g. Lolli et al. 2009 ), We set the magnitude of the main shock to 
m = 5 . 6 in the eq. ( I4 ), the Omori-Utsu law parameters to p O = 1
and c O = 0 . 01 in the eq. ( I5 ) and the sequence ending time to 
T E = 5 days in eqs ( I8 )–( I13 ). We produce K = 10000 aftershock 
sequences of N = 40000 earthquakes that are made incomplete 
through the thinning mechanism, that is a probabilistic and time- 
dependent process. The magnitude mean of the thinning law μ( t) 
is given in the eq. ( I4 ) and λ is set to 0.2. Further, we compute the 
magnitude M c using the criterion adopted for the analysis shown in 
Table 8 , that is M c is equal to the magnitude M mxc corresponding to 
the maximum curvature of the sample frequency magnitude curve 
plus twice the bin size. Then, we eliminate all magnitudes smaller 
than M c . The mean number of surviving data is N̄ = 1041 . In Ta- 
ble 10 , we present the results of the estimation when M c is equal to 
1.3. Our finding is that none of the estimators is performing very 
w ell. How ever, w e observe that estimators based on magnitudes tend 
to se verel y underestimate the theoretical b , and the corresponding 
values of the performance index p is much smaller than the 5 per 
cent. Conversely, the estimators based on differences give results 
that are superior and can be considered satisfactor y. A fur ther re- 
mark is that among methods using differences, one cannot see any 
rele v ant superiority for methods based on positive differences with 
respect to the others. 

To examine the performance of the estimators on aftershock se- 
quences we have varied the number of data and the theoretical 
b- value (see Tables from S19 to S27 ). Note that Table 10 coincides 
with Table S23 . We have found confirmation that methods based on 
differences provide better results than methods based on magnitudes 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae159#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae159#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae159#supplementary-data
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Figure 2. Histogram of the absolute differences computed for the data set shown in Fig. 1 . 

Table 9. Estimates for incomplete simulated sets generated with parameters μ = 1 , λ = 0 . 2 , 2 δ = 0 . 1 , b = 1 , M c = 0 . 4 . 

Estimator �M 

′ 
c b̄ K S K N̄ p 

This paper, trimmed absolute differences 2 δ 0.890 224 0.036 483 506 0.005 059 
This paper, trimmed positive differences 2 δ 0.890 039 0.036 662 506 0.005 283 
This paper, trimmed ne gativ e differences 2 δ 0.891 447 0.036 558 506 0.002 304 
This paper, trimmed absolute differences 4 δ 0.927 973 0.042 749 428 0.101 695 
This paper, trimmed positive differences 4 δ 0.927 803 0.043 113 428 0.106 245 
This paper, trimmed ne gativ e differences 4 δ 0.929 565 0.042 655 428 0.110 231 
This paper, trimmed absolute differences 6 δ 0.957 032 0.049 715 355 0.394 683 
This paper, trimmed positive differences 6 δ 0.956 623 0.049 740 355 0.385 656 
This paper, trimmed ne gativ e differences 6 δ 0.959 462 0.049 503 355 0.404 973 
This paper, trimmed absolute differences 8 δ 0.977 009 0.057 063 290 0.683 715 
This paper, trimmed positive differences 8 δ 0.976 942 0.056 726 290 0.685 273 
This paper, trimmed ne gativ e differences 8 δ 0.980 056 0.056 776 290 0.709 012 
This paper, trimmed absolute differences 10 δ 0.990 306 0.064 465 235 0.879 491 
This paper, trimmed positive differences 10 δ 0.989 968 0.064 246 234 0.877 323 
This paper, trimmed ne gativ e differences 10 δ 0.994 486 0.064 548 234 0.925 205 

�M 

′ 
c is the trimming difference, b̄ K and S K are the average and the standard deviation of b -values computed for the K 

= 10 000 simulated data sets, N̄ is the average number of shocks in simulated data sets, and p is the performance index 
computed by the eq. ( 24 ). Absolute differences are computed through the eq. ( 23 ), all other differences through the eq. 
( 22 ). The b-values are computed through the eq. ( 17 ). 

Table 10. Aftershock sequence with time-dependent incompleteness; parameters: λ = 0 . 2 , m = 5 . 6 , p O = 1 , c O = 0 . 01 , 
T E = 5 days, N = 40 000 (before thinning), 2 δ = 0 . 1 , b = 1 , M c = 1 . 3 . 

Estimator Eq. b̄ K S K N̄ p 

Aki ( 1965 ) ( 2 ) 0.835 400 0.025 265 1041 0.000 000 
Aki ( 1965 ), Utsu ( 1966 ) ( 4 ) 0.762 046 0.021 019 1041 0.000 000 
Bender ( 1983 ) ( 6 ) 0.752 022 0.022 715 1041 0.000 000 
This paper, magnitudes ( 7 ) 0.764 015 0.021 183 1041 0.000 000 
This paper, absolute differences—eq. ( 23 ) ( 15 ) 0.952 553 0.040 146 520 0.244 594 
This paper, trimmed absolute differences—eq. ( 23 ) ( 17 ) 0.965 537 0.043 553 469 0.430 854 
This paper, trimmed positive differences—eq. ( 22 ) ( 17 ) 0.966 745 0.043 654 468 0.442 129 
This paper, trimmed ne gativ e differences—eq. ( 22 ) ( 17 ) 0.967 363 0.043 399 470 0.446 190 

b̄ K and S K are the average and the standard deviation of b -values computed for the K = 10 000 simulated data sets, N̄ is 
the average number of shocks in simulated data sets and p is the performance index computed by means of the eq. ( 24 ). The 
column ‘Eq.’ shows the equations used to estimate the b-values. Trimming with �M 

′ 
c = 0 . 1 . 
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and that methods based on trimmed differences tend to be slightly 
better than the others and practically equivalent to one another. 

Interestingly, Tables S24 and S27 show that all estimates exhibit 
a performance index p below the significance level. Considering 
also Table S21 , and comparing results with the ones of the other 
Tables, one can note that estimates made with the largest sample 
size (i.e. N > ∼ 4000 in our experiments) are worse than estimates 
performed with samples of smaller size, which is exactly the op- 
posite of what one expects, and is an apparent paradox, that does 
not manifest with complete data sets. Indeed, this effect disappears 
when increasing trimming: that is we found that using a trimming 
larger than �M 

′ 
c = 0 . 1 produces better and acceptable results for 

larger samples, according to the expectations. 

R E S U LT S  F O R  A  R E A L  A F T E R S H O C K  

S E Q U E N C E  

All data sets analysed so far, either complete or incomplete, were 
produced through numerical simulations, and though the methods 
to produce random variables following exponential distributions 
are quite standard and the methods to produce incompleteness are 
commonly applied in the literature, nonetheless they might not re- 
produce well real sequences of recorded magnitudes. Therefore, we 
have considered to complement our analysis by taking into account 
a real aftershock sequence to test our finding. We have decided 
to use a single sequence as an example. We have selected a well 
recorded subset of the aftershocks of the Norcia M w 6.6 earthquake, 
that is the last and the largest of the 3 main shocks characterizing the 
2016 Amatrice-Visso-Norcia seismic sequence (central Italy). We 
have made use of the Horus catalogue, including the instrumental 
Italian earthquakes from 1960 (Lolli et al. 2020 ) that is maintained 
and updated as a permanent activity by the INGV Bologna sec- 
tion. We have considered a set consisting of the main shock and 
the aftershocks occurred within a radius of 50 km in the first 17 hr 
from the main shock up to a total of N = 1000 events. Figs 3 and 4 
show the histograms of the magnitude data and of their absolute dif- 
ferences with bin amplitude 2 δ = 0 . 1 . The former figure exhibits 
that magnitude data are characterized by a remarkable level of in- 
completeness below magnitude M = 3 , while the latter one shows 
that magnitude differences are somewhat closer to an exponential 
distribution. 

Table 11 summarizes the estimates we made of the b -value. We 
focus our attention only on methods using magnitude differences. 
Obviously, there is no true b -value to compare our estimates to, and 
therefore, we are not able to e v aluate in absolute the performance 
of indi vidual methods. Howe ver, we are able to make some rele v ant 
obser vations, also in vir tue of what we learned from our previous 
simulations. Indeed, we saw that methods based on absolute differ- 
ences computed through the eq. ( 23 ) are unreliable since lead to 
standard deviations that are strongly underestimated (1st and 7th 
row). On the other hand, methods based on signed differences com- 
puted through the eq. ( 22 ) (see 4th, 10th and 12th row) reduce too 
much the sample size, resulting in unnecessarily larger standard de- 
viations. Thus, we restrict our attention to difference methods using 
almost half of the data, that is about 500 in the present case. Further, 
simulations have shown that methods based on trimmed differences 
give better results than the others. Taking all this into account, we 
make the choice that the preferable estimates of the sequence b - 
value are: b = 1 . 04 ± 0 . 05 (8th ro w), 1.03 ± 0.05 (9th ro w), 1.01
± 0.05 (11th row), with truncation made to the second decimal fig- 
ure. The obtained values are equivalent to one another and show that 
there is no significant change in using absolute, positive or ne gativ e 
trimmed differences. 

D I S C U S S I O N  O F  T H E  R E S U LT S  

Computing the b-value of a magnitude catalogue or a magnitude 
sequence is a classical activity in standard seismicity analyses and 
is often used in advanced studies. For complete data sets, when 
the magnitudes are taken as continuous exponentially distributed 
variab les, the prob lem of estimating b and the related confidence 
interv als w as gi ven a definite solution, respecti vel y, b y Aki ( 1965 )
and by Shi & Bolt ( 1982 ) who made recourse to the chi-square 
distribution. When magnitudes are grouped in bins of equal size, 
the problem was also given a final solution by Guttorp & Hopkins 
( 1986 ) for estimating b and by Tinti & Mulargia ( 1986 , 1987 ) to 
compute the corresponding confidence interv als. Catalo gue incom- 
pleteness affects remarkably all the estimations, but this problem 

was long overlooked, since there was the belief that it regards only 
the smaller magnitudes range and that it is easily possible to find 
a threshold magnitude M c above which the data set is complete 
and is suf ficientl y large to allow accurate estimates. More sophis- 
ticated views emerged progressively as well as criteria to find M c 

(see Mignan & Woessner 2012 ), but it w as onl y recentl y that the 
problem was tackled from a very different point of view. It was 
van der Elst’s ( 2021 ) who, analysing aftershock sequences where 
the completeness is known to change quite rapidly with time, pro- 
posed to consider data sets of differences of magnitudes in place of 
magnitudes and to base on them all the statistical inferences. This 
was a remarkable turning point in the discipline. He also suggested 
that using data sets of positive differences was the only correct 
way because the alternative choice of using absolute differences of 
magnitudes or ne gativ e differences leads to inaccurate estimates. 

In this paper, we hav e e xplored the potential of the new approach 
and we have considered synthetic data sets since this is the best 
w ay to e v aluate the performance of inferential estimators. Indeed, 
one can generate easily a very high number (10 000 in this paper) 
of pseudorandom samples of magnitudes of any reasonable size. In 
addition, w e ha ve also applied the new approach to a real aftershock 
sequence. 

First of all, we have addressed the problem of how to compute the 
magnitude differences in such a way that the resulting sample can be 
considered formed by independent random variables, that is an issue 
overlooked b y pre vious studies. Making consecuti ve dif ferences 
(see eq. 22 ) does not alter significantly the set size (it passes from 

N to N − 1 ), but it introduces an undesirable correlation in the 
data. The alternative way to compute differences (see eq. 23 ), by 
definition produces independent random variables, but has the cost 
of halving the size of the sample. It was shown (see Tables 3 and 4 ) 
that if one considers the set of the absolute magnitude differences 
obtained by the eq. ( 22 ), the effect of such correlation is that the 
standard deviation of the b -value estimates, S K , is larger than the 
theoretical one, σ̄k , by an amount of about 22 per cent. This implies 
that the variance increases by a factor of 1.49 or, correspondingly, 
that the equi v alent number of independent data is less than N − 1 . 
Therefore, when treating absolute differences, in this paper we have 
opted to work only with data sets formed by independent variables 
obtained through eq. ( 23 ). We have further shown that if one uses 
signed dif ferences, practicall y the ef fect of the correlation implicitl y 
introduced by eq. ( 23 ) results to vanish, since the values of S K and 
σ̄k tend to overlap. Consequently, when using signed differences, the 
adoption of the eq. ( 23 ) is admissible and indeed even preferable 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae159#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae159#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae159#supplementary-data
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Figure 3. Histogram of magnitudes of the first 1000 shocks from the 30/10/2016 Norcia (Italy) earthquake ( M w = 6.6), including also the main shock. Data 
are grouped in bins with size 2 δ = 0 . 1 . Data from the Horus catalogue (Lolli et al. 2020 ). 

Figure 4. Histogram of magnitude differences of the real data set of the first 1000 shocks from the 30/10/2016 Norcia (Italy) earthquake ( M w = 6.6). Data 
from the Horus catalogue (Lolli et al. 2020 ). 
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ince using eq. ( 22 ) would reduce the data to about one quarter
f the original size. With the above choices, if magnitude data sets
ave size N , then the magnitude differences data sets, either absolute
ifferences obtained through the eq. ( 23 ) or the signed differences
btained by means of the eq. ( 22 ), have about N/ 2 data. 

To judge the goodness of the various estimators based on mag-
itudes and magnitude differences we have devised a new perfor-
ance index denoted by p ( eq. 24 ), that can be interpreted as a
on-parametric variant of the two-side Student’s t . Depending on
he way it is defined, that is a sort of normalization, the index p, like
he Student’s t , tends to tolerate larger discrepancies for estimators
ith larger standard deviations, and does not prize the estimator

fficiency. Bearing this in mind, we consider p a suitable index to
 v aluate estimators that are known a priori to operate on different
ata set sizes like the ones working on magnitudes and on magnitude

art/ggae159_f3.eps
art/ggae159_f4.eps
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Table 11. Estimates of b -value and related uncertainties for the 30/10/2016 Norcia (Italy) aftershock sequence. Data from the Horus 
catalogue (Lolli et al. 2020 ). 

Estimator Eq1 Eq2 N b σ 1 σ 2 σ

This paper, absolute differences ( 15 ) ( 22 ) 999 0.972 094 0.029 702 0.031 618 0.030 660 
( 15 ) ( 23 ) 500 0.995 501 0.042 455 0.046 377 0.044 416 

This paper, non-ne gativ e differences ( 17 ) ( 22 ) 530 0.941 596 0.039 265 0.042 853 0.041 059 
( 17 ) ( 23 ) 277 0.945 544 0.053 681 0.060 587 0.057 134 

This paper, non-positive differences ( 17 ) ( 22 ) 514 0.898 246 0.038 006 0.041 533 0.039 769 
( 17 ) ( 23 ) 459 0.932 026 0.056 058 0.063 757 0.059 908 

This paper, trimmed absolute differences ( 17 ) ( 22 ) 922 1.016 543 0.032 478 0.034 706 0.033 592 
( 17 ) ( 23 ) 459 1.039 070 0.046 433 0.051 014 0.048 724 

This paper, trimmed positive differences ( 17 ) ( 22 ) 460 1.026 253 0.045 810 0.050 324 0.048 067 
( 17 ) ( 23 ) 239 1.025 553 0.062 427 0.071 126 0.066 776 

This paper, trimmed ne gativ e differences ( 17 ) ( 22 ) 462 1.007 057 0.044 857 0.049 266 0.047 061 
( 17 ) ( 23 ) 220 1.054 166 0.066 717 0.076 440 0.071 578 

b is the estimated b -value, N is the number of shocks; σ1 and σ2 are the lower and upper sigma values and σ is their mean, that are 
computed through the eqs ( H17a )–( H17c ) for the two first rows, and through the eqs ( 18 ), ( 19 ) and ( 21 ) for the other rows. The columns 
denoted Eq1 and Eq2 show the equations used to estimate the b-values and to compute the magnitude dif ferences, respecti vel y. Trimming 
with �M 

′ 
c = 0 . 1 . 
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When treating complete binned data sets, our analysis confirms 
that the classical estimator of the eq. ( 7 ) works quite well and better 
than estimators for continuous magnitudes either in the original 
form (eq. 2 ) or in the one corrected to account for binning (see 
the eq. 4 ). It is rele v ant to point out that also the methods based on 
magnitude differences and given in the eqs ( 15 ) and ( 17 ) provide 
equi v alentl y good results. 

The most important finding we obtain is that magnitude sam- 
ples showing a v ery sev ere incompleteness transform to samples 
with an almost exponential decay when magnitudes are replaced 
b y magnitude dif ferences (compare Figs 1 to 2 , and also Figs 3 
to 4 ). This seems to be a strong support for the strategy of using 
absolute differences or signed differences to evaluate b. Results 
reported in Tables 6 –8 show that increasing the magnitude value 
M c in the traditional estimator (eq. 7 ) from the very low value of 
patent incompleteness to the magnitude of maximum curvature of 
the frequency magnitude distribution and even further, improves 
its perfor mance ver y much. Nonetheless, from all those Tables it 
emerges that better e v aluations are attained by the estimator ( 15 ) 
that applies to absolute differences and by the estimator (eq. 17 ) that 
applies to trimmed differences, either absolute or one-sign. Table 9 
explores the performance of the estimator ( 17 ) when the magnitude 
data set is very incomplete ( M c is assumed to be very low) and the 
trimming is made pro gressi vel y more substantial. It is found that 
increasing the trimming also improves the results. In virtue of these 
outcomes, one could play with M c and with the amount of trimming 
�M 

′ 
c to optimize the estimates. Ho wever , refining this strategy is 

not the scope of this paper. 
With this clue in mind, we have considered aftershock sequences. 

Their main feature is not only that they are strongly incomplete data 
sets, but also that the completeness magnitude changes quickly dur- 
ing the process, and formally it changes from one earthquake to 
the next [according to the eq. ( I4 ) in Appendix I ]. Nonetheless, 
each sequence gives rise to a frequency magnitude histogram that 
can be examined as in the previous analysis, that is by establishing 
the maximum curvature magnitude M mxc and by determining M c 

through the formula given above. The results of Tables S19 –S27 in 
the supplementary material confirm the superiority of the formulas 
based on magnitude differences, but they also add that the esti- 
mator (eq. 17 ) including trimming is generally better than formula 
(eq. 15 ). 
The second most important result of our analysis is that the claim 

b y v an der Elst ( 2021 ) that in aftershock sequences one necessarily 
finds that positive magnitude differences are distributed exponen- 
tially much better than the ne gativ e ones and therefore the most 
successful estimator is the estimator ( eq. 17 ) applied to the sub- 
sets of positive differences is not supported by enough evidence. 
As a matter of fact, we found that the estimates are very close 
to one another and that in some cases positi ve dif ferences pro- 
vide better values while in other cases the reverse is true. One 
could suspect that this finding is due to the difference between the 
methods used in producing simulated aftershock sequences (that 
is between the one adopted here and described in Appendix I and 
the one adopted b y v an der Elst ( 2021 ), that is an ETAS model 
obtained as a variant of the Hardebeck et al. ( 2008 ) code. How- 
ever, we stress that this is the outcome not only of the analysis 
performed on the simulated aftershock sequences, but also of the 
estimates made for the real seismic sequence of the 30/10/2016 Nor- 
cia earthquake (see Tab le 11 ), w hich is a convincing evidence that 
this result does not depend on the way the aftershock sequences are 
simulated. 

A final remark regards the 1 σ intervals. Van der Elst’s contribu- 
tion brought into the seismological arena the two new estimators 
eqs ( 15 ) and ( 17 ), without providing however the related 1 σ inter- 
vals. The formula ( 17 ) is practically the same as eq. ( 7 ) but applied 
to magnitude differences since the supporting distribution (discrete 
exponential) is the same. This means that the corresponding the- 
oretical confidence intervals based on the geometric distribution 
are already known for any given number N of sample data (Tinti 
& Mulargia 1986 , 1987 ). In this paper, we have provided explicit 
simple formulas ( 18 ), (19) and ( 21 ), to compute the 1 σ intervals 
of the b-value when the sample size is large enough ( N larger than 
about 30–40) that the distribution of the mean (either M̄ or | �M | ) 
approximates a Gaussian, which is normally the case in seismo- 
logical practice. On the other hand, to the authors’ knowledge, the 
confidence intervals of the distribution underlying the estimator 
eq. ( 15 ) have not yet been given a general theoretical solution in 
the seismological literature. In this context, and under the same as- 
sumption of Gaussian distribution of either M̄ or | �M | , we propose 
the formulas (H17a and H17b ) derived in Appendix H to compute 
the endpoints of the 1 σ intervals of the b-value and, in addition, 
the formula ( H17c ) to compute its amplitude. 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae159#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae159#supplementary-data
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O N C LU S I O N S  

his paper consisted of two parts and was inspired by the new ap-
roach due to van der Elst ( 2021 ) to deal with a strongly incomplete
ata set of magnitudes to make estimates of the b -value. The theo-
etical part, mostl y de veloped in the Appendixes, recalls in a plane
ay the main properties of the binned magnitude distributions,
ore precisely the discrete exponential and the discrete Laplace

istribution, the latter being analysed also in its variants of absolute
ifferences (either including or not null differences) and one-sign
ifferences. It is a systematic analysis reproducing known results,
ut also providing clarifications and leading to new outcomes, such
s the expressions to compute the 1 σ limits of the estimators. The
econd part, chiefly illustrated in the main text and complemented
y the supplementary material, is an attempt to e v aluate the classical
stimators of the b -value compared to the ones based on magnitude
ifferences. For estimators based on the distribution of magnitudes,
xact formulations ( eq. 7 ) are al wa ys preferable with respect to the
pproximate formula by Aki ( 1965 ) with Utsu ( 1966 ) correction
 eq. 4 ), in particular when the bin size is larger than 0.1. The un-
orrected formula by Aki ( 1965 ) ( eq. 2 ) usually overestimates the
heoretical b -value, but sometimes may decepti vel y appear to work
ell when, by chance, the overestimation due to the binning almost

xactly compensates the underestimation due to incompleteness. 
In the case of substantially incomplete catalo gues, it w as shown

hat the distributions of magnitude differences happen to be closer
o an exponential decay. Therefore, estimators using magnitude dif-
erences (eqs 15 and 17 ) are more robust with respect to magnitude
ncompleteness than those using magnitudes ( eq. 7 ) and give correct
 -values when the magnitude cutting threshold M c is not lower than
he magnitude of maximum curvature of the frequency magnitude
istribution. Conversely, estimators using magnitudes ( eq. 7 ) give
orrect results only for M c not lower than the magnitude of maxi-
um curvature plus 0.2. The latter finding confirms the goodness of
 common choice, made in current literature (Mignan & Woessner
012 ), to establish the magnitude completeness threshold. 

For aftershock sequences, where completeness is time-
ependent, w e ha ve found that estimates based on magnitude ab-
olute magnitude differences, obtained through formula ( 23 ), or on
ne-signed magnitude differences, calculated by formula ( 22 ), are
omparab le, w hich contradicts the van der Elst ( 2021 ) assert that
ositive magnitude differences have to be preferred in seismological
ractice. 

Finall y, we w ant to stress that all the above considerations only
old if the frequency-magnitude distribution is really exponential,
therwise, even the concept of b -value becomes meaningless as
t was evidenced by Herrmann and Marzocchi ( 2020 ) analysing
igh-resolution catalogues of Souther n Califor nia and Central Italy.
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upplementary data are available at GJI online. 
Table S1. Estimates from complete simulated sets with N = 100,

 δ = 0.1 and b = 0.7. 
Table S2. Estimates from complete simulated sets with N = 1000,

 δ = 0.1 and b = 0.7. 
Table S3. Estimates from complete simulated sets with
 = 10 000, 2 δ = 0.1 and b = 0.7. 
Table S4. Estimates from complete simulated sets with N = 100,

 δ = 0.1 and b = 1.0. 
Table S5. Estimates from complete simulated sets with N = 1000,

 δ = 0.1 and b = 1.0. 
Table S6. Estimates from complete simulated sets with
 = 10 000, 2 δ = 0.1 and b = 1.0. 
Table S7. Estimates from complete simulated sets with N = 100,

 δ = 0.1 and b = 1.5. 
Table S8. Estimates from complete simulated sets with N = 1000,

 δ = 0.1 and b = 1.5. 
Table S9. Estimates from complete simulated sets with
 = 10 000, 2 δ = 0.1 and b = 1.5. 
Table S10. Estimates from complete simulated sets with N = 100,

 δ = 0.5 and b = 0.7. 
Table S11. Estimates from complete simulated sets with
 = 1000, 2 δ = 0.5 and b = 0.7. 
Table S12. Estimates from complete simulated sets with
 = 10 000, 2 δ = 0.5 and b = 0.7. 
Table S13. Estimates from complete simulated sets with N = 100,

 δ = 0.5 and b = 1.0. 
Table S14. Estimates from complete simulated sets with
 = 1000, 2 δ = 0.5 and b = 1.0. 
Table S15. Estimates from complete simulated sets with
 = 10 000, 2 δ = 0.5 and b = 1.0. 
Table S16. Estimates from complete simulated sets with N = 100,

 δ = 0.5 and b = 1.5. 
Table S17. Estimates from complete simulated sets with
 = 1000, 2 δ = 0.5 and b = 1.5. 
Table S18. Estimates from complete simulated sets with
 = 10 000, 2 δ = 0.5 and b = 1.5. 
Table S19. Aftershock sequence with time-dependent incom-

leteness; parameters: λ = 0.2, m = 5.6, p O = 1 , c O = 0.01,
 E = 5 d, N = 1600 (before thinning), 2 δ = 0.1, b = 0. 7 ,
 c = M mxc + 4 δ = 1.4. 
Table S20. Aftershock sequence with time-dependent incom-

leteness; parameters: λ = 0.2, m = 5.6, p O = 1, c O = 0.01,
 E = 5 d, N = 16 000 (before thinning), 2 δ = 0.1, b = 0. 7 ,
 c = M mxc + 4 δ = 1.4. 
Table S21. Aftershock sequence with time-dependent incom-

leteness; parameters: λ = 0.2, m = 5.6, p O = 1 , c O = 0.01,
 E = 5 d, N = 160 000 (before thinning), 2 δ = 0.1, b = 0. 7 ,
 c = M mxc + 4 δ = 1.4. 
Table S22. Aftershock sequence with time-dependent incom-

leteness; parameters: λ = 0.2, m = 5.6, p O = 1 , c O = 0.01,
 E = 5 d, N = 4000 (before thinning), 2 δ = 0.1, b = 1.0,
 c = M mxc + 4 δ = 1.3. 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae159#supplementary-data


446 S. Tinti and P. Gasperini 

709–714. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/238/1/433/7664401 by U

niversità di Bologna - Sistem
a Bibliotecario d'Ateneo user on 29 M

ay 2024
Table S23. Aftershock sequence with time-dependent incom- 
pleteness; parameters: λ = 0.2, m = 5.6, p O = 1, c O = 0.01, 
T E = 5 d, N = 40 000, (before thinning), 2 δ = 0.1, b = 1.0, 
M c = M mxc + 4 δ = 1.3. 

Table S24. Aftershock sequence with time-dependent incom- 
pleteness; parameters: λ = 0.2, m = 5.6, p O = 1, c O = 0.01, 
T E = 5 d, N = 400 000, (before thinning), 2 δ = 0.1, b = 1.0, 
M c = M mxc + 4 δ = 1.3. 

Table S25. Aftershock sequence with time-dependent incom- 
pleteness; parameters: λ = 0.2, m = 5.6, p O = 1, c O = 0.01, 
T E = 5 d, N = 16 000, (before thinning), 2 δ = 0.1, b = 1.5, 
M c = M mxc + 4 δ = 1.2. 

Table S26. Aftershock sequence with time-dependent incom- 
pleteness; parameters: λ = 0.2, m = 5.6, p O = 1, c O = 0.01, 
T E = 5 d, N = 160 000, (before thinning), 2 δ = 0.1, b = 1.5, 
M c = M mxc + 4 δ = 1.2. 

Table S27. Aftershock sequence with time-dependent incom- 
pleteness; parameters: λ = 0.2, m = 5.6, p O = 1, c O = 0.01, 
T E = 5 d, N = 1600 000, (before thinning), 2 δ = 0.1, b = 1.5, 
M c = M mxc + 4 δ = 1.2. 

DATA  A N D  S O F T WA R E  AVA I L A B I L I T Y  

S TAT E M E N T  

Matlab codes written by authors for simulated and real data analyses 
as well as the data of the first 1000 shocks from the 30/10/2016 M w 

6.6 earthquake taken from the Horus catalogue at horus.bo.ingv.it, 
are provided freely at https://github.com/pgaspy/b- value- testing . 
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P P E N D I X  A :  T H E  C O N T I N U O U S  A N D  D

arthquak e magnitudes, when tak en as random variables, are su
completeness) magnitude threshold M c . Generally, they are prov
aturally binned in classes of equal size, say 2 δ. In common practi
et. In the former case, if M 0 is the magnitude of the first class, the

M i = M 0 + 2 δi. 

The integer i identifying the class is a discrete random variable o

P i = A 

( α) e −αi i = 0 , 1 , 2 , . . . 

here α is assumed to be a positive decay parameter. Because P i

atisfy the normalization condition, i.e. the sum of all probabilities 

∞ ∑ 

i= 0 
A 

( α) e −αi = A 

( α) 
∞ ∑ 

i= 0 
e −αi = 

A 

( α) 

1 − e −α
= 1 . 

It follows that ( A 2 ) can be rewritten as: 

P i = 

(
1 − e −α

)
e −αi i = 0 , 1 , 2 , . . . 

On the other hand, when treating the magnitude M as a continuo

P 

( M 

) = βe −β( M−M c ) M − M c ≥ 0 

r 

P 

( M 

) = βe −β( M−M 0 + δ) M − ( M 0 − δ) ≥ 0 

epending on the decay factor β. The formula ( A 5 b ) is justified sin
he midpoint of the first magnitude class, that is the one with the lo

M c = M 0 − δ

It can be shown that the decay factors α and β of the discrete and

= 2 δβ

Indeed, if we consider the scaled variable: 

y = 

M − M c 

2 δ

hen its probability density has the form: 

P 

( y ) = P 

( M 

) 
dM 

dy 
= 2 δβ e −2 δβy = αe −αy y ≥ 0 . 

In the following, the random variables we will consider are the 
n ( A 1 ) . We will see that all statistical formulas we will derive fo
ontinuous variable y as the bin size 2 δ becomes increasingl y small
hen the discrete-case expressions transform into the continuous-ca

Mean, variance and standard deviation 

The formulas for the mean and variance of the continuous expon
f completeness. They are: 

1 
an der Elst , N.J ., 2021. B-positive: a robust estimator of aftershock magni-
tude distribution in transiently incomplete catalogs. J. geophys. Res., 126,
e2020JB021027. 
iemer , S. & Wyss, M., 2000. Minimum magnitude of completeness in
earthquake catalogs: examples from Alaska, the western United States,
and Japan. Bull. seism. Soc. Am., 90, 859–869. 
oessner , J. & W iemer , S., 2005. Assessing the quality of earthquake cat-
alogues: estimating the magnitude of completeness and its uncertainty.
Bull. seism. Soc. Am., 95, 684–698. 
 öller , G. , Hainzl, S. & Holschneider, M., 2010. Recurrence of large earth-
quakes: bayesian inference from catalogs in the presence of magnitude
uncertainties. Pure appl. Geophys., 167, 845–853. 

R E T E  E X P O N E N T I A L  D I S T R I B U T I O N S  

 to follow an exponential distribution at least beyond a certain
 to a few decimal digits (usually one) and therefore they can be

y are treated either as a discrete set of variables or as a continuous
tude of the i th class is given by: 

(A1) 

 the probability distribution: 

(A2) 

ents a probability for the random variable i , its distribution must
e equal to 1. By imposing it, we obtain: 

(A3) 

(A4) 

able, its probability density function is given by: 

(A5a) 

(A5b) 

ally, the first value of the discrete set of magnitudes M 0 is taken as
dpoint in M c . This means that: 

(A5) 

nuous distributions are linked by the relation: 

(A7) 

(A8) 

(A9) 

ous variable y defined in ( A 8 ) and the discrete variable i defined
iscrete variable i will tend to the corresponding formulas of the
 specificall y, if we approximate e −α with 1 and ( 1 − e −α) with 2 δβ,
s. 

istribution ( A 9 ) are well known and will be given here for the sake
(A10) 
T
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v a r C E = 

1 

α2 
; σC E = 

1 

α
(A11) 

where the subscript C E denotes a c ontinuous e xponential random variable. As regards the discrete distribution ( A 4 ) , we start with computing 
its mean μDE that is defined as: 

μDE = 

∞ ∑ 

i= 0 
i P i = 

(
1 − e −α

) ∞ ∑ 

i= 1 
i e −αi (A12) 

Consider that the sum, say S 1 , in the last term can be easily evaluated as: 

S 1 = 

e −α

( 1 − e −α) 2 
(A13) 

On substituting this expression in the definition ( A 12 ) , we e ventuall y get: 

μDE = 

(
1 − e −α

)
S 1 = 

e −α

1 − e −α
(A14) 

The second moment, say M 2 ,DE , of the discrete exponential distribution, is by definition: 

M 2 ,DE = 

∞ ∑ 

i= 0 
i 2 P i = 

(
1 − e −α

) ∞ ∑ 

i= 1 
i 2 e −αi (A15) 

To e v aluate the sum of the series, one can consider that: 

S 2 = 

∞ ∑ 

i= 1 
i 2 e −αi = e −α

∞ ∑ 

i= 0 
( i + 1 ) 2 e −αi = e −α

(
S 2 + 2 S 1 + 

1 

1 − e −α

)
(A16) 

Solving the eq. (A16), one gets: 

S 2 = 

e −α
(
1 + e −α

)
( 1 − e −α) 3 

(A17) 

From the definition ( A 15 ) , one e ventuall y obtains: 

M 2 ,DE = 

(
1 − e −α

)
S 2 = 

e −α
(
1 + e −α

)
( 1 − e −α) 2 

(A18) 

As is well known, the variance of a distribution can be computed from the mean and the second moment, which leads us to the formula: 

va r DE = 

e −α
(
1 + e −α

)
( 1 − e −α) 2 

− e −2 α

( 1 − e −α) 2 
= 

e −α

( 1 − e −α) 2 
= 

1 

4 

(
csch 

α

2 

)2 
(A19) 

Consequently, the standard deviation σDE takes the form: 

σDE = 

e −
α
2 

1 − e −α
= 

1 

2 
csch 

α

2 
(A20) 

We point out here that the formula ( A 14 ) for the mean μDE is already known in the seismological literature and forms the basis for the 
estimator of b (eq. 7 ) given in the main text (Guttorp & Hopkins 1986 ; Tinti & Mulargia 1987 ; van der Elst 2021 ). On the contrary, the 
expression ( A 20 ) for the standard deviation of the discrete distribution is original and first derived in this paper. 

A P P E N D I X  B :  T H E  C O N T I N U O U S  A N D  D I S C R E T E  D I S T R I B U T I O N S  O F  T H E  

D I F F E R E N C E S  O F  E X P O N E N T I A L  VA R I A B L E S  ( L A P L A C E  D I S T R I B U T I O N S )  

If we consider the scaled random variables y and z, both following the exponential distribution ( A 9 ) , then the random variable w = z − y
can be proven to obey the continuous Laplace distribution with density function defined as: 

P 

( w 

) = 

α

2 
e −α| w | − ∞ < w < +∞ (B1) 

It is a continuous density function with two symmetric exponential tails, and the same decay parameter α as the original distributions and 
it is known as Laplace distribution. 

Let us now consider the differences of integer random variables i and j , both following the discrete exponential distribution ( A 4 ) with the 
same parameter α. If they are independent variables, the joint probability distribution P i j for the pair ( i, j ) is given by the product: 

P i, j = P i P j = 

(
1 − e −α

)2 
e −α( i+ j ) (B2) 
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We introduce the random variable d = j − i , d ∈ Z , and compute its distribution P d . First, we assume that j ≥ i , and therefore that d ≥ 0 . 
Given d , all pairs ( i, j ) having differences equal to d , are of the type ( i, i + d ) with i ∈ N . It follows that: 

P d = 

∞ ∑ 

i= 0 
P i P i+ d = 

(
1 − e −α

)2 
e −αd 

∞ ∑ 

i= 0 
e −2 αi (B3) 

Considering that the terms to be summed can be seen as the elements of a geometric series with a constant ratio e −2 α , we obtain the 
expression: 

P d = 

(
1 − e −α

)2 
1 − e −2 α

e −αd = 

1 − e −α

1 + e −α
e −αd , d ≥ 0 (B4) 

When j ≤ i , following an analogous procedure, we can get a similar expression. Indeed, we should sum up all probabilities of the pairs 
( j + | d| , j ) getting the result: 

P d = 

1 − e −α

1 + e −α
e αd , d < 0 (B5) 

Both expressions ( B4 ) and ( B5 ) can be synthesized in the form: 

P d = 

1 − e −α

1 + e −α
e −α| d | = tanh 

α

2 
e −α| d | − ∞ < d < +∞ (B6) 

In the following the distribution ( B6 ) will be referenced as a discrete Laplace distribution. 
Mean, variance and standard deviation 

The computation of the mean of the continuous Laplace distribution μC L is straightforward, since P ( w) = P ( −w ) , which implies that: 

μC L = 0 (B7) 

Owing to the vanishing of μC L , the second moment of the Laplace distribution ( B1 ) coincides with its variance: 

va r C L = 

+∞ 

∫ 

−∞ 

w 

2 P 

( w 

) d w = α
+∞ 

∫ 

0 
w 

2 e −αw d w = 

2 

α2 
(B8) 

Hence, the corresponding standard deviation is: 

σC L = 

√ 

2 

α
(B9) 

Also, the mean μDL of the discrete distribution ( B6 ) is zero due to its symmetry around the origin (i.e. P −d = P d ) and, as a consequence, 
its second moment and variance are coincident: 

va r DL = 

∞ ∑ 

d=−∞ 

d 2 P d = 2 
∞ ∑ 

d= 1 
d 2 P d = 2 

1 − e −α

1 + e −α
S 2 = 

2 e −α

( 1 − e −α) 2 
= 

1 

2 

(
csch 

α

2 

)2 
(B10) 

The corresponding standard deviation results to be: 

σDL = 

√ 

2 e −
α
2 

1 − e −α
= 

1 √ 

2 
csch 

α

2 
(B11) 

On comparing expressions ( A 11 ) with ( B8 ) and ( A 19 ) with ( B10 ) , it is worth noting that the variances of the Laplace distributions are 
twice larger than the corresponding variances of the exponential distributions, that is: 

v a r C L = 2 v a r C E v a r DL = 2 v a r DE (B12) 

Indeed, the results reached in this section could be anticipated simpl y b y remembering that the mean and the variance of the difference 
of two independent random variables are, respectively, the difference of their mean and the sum of their variances, which entails that the 
resulting mean is zero and the resulting variance is twice as large. 

A P P E N D I X  C :  T H E  C O N T I N U O U S  A N D  D I S C R E T E  O N E - S I G N  D I F F E R E N C E S  

D I S T R I B U T I O N S  

If we restrict the attention only to one-sign differences, it is trivial to see that their distribution is exponential. Indeed, for the continuous case, 
the distribution ( B1 ) becomes: 

P 

( w 

) = αe −α| w | − ∞ < w ≤ 0 (C1a) 

P 

( w 

) = αe −αw 0 < w < +∞ (C1b) 

Likewise, for the discrete case, the distribution ( B6 ) splits into: 

P d = 

(
1 − e −α

)
e −α| d | − ∞ < d ≤ 0 (C2a) 
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P d = 

(
1 − e −α

)
e −αd 0 ≤ d < +∞ (C2b) 

It follows that the corresponding means, variances, and standard deviation have the expressions ( A 10 ) and ( A 11 ) given in Appendix A for 
the continuous case, and ( A15 ), ( A19 ) and ( A20 ) for the discrete case. It is worth stressing that the result regarding the means was derived 
first by van der Elst ( 2021 ). 

A P P E N D I X  D.  T H E  C O N T I N U O U S  A N D  D I S C R E T E  A B S O LU T E  D I F F E R E N C E S  

D I S T R I B U T I O N S  

Let us consider the absolute values of the differences, which are | w| and | d| , respecti vel y. It is worth outlining that for the continuous case, 
the distribution is exponential, while for the discrete variables, this is not true. In the former case, we can write: 

P 

( | w | ) = αe −α| w | 0 ≤ | w | ≤ +∞ (D1) 

On the other hand, for the discrete variable | d| , we should distinguish the case of null differences from the others, and their probability 
distributions results to be: 

P 0 = 

1 − e −α

1 + e −α
(D2a) 

P | d | = 2 
1 − e −α

1 + e −α
e −α| d | 1 ≤ | d | < +∞ (D2b) 

Mean, variance and standard deviation 

The absolute values of the continuous differences are exponential variables and their statistical moments that are rele v ant in our context 
can be taken from the expressions displayed in Appendix A . We can write them explicitly here below: 

μC A = 

1 

α
, v a r C A = 

1 

α2 
, σC A = 

1 

α
(D3) 

In the adopted notation the subscript C A stands for c ontinuous a bsolute differences. The mean of the absolute values of the discrete 
differences is by definition given by: 

μD A = 

∞ ∑ 

| d | = 1 
| d | P | d | = 2 

1 − e −α

1 + e −α

∞ ∑ 

i= 1 
i e −αi = 

2 e −α

( 1 + e −α) ( 1 − e −α) 
(D4) 

Likewise, the second moment M 2 ,D A is computed as: 

M 2 ,D A = 

∞ ∑ 

| d | = 1 
| d | 2 P | d | = 2 

1 − e −α

1 + e −α

∞ ∑ 

i= 1 
i 2 e −αi = 

2 e −α

( 1 − e −α) 2 
(D5) 

It follows that the variance is: 

va r D A = 

2 e −α
(
1 + e −2 α

)
( 1 + e −α) 2 ( 1 − e −α) 2 

(D6) 

The related standard deviation is therefore given by: 

σD A = 

√ 

2 e −α ( 1 + e −2 α) 

( 1 + e −α) ( 1 − e −α) 
(D7) 

It is rele v ant to observe that the v ariance of the absolute dif ferences ( D6 ) is smaller than the variance of the discrete Laplace distribution 
( B10 ) , i.e.: 

v a r D A = v a r DL 
1 + e −2 α

( 1 + e −α) 2 
< v a r DL (D8a) 

since the adjusting factor is smaller than 1. Similarly, we can conclude that: 

σD A < σDL (D8b) 

A P P E N D I X  E :  T H E  E F F E C T  O F  T R I M M I N G  

For trimming we mean here the removal of all values below a predefined limit. Therefore, for the continuous variable y, we will consider only 
values y ≥ y ′ > 0 , and, likewise, for the continuous difference w we will take into account only values w ≥ w 

′ > 0 or w ≤ −w 

′ < 0 . It is 
very easy to see that the distribution of y follows the exponential distribution with mean: 

μT,C E = μC E + y ′ = 

1 

α
+ y ′ (E1a) 
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Estimation of b -value of the frequency–magnitude distribution 451 

while variance and standard deviation remain unchanged, i.e.: 

v a r T,C E = v a r C E 
1 

α2 
σT,C E = σC E = 

1 

α
(E2) 

Here the additional subscript T denotes the t rimmed distribution. Further, it is immediate to observe that also the one-sign differences 
w − w 

′ and the absolute differences | w − w 

′ | follow an exponential distribution, that is: 

P 

( w 

) = αe −α( w −w ′ ) w ≥ w 

′ > 0 (E3a) 

P 

( w 

) = αe −α| w −w ′ | w ≤ −w 

′ < 0 (E3b) 

P 

( | w | ) = αe −α| w −w ′ | | w | ≥ w 

′ > 0 (E3c) 

Therefore, even for these distributions, the mean results to be shifted by an amount equal to w 

′ , whereas variance and standard deviation 
do not change. 

When considering the continuous Laplace distribution, appropriate for the differences, trimming is realized by considering the variables 
with absolute values larger than the threshold. The related density function is split into: 

P 

( w 

) = 

α

2 
e −α( w −w ′ ) w ≥ w 

′ > 0 (E4a) 

P 

( w 

) = 

α

2 
e −α| w −w ′ | w ≤ −w 

′ < 0 (E4b) 

It is symmetric, centred in zero, and therefore, if we denote its mean by μT,C L , we can write: 

μT,C L = 0 (E5) 

As for the variance, it identifies with the second moment and can be written as: 

va r T,C L = 2 
∞ 

∫ 

w ′ 
w 

2 P 

( w 

) dw = αe αw ′ ∞ 

∫ 

w ′ 
w 

2 e −αw dw = 

1 

α2 

[ (
1 + αw 

′ )2 + 1 
] 

(E6) 

and correspondingly the standard deviation: 

σT,C L = 

1 

α

√ 

( 1 + αw 

′ ) 2 + 1 (E7) 

Both expressions tend to the respective values ( B8 ) and ( B9 ) of the untrimmed distributions as w 

′ tends to zero, that is: 

v a r T,C L → v a r C L and σT,C L → σC L as w 

′ → 0 (E8) 

Notice further that both are increasing functions of w 

′ . 
As regards the discrete distributions, trimming is realized by considering only variables beyond specified integer thresholds, say i ′ and d ′ . 

Even in this case, the trimmed exponential distributions and the one-sign differences are exponential, that is: 

P i = 

( 1 − α) e −α( i −i ′ ) i ≥ i ′ > 0 positi ve dif ferences (E9) 

P d = 

( 1 − α) e −α| d −d ′ | d ≤ −d ′ < 0 ne gativ e differences (E10a) 

P d = 

( 1 − α) e −α( d −d ′ ) d ≥ d ′ > 0 absolute differences (E10b) 

So the means are affected by trimming, whereas variances and standard deviations are not. 
We observe that trimming af fects substantiall y the distribution of the absolute differences. Indeed, since trimming discards the value d = 0 , 

the resulting distribution becomes exponential. It is worth to write it down explicitly: 

P | d | = 

( 1 − α) e −α( | d | −d ′ ) | d | ≥ d ′ > 0 (E11) 

Its rele v ant statistical indices are quite dif ferent from the ones of the untrimmed distribution (see expressions ( D4 ) , ( D6 ) and ( D7 ) ). They 
are: 

μT,D A = 

e −α

1 − e −α
+ d ′ ; va r T,D A = 

e −α

( 1 − e −α) 2 
; σT,D A = 

e −
α
2 

1 − e −α
(E12) 

For the differences distributed according to the discrete Laplace distribution, trimming leads to the following expression for the probabilities: 

P d = 

1 − e −α

1 + e −α
e −α( | d | −d ′ ) = tanh 

α

2 
e −α( | d | −d ′ ) d ≤ −d ′ < 0 or d ≥ d ′ > 0 (E13) 

It is a symmetric distribution with mean equal to zero, that is: 

μT,DL = 0 (E14) 

Its variance can be computed as: 

va r T,DL = 2 
∞ ∑ 

d = d ′ 
d 2 P d = 2 

1 − e −α

1 + e −α
e αd ′ 

∞ ∑ 

j= 0 ′ 

(
j + d ′ 
)2 

e −α j (E15) 
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452 S. Tinti and P. Gasperini 

The summation in the RHS of the last equation can be further elaborated: 

∞ ∑ 

j= 0 ′ 

(
j + d ′ 
)2 

e −α j = S 2 + 2 d ′ S 1 + 

d ′ 2 

1 − e −α
(E16) 

Combining ( E15 ) and ( E16 ) after some calculations we e ventuall y get: 

va r T,DL = 

2 

( 1 + e −α) ( 1 − e −α) 2 

{ 
e −α + 

[
e −α + d ′ 

(
1 − e −α

)]2 } 
(E17a) 

σT,DL = 

1 

1 − e −α

√ 

2 

( 1 + e −α) 

{
e −α + [ e −α + d ′ ( 1 − e −α) ] 2 

}
(E17b) 

It is worth noting that when d ′ is set equal to zero, both the abov e e xpressions transform into the corresponding untrimmed variables 
indices, that is va r DL and σDL . 

A P P E N D I X  F :  E S T I M AT I N G  T H E  D E C AY  PA R A M E T E R S  B Y  M E A N S  O F  T H E  M E A N  

M E T H O D  

For magnitudes obeying the Gutenberg–Richter formula ( 1 ) the decay parameter is b. If we opt for the canonical exponential expressions 
( A 5 ) , the decay parameter is β. If we consider binned magnitudes, the decay parameter is α. Since these three parameters are linked by 
constant factors, we can estimate any one of them and very easily deduce the others. In this paper, the main attention goes to sequences of 
binned magnitudes and therefore here we concentrate on methods suitable to estimate α and only on discrete distributions. In this Appendix, 
we will consider methods based on the mean value of the distributions. If we denote the generic mean by μ, and if it happens to depend on 
α, that is if μ = f ( α) , then we can obtain α by means of the expression α = f −1 ( μ) where f −1 is the inverse function of f , provided that 
the inverse function exists. On the other hand, the mean of any distribution can be estimated from experimental data, and approximated by 
the sample mean value, the approximation being better and better as the data number N increases. The goodness of the estimate of μ reflects 
directly on how good the estimate of α is. With this strategy in mind, we will consider separately the distributions treated so far, pointing out, 
ho wever , that the method cannot be applied to the discrete Laplace distributions, either trimmed or untrimmed, because their mean μDL and 
μT,DL are identically zero, and thus not depending on α. 

Estimates based on exponential distributions 
The exponential distribution applies to binned trimmed or untrimmed magnitudes, as well as to binned trimmed or untrimmed one-sign 

magnitude differences, and also to binned trimmed absolute differences. In all these cases the formula for the mean can be written as (see 
Appendix E ): 

μ = 

e −α

1 − e −α
+ k (F1) 

where k is the trimming threshold and is equal to zero for untrimmed distributions. 
The expression ( F 1 ) can be inverted easily and leads to: 

α = ln 

(
μ − k + 1 

μ − k 

)
(F2) 

Interestingly, we can observe that the ratio in the formula ( F 2 ) can be written also as: 

μ − k + 1 

μ − k 
= 

x + 1 

x − 1 
(F3a) 

where we have posed: 

x = 2 

(
μ − k + 

1 

2 

)
(F3b) 

Taking advantage of the identity: 

cot h −1 ( x ) = 

1 

2 
ln 

(
x + 1 

x − 1 

)
(F4) 

the variable α in ( F 2 ) can be alternatively given also as: 

α = 2 cot h −1 

(
2 

(
μ − k + 

1 

2 

))
(F5) 

We stress that in the above formulas, α is the true value of the decay parameter. Therefore, we can interpret formulas ( F 2 ) and ( F 5 ) as 
unbiased estimators of α, say ˜ α, if we replace μ with its sample mean, since the sample mean tends to μ when the amount of data in the 
sample increases. 

In terms of binned magnitudes M i given by ( A 1 ) the above formulas ( F 2 ) and ( F 5 ) for the estimator ˜ α take the form: 

˜ α = ln 

(
M̄ − M k + 2 δ

M̄ − M k 

)
= 2 cot h −1 

(
1 

δ

(
M̄ − M k + δ

))
(F6) 
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Estimation of b -value of the frequency–magnitude distribution 453 

where M̄ is the sample mean magnitude and: 

M k = M 0 + 2 δk k ≥ 0 (F7) 

is defined as the trimming threshold magnitude which coincides with the magnitude of the lowest bin if no trimming is applied. 
Since α = 2 δb ln ( 10 ) , the corresponding estimator of the decay parameter b is: 

˜ b = 

1 

2 δ ln ( 10 ) 
ln 

(
M̄ − M k + 2 δ

M̄ − M k 

)
= 

1 

δ ln ( 10 ) 
cot h −1 

(
1 

δ

(
M̄ − M k + δ

))
(F8) 

Observe that the expressions ( F 8 ) coincide with the estimators ( 8 ) and ( 12 ) in the main text, where however we used a different notation 
and called M k as M c . 

The logarithmic version of the above formula can be rewritten as: 

˜ b = 

1 

2 δ ln ( 10 ) 
ln 

(
1 − 2 δ

M̄ − M k 

)
(F9) 

This is a version expandable in series. If we truncate the expansion to the second order, we obtain: 

˜ b = 

1 

2 δ ln ( 10 ) 

[ 
2 δ

M̄ − M k 

− 1 

2 

4 δ2 (
M̄ − M k 

)2 
] 

= 

1 

ln ( 10 ) 
(
M̄ − M k 

) (1 − δ

M̄ − M k 

)
(F10) 

It is interesting to observe that the formula (F10) when k= 0, coincides with the first terms of the expansion of the expression ( 4 ) in the 
main text. Indeed: 

˜ b = 

1 

ln ( 10 ) 
(
M̄ − M 0 + δ

) = 

1 

ln ( 10 ) 
(
M̄ − M 0 

) 1 

1 + 

δ

M̄ −M 0 

≈ 1 

ln ( 10 ) 
(
M̄ − M 0 

) (1 − δ

M̄ − M 0 

)

Therefore, we can state that the estimator ( 4 ) is an approximation of the estimator for binned exponential magnitudes corrected at the 
second order in the variable δ/ ( M̄ − M 0 ) . 

When considering the binned magnitude differences, we come to analogous expressions for the estimator. If we denote by �M the 
magnitude dif ferences, b y �M the related sample mean v alue, and b y � M k the trimming threshold, then for trimmed positive differences we 
obtain: 

˜ b = 

1 

2 δ ln ( 10 ) 
ln 

( 
�M − � M k + 2 δ

�M − � M k 

) 
�M ≥ � M k = 2 kδ k ≥ 0 (F11) 

For trimmed ne gativ e differences the formula is: 

˜ b = 

1 

2 δ ln ( 10 ) 
ln 

( 
| �M | − � M k + 2 δ

�M − � M k 

) 
�M ≤ � M k = −2 kδ k ≥ 0 (F12) 

Eventually, for the trimmed absolute differences, we get: 

˜ b = 

1 

2 δ ln ( 10 ) 
ln 

( 
| �M | − � M k + 2 δ

| �M | − � M k 

) 
| �M | ≥ � M k = 2 kδ k ≥ 1 (F13) 

All the above expressions ( F 11 ) − ( F 13 ) can be also given in terms of the inverse hyperbolic cotangent, like in ( F 8 ) . They coincide with 
the formula given in the main text as eq. ( 17 ), provided that we change notation replacing � M k with �M 

′ 
c . 

Estimates based on the untrimmed absolute differences distribution 

The mean μD A of the distribution of the untrimmed absolute differences is given by: 

μD A = 

2 e −α

1 − e −2 α
(F14) 

It is an invertible function of α. Indeed, the expression ( F 14 ) can be transformed into: 

μD A e 
−2 α + 2 e −α − μD A = 0 (F15a) 

that can be interpreted as a quadratic equation in the unknown e −α , with roots: 

e −α = 

−1 ±
√ 

1 + μD A 
2 

μD A 
= − 1 

μD A 
±
√ 

1 

μD A 
2 

+ 1 (F15b) 

Of the two roots, only the positive one is an admissible solution, since the exponential in the LHS must be positive. Thus we can write: 

α = ln 

( 
−1 + 

√ 

1 + μD A 
2 

μD A 

) −1 

= ln 

( 
1 + 

√ 

1 + μD A 
2 

μD A 

) 
= ln 

( 
1 

μD A 
+ 

√ 

1 

μD A 
2 

+ 1 

) 
= csc h −1 ( μD A ) (F16) 
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454 S. Tinti and P. Gasperini 

The last equality has been introduced by virtue of the following identity involving the natural logarithm and the inverse of the hyperbolic 
cosecant: 

csc h −1 ( x ) = ln 

( 
1 

x 
+ 

√ 

1 

x 2 
+ 1 

) 
(F17) 

Substituting μD A with the sample mean, we obtain an unbiased estimator ˜ α and, in terms of the sample mean | �M | of the absolute 
magnitude differences, we obtain an expression for ˜ β that coincides with the formula ( 14 ) of the main text, that is: 

˜ b = 

1 

2 δ ln ( 10 ) 
ln 

⎡ 
⎣ 2 δ + 

√ 

4 δ2 + 

(| �M | )2 
| �M | 

⎤ 
⎦ = 

1 

2 δ ln ( 10 ) 
csc h −1 

( 
| �M | 

2 δ

) 
| �M | ≥ 0 (F18) 

A P P E N D I X  G :  E S T I M AT I N G  T H E  D E C AY  PA R A M E T E R S  T H RO U G H  T H E  M A X I M U M  

L I K E L I H O O D  M E T H O D.  

The decay parameter can be estimated also by means of the Maximum Likelihood (ML) approach. As a general observation, the main 
conceptual difference between the ML method and the method of the mean is that the former applies to empirical samples, while the latter 
uses relations proper of the theoretical distribution. Ho wever , provided that we replace the expected value of the distributions with the related 
sample means, the two methods are expected to lead to the same result. This is exactly what we will prove here, but we outline that there is 
an important caveat that we need to express for the estimator of the binned differences. 

Using samples of the discrete exponential distribution 

For the sake of simplicity, we will consider here only the untrimmed exponential distribution of binned magnitudes. Making recourse to 
the ML method, we introduce the Likelihood Function L N ( α) for a sample of N data ( i 1 , i 2 , .., i N ) , that we write: 

L N ( α) = 

(
1 − e −α

)N n ∏ 

s= 1 
e −αi s 
(
1 − e −α

)N 
e −αN ̄i i s ≥ 0 (G1) 

where ̄i is the arithmetic mean of the sample. 
The ML estimate of the parameter α is that value, say ˜ α, that maximizes L N ( α) and can be found by solving the equation; 

d 

dα

(
1 − e − ˜ α

)− ī 
(
1 − e − ˜ α

) = 0 (G2) 

Its solution is: 

˜ α = ln 

(
1 + ̄i 

ī 

)
(G3) 

This corresponds to the expression ( F 2 ) , once we pose k = 0 and substitute the theoretical mean μ with the sample mean ̄i . 
Using samples of the discrete Laplace distribution 

We have remarked that the Laplace distribution of the magnitude differences is unsuitable to the application of the mean method since 
its mean is identically zero. Ho wever , we can apply the ML method. Let us consider the Likelihood Function L N ( α) as the product of three 
functions L N + ( α) , L N − ( α) and L N 0 ( α) , where N = N + + N − + N 0 and where the subscripts denote the absolute frequencies of differences, 
respecti vel y, greater than, smaller than, and equal to zero. If we pose (see ( B6 )) : 

B 

( α) = tanh 
α

2 
(G4) 

then we can write for positive differences: 

L N + ( α) = 

( B 

( α) ) N + e 
−α

k= N + ∑ 

k= 1 
d k 

d k > 0 (G5a) 

Analo gousl y, for ne gativ e differences, we have: 

L N − ( α) = 

( B 

( α) ) N −e 
−α

k= N −∑ 

k= 1 
| d k | 

d k < 0 (G5b) 

And for differences equal to zero: 

L N 0 ( α) = 

( B 

( α) ) N 0 (G5c) 

As a consequence, the Likelihood Function L N ( α) can be given the expression: 

L N ( α) = L N + ( α) L N − ( α) L N 0 ( α) = 

( B 

( α) ) N e −αN | d | − ∞ < d < ∞ (G6) 

By imposing that the first deri v ati ve of L N ( α) with respect to α is equal to zero, we get the ML solving equation, that is: 

d B 

( ˜ α) 

dα
− | d | B 

( ˜ α) = 0 − ∞ < d < ∞ (G7) 
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After some calculations, we get the solution: 

sinh ̃  α = 

1 

| d | − ∞ < d < ∞ (G8) 

which leads to the final expression for the estimator: 

˜ α = csc h −1 
(| d | ) − ∞ < d < ∞ (G9) 

It is important to stress that the formula ( G 9 ) identifies with the formula ( F 16 ) that resulted from the application of the mean method to 
the binned untrimmed absolute differences. 

A P P E N D I X  H :  1  σ I N T E RVA L S  

The decay parameters α and b derived in the previous Appendix F are functions of the mean μ of a distribution of a discrete variable i with 
probability P i and standard deviation σ . Let us say that: 

p = g ( μ) (H1) 

where p denotes the parameter and g the function. The corresponding estimator ˜ p has been computed through the same function g as: 

˜ p = g ( μ̄N ) (H2) 

where μ̄N is the mean of an empirical sample of N data. The sample mean, being a linear combination of random variables, is in turn a 
random variable with an expected value equal to μ and with standard deviation 

σN = 

1 √ 

N 

σ (H3) 

According to this view, the function g maps the random variable μ̄N into the random variable ˜ p . 
If we call P I the probability that μ belongs to a gi ven interv al I μN = [ μ1 , μ2 ] , then, in virtue of the mapping, it results that the parameter 

p has the same probability to belong to the interval I p N = [ p 1 ,N , p 2 ,N ] , where p 1 ,N and p 2 ,N are, respecti vel y, the smaller and the larger of 
the images of the endpoints μ1 and μ2 . Formally it can be written that: 

P I = P 

(
μ ∈ I μN 

) = P 

(
p ∈ I p N 

)
(H4) 

Since in general the function g is not linear, ˜ p is not the midpoint of the interval. It is common practice to provide ˜ p as the estimator of p. 
If one takes as μ1 = ̄μN − σN and μ2 = μ̄N + σN then the extremes p 1 ,N and p 2 ,N of the image interval I p N can be considered endpoints of 
the 1 σ interval. We stress that instead of ˜ p as given in ( H 2 ) it would be more correct to provide the midpoint of the image interval and its 
half-length as the result of the estimation process, that is: 

˜ p N = 

1 

2 
( p 1 ,N + p 2 ,N ) (H5) 

� ̃  p N = 

1 

2 
( p 2 ,N − p 1 ,N ) (H6) 

Note that in the above formulas, we assume to know σ that, through ( H 3 ) , would allow us to know σN . In practice, however, σ is not 
known. It could be estimated from the empirical standard deviation. Here we make the choice to estimate it as a function of the estimator ˜ p 
gi ven b y ( H 2 ) . More specificall y, the procedure we propose to compute the 1 σ interv al is: 

1. Compute μ̄N from the N -sample data. 
2. Calculate the estimator ˜ p . 
3. Obtain σ through a proper function of ˜ p , say σ = σ ( ̃  p ) . 
4. Compute σN via ( H 3 ) . 
5. calculate the endpoints p 1 ,N and p 2 ,N . 

1 σ intervals for exponential distributions 
As an illustrative example of the exponential distributions addressed in this paper, let us consider the discrete untrimmed exponential 

distribution and write the function g as: 

˜ α = g ( μ̄N ) = ln 

(
μ̄N + 1 

μ̄N 

)
(H7) 

Then we compute the standard deviation of an N -size sample in terms of the computed ˜ α : 

σN = 

1 √ 

N 

e −
˜ α
2 

1 − e − ˜ α
(H8) 

The further step is to compute the endpoints of the interval I μN : 

μ̄N ± σN = 

e − ˜ α

1 − e − ˜ α
± 1 √ 

N 

e −
˜ α
2 

1 − e − ˜ α
= 

1 

c − 1 

(
1 ±
√ 

c 

N 

)
c = e ˜ α (H9) 
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The lower end of the interval I p N is: 

p 1 ,N = ln 

(
μ̄N + σN + 1 

μ̄N + σN 

)
= ln 

( 
1 

c−1 

(
1 + 

√ 

c 
N 

)+ 1 
1 

c−1 

(
1 + 

√ 

c 
N 

)
) 

= ln 

( 
c + 

√ 

c 
N 

1 + 

√ 

c 
N 

) 
c = e ˜ α (H10) 

Likewise, the upper-end results to be: 

p 2 ,N = ln 

(
μ̄N − σN + 1 

μ̄N − σN 

)
= ln 

( 
c −√ 

c 
N 

1 −√ 

c 
N 

) 
c = e ˜ α (H11) 

These calculations allow us to compute the 1 σ interval for the decay parameter b: 

b 1 ,N = 

p 1 ,N 

2 δ ln ( 10 ) 
= 

1 

2 δ ln ( 10 ) 
ln 

( 
c + 

√ 

c 
N 

1 + 

√ 

c 
N 

) 
(H12a) 

b 2 ,N = 

p 2 ,N 

2 δ ln ( 10 ) 
= 

1 

2 δ ln ( 10 ) 
ln 

( 
c −√ 

c 
N 

1 −√ 

c 
N 

) 
(H12b) 

The above formulas are the ones proposed in the main text as eqs ( 20 ) and ( 21 ). 
1 σ intervals for the absolute difference distribution 

The decay parameter α of the distribution of the absolute values of the differences is linked to the distribution mean through the formula 
( F 16 ) that therefore provides us with the function g: 

˜ α = g ( μ̄N ) = ln 

⎛ 

⎝ 

1 + 

√ 

1 + μ̄2 
N 

μ̄N 

⎞ 

⎠ = csc h −1 ( μ̄N ) (H13) 

This formula w as deri ved also by applying the ML method to the distribution of the differences, as noted before, but the standard deviation 
to use here is the one of the absolute differences shown in ( D7 ) , while the formula ( B11 ) is unsuitable and would lead to incorrect e v aluations. 
By using it, we can compute the sample standard deviation as: 

σN = 

1 √ 

N 

√ 

2 e − ˜ α ( 1 + e −2 ̃ α) 

( 1 + e − ˜ α) ( 1 − e − ˜ α) 
(H14) 

The endpoints of the interval I μN are: 

μ̄N ± σN = 

2 e − ˜ α

( 1 + e − ˜ α) ( 1 − e − ˜ α) 
± 1 √ 

N 

√ 

2 e − ˜ α ( 1 + e −2 ̃ α) 

( 1 + e − ˜ α) ( 1 − e − ˜ α) 
(H15) 

After some manipulations, this formula can be given the following version: 

μ̄N ± σN = 

( 
1 ±
√ 

cosh ̃  α

N 

) 
csch ̃  α (H16) 

In terms of the absolute difference magnitudes, the endpoints of the 1 σ uncertainty interval are: 

b 1 ,N = 

1 

2 δ ln ( 10 ) 
ln 

⎡ 
⎢ ⎢ ⎣ 

2 δ + 

√ 

4 δ2 + 

( csch ̃  α) 2 
(

1 + 

√ 

cosh ̃ α
N 

)2 

(
1 + 

√ 

cosh ̃ α
N 

)
csch ̃  α

⎤ 
⎥ ⎥ ⎦ = 

1 

2 δ ln ( 10 ) 
csc h −1 

( ( 
1 + 

√ 

cosh ̃  α

N 

) 
csch ̃  α

) 
(H17a) 

b 2 ,N = 

1 

2 δ ln ( 10 ) 
ln 

⎡ 
⎢ ⎢ ⎣ 

2 δ + 

√ 

4 δ2 + 

( csch ̃  α) 2 
(

1 −
√ 

cosh ̃ α
N 

)2 

(
1 −
√ 

cosh ̃ α
N 

)
csch ̃  α

⎤ 
⎥ ⎥ ⎦ = 

1 

2 δ ln ( 10 ) 
csc h −1 

( ( 
1 −
√ 

cosh ̃  α

N 

) 
csch ̃  α

) 
(H17b) 

and the estimated σ is given by: 

σ = 

b 2 ,N − b 1 ,N 

2 
(H17c) 

The above formulas are not provided in the main text. 
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A P P E N D I X  I :  S I M U L AT I O N  O F  C O M P L E T E  A N D  I N C O M P L E T E  M A G N I T U D E  DATA  

S E T S  

To generate a complete random data set of magnitudes M ≥ M min with exponential distribution, we use the inv erse e xponential transformation: 

M = − ln { rand ] 0 : 1 [ } 
b ln ( 10 ) 

+ M min (I1) 

where rand ] 0 : 1 [ is a pseudo-random number with uniform distribution in the interval ] 0 : 1 [ . 
The binning of magnitudes is obtained by: 

M binned = round 

(
M 

2 δ

)
2 δ (I2) 

where round( x ) indicates the closest integer to the argument value x and 2 δ is the binning size. In such a case, in order for the simulated data 
set to be complete, the latter must include magnitudes down to M min − δ: 

M = − ln { rand ] 0 : 1 [ } 
b ln ( 10 ) 

+ M min − δ (I3) 

Therefore, the eq. (I3) is the one adopted to generate all the complete magnitude data sets in the paper. As suggested by Ogata & Katsura 
( 1993 ), magnitude data incompleteness can be mimicked by a cumulative Gaussian probability distribution with mean μ and standard 
deviation λ: 

P 

( m ≤ M | μ, λ) = 

1 

λ
√ 

2 π

M 

∫ 

−∞ 

e −
( m −μ) 2 

2 λ2 dm (I4) 

In this formulation, the mean μ corresponds to the threshold magnitude at which P = 0.5, which means that below it, the 50 per cent of 
earthquakes cannot be correctly evaluated and are lost for the frequency magnitude analyses. 

It can be introduced in the simulated data set using the thinning method (Ogata 1981 ), which consists of discarding the magnitudes for 
which an extracted random number in the interval ] 0 : 1 [ is larger than the cumulative Gaussian probability ( I4 ). 

Van der Elst ( 2021 ) simulated data sets with time-varying incompleteness as it may be found in the first hours or days after a strong main 
shock. For modelling such a decaying incompleteness threshold, Helmstetter et al. ( 2006 ) proposed the empirical equation: 

m c ( t ) = m − 4 . 5 − 0 . 75 lo g 10 t (I5) 

where m c is the time-dependent magnitude threshold of completeness, m is the magnitude of the main shock and t is the time elapsed since 
the main shock in days. The law ( I5 ) is a decreasing function of time and implies that after a single day the threshold lo wers do wn to m − 4 . 5 . 
Van der Elst suggested using equation ( I5 ) to set the time-varying mean μ( t) in the eq. ( I4 ), which entails the assumption that m c is the 
magnitude below which half of the earthquakes are lost. 

In order to simulate the time t of each shock after a main shock, we assumed a simple Omori-Utsu decay law (Utsu 1961 ) with the equation: 

r ( t ) = 

K O 

( t + c O ) 
p O 

(I6) 

where r ( t) is the time-varying rate (in shocks per day) of a non-homogeneous Poisson process, p O and c O are empirical parameters and K O is 
a normalization factor depending on the number of shocks and the considered time interv al. Usuall y, p O ≈ 1 and c O is of the order of some 
tens of minutes (about 0.01 d). The time integration: 

τ = 

t 
∫ 

0 
r ( s ) ds = F 

( t ) (I7) 

produces a set of transformed times that follow a stationary Poisson process with intensity 1 (Ogata 1988 ). 
Conversel y, gi ven a set of times τi generated according to a stationary Poisson process with intensity 1, the inverse integ ral transfor mation: 

t = F 

−1 ( τ ) (I8) 

corresponds to a non-homogeneous Poisson process with rate r ( t) . 
Moreover, it is often useful to generate sequences of exactly N events over a given time interval [ 0 , T E ] , i.e.: 

T e ∫ 

0 
r ( s ) ds = N (I9) 

This implies that: 

K O = 

{ 
N ( 1 −p O ) 

( T E + c O ) 1 −p O −c O 
1 −p O 

p O 
= 1 
N 

ln ( T E + c O ) −ln ( c O ) 
p O = 1 

} 
(I10) 

Then, the direct timescale transform is: 

τ = F 

( t ) = 

t 
∫ 

0 
r ( s ) ds = 

{ 
N 

( t+ c O ) 1 −p O −c O 
1 −p O 

( T E + c O ) 1 −p O −c O 
1 −p O 

p O 
= 1 

N 

ln ( t+ c O ) −ln ( c O ) 
ln ( T E + c O ) −ln ( c O ) 

p O = 1 

} 
(I11) 
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and the inverse timescale transform is: 

t = F 

−1 ( τ ) = 

⎧ ⎨ 

⎩ 

[ 
τ

( T E + c O ) 1 −p O −c O 
1 −p O 

N + c O 1 −p O 
] 1 / ( 1 −1 −p O ) − c O p O 
= 1 

exp 
[ 
τ

ln ( T E + c O ) −ln ( c O ) 
N + ln ( c O ) 

] 
− c O p O = 1 

⎫ ⎬ 

⎭ 

(I12) 

The set of stationary Poisson times with intensity 1 can be generated by cumulating exponentially distributed interevent times (starting 
from τ1 = −ln { 1 − rand ] 0 : 1 [ } ): 
τi = τi−1 − ln { 1 − rand ] 0 : 1 [ } , i = 2 , N (I13) 

C © 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article 
distributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/ ), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 
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