
25 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Borsatti D.,  Cerroni W.,  Foschini L.,  Ya Grabarnik G.,  Manca L.,  Poltronieri F., et al. (2024). KubeTwin: A
Digital Twin Framework for Kubernetes Deployments at Scale. IEEE TRANSACTIONS ON NETWORK AND
SERVICE MANAGEMENT, 21(4), 3889-3903 [10.1109/TNSM.2024.3405175].

Published Version:

KubeTwin: A Digital Twin Framework for Kubernetes Deployments at Scale

Published:
DOI: http://doi.org/10.1109/TNSM.2024.3405175

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/980454 since: 2024-09-02

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TNSM.2024.3405175
https://hdl.handle.net/11585/980454


IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 1

KubeTwin: A Digital Twin framework for
Kubernetes deployments at scale

Davide Borsatti, Member, IEEE, Walter Cerroni, Senior Member, IEEE, Luca Foschini, Senior Member, IEEE,
Genady Ya. Grabarnik, Senior Member, IEEE, Lorenzo Manca, Filippo Poltronieri, Member, IEEE, Domenico

Scotece, Member, IEEE, Larisa Shwartz, Senior Member, IEEE, Cesare Stefanelli, Member, IEEE, Mauro
Tortonesi, Member, IEEE, Mattia Zaccarini, Student Member, IEEE

Abstract—Kubernetes is a well-known orchestration and man-
agement solution for complex and large-scale service architec-
tures in the Cloud Continuum. While it provides very valuable
functions from the operation perspective, the high number of
control loops it implements significantly enlarges the already
wide space of configuration parameters and policies to consider
for management purposes. We argue that optimizing complex
Kubernetes deployments considering a multi-cloud and edge
computing environment would significantly benefit from a Digital
Twin approach, enabling an accurate virtual representation
of a Kubernetes application to optimize its deployment and
management policies. Towards that goal, this work illustrates the
design of KubeTwin, a framework to implement Digital Twins of
Kubernetes deployments. Furthermore, we present a validation
of KubeTwin in a Multi-access Edge Computing (MEC) scenario,
which shows its soundness in reenacting realistic Digital Twins
of complex and highly distributed Kubernetes deployments.
We believe that KubeTwin can provide useful guidance to the
research community working in this field.

Index Terms—Digital Twin, Service Management and Orches-
tration, Multi-access Edge Computing, Kubernetes, Simulation.

I. INTRODUCTION

IN the ongoing and ever-accelerating process of network
softwarization, researchers are turning their attention to-

wards Digital Twins [1]. The Digital Twin concept has
emerged in industry 4.0 as a high-accuracy virtual represen-
tation and software companion for physical assets related to
applications ranging from maintenance [2] to process and
network optimization [3]–[5]. However, more recently, the
term has also been applied to software platforms and digital
assets. Along that way, some authors have already proposed
Digital Twins for mimicking and configuring/interacting with
either networks, applications, or both [6]. In particular, Digital
Twins can address a wide range of situations by leveraging
what-if scenario analysis and employing different mechanisms,
spanning from performance optimization to chaos engineering
[7]–[9].

D. Borsatti, W. Cerroni, L. Foschini, L. Manca, and D. Scotece are with the
University of Bologna, Bologna, Italy e-mail: {davide.borsatti, walter.cerroni,
luca.foschini, lorenzo.manca, domenico.scotece}@unibo.it.

G. Ya. Grabarnik is with St. John’s University, Queens, NY, USA e-mail:
grabarng@stjohns.edu.

F. Poltronieri, C. Stefanelli, M. Tortonesi, and M. Zaccarini are with
the University of Ferrara, Ferrara, Italy e-mail: {filippo.poltronieri, ce-
sare.stefanelli, mauro.tortonesi, mattia.zaccarini}@unife.it.

L. Shwartz is with IBM TJ Watson Research Center, NY, USA e-mail:
lshwart@us.ibm.com.

Within this research avenue, a relatively recent development
is to consider large-scale applications. Nowadays, large-scale
applications are deployed on complex hybrid Cloud scenarios,
with many different public and private Cloud environments
and dynamic workloads, that present several challenges from
the perspective of identifying optimal deployment configura-
tions [7]. In practice, it is very hard to find out the optimal
configuration of computational and network resources for a
large-scale application before their actual deployment.

This task is even more complicated by the adoption of
sophisticated orchestration platforms, such as Kubernetes.
Kubernetes is becoming the de-facto solution for service
management and orchestration, and it is increasingly proposed
as a platform for a wide range of applications: from NFV
implementation [10] to the tactical edge domain [11]. While
this presents several advantages from the service provider
perspective, it makes it even more difficult to assess upfront the
proper configuration of a large-scale deployment, because its
accurate evaluation must consider aspects that go well beyond
the provisioning of resources, such as the number of VMs to
rent, their prices, etc., and needs to evaluate the runtime impact
of Kubernetes’s control loops on the application behavior.

To address the above challenges, we claim the need to
design novel Digital Twin solutions purposely implemented by
considering Kubernetes and the requirements of Kubernetes-
based applications. Those solutions would allow us to ac-
curately capture the state of an existing Kubernetes-based
IT application deployment through a virtual object with a
smaller footprint and be capable of running what-if scenario
analysis much faster than on a physical testbed. This would
allow the efficient and parallel evaluation of the behavior of
the Digital Twin using different configuration parameters or
even modified components, with many relevant applications
ranging from design feedback to resource optimization and
chaos engineering.

This paper presents KubeTwin, a comprehensive framework
designed to implement Digital Twins of Kubernetes-based de-
ployments. KubeTwin emulates the Kubernetes orchestration
functions and networking behaviors to be used as a guideline
for service providers to accurately evaluate the impact of
complex and large-scale Kubernetes deployment scenarios. It
allows the definition of applications through a declarative de-
scription, which is semantically equivalent to Kubernetes’, to
reenact and assess them through both generic and application-
specific (and user-defined) Key Performance Indicators (KPIs).



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 2

KubeTwin enables its adopters to leverage the Digital Twin
to identify optimized deployment configurations and evaluate
different scheduling policies in complex computing scenarios
where resources can be distributed at many levels, such as
edge servers and cloud data centers.

The contributions of this paper are manifolds. Firstly, this
manuscript describes the implementation of the KubeTwin
framework. Secondly, we present a comprehensive use case
that contains not only the description of a container-based
application that can be used as a reference for testing [12]
but also a detailed Compute Continuum scenario composed of
edge and cloud resources.

We evaluated KubeTwin in a reference use case reenacting
a distributed Multi-access Edge Computing (MEC) applica-
tion deployment. MEC is an Industry Standardization Group
(ISG) backed by ETSI and other industrial partners aiming
to provide the capabilities of hosting IT services at the edge
of the network [13], [14]. These applications’ proximity to
the network’s access part offers reduced latency and increased
bandwidth. Furthermore, MEC offers standardized APIs that
applications can consume to get real-time radio access net-
work information. The application deployment we considered
includes a hybrid computing scenario with a three-tier MEC
environment and two remote Cloud data centers, representing
a relevant use case to test the capabilities of KubeTwin.

Our evaluation has shown that KubeTwin can replicate com-
plex and large-scale IT infrastructures at both the application
and orchestration platform levels. This allows for capturing
key performance indicators (KPIs) that are essential to gaining
an understanding of how the system operates. The soundness
of the KubeTwin framework as a Digital Twin for Kubernetes
deployments is thus demonstrated, and it presents interesting
research opportunities for future investigation.

II. THE CASE FOR A KUBERNETES DIGITAL TWIN

There is no clear-cut definition of the Digital Twin concept
[15], and several ones have been proposed over the years (see
Section 2 of [2] for a nicely written discussion). However,
most of the definitions seem to agree that a Digital Twin is a
system composed of 3 elements: a physical object (or system),
a high-accuracy virtual representation of it (often obtained
by adopting sophisticated simulation solutions), and an active
bidirectional link between those elements, that allows aligning
the state of the physical object and its virtual representation.
Extra components for performance evaluation and optimiza-
tion, or more in general decision-making, are often present. In
literature, the term Digital Twin is, rather ambiguously, used
to define the virtual representation element, the entire system,
or both.

Let us note that in a Digital Twin, the link between the
physical and virtual elements is bidirectional: it goes from the
real system to its virtual representation, thus allowing the latter
to keep track of state changes in the real system, and from
the virtual representation to the real system, thus allowing to
put in place changes in the system configuration that were
explored in the digital twin and judged more satisfactory than
the previous ones. It is important to note that while the link

between the physical and virtual elements is bidirectional, the
virtual element can be used to run disconnected or ”offline”
what-if scenario analyses. During this process, the virtual
element explores several configurations without altering the
physical element. Only when a satisfactory configuration is
found will it be translated to the physical element.

In the network and service management domain, researchers
and practitioners deal with large-scale and very complex
networks and applications that exhibit quite a dynamic be-
havior, and they constantly explore new methodologies and
tools that help them in the struggle to maintain and opti-
mize their systems continuously [16]. For this reason, they
are increasingly adopting sophisticated orchestration solutions
such as Kubernetes, which provides functional management
tools, including network management, automated deployment,
and autoscaling assistance that simplify the management of
complex and large-scale applications. Kubernetes adopts a
declarative approach to application deployment, implementing
a wide range of complex control loops that continuously
monitor applications and modify their deployments to match
the desired state. Kubernetes adopters are required to provide
a detailed description of their application in terms of container
specifications, deployment configurations, and expected KPIs.
However, while Kubernetes provides valuable functions from
the operation automation perspective, including dynamic be-
haviors such as autoscaling and software update management,
the large number of control loops it implements significantly
enlarges the already vast space of configuration parameters
and policies to consider for management purposes.

We argue that this domain would significantly benefit from
Digital Twin approaches, extending and redefining the concept
as shown in Fig. 1. In this case, the physical system is
itself a digital object: a large-scale Kubernetes-based deploy-
ment built on top of many microservices, which in turn are
executed in a federation of Kubernetes clusters, typically
with complex configurations that control orchestration and
automation behavior at several levels: cluster, application, and
software component. This represents a very intricate system
with significant dynamic aspects due to varying workloads,
complex service deployments, heterogeneous network fabric,
etc., whose accurate reenactment requires capturing the system
behavior at the application and platform levels. Creating a
virtual representation of this system presents critical chal-
lenges at the simulation level (both from the performance
and accuracy perspectives), as well as at the performance
assessment and optimization/decision-making levels. In fact,
optimization criteria are typically defined at the business level,
thus resulting in an additional layer of complexity to the
performance assessment and significantly complicating and
enlarging the space of possible configurations to explore for
decision-making.

Developing Digital Twins of Kubernetes-based deployments
calls for innovative solutions capable of addressing the prob-
lems of accurately reenacting large-scale Kubernetes-based
software deployment, evaluating their behavior under different
operating conditions, identifying potentially more optimal con-
figurations, and reifying the configuration changes by interact-
ing with the control APIs of the physical Kubernetes cluster(s)



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 3

Kubernetes Clusters

Application(s)

Kubernetes Configuration

Physical domain: Large-scale 
Kubernetes deployment

Digital domain: Virtual model 
of Kubernetes deployment

Simulation

Performance 
Assessment

Optimization / Decision Making

Fig. 1. The Digital Twin concept redefined to consider Kubernetes-based
software deployment.

considered. However, the effective development of Digital
Twins requires sophisticated monitoring tools that can capture
the behavior of the Kubernetes deployment, such as computing
and network resource monitoring, performance estimation, and
so on. The collected metrics will be used to define the Digital
Twin and manage the Kubernetes deployment.

For this reason, we developed KubeTwin as a valuable
framework to define and reenact Digital Twins of Kubernetes-
based software deployment. KubeTwin is a comprehensive tool
that can study the behavior of Kubernetes deployment using
a Digital Twin approach to run what-if scenario analyses.
This tool allows its adopters to identify optimized deployment
configurations, evaluate various scheduling policies, exper-
iment with different load-balancing algorithms, and finally
translate these configurations and policies into Kubernetes
specifications.

III. KUBETWIN

KubeTwin is a framework that allows the creation of dig-
ital twins of Kubernetes-based software deployment and the
evaluation of their performance in a deployment scenario of
interest. To execute the digital twin, KubeTwin reenacts the
behavior of a Kubernetes deployment at a very fine-grained
level, simulating each service request as it travels. Particular
attention was dedicated to the definition of Business Process
Execution Language (BPEL)-like workflows on top of service
components, to the implementation of control loops for service
component replication, and the accurate modeling of network
communication latency. This is to provide a higher level of
accuracy when compared to the use of simpler regression mod-
els, which cannot simulate complex and dynamic scenarios,
and to provide realistic insights regarding resource utilization
and response times under changing conditions.

As Kubernetes, KubeTwin logically divides sets of com-
puting nodes into clusters. Each cluster is identified by its
name, type, location, and the number of computing nodes. In
addition, a cluster defines a configurable amount of computing
resources, e.g., CPU or GPU cores, to specify the performance
of its computing nodes. We adopt this design choice to enable
the modeling of different types of clusters that KubeTwin can

use to deploy the application components. In particular, with
KubeTwin, we can define two types of computing nodes: edge
nodes, e.g., MEC servers hosted in small-size data centers
close to the end-user premises, and medium- and large-size
data centers located at Cloud facilities. This solution enables
the reenacting of complex, heterogeneous, multi-cluster de-
ployments. For example, it is conceivable that shortly a service
provider could distribute an application by exploiting both
MEC and cloud computing resources. In this case, nodes
available at cloud facilities would likely provide much more
computational resources than MEC nodes.

KubeTwin applications are defined using a declarative de-
scription, which is semantically equivalent to Kubernetes’s,
adopting a flexible approach that allows its users to specify
different kinds of applications such as multi-tier web appli-
cations or complex money transfer management systems [7].
To this end, KubeTwin users will describe complex services as
the composition of multiple microservices interacting together.
In addition, KubeTwin groups user requests into workflows,
which specify the coordinated execution of a subset of mi-
croservices.

Regarding the execution model, we envisioned that a digital
twin created with KubeTwin could run in two operational
modes: “offline” and “online”. In the “offline” mode, Ku-
beTwin functions independently from the live Kubernetes
environment, utilizing historical data and predefined scenar-
ios for conducting risk-free what-if scenario analyses, thus
allowing service providers to explore potential outcomes and
optimizations without impacting the actual deployment. We
believe that the “offline mode” is a resource-efficient approach,
ideal for training, planning, and testing changes in a simulated
environment. On the other hand, when running in the “online”
mode, KubeTwin operates in parallel with the live Kubernetes
system, thus implementing a real-time bidirectional link be-
tween the physical and the virtual elements of the digital
twin. In this mode, it continuously integrates and processes
real-time data, enabling dynamic monitoring and fine-grained
tuning of the Kubernetes deployment configurations. We are
currently working on designing methods to model the mi-
croservices response time accurately to improve the accuracy
of KubeTwin leveraging monitoring data from a Kubernetes
environment. The first results can be found in our recent
work [17] proposing an AI-based algorithm to estimate the
response time of microservices that make up an application
running on a Kubernetes cluster. By applying the response
time distributions obtained by this algorithm to KubeTwin,
we observed a significant improvement in the accuracy of the
prediction made by the digital twin.

Let us point out that while both operational modes can
bring valuable insights to optimize the behavior of a container-
based application deployed on Kubernetes, the “offline” mode
is the best choice for identifying the best configuration before
deploying the application at scale.

KubeTwin is written in Ruby and distributed open-source
(MIT license) on GitHub1. Ruby is a high-level, object-
oriented programming language well known for its expres-

1https://github.com/DSG-UniFE/KubeTwin



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 4

siveness and ease of use. This makes it a good choice for
developing complex systems like discrete event simulators. In
fact, the dynamic nature of Ruby allows for code to be written
in a more natural and readable way, reducing development
time and improving code maintainability. We implemented
KubeTwin as a single-process discrete-event simulator to reen-
act the behavior of a service managed on the top of the
Kubernetes orchestration platform. KubeTwin users need to
create a deployment file describing the service to provide,
its configuration, the available clusters to allocate the service
components, and the distribution of user requests.

A. Main Components

Figure 2 illustrates the interaction between KubeTwin com-
ponents, which we designed to implement a realistic digital
twin of the Kubernetes framework. We developed each element
with the idea of making it as much compliant as possible
with an actual implementation of Kubernetes. Specifically,
KubeTwin implements these components to reenact the Ku-
bernetes functionalities accurately, such as naming resolution,
load balancing, scheduling, and so on.

First, a KTService is used to represent a Kubernetes Service.
KubeTwin implements KTService as a list of associated pods
that match a given selector, i.e., the KTService name. Each
list element represents an “endpoint”, a symbolic link that
maps a KTService with an associated pod. In addition, each
KTService must define a load balancing policy to distribute the
load of processing requests among associated pods. This load
balancing policy could be one of the default ones implemented
by Kubernetes or even user-defined rules that extend the
default behavior, e.g., location-based load balancing.

Currently, KubeTwin implements a load balancing policy
that mimics the default one implemented via iptables in
Kubernetes. In addition, KubeTwin can also assign incoming
requests to different pods in a round-robin fashion. Let us
note that other policies can be easily defined using the Ku-
beTwin framework. For instance, to minimize communication
delay, KubeTwin users may want to specify a latency-based

POD POD

KTReplicaSet

KTPodScaler

Che
ck

s m
etr

ics
 

 &
 

Hori
zo

nta
lly

 sc
ale

s P
od

s 

Service Load Balancing

Round-robin scheduling 
to select a pod

KTDNS

Lookups for KTServices

KTService

Manages resources at clusters

KTScheduler

C
LU

ST
ER

POD

Asks to allocate Pods

KubeTwin

Fig. 2. Interactions between KubeTwin components.

load-balancing policy that assigns incoming requests to pods
running on computing nodes near the requesters.

On the other hand, Fig. 2 shows the KubeTwin Domain
Name Service (KTDNS), which implements the naming reso-
lution and lookup functionality within KubeTwin. Specifically,
KubeTwin registers all KTServices into KTDNS using a label
as the unique identifier for a KTService. Once registered,
KubeTwin components can query the KTDNS to retrieve
information about active KTServices.

Then, the KTReplicaSet visible in Fig. 2 resembles the func-
tionality of the Kubernetes ReplicaSet component. KubeTwin
users need to define a KTReplicaSet for each KTService to
specify the number of pods associated with the KTService.
Precisely, KubeTwin models a KTReplicaSet using two param-
eters: a selector for identifying the corresponding KTService
and the number of associated replicas. At the beginning of
the simulation, each KTReplicaSet instantiates the specified
number of replicas, then it continuously monitors their status
to activate new ones when necessary, e.g., following the crash
of a pod.

Regarding the models for the computation elements, we
define a container as a single unit of execution. Each con-
tainer implements a single software component describing
the amount of CPU and memory required. Using a recurrent
choice in the scientific literature, which also well suits the
simulative approach [18], we use a G/G/n/FIFO queuing
model to reenact the process of serving requests at the
software component level. More specifically, KubeTwin users
can configure the level of parallelism, the maximum queue
size, and the request service times associated with a specific
software component - in the latter case, by defining a random
variable from which KubeTwin will sample the service times.
KubeTwin provides a wide range of well-known distributions,
from exponential to log-normal to Pareto-family ones, but also
allows the use of empirical distributions obtained from real-
life measurements. This design choice gives KubeTwin users
significant freedom to explore model accuracy against com-
plexity and bias against variance tradeoffs, within a conceptual
framework that is well-understood and relatively easy to work
with.

We also assume that a pod hosts a single container. This
design choice simplifies the design of KubeTwin while still
allowing us to accurately model the overwhelming majority
of Kubernetes applications, which adopt the “one container
per pod” policy (usually considered a best practice). However,
we intend to support multi-container pods in future versions
of KubeTwin to enable the accurate reenactment of the small
share of applications that leverage pods with multiple affine
containers (typically a main container and one or more “side-
car” containers).

The KubeTwin Scheduler (KTScheduler) plays a relevant
role within KubeTwin. It is responsible for managing com-
puting resources according to a set of configurable policies,
including the result of automated scaling procedures. Specif-
ically, KTScheduler selects the computing node where to
activate a new pod considering the pod’s requirements, the
status of available computing resources, and the configured
scheduling policy [19]. A three-step procedure regulates the



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 5

selection of a computing node. Firstly, KTScheduler filters the
resources of available clusters to retrieve a list of computing
nodes with a residual computing capacity to fit the new pod.
Secondly, the KTScheduler assigns a score to the filtered
nodes following a configurable scheduling policy. Finally,
KTScheduler selects the node with the highest score as the
candidate for deploying the pod. To this end, it is worth noting
that the KTScheduler executes the filter-and-score procedure
each time there is a request for a new pod.

KubeTwin users can tune the KTScheduler behavior by
providing their own scoring policy, thus allowing them to
experiment with custom resource schedulers for Kubernetes
in reproducible environments - a very hot research topic [20].
Interesting yet simple examples of scoring policies could be
sorting the filtered nodes according to the highest available
residual capacity, thus leading to relatively evenly distributed
resource allocations that maximize the responsiveness of au-
toscaling processes, or the lowest renting prices to minimize
the overall service provisioning costs. A different, slightly
more complex, scoring policy could be to assign a higher pri-
ority to the nodes located in the proximity of users’ premises.
This could be a reasonable choice for MEC applications with
low latency requirements.

Finally, let us specify that while the configuration of these
components might be slightly different from the one used
in Kubernetes, it is easy to translate KubeTwin-specific con-
figuration into Kubernetes and vice versa. This translation
effectively implements a bidirectional link between the digital
twin running on the top of KubeTwin and the Kubernetes
deployment.

B. Automated Scaling

The components described in the previous Section allow
KubeTwin users to simulate a static application deployment.
However, the power of Kubernetes also resides in its auto-
mated scaling solutions. Among those, the Horizontal Pod
Autoscaler (HPA) is a well-adopted solution that Kubernetes

MEC Servers

KTPodScaler

Creates additional 
replicas based on 
collected metrics: 
average processing 
time vs average 
desidered time

KTScheduler

calls KubeScheduler
 n times

Federated Cluster

KTReplicaSet

Keeps a list of replicas deployed 
multiple nodes in different cluster

Regional DC Regional DC

Remote DC Remote DC

Checks for available nodes 
on the cluster resources

R
es

ou
rc

e 
av

ai
la

bi
lit

y

C
om

m
un

ic
at

io
n 

la
te

nc
y

Fig. 3. The main operations performed by KTPodScaler for allocating pods
on the available computing nodes in the federated cluster.

can leverage to scale a deployment according to the current
workload.

To reenact autoscaling behavior, KubeTwin provides the
KubeTwin Pod Scaler (KTPodScaler) component, as illustrated
in Fig. 3. KTPodScaler is implemented as a periodic control
loop to check the current performance of the associated
KTReplicaSet, at configurable time intervals. According to
the HPA specification [21], KTPodScaler monitors the perfor-
mance of the application by calculating the average processing
time of the associated KTService, considering all instantiated
replicas. If the current processing time Tproc,current is higher
than the expected value Tproc,desired (i.e., the current number
of replicas cannot handle the number of requests) the KTPod-
Scaler will immediately try to activate new ones. To avoid the
under/over scaling of application components, KubeTwin users
must specify the values for maxReplica and minReplica
parameters, which set an upper and lower bound for the pod
replicas associated with a KTReplicaSet.

More specifically, KTPodScaler calculates the number of
replicas as follows:

Nreplicas =

⌈
Nreplicas,current ×

Tproc,current

Tproc,desired

⌉
(1)

where Nreplicas should not exceed the specified maxReplica
parameter and be lower than the minReplica parameter. To
specify the Tproc,desired parameter, KubeTwin users can set a
tolerance range to indicate an interval within which the time
to process a certain request type is acceptable. For example,
KubeTwin users may decide to maintain the same number of
replicas if Tproc,current/Tproc,desired ∈ [0.9, 1.10], i.e., a 10%
tolerance range.

Finally, to give a numerical example of Eq. (1), let us
consider the case in which there are 20 running replicas for
an image processing service component, which is expected to
process a request in less than 8ms, while the current average
processing metric is 15ms. In this case, the KTPodScaler
would have to instantiate new replicas to speed up the process-
ing for the service component. Applying the formula in Eq.
(1), we have that the number of replicas should be increased to
Nreplicas = ⌈20× (15/8)⌉ = 38. This behavior adheres with
the Kubernetes-specific implementation described in [21].

To decide where to activate the new replicas, the KTPod-
Scaler interacts with KTScheduler, which runs the filter-and-
score procedure to select the computing nodes. Let us note
that the KTPodScaler works in both ways, i.e., to increase or
decrease Nreplicas according to the current workload to avoid
a waste of computing resources.

It is worth noting that a KTPodScaler is KTService-specific.
This means that KubeTwin users can choose whether to create
a KTPodScaler for each KTReplicaSet of their application. For
example, in a complex microservice application, only some
software components may be associated with the auto-scaling
feature, while others could not.

Finally, let us note that the evaluation of the performance
of application autoscaling within KubeTwin represents an
important link from the virtual representation of a Kubernetes
application to its real-life counterpart. In fact, when KubeTwin



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 6

identifies well-performing values (or value ranges) for KTPod-
Scalers configuration parameters (i.e., an optimal number of
replicas for a given component), it sends that information to
the real Kubernetes deployment to be used for priming the
autoscaling configuration – allowing it to work in a proactive
fashion or even with a predictive process.

C. Communication Model

Following the approach we used in [7], we model the
latency values between software components using random
variables. This approach is far more accurate than other
approaches considering either static communication latency
values or Euclidean distances between two distinct locations.
Instead, the use of random variables enables the modeling
of more realistic communication latency values, which could
be sampled from historical data distributions or purposely
defined distributions to test, for instance, the effect of increased
latency values in communication links and so on. Specifically,
these random variables are completely configurable by Ku-
beTwin adopters, including the case of random distributions
generated from latency values measured in real distributed
computing environments, to allow a realistic reenactment of
different use cases. This approach enables the specification
of distinct latency models for pods running within the same
cluster (“intra-cluster communications”) and pods running in
separate ones (“inter-cluster communications”). Therefore, it
increases the realistic degree of the simulation and lets users
specify complex deployment scenarios such as Edge-Cloud
deployment, in which some of the software components are
distributed at the edge of the network, while others are running
in cloud computing facilities.

Delving into implementation details, KubeTwin employs
“locations” to identify different communication endpoints, i.e.,
data centers in distinct geographical locations. The latency
between these locations is specified through a matrix notation
with elements RV (i, j). Each element RV (i, j) is a random
variable modeling the latency between locations i and j.
Therefore, KubeTwin calculates the network delay for a given
pair of locations i, j by sampling from the corresponding
RV (i, j). Finally, let us specify that communication latency
between two endpoints can be symmetric RV (i, j) = RV (j, i)
or asymmetric RV (i, j) ̸= RV (j, i). In the former case, the
matrix would be symmetric, while in the latter one, the matrix
would be a square matrix.

IV. METHODOLOGY VALIDATION

Following MEC architectural principles defined in [14],
Kubernetes could be a good candidate to host MEC appli-
cations. In detail, a Kubernetes cluster could serve as the
means to offer the Virtualization Infrastructure capabilities
inside a MEC Host, thus allowing the deployment of MEC
applications as Kubernetes workloads. To accurately reenact
these Kubernetes workloads using digital twin methodologies,
there is the need to compute an accurate model that describes
the different parts of a Kubernetes environment, such as the
statistical distribution of the microservice processing times,

the communication latency values between different locations,
and the distributions of service requests.

In a previous article [12], we demonstrated how the response
time of microservices could be modeled with a simulation-
based inference procedure. In detail, we took a candidate
application composed of two microservices and collected
the metrics of their response time with increasing incoming
request rates and with different numbers of microservice repli-
cas. With this data, we computed the statistical distribution of
the microservices as a Gaussian Mixture Model (GMM) using
a Quantum-inspired Particle Swarm Optimization (QPSO)
algorithm. Finally, we plugged these models into the simulator
to reenact particular system working conditions and compared
them with the results obtained from the simulated system.

In [12], we proved that the presented methodology could
reenact the behavior of a container-based application with a
reasonable degree of accuracy, thus making it suitable for
defining digital twins of Kubernetes environments. Therefore,
in this manuscript, we instead focus on presenting the capa-
bilities that a framework such as KubeTwin can provide to its
adopters. Specifically, we will extend the types of scenarios
considered by introducing descriptions and models for intra
and inter-cluster communication delays. Furthermore, building
from the microservice description of [12], we will show how
the developed simulator could be employed for running what-
if scenario analysis.

V. USE CASE

As a representative use case to showcase the potential of
KubeTwin, we present a container-based image recognition
application for which we model its Kubernetes digital twin. An
image recognition application is a well-suited service for MEC
applications. In fact, such a service could be a building block
for a variety of virtual and augmented reality applications,
which rely on image recognition services for different tasks
[13]. Therefore, we believe the image recognition application
represents an interesting case study of a machine learning
algorithm running as a MEC service that interested users can
interact with using their User Equipment.

The effective implementation of such next-generation ap-
plications calls for strict latency and computing requirements
necessary to provide a prompt response to the users requesting
the service. We assume that MEC plays a significant role in
enabling the provisioning of such applications [22]. Computa-
tion offloading at the edge provides enhanced QoE to the users
by reducing the communication and processing delay, e.g., the
processing is offloaded to dedicated MEC servers located near
the access part of the network.

In this Section, we describe the use-case application that
we implemented as a container-based Kubernetes application.
In addition, we discuss how to create a digital twin model for
the application that can be used for evaluation in KubeTwin.
Finally, we provide an accurate description of a Compute
Continuum scenario with MEC and cloud resources where this
and similar applications can be deployed.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 7

A. Description

The use-case application implements an image-recognition
algorithm as a two microservices service chain. The first mi-
croservice (MS1) resizes the images contained within the user
requests, while the second microservice (MS2) implements the
object recognition algorithm and relays the information back
to MS1. To enable network communications, both microser-
vices implement a RESTful API built upon the Flask Python
framework.

To deploy the application on Kubernetes, we define a
container image for MS1 and MS2 and the relative deployment
and NodePort configuration files. Then, for setting up a
Kubernetes cluster testbed, we leverage three Virtual Machines
(VM) with four vCPU cores and 8GB of RAM each, running
a standard installation of Kubernetes with Calico as Container
Network Infrastructure (CNI). We deploy the two microser-
vices as two different containers running in separate pods.
Furthermore, we include a ReplicaSet configuration to manage
the number of replicas associated with each microservice.
Finally, we leverage the described Kubernetes deployment
to compute the statistical distribution of the microservices
processing time using the methodology described in Section
IV.

B. Inter-cluster Communication Model

To model the inter-cluster communication latency for the
use case that considers both edge and cloud computing re-
sources, we assumed the availability of computing facilities in
different locations. We classified those locations according to
the relative distance from the end user, following an approach
similar to what the Linux Foundation Edge (LFE) initiative
proposes [23]:

• Local DC: computing facilities located at the customer
premises, within an average latency range d < 10
ms, corresponding to LFE “Service Provider Edge” or
“Access Edge”;

• Tier 1 Regional DC: computing facilities located close to
the customer premises, within an average latency range
10 ≤ d < 20 ms, corresponding to LFE “Tier 1 Regional
Edge”;

• Tier 2 Regional DC: computing facilities located close to
the customer premises but not as close as Tier 1 Regional
DC, within an average latency range 20 ≤ d < 40 ms,
corresponding to LFE “Tier 2 Regional Edge”;

• Remote DC: computing facilities located in a remote
cloud, within an average latency value d ≥ 100 ms,
corresponding to LFE “Centralized DC”.

The latency among these computing facilities was modeled
with random values generated from latency measurements per-
formed over TCP connections between multiple Amazon Web
Services (AWS) data centers and available on the CloudPing
website.2 The CloudPing measurements are averaged over a
one-year period and provide mean values as well as several
percentile values. We limited our choice to a subset of the
AWS data center locations available at CloudPing, based on

2https://www.cloudping.co/

reasonable assumptions made on the measured latency value
ranges. In particular, we chose:

• as Local DC the eu-south-1 data-center, located in Milan,
Italy;

• as Tier 1 Regional DCs the eu-central-1 data-center
located in Frankfurt, Germany and the eu-west-3 data-
center located in Paris, France;

• as Tier 2 Regional DCs the eu-west-2 data-center, located
in London, UK, and the eu-north-1 data-center, located
in Stockholm, Sweden;

• as Remote DCs the ca-central-1 data-center, located in
Canada, and the us-east-1 data-center, located in Virginia,
US.

To randomly generate the latency values for each pair
of computing locations in the KubeTwin simulations, we
adopted a Gaussian distribution with mean µ and variance
σ2, truncated to the interval [dmin, dmax]. However, since the
CloudPing website does not provide the complete statistics of
the measured latency values, we had to compute the standard
deviation from the average and percentile values available. To
do so, we recall that for a Gaussian distribution with mean µ
and variance σ2 the p-th percentile value xp is such that:

Prob{x ≤ xp} = FN (xp) =
1

2

(
1 + erf

(
xp − µ√

2σ

))
= p

(2)
where FN is the Gaussian cumulative distribution function and
erf(x) is the error function. Solving (2) for σ we obtain the
standard deviation from a given percentile value:

σ =
xp − µ√

2 erf−1(2p− 1)
(3)

Starting from the mean values and the 99-th percentiles
available on the CloudPing website, we calculated µ and σ
values for each inter-cluster pair as reported in Table I, which
we also report as a reference for readers and other researchers
interested in modeling similar scenarios.

C. Intra-cluster Communication Model

Before delving into the analysis of intra-cluster pod com-
munications, let us clarify the network setup of containers
in Docker. Docker and Kubernetes are completely interop-
erable, anyone can use Docker without Kubernetes and vice
versa, however, they work well together in several scenarios
including Industry 4.0 and IoT applications. For this specific
communication model, we have taken into account two dif-
ferent network setups in Docker: i) bridge that is the default
network in Docker where each container has its own network
namespace; ii) host that does not create a separated network
stack for containers, instead, each container shares the same
network stack with the host. Since a pod consists of one
or more containers that are located on the same host, they
can share the network stack or not. See Fig. 4 for a visual
representation.

We measured the latency over the network between two
containers in both network modes (i.e., bridge and host). In
particular, to measure latency over the network, we have used



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 8

TABLE I
INTER-CLUSTER GAUSSIAN CONFIGURATION PARAMETERS (VALUES EXPRESSED IN MS)

eu-central-1 eu-west-3 eu-west-2 eu-north-1 ca-central-1 us-east-1

eu-south-1 µ = 12.60 µ = 19.80 µ = 26.58 µ = 32.28 µ = 104.55 µ = 100.13
σ = 5.82 σ = 1.95 σ = 2.05 σ = 6.43 σ = 6.73 σ = 1.89

eu-central-1 µ = 10.53 µ = 16.34 µ = 23.16 µ = 94.61 µ = 91.08
σ = 2.13 σ = 1.82 σ = 3.18 σ = 6.46 σ = 2.05

eu-west-3 µ = 10.27 µ = 30.58 µ = 87.64 µ = 83.41
σ = 1.93 σ = 3.92 σ = 6.19 σ = 1.75

eu-west-2 µ = 32.81 µ = 80.73 µ = 78.12
σ = 2.19 σ = 6.13 σ = 6.40

eu-north-1 µ = 110.59 µ = 108.56
σ = 7.08 σ = 2.69

ca-central-1 µ = 17.66
σ = 6.55

host

container 1 container 2

docker0 bridge

eth0

veth0 veth1

(a) Bridge Mode

host

container 1 container 2

eth0
host's network interfaces

(b) Host Mode
Fig. 4. The difference in architecture between bridge networking mode and
host networking mode in Docker

the software sfnt-pingpong3 that measures ping-pong latency
over a range of message sizes by using standard network
protocols including TCP and UDP. One container operates as
the client and the other as the server. The output identifies
the median (microseconds) RTT/2 latency for increasing TCP
packet sizes, including the standard deviation for these results.
Results are reported in Table II for both bridge and host modes.

Considering the above measurements and that the Kuber-
netes network layer usually operates in bridge mode, in this
work we decide to model the intra-cluster communication
latency considering a multimodal packet distribution with a
payload size of 32, 128, and 1024 bytes, also considering
a similar characterization in [24]. Therefore, we use the
corresponding mean and standard deviation values illustrated
in Table II to define three random variables with a Gaussian
distribution. Finally, we construct a Gaussian mixture random
variable for intra-cluster communication as the summation of
the three Gaussian random variables as follows:

3https://github.com/Xilinx-CNS/onload

TABLE II
LATENCY COMPARISON BETWEEN THE DOCKER BRIDGE AND HOST

MODES

Bridge Host
Payload (bytes) median (µs) std (µs) median (µs) std (µs)

1 47.50 6.66 43.37 5.11
2 47.50 6.62 43.38 4.17
4 47.51 6.33 43.38 4.66
8 47.52 5.80 43.38 4.62
16 47.52 6.44 43.38 5.11
32 47.52 5.86 43.38 4.04
64 47.53 5.92 43.39 4.39

128 47.62 5.59 43.51 4.30
256 47.64 5.40 43.53 5.07
512 47.68 4.97 43.56 4.06
1024 47.97 4.92 43.88 4.55
2048 52.88 5.45 44.00 4.70
4096 55.70 5.81 44.29 4.80
8192 56.42 5.96 44.94 4.88

16384 57.56 6.28 46.06 4.48
32768 59.75 6.86 48.33 5.32

ΣK
k=1πkN (x|µk,Σk) (4)

where each random variable N (x|µk,Σk) has the same weight
πk ≈ 0.33, and ΣK

k=1πk = 1. We use this mixture as a
sufficiently flexible initial approximation for modeling intra-
cluster latency, while a more accurate fit of the weights
πk is a topic of separate research. Different configurations
of parameters πk, µk,Σk are to be determined and selected
depending on the specific scenario requirements.

VI. EVALUATION

To evaluate KubeTwin, we devised a set of experiments on
the image recognition application described in SectionV-A.
The main objective of these experiments is to validate the
KubeTwin simulation framework as a valuable solution to
experiment with different Kubernetes deployments. To this
end, we first present a performance comparison between
several simulations using different deployment configurations
to find a suitable deployment for the use-case case described
above. Then, we show a second experiment in which we
validate horizontal scaling reenactment within the KubeTwin
framework.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 9

A. Deployment Scenario

We envision that the image-recognition service will be
available to users located in the smart city of Milan, in which
a MEC DC is available to its citizen. Fig. 5 illustrates the
MEC deployment in a federated cluster scenario which we
considered for the experimental evaluation. Specifically, we
have a small-size MEC DC in Milan, which we model as a
single Local DC in the proximity of the user premises, that
provides computing capabilities at a reduced communication
latency, two Tier 1 Regional DCs, and two Tier 2 Regional
DCs. We also model Cloud clusters that can be beneficial to
scale the application performance when needed, e.g., when the
resources at lower tiers are saturated, by providing enhanced
and on-demand computing capabilities at the price of higher
latency. We identify these resources as the data centers flagged
in the Remote DC tier. The assumption that users are located
in the proximity of the Local DC is a typical example of
a small edge data center located at the smart city borders.
There, users play with some “augmented reality application”,
which continuously calls the image recognition service to
identify objects within the camera frames collected using
the application. Communication latency between the different
locations is modeled according to the models presented in
Sections V-B and V-C.

With regard to the computing capabilities at the different
tiers, we model the availability of 25 nodes in the MEC DC,
100 nodes in Tier 1, 150 nodes in Tier 2, and 200 nodes
in the Remote DC tier. For the following experiments, we
assume that the computing nodes at Local DC, Tier 1, and
Tier 2 have the same amount of CPU and memory resources,
which correspond to a constant value of 100 for both CPU and
memory. Such value refers to a standard amount of resources
required by a machine with medium computational power (i.e.,
an i7 core). Instead, we assume that computing nodes in the
Remote DC are twice as powerful, i.e., they have a value of
200 for both CPU and memory. This metric allows us to have

MEC DC
(eu-south-1)

eu-central -1 eu-west-3

Edge -- Local DC

Users Premises

eu-west-2 eu-north-1

ca-central-1 us-east-1

Tier 1 Regional DC

Tier 2 Regional DC

Remote DC

Federated Cluster

Fig. 5. The federated cluster scenario described for the experiments. Users
are located in the proximity of the MEC DC, thus can benefit from a reduced
communication latency. Other tiers provide computing nodes to distribute the
application load.

5 10 15 20
# Replicas

10 1

4 × 10 2

6 × 10 2

2 × 10 1

Ti
m

e 
To

 R
es

ol
ut

io
n 

(T
TR

)

Mean TTR
99th TTR
Target TTR

Fig. 6. Mean and 99th percentile TTR at different numbers of replicas

a good granularity in modeling the computational capacity gap
between the different layers of the cluster and to evaluate the
behavior of Kubernetes applications in a Compute Continuum
scenario, in which the availability of more powerful computing
nodes is typically offset by increased communication latency.

Finally, at the scheduling level, we assign higher scheduling
priorities (node affinity) to the computing nodes residing at
the lower tiers. Specifically, nodes at the Local DC have
the maximum scheduling priority, then each tier at a higher
level presents a decreasing scheduling priority. This choice
defines a MEC-first filter-and-score procedure that will make
the KTScheduler select computing nodes close to the user
premises first. Let us note that this scheduling priority is
different from the default one, which would try to equally
distribute the replicas among all available nodes in the cluster,
regardless of the performance in terms of latency.

B. Identifying Best Deployment Configuration

For the first validation, we show how KubeTwin can be
used to identify a suitable configuration for the scenario of
interest. Specifically, with this analysis, we need to identify
the number of replicas associated with each microservice.
This procedure can be used to find a suitable deployment
configuration that could satisfy the requirements of a relatively
static scenario, which is characterized by a constant workload
of user requests. Furthermore, we want to demonstrate the
effectiveness of KubeTwin as a digital twin, whose purpose is
to help service providers to identify a suitable configuration
for their real-world system.

For the following experiments, we model the user activity as
an aggregated flow of requests with a constant intensity. More
specifically, we define the interarrival times by sampling from
a random variable with exponential distribution to simulate
a workload of 100 requests per second (rps). Moreover, we
set the request generator to send a total of 10,000 requests,
considering 10 seconds for the simulation warmup and 10
seconds for the simulation cooldown. Each microservice has
a dedicated KTReplicaSet, which maintains a stable set of
replica pods running at any given time.

Our objective is to evaluate different deployment configu-
rations by analyzing the Time To Resolution (TTR), i.e., the
time elapsed between the receipt of a request message and
the emission of a corresponding response message for the



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 10

0 25 50 75 100 125 150 175
Time (s)

100

150

200

250

300

350
Re

qu
es

ts
 p

er
 S

ec
on

d 
(R

PS
)

Fig. 7. The distribution of the requests during simulation time.

application workflow during the simulation time. To this end,
we ran multiple simulations by setting different numbers of
replicas (from 1 to 20) and collecting the TTR of each request
to calculate the mean and the 99th percentile TTR. For the
sake of clarity, these values (i.e., mean and 99th percentile
TTR) include the time spent by requests while traveling to the
simulated locations (i.e., the time spent transmitting the request
between users and data centers). With this experiment, we
could visually identify those deployments capable of fulfilling
a given Service Level Indicator (SLI). In this case, we set
a target 99-th percentile TTR of 60 ms and we look for a
deployment configuration capable to satisfy the 60ms SLI.

The results of this validation are visible in Fig. 6, which
shows the TTR and 99th percentile TTR while varying the
number of replicas on the x-axis. Let us note that we excluded
from Fig. 6 the results for the configurations with less than four
replicas, which were out of scale. Specifically, looking at Fig.
6, it is easy to note that configurations with up to 8 replicas
struggle to meet the application requirements (60 ms 99th
percentile TTR) even if the mean TTR is below the threshold,
since the 99th percentile TTR of the requests is still above the
given target. On the contrary, the configurations with 9 and
more replicas show a decreasing trend in both the mean and the
99th TTR. Furthermore, Fig. 6 also shows that over scaling the
number of replicas does not improve the performance in terms
of mean and 99th percentile TTR. Therefore, we can visually
determine that a deployment configuration with 9 replicas for
each microservice (MS1 and MS2) can fulfill the stringent
60 ms SLI. Additional replicas could be instantiated to tackle
temporary fluctuations in the application workload. For this
reason, we select a deployment configuration with 10 replicas
for both MS1 and MS2.

As another interesting result, let us note that considering
the small number of pods to allocate, the edge computing
resources at the Local DC are sufficient to deploy up to 20
replicas for each microservice. Therefore, KubeTwin can ef-
fectively reenact also custom Kubernetes scheduling policies,
such as the specified one that tries to instantiate all pods in the
MEC DC first. This would allow service providers to estimate
the deployment costs for multiple configurations, e.g., shifting
from the different tiers of the Compute Continuum depending
on the prices of the computing resources but also on the
specific requirements of these applications.

0 25 50 75 100 125 150 175
Time (s)

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Ti
m

e 
To

 P
ro

ce
ss

 (T
TP

) (
s)

MS1
MS2
MS1-desired
MS2-desired

Fig. 8. Average Time-to-Process (TTP) requests per micro-service during the
simulation time compared to the desired TTP.

0 25 50 75 100 125 150 175
Time (s)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

# 
Po

ds

MS1
MS2

Fig. 9. Distribution of the number of pods for each microservice during the
simulation time.

C. Validating KTPodAutoscaler

In this second validation, we would like to verify if
KubeTwin can support horizontal pod autoscaling. Starting
from the previous experiment, we define a more workload-
aggressive scenario. More specifically, for this experiment,
we characterize the aggregated flow of user requests as the
summation of several flows of constant interarrival times
to stress the performance of the current deployment. This
experiment should validate if KubeTwin can increase the
number of replicas to meet the increased workload. It is
worth noting that this kind of experiment, which stresses the
application by applying an increasing workload, can find many
employments. For example, a service provider might need to
test its Kubernetes deployment to configure the lower and
upper bound for the Kubernetes HPA.

For this scenario, we reenact the processing of 130,000
requests. Specifically, we kept a baseline workload of 100,000
requests at 100 rps, which was then increased after 30 seconds
since the beginning of the simulation by an additional work-
load of 20,000 requests at 150 rps. Finally, we simulated an
additional 10,000 requests at 50 rps starting 70 seconds after
the beginning of the simulation. For the sake of clarity, we
illustrate the workload distribution in Fig. 7, which shows a
spike of requests starting from the 25th second of the simu-
lation and ending around the 160th second of the simulation,
when the workload of 20,000 requests at 150 rps terminates.
This workload pattern defines an unexpected spike in the
number of requests that would undermine the performance of
the current deployment configuration.

To reenact autoscaling features, we specify in the KubeTwin



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 11

configuration a KTPodScaler component for each microservice
that would periodically check the desired performance scale of
our targets. In addition, for each KTPodScaler we define the
parameters for minReplicas = 10 (the deployment configu-
ration selected at the previous step) and maxReplica = 50,
and a period of 15 seconds (the default interval according to
Kubernetes documentation). From the most basic perspective,
the KTPodScaler analyzes the ratio between the desired metric
value and the current metric value (see Eq. 1), skipping any
scaling action if the ratio is within the [0.90, 1.10] interval.

We report the results of the validations in Fig. 8 and Fig. 9,
which show respectively the average Time To Process (TTP)
along with the desired TTP and the number of instantiated
pods measured during the simulation time. Specifically, the
average TTP indicates the average time for processing a
request, calculated as the difference between the finished
processing time and the time at which the request arrived at
the container, whereas the desired TTP for each microservice
is defined as its expected processing time (i.e., when the
system is not overloaded) plus a 20% tolerance, which is the
maximum value that we are willing to accept.

Figure 8 shows that the most affected microservice is
MS1, which is the entry point for the application workflow.
Specifically, we can see a notable increase in the TTP, which
is mainly due to a non-optimal number of instantiated replicas
and a very strict desired metric – illustrated with straight
orange (MS1) and blue (MS2) lines in the figure. On the
other hand, MS2 is less affected by the increased workload,
as it starts processing each request only after MS1 finishes the
initial processing. Therefore, the TTP trend for MS2 is almost
linear with some increase during the simulation time.

To improve the performance of the current configuration, the
KTPodScalers intervene to reduce the TTP for MS2 and MS1
by allocating more replicas, as visible in Fig. 9. Specifically,
this happens around the 30th second of the simulation, i.e.,
in correspondence with the increased workload, where the
TTP starts to increase for all microservices. This behavior
happens because the current deployment (10 pods for MS1
and 10 pods for MS2) cannot process the increased amount of
incoming requests, i.e., these requests get queued. However, as
soon as the KTPodScalers intervene to activate new replicas,
the TTP for the illustrated microservices starts to decrease,
stabilizing for the rest of the simulation. The activity of the
KTPodScalers is also visible in Fig. 9, which shows that the
number of associated pods changes to cope with the increased
request workload and to respond to performance degradation.
Let us note that the number of instantiated pods for MS1 goes
up to 30, and the one for MS2 goes up to 15 to address the
notable increase in the TTP, while it gradually decreases when
the workload goes back to 150 rps as expected. Additionally,
let us specify that while the average TTP illustrated in Fig. 8
is the result of all requests processed during simulation time,
the KTPodScalers take the scaling decisions by considering
the metric calculated over 15 second intervals, as described in
Section III.

Finally, let us also analyze the distribution of the instantiated
replicas for the most intensive deployment, retrieved from the
seconds 105th to 120th of the simulation time. During this

time window, the KTPodScaler instantiated 30 pods for MS1
and 14 pods for MS2 among the Local DC and the Regional
DC at Tier 1. Specifically, this distribution is the result of the
scheduling policy that tries to exploit computing resources at
the lowest tiers first. It is worth noting that this scheduling
policy would define deployment more performant in terms of
TTR because of the reduced communication latency given by
the proximity of these computing resources to end-users.

D. Discussion

We believe that the illustrated results demonstrate the
soundness of the KubeTwin framework as a digital twin for
Kubernetes deployments. Let us specify that, even if it is
still in the development stage, KubeTwin can provide helpful
guidance to service providers and Kubernetes adopters who
want to experiment with different deployment configurations.
Furthermore, we would like to point out the realistic evalu-
ation of KubeTwin, which instead of adopting an analytical
model for simulating the processing of requests, reenacts the
execution of every user request, starting from its generation to
their arrival at the user premises.

Therefore, we believe that KubeTwin can be highly benefi-
cial in tuning the desired behavior of Kubernetes applications.
In fact, digital twin methodologies enable running what-if
scenario analysis and then evaluating different deployment
opportunities depending on available pricing alternatives, re-
source availability, scheduling policies, and the current de-
mand of users. Let us also note that this exploration process
could be automatized to evaluate several configurations in
a shorter time, thus allowing the digital twin to predict the
proper configurations in case of environmental changes (e.g.,
increased communication latency and increased user demand).
When such changes are detected, KubeTwin can then elaborate
a new configuration and then instantiate it into the Kubernetes
application, thus realizing the bidirectional link between the
virtual and the physical elements of the DT.

As a final consideration, let us discuss the time required for
running an analysis with KubeTwin, which mainly depends on
the characteristics of the simulation scenario and the number
of requests to process. We ran the above experiments on a 2019
Dell XPS with a 6-cores Intel Core i7 2.60GHz CPU, 32 GiB
RAM, and a 64-bit version of Linux Manjaro (5.15.114-2)
configured with a Ruby MRI interpreter (version 3.0.2). The
execution of the first experiment took about 2.72 seconds to
simulate the processing of 10,000 requests. Instead, the second
experiment took roughly 8.85 seconds to simulate 120,000
requests. Considering that KubeTwin is still not optimized for
performance-wise usage, these results highlight the most com-
pelling advantage of running what-if scenario analysis with
KubeTwin, i.e., by facilitating accurate simulations, KubeTwin
drastically reduces the computing time required for testing,
compared to conducting these tests on physical Kubernetes
deployments.

VII. RELATED WORK

Recently, there has been growing attention from the research
community for the adoption of Kubernetes as a network and



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 12

service management solution. On the one hand, some works
investigate its adoption as an orchestration solution for the
management and orchestration of services running in edge
and cloud environments. On the other hand, researchers have
started to look into Kubernetes as the orchestration platform
for managing container-based Virtualized Network Functions
(VNFs) in 5G and beyond network scenarios, complementing
established solutions based on Open Source MANO.

Among the related efforts, the work in [25] studies deep
learning models to horizontally and vertically scale VNFs in
multi-domain networks. Specifically, the authors investigate
centralized and distributed learning approaches and verify their
effectiveness using a network operator dataset for training and
validation. Then, the trained model is plugged into an AI-
driven Kubernetes orchestration prototype.

In [26], the authors propose a proof-of-concept MEC com-
pliant implementation using Kubernetes and HELM. Chaudhry
et al. present a Kubernetes-based approach that leverages
serverless computing to integrate MEC and NFV at the system
level and deploy VNFs on-demand in [27]. The authors in [28]
present the design of an SFC controller for Kubernetes that op-
timizes the placement of service chains in Fog environments.
Scazzariello et al. introduce an ETSI NFV compliant archi-
tecture called Megalos that leverages Docker and Kubernetes
for the realization of VNFs and their orchestration of nodes
in [29].

While there is a compelling interest in the adoption of
Kubernetes, there are very few works that tried to formalize
the design of Kubernetes digital twins. Among them, Ghi-
rardini et al. describe an attempt for developing a Kubernetes
simulator that could help service developers to understand self-
configuring systems in [30]. The proposed solution leverages
Eclipse’s Palladio-Simulator4 to reenact Kubernetes’s func-
tions and behavior. Another effort is the one in [31], which
presents a systematic approach for modeling the performance
of microservices in cloud native service chains.

Recently, researchers have started organizing the first events
specifically dedicated to digital twins in networking. Among
these, we report the 2022 and the 2023 editions of the Interna-
tional Workshop on Technologies for Network Twins (TNT),
co-located with IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS), a flagship IEEE conference and
a reference event for the Network and Service Management
research community [32]. The workshop included keynotes
from world-leading experts, panels dedicated to the definition
of the digital twin concept in network and service management
area of applications, and many interesting papers focusing on a
wide range of applications such as data center health optimiza-
tion [33], traffic reduction [34], chaos engineering [35], and
what-if analysis in BGP optimization [36]. Alongside this kind
of event, a strong interest in adopting Network digital twins is
emerging. In [37], the authors include Machine Learning-based
digital twin in a Service Function Chain Platform definition to
obtain training samples more conveniently and affordably than
collecting them from a real system. Thanks to this approach,

4https://www.palladio-simulator.com/home/

they gain much better performance in terms of throughput and
latency in their Virtual Network Functions optimization goal.

More in general, digital twin approaches find their appli-
cation also to related fields, such as smart manufacturing
and healthcare. Groshev et al. propose the digital twin as
a Service (DTaaS) concept and present the case study of
an Edge Robotics digital twin system in [38]. More specif-
ically, the authors analyze the capabilities of the digital twin
system to provide potential savings by considering different
computational offloading models and the impact of different
wireless channels (5G, 4G, and WiFi) on the synchronization
between the digital twin and the physical device. In [39], the
authors present a digital twin framework for health and well-
being in smart city environments. The proposed framework
aims to collect data from heterogeneous health devices to
improve the quality of smart healthcare services in smart cities.
Another effort is given in [40], where the authors discuss the
implementation of a building digital twin by leveraging the
data collected from IoT sensor networks. The idea is to create
a virtual replica of a building facade, which can provide useful
findings in determining the arrangement of sensors. In [41]
authors present a digital twin Healthcare (DTH) in order to
solve the problem of real-time supervision and accuracy of
crisis warning for the elderly in healthcare services thanks to
technologies like big data, cloud computing, and Internet-of-
Things.

In [42], authors introduced a digital twin architecture ref-
erence model for cloud-based Cyber-Physical Systems (CPS)
called C2PS, which enables the definition of a digital twin
by specifying the analytical properties of a CPS. The authors
highlight how a digital twin can analyze the current status of
the real system to suggest actions that can improve the perfor-
mance of the real system. As a showcase for their reference
model, the authors present an interesting vehicular driving
assistance application. Finally, in [43] the authors propose
a digital twin for “smart manufacturing” scenarios including
cloud, fog, and edge computing domains. The functions of
the digital twin are distributed in the different computing
domains, taking into account different requirements such as
communication latency and computing resource requirements.
Furthermore, the digital twin maintains virtual models of the
physical appliances evolving based on their real-time state.
These virtual models are then used to carry on simulations to
adjust and control the behavior of the physical resources.

KubeTwin embraces this final approach, by allowing its
users to run what-if scenario analyses on the virtual element
of the digital twin to identify optimized configuration de-
ployments. Differently, from the previous work in which we
focused on the creation of an accurate statistical model to ap-
proximate the processing times of container-based applications
[12], this manuscript presents a comprehensive overview of the
framework and shows the potentials of the tool by evaluating
an image recognition application on a complex computing
scenario.

VIII. CONCLUSION

The implementation of digital twins is a compelling and
recent avenue for researchers working in the network and



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 13

service management domain. In fact, the ever-increasing com-
plexity of the management of applications and networks calls
for alternative solutions such as digital twins to identify proper
deployment configurations. Even if management and orches-
tration solutions such as Kubernetes emerged, there is still
the need, especially for large-scale scenarios, for evaluating
deployment configurations upfront.

To contribute to this research avenue, this paper presents
KubeTwin, a comprehensive simulation framework that we de-
veloped as a guideline for service providers that need to deploy
their applications using Kubernetes-like orchestrator tools.
KubeTwin proposes to these service providers a simulation
platform that they can use to validate different configuration
deployments without sustaining the deployment costs.

We evaluated KubeTwin to demonstrate its effectiveness in
creating digital twins of Kubernetes-based software deploy-
ment by defining a distributed MEC application. The results
confirm the validity of the KubeTwin approach, can reenact
the execution of a complex system both at the application and
the orchestration level.

The soundness of the results we have achieved so far
opens interesting future research directions. First, we are
planning to investigate solutions that leverage KubeTwin to
identify optimized scheduling policies. To this end, we intend
to explore both population-based metaheuristics, such as ad-
vanced variants of Genetic Algorithms and Particle Swarm
Optimization designed for expensive optimization problems,
and reinforcement learning-based solutions. In addition, we are
planning to leverage KubeTwin to investigate the application
of chaos engineering methodology to the virtual representation
of Kubernetes applications – a highly innovative approach that
presents compelling opportunities in terms of lower costs and
barriers to entry.

ACKNOWLEDGMENTS

This work was partially supported by the European Union
under the Italian National Recovery and Resilience Plan
(NRPP) of Next Generation EU (NGEU), partnership on
“Telecommunications of the Future” (PE00000001 - program
“RESTART”), and by the Spoke 1 “FutureHPC & BigData” of
the Italian Research Center on High-Performance Computing,
Big Data and Quantum Computing (ICSC) funded by MUR
Missione 4 - NGEU.

REFERENCES

[1] A. Rasheed, O. San, and T. Kvamsdal, “Digital twin: Values, challenges
and enablers from a modeling perspective,” IEEE Access, vol. 8, pp.
21 980–22 012, 2020.

[2] I. Errandonea, S. Beltrán, and S. Arrizabalaga, “Digital twin for
maintenance: A literature review,” Computers in Industry, vol. 123,
p. 103316, 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0166361520305509

[3] P. Bellavista, C. Giannelli, M. Mamei, M. Mendula, and M. Picone,
“Application-driven network-aware digital twin management in indus-
trial edge environments,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 11, pp. 7791–7801, 2021.

[4] L. Zhao, G. Han, Z. Li, and L. Shu, “Intelligent digital twin-based
software-defined vehicular networks,” IEEE Network, vol. 34, no. 5,
pp. 178–184, 2020.

[5] M. Balogh, A. Földvári, and P. Varga, “Digital twins in industry 5.0:
Challenges in modeling and communication,” in NOMS 2023-2023
IEEE/IFIP Network Operations and Management Symposium, 2023, pp.
1–6.

[6] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,” IEEE
Internet of Things Journal, vol. 8, no. 18, pp. 13 789–13 804, 2021.

[7] W. Cerroni, L. Foschini, G. Y. Grabarnik, F. Poltronieri, L. Shwartz,
C. Stefanelli, and M. Tortonesi, “BDMaaS+: Business-driven and
Simulation-based Optimization of IT Services in the Hybrid Cloud,”
IEEE Transactions on Network and Service Management, vol. 19, no. 1,
pp. 322–337, 2022.

[8] F. Poltronieri, M. Tortonesi, and C. Stefanelli, “Chaostwin: A chaos
engineering and digital twin approach for the design of resilient it
services,” in 2021 17th International Conference on Network and Service
Management (CNSM), 2021, pp. 234–238.

[9] W. Wang, L. Tang, C. Wang, and Q. Chen, “Real-time analysis of
multiple root causes for anomalies assisted by digital twin in nfv
environment,” IEEE Transactions on Network and Service Management,
vol. 19, no. 2, pp. 905–921, 2022.

[10] M. Zhu, R. Kang, F. He, and E. Oki, “Implementation of backup resource
management controller for reliable function allocation in kubernetes,”
in 2021 IEEE 7th International Conference on Network Softwarization
(NetSoft), 2021, pp. 360–362.

[11] M. Fogli, T. Kudla, B. Musters, G. Pingen, C. Van den Broek, H. Bas-
tiaansen, N. Suri, and S. Webb, “Performance evaluation of kubernetes
distributions (k8s, k3s, kubeedge) in an adaptive and federated cloud
infrastructure for disadvantaged tactical networks,” in 2021 International
Conference on Military Communication and Information Systems (ICM-
CIS), 2021, pp. 1–7.

[12] D. Borsatti, W. Cerroni, L. Foschini, G. Y. Grabarnik, F. Poltronieri,
D. Scotece, L. Shwartz, C. Stefanelli, M. Tortonesi, and M. Zaccarini,
“Modeling Digital Twins of Kubernetes-Based Applications,” Accepted
at 28th IEEE Symposium on Computers and Communications (ISCC),
2023.

[13] Multi-access edge computing (MEC); use cases and requirements
v2.2.1. [Online]. Available: https://www.etsi.org/deliver/etsi gs/MEC/
001 099/002/02.02.01 60/gs MEC002v020201p.pdf

[14] Multi-access edge computing (MEC); framework and reference
architecture. [Online]. Available: ”https://www.etsi.org/deliver/etsi gs/
MEC/001 099/003/02.02.01 60/gs mec003v020201p.pdf”

[15] M. Fogli, C. Giannelli, F. Poltronieri, C. Stefanelli, and M. Tortonesi,
“Chaos engineering for resilience assessment of digital twins,” IEEE
Transactions on Industrial Informatics, pp. 1–9, 2023.

[16] S. Tuli, G. Casale, and N. R. Jennings, “Dragon: Decentralized fault
tolerance in edge federations,” IEEE Transactions on Network and
Service Management, vol. 20, no. 1, pp. 276–291, 2023.

[17] L. Manca, D. Borsatti, F. Poltronieri, M. Zaccarini, D. Scotece,
G. Davoli, L. Foschini, G. Y. Grabarnik, L. Shwartz, C. Stefanelli,
M. Tortonesi, and W. Cerroni, “Characterization of microservice re-
sponse time in kubernetes: A mixture density network approach,” in
2023 19th International Conference on Network and Service Manage-
ment (CNSM), 2023, pp. 1–9.

[18] E. Jafarnejad Ghomi, A. M. Rahmani, and N. N. Qader, “Applying
queue theory for modeling of cloud computing: A systematic review,”
Concurrency and Computation: Practice and Experience, vol. 31,
no. 17, p. e5186, 2019, e5186 CPE-18-0152.R1. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5186

[19] “Kubernetes: Scheduling framework,”
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-
framework/, [Online; retrieved on January 11, 2022].

[20] C. Carrión, “Kubernetes scheduling: Taxonomy, ongoing issues and
challenges,” ACM Comput. Surv., may 2022. [Online]. Available:
https://doi.org/10.1145/3539606

[21] “Kubernetes: Horizontal pod autoscaling,”
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale/, [Online; retrieved on January 11, 2022].

[22] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J.
Hwang, and Z. Ding, “A survey of multi-access edge computing in 5g
and beyond: Fundamentals, technology integration, and state-of-the-art,”
IEEE Access, vol. 8, pp. 116 974–117 017, 2020.

[23] “Sharpening the edge: Overview of the LF edge taxonomy and frame-
work,” White paper, Linux Foundation Edge, https://www.lfedge.org/
resources/publications/, [Online; retrieved on January 26, 2022].

[24] R. Sinha, C. Papadopoulos, and J. Heidemann, “Internet packet size
distributions: Some observations,” USC/Information Sciences Institute,
Tech. Rep. ISI-TR-2007-643, May 2007, orignally released October



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 14

2005 as web page http://netweb.usc.edu/\%7ersinha/pkt-sizes/. [Online].
Available: http://www.isi.edu/\%7ejohnh/PAPERS/Sinha07a.html

[25] T. Subramanya and R. Riggio, “Centralized and federated learning for
predictive vnf autoscaling in multi-domain 5g networks and beyond,”
IEEE Transactions on Network and Service Management, vol. 18, no. 1,
pp. 63–78, 2021.

[26] I. Martı́nez-Casanueva, L. Bellido, C. Lentisco, and D. Fernández, “An
initial approach to a multi-access edge computing reference architecture
implementation using kubernetes,” Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and Telecommunications Engi-
neering, LNICST, vol. 355, pp. 185–193, 2021.

[27] S. Chaudhry, A. Palade, A. Kazmi, and S. Clarke, “Improved qos at the
edge using serverless computing to deploy virtual network functions,”
IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10 673–10 683, 2020.

[28] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards delay-
aware container-based service function chaining in fog computing,” in
NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management
Symposium, 2020, pp. 1–9.

[29] M. Scazzariello, L. Ariemma, G. D. Battista, and M. Patrignani, “Mega-
los: A scalable architecture for the virtualization of network scenarios,”
in NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management
Symposium, 2020, pp. 1–7.

[30] F. Ghirardini, A. Samir, I. Fronza, and C. Pahl, “Model-driven sim-
ulation for performance engineering of kubernetes-style cloud cluster
architectures,” Communications in Computer and Information Science,
vol. 1115, pp. 7–20, 2020.

[31] M. Gokan Khan, J. Taheri, A. Al-dulaimy, and A. Kassler, “Perfsim:
A performance simulator for cloud native microservice chains,” IEEE
Transactions on Cloud Computing, 2021.

[32] The 1st International Workshop on Technologies for Network
Twins (TNT 2022), co-located with the 2022 edition of
IEEE/IFIP Network Operations and Management Symposium
(NOMS). [Online]. Available: https://noms2022.ieee-noms.org/
ws4-1st-international-workshop-technologies-network-twins-tnt-2022

[33] Z. Zhang, Y. Zeng, H. Liu, C. Zhao, F. Wang, and Y. Chen, “Smart
DC: An AI and Digital Twin-based Energy-Saving Solution for Data
Centers,” in Proceedings of 1st International Workshop on Technologies
for Network Twins (TNT 2022), 2022.

[34] C. von Lengerke, A. Hefele, J. Cabrera, and F. Fitzek, “Stopping the data
flood: Post-shannon traffic reduction in digital-twins applications,” in
Proceedings of 1st International Workshop on Technologies for Network
Twins (TNT 2022), 2022.

[35] F. Poltronieri, M. Tortonesi, and C. Stefanelli, “A chaos engineering
approach for improving the resiliency of it services configurations,” in
Proceedings of 1st International Workshop on Technologies for Network
Twins (TNT 2022), 2022.

[36] M. Polverini, I. Germini, A. Cianfrani, F. G. Lavacca, and M. Listanti,
“A digital twin based framework to enable “what-if” analysis in bgp
optimization,” in NOMS 2023-2023 IEEE/IFIP Network Operations and
Management Symposium, 2023, pp. 1–6.

[37] P. Krämer, P. Diederich, C. Krämer, R. Pries, W. Kellerer, and A. Blenk,
“D2a: Operating a service function chain platform with data-driven
scheduling policies,” IEEE Transactions on Network and Service Man-
agement, vol. 19, no. 3, pp. 2839–2853, 2022.

[38] M. Groshev, C. Guimarães, A. De La Oliva, and R. Gazda, “Dissecting
the impact of information and communication technologies on digital
twins as a service,” IEEE Access, vol. 9, pp. 102 862–102 876, 2021.

[39] F. Laamarti, H. F. Badawi, Y. Ding, F. Arafsha, B. Hafidh, and A. E.
Saddik, “An iso/ieee 11073 standardized digital twin framework for
health and well-being in smart cities,” IEEE Access, vol. 8, pp. 105 950–
105 961, 2020.

[40] S. H. Khajavi, N. H. Motlagh, A. Jaribion, L. C. Werner, and J. Holm-
ström, “Digital twin: Vision, benefits, boundaries, and creation for
buildings,” IEEE Access, vol. 7, pp. 147 406–147 419, 2019.

[41] Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, R. Liu, Z. Pang,
and M. J. Deen, “A novel cloud-based framework for the elderly
healthcare services using digital twin,” IEEE Access, vol. 7, pp. 49 088–
49 101, 2019.

[42] K. M. Alam and A. El Saddik, “C2ps: A digital twin architecture
reference model for the cloud-based cyber-physical systems,” IEEE
Access, vol. 5, pp. 2050–2062, 2017.

[43] Q. Qi and F. Tao, “A smart manufacturing service system based on edge
computing, fog computing, and cloud computing,” IEEE Access, vol. 7,
pp. 86 769–86 777, 2019.

Davide Borsatti (Member, IEEE) received his B.S.,
M.S., and Ph.D. in Electronics, Telecommunications,
and Information Technologies Engineering from the
University of Bologna, Italy, in 2016, 2018, and
2022, respectively. He is currently an Assistant Pro-
fessor in the Department of Electrical, Electronic,
and Information Engineering ”Guglielmo Marconi”
at the University of Bologna. His research interests
include NFV, SDN, intent-based networking, MEC,
and 5G network slicing.

Walter Cerroni (Senior Member, IEEE) is an Asso-
ciate Professor of communication networks with the
University of Bologna, Italy. He coauthored more
than 150 articles published in the most renowned
international journals, magazines, and conference
proceedings. His recent research interests focused
on multiple aspects of control, management and
orchestration of communication network infrastruc-
tures, including software-defined networking, net-
work function virtualization, multi-access edge com-
puting, fog computing, service function chaining,

intent-based networking systems. He serves/served as Series Editor for the
IEEE Communications Magazine, Associate Editor for the IEEE Com-
munications Letters, and Technical Program Co-Chair for IEEE-sponsored
international workshops and conferences.

Luca Foschini (Senior Member) received the Ph.D.
degree in computer science engineering from the
University of Bologna, Italy, in 2007. He is currently
an Associate Professor of computer science engi-
neering with the University of Bologna. His inter-
ests span from integrated management of distributed
systems and services to mobile crowd-sourcing/-
sensing, from infrastructures for Industry 4.0 to
fog/edge cloud systems. Finally, he is serving as
Chair of the ComSoc CSIM TC, and he served in
2022-2023 as Director for the IEEE ComSoc EMEA

and non-voting member of the ComSoc Board of Governors.

Genady Ya. Grabarnik (Senior Memeber) is a
Professor at Math and CS Department, St John’s
University. He is a trained mathematician and au-
thored over 120 papers. He spent 10 years at IBM
T.J.Watson Research Center where his work was cel-
ebrated with a number of awards including Outstand-
ing Technical Achievement Award and Research
Achievement Awards. He is a prolific inventor with
over 65 US patents. His interests include research
in functional analysis, inventions, and research in
computer science and artificial intelligence.

Lorenzo Manca is a research fellow at the Inter-
departmental Center for Industrial ICT Research of
the University of Bologna, Italy. He obtained his
master’s degree in Telecommunications Engineering
from the same university in 2023. His research
activity is focused on the application of artificial
intelligence (AI) in the domains of service mesh and
communication networks.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, XXXX 15

Filippo Poltronieri (Member, IEEE) received the
Ph.D. degree from the University of Ferrara, Italy,
in 2021. He is currently an Assistant Professor
with the Department of Engineering, University of
Ferrara. His research interests include distributed
systems, optimization techniques for network and
service management, edge and cloud computing, and
tactical networks. He has been visiting the Florida
Institute for Human & Machine Cognition (IHMC)
in Pensacola, FL (USA) in 2016-2017 and 2018.

Domenico Scotece (Member, IEEE) is a junior as-
sistant professor at the University of Bologna, Italy,
right after having obtained the Ph.D degree at the
same University in April 2020. He received the Mas-
ter Degree in Computer Science Engineering from
the University of Bologna, in 2014. His research
interests include pervasive computing, middleware
for fog and edge computing, the Software-Defined
Networking, the Internet of Things, and 5G network
planning and design.

Larisa Shwartz (Member, IEEE) received the PhD
degree in mathematics from UNISA University. She
is currently DE at the IBM T.J. Watson Research
Center, Yorktown Heights, NY. She has research
experience in mathematics and computer science,
but is now focusing on IT service management
technologies for service delivery. She has more than
80 publications and 52 patents.

Cesare Stefanelli (Member, IEEE) received the
Ph.D. degree in computer science engineering from
the University of Bologna, Italy, in 1996. He is
currently a Full Professor of distributed systems with
the Engineering Department, University of Ferrara,
Italy. At the University of Ferrara he coordinates
a Technopole Laboratory dealing with industrial
research and technology transfer. He holds several
patents, and coordinates industrial research projects
carried on in collaboration with several companies.
His research interests include distributed and mobile

computing in wireless and ad hoc networks, network and systems manage-
ment, and network security.

Mauro Tortonesi (Member, IEEE) is an Associate
Professor and the head of the Big Data and Compute
Continuum research laboratory at the University
of Ferrara, Italy. He received the Ph.D. degree in
computer engineering from the University of Ferrara,
in 2006. He was a Visiting Scientist with the Florida
Institute for Human & Machine Cognition (IHMC),
Pensacola, FL, USA, from 2004 to 2005 and with the
United States Army Research Laboratory, Adelphi,
MD, USA, in 2015. He participates / has participated
with several roles in a wide number of research

projects in the distributed systems area, with particular reference to Compute
Continuum, Big Data, and IoT solutions in industrial and military environ-
ments. He has co-authored over 100 publications and has 4 international
patents.

Mattia Zaccarini (Student Member, IEEE) is a
Ph.D. student at the Engineering Department of the
University of Ferrara. He obtained his Bachelor’s de-
gree in Electronics and Computer Science Engineer-
ing in 2018 and his Master’s degree in Computer and
Automation Engineering in 2022 from the University
of Ferrara. He is currently part of the Big Data
and Compute Continuum research laboratory and his
research activity is focused on Compute Continuum,
Network Digital Twin, Reinforcement Learning and
Computational Intelligence techniques.




