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abstract

PURPOSE Myelodysplastic syndromes (MDS) are heterogeneous myeloid neoplasms in which a risk-adapted
treatment strategy is needed. Recently, a new clinical-molecular prognostic model, the Molecular International
Prognostic Scoring System (IPSS-M) was proposed to improve the prediction of clinical outcome of the currently
available tool (Revised International Prognostic Scoring System [IPSS-R]). We aimed to provide an extensive
validation of IPSS-M.

METHODS A total of 2,876 patients with primary MDS from the GenoMed4All consortium were retrospectively
analyzed.

RESULTS IPSS-M improved prognostic discrimination across all clinical end points with respect to IPSS-R
(concordance was 0.81 v 0.74 for overall survival and 0.89 v 0.76 for leukemia-free survival, respectively). This
was true even in those patients without detectable gene mutations. Compared with the IPSS-R based strati-
fication, the IPSS-M risk group changed in 46% of patients (23.6% and 22.4% of subjects were upstaged and
downstaged, respectively).

In patients treated with hematopoietic stem cell transplantation (HSCT), IPSS-M significantly improved the
prediction of the risk of disease relapse and the probability of post-transplantation survival versus IPSS-R
(concordance was 0.76 v 0.60 for overall survival and 0.89 v 0.70 for probability of relapse, respectively). In high-
risk patients treated with hypomethylating agents (HMA), IPSS-M failed to stratify individual probability of
response; response duration and probability of survival were inversely related to IPSS-M risk.

Finally, we tested the accuracy in predicting IPSS-M when molecular information was missed and we defined a
minimum set of 15 relevant genes associated with high performance of the score.

CONCLUSION IPSS-M improves MDS prognostication and might result in a more effective selection of
candidates to HSCT. Additional factors other than gene mutations can be involved in determining HMA
sensitivity. The definition of a minimum set of relevant genes may facilitate the clinical implementation of
the score.
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INTRODUCTION

Myelodysplastic syndromes (MDS) are heterogeneous
neoplasms ranging from indolent conditions to cases
rapidly progressing into acute myeloid leukemia and
therefore a risk-adapted treatment strategy is needed.1

Disease-related risk is currently assessed by the Revised
International Prognostic Scoring System (IPSS-R), on

the basis of bone marrow blasts, blood cytopenias,
and cytogenetic abnormalities.2 Although IPSS-R is an
excellent tool for clinical decision making, this scoring
system has its weaknesses and may fail to capture re-
liable prognostic information at individual patient level.3,4

In MDS, conventional prognostic tools on the basis of
clinical and hematologic features are being
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complemented by introducing somatic gene mutations that
were shown to be valuable prognostic markers.4-8 Recently,
the International Working Group for Prognosis in MDS (IWG-
PM) proposed a clinical-molecular prognostic model (Mo-
lecular IPSS [IPSS-M]) that was developed using hematologic
parameters, cytogenetic abnormalities, and mutations of
31 MDS-related genes.9 IPSS-M improved prognostic dis-
crimination across all clinical end points compared with IPSS-
R.

In this study, we aimed to address the issue of clinical
implementability of IPSS-M by (i) providing an extensive
validation of its prognostic value (also focusing on patients
without detectable mutations); (ii) investigating the pre-
dictive and prognostic power of IPSS-M in patients re-
ceiving disease-modifying treatment (hypomethylating
agents [HMA] and hematopoietic stem cell transplantation
[HSCT]); and (iii) testing the accuracy in predicting IPSS-M
when molecular information was missed to define a min-
imum set of relevant genes associated with high perfor-
mance of the score.

Study Populations and Procedures

The study was conducted by GenoMed4All consortium10

and supported by EuroBloodNET, the European Reference
Network on rare hematologic diseases.11 The Humanitas
Ethics Committee approved the study. Written informed
consent was obtained from each participant. This study was
registered at ClinicalTrials.gov (ClinicalTrials.gov identifier:
NCT04889729).

Inclusion criteria were age $ 18 years, a diagnosis of
primary MDS according to WHO 2016 criteria,12 and
available information on IPSS-M related variables collected
at diagnosis and before starting disease-modifying treat-
ments (if any). Patients affected with therapy-related my-
eloid neoplasms or incomplete information on IPSS-M

variables were excluded. A total of 2,876 patients matched
study criteria (Data Supplement, online only).

Karyotypes were classified using the International System for
Cytogenetic Nomenclature Criteria. Mutation screening of
MDS-related genes was performed on DNA bone marrow
mononuclear cells or peripheral blood granulocytes
(Data Supplement).

Patients were reclassified according to WHO 2022 and
International Consensus Classification of Myeloid Neo-
plasms criteria.13,14 IPSS-M score was calculated according
to the original publication.9

Statistical Analysis

Survival curves were estimated with the Kaplan-Meier
method and differences among groups were evaluated
by log-rank test. Overall survival (OS) and leukemia-free
survival (LFS) were defined as the time between diagnosis
and death (from any cause) or last follow-up (for censored
observations) and the time between diagnosis and acute
myeloid leukemia evolution (if any) or last follow-up (for
censored observations), respectively. When focusing on
patient populations receiving a specific treatment, OS was
calculated as the time between start of treatment and
death/last follow-up. The probability of relapse after treat-
ment was estimated according to standardized criteria.15

For patients treated with HSCT, when estimating non-
relapse mortality (NRM), any death in the absence of
disease relapse was considered an event. The cumulative
incidence of relapse and NRMwas estimated by competing
risk approach.16

Multivariable survival analyses were performed by Cox’s
proportional hazards regression models (IPSS-M was
incorporated as ordinal variable in the models). The
discriminatory power of the models and the relative
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TABLE 1. Demographic, Hematologic, and Clinical Features of 2,876 Patients With MDS From the GenoMed4All Cohort Collected at the Time of Diagnosis
Demographic No./No. (%)/(range)

Patients, No. 2,876

Female/male, No. (%) 1,133/1,743 (39/61)

Age, years (range) 68 (18-96)

2016 WHO Category No. (%) 2022 WHO Category No. (%) 2022 ICC Category No. (%)

MDS-5q- 142 (5) MDS-LB-5q- 133 (4.6) MDS-SF3B1 398 (13.8)

MDS-SLD 175 (6) MDS-LB-SF3B1 398 (13.8) MDS-del(5q) 133 (4.6)

MDS-MLD 649 (22.6) MDS-biTP53 153 (5.3) MDS, NOS without dysplasia 15 (0.5)

MDS-RS-SLD 132 (4.6) MDS-LB 867 (30.2) MDS, NOS, with SLD 173 (6)

MDS-RS-MLD 325 (11.3) MDS-IB1 531 (18.5) MDS, NOS, with MLD 679 (23.6)

MDS-EB1 572 (20) MDS-IB2 794 (27.6) MDS-EB 531 (18.5)

MDS-EB2 864 (30) MDS/AML 794 (27.6)

MDS-U 17 (0.6) MDS with mutated TP53 83 (2.9)

MDS/AML with mutated TP53 70 (2.4)

Hematologic Feature Median (range)

Hemoglobin, g/dL 10.0 (2.2-16.3)

Neutrophils, 3109/L 1.7 (0-11.7)

Platelets, 3109/L 110 (2-491)

Clinical Feature No. (%)

Cytogenetic risk according to IPSS-R criteria

Very good 31 (1.1)

Good 1,909 (66.4)

Intermediate 351 (12.2)

Poor 236 (8.2)

Very poor 349 (12.1)

IPSS-R risk group No.

Very low 293 (10)

Low 806 (28)

Intermediate 610 (21)

High 595 (21)

Very high 572 (20)

IPSS-M risk group No.

Very low 275 (9.6)

Low 797 (27.7)

Moderate low 306 (10.6)

Moderate high 319 (11.1)

High 555 (19.3)

Very high 624 (21.7)

Treatment No. (%)

RBC transfusions 702 (24.4)

(continued on following page)
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goodness of fit for the predictive score were evaluated
using Harrell’s concordance index.17 To compare dif-
ferent statistical models, we used in addition the Akaike18

information criterion (AIC), which allows the evaluation of
a model by combining goodness of fit and complexity,
with a lower AIC indicating a better trade-off between fit
and complexity.

The impact of single IPSS-M factors on the prediction of
clinical outcomes was evaluated by fitting a random-effects
Cox’s model.19,20 The percentage of variation of the loga-
rithmic hazard explained by each set of variables was
estimated (Data Supplement).

The accuracy of IPSS-M in predicting the probability of
survival in the presence of missing molecular data was
calculated as the number of correctly classified patients
divided by the size of patient’s cohort. The accuracy loss
was calculated as the fraction of wrongly classified patients
divided by the population size.

RESULTS

Clinical Characteristics of Patients and Gene Mutations

Clinical features at diagnosis of the 2,876 patients with
MDS enrolled in the study are reported in Table 1. Study
participants included 1,743 men (61%) and 1,133 women
(39%). Date range of diagnosis was from 1999 to 2018.
Median age at diagnosis was 68 years (range, 18-96 years).
Follow-up was updated on December, 2020. Median du-
ration of follow-up was 37.5 months (95% CI, 36.2 to 38.8
months).

Considering IPSS-M–related genomic features, we iden-
tified 6,749 genomic lesions at diagnosis (median, 3;
range, 0-12). 2,421 patients (84.1%) presented one or

more genomic alterations (mutations and/or chromosomal
abnormalities). 2,369 patients (82.4%) had one or more
somatic mutations on 31 IPSS-M–related genes, whereas
1,297 showed abnormal karyotype (45%; Fig 1; Data
Supplement). Probability of OS and LFS according to the
mutational status of IPSS-M–related genes was reported in
the Data Supplement.

Validation of the Prognostic Power of IPSS-M and

Comparison With IPSS-R

We calculated IPSS-M in the study cohort at diagnosis.9

Cytogenetic abnormalities were classified according the
IPSS-R criteria.2 Genemutations were considered as binary
variables with the exception of TP53 (not mutated, mon-
oallelic mutation, multihit mutations) and SF3B1 (SF3B15q
[SF3B1mutation in the presence of isolated del(5q) only or
with one additional aberration excluding -7/del(7q)], and
SF3B1a [SF3B1 mutation without comutations in BCOR,
BCORL1, RUNX1, NRAS, STAG2, SRSF2, and del(5q)]9).

Accordingly, 9.6% of patients (n 5 275) were classified as
very low risk, 27.7% (n5 797) as low risk, 10.6% (n5 306)
as moderate low risk, 11.1% (n 5 319) as moderate high,
19.3% (n5 555) as high risk, and 21.7% (n5 624) as very
high risk.

We analyzed the probability of OS and LFS for all IPSS-M
categories. Patients who received HSCT were censored at
the time of the procedure. IPSS-M categories showed
significantly different probabilities of both OS and LFS (both
P , .001; Fig 2). The independent effect of IPSS-M on
clinical outcome was maintained in a multivariable model
including age and sex as covariates (HR, 1.67; 95% CI,
1.61 to 1.73; P, .001 for OS; and HR, 1.79; 95% CI, 1.73
to 1.86; P , .001 for LFS).

TABLE 1. Demographic, Hematologic, and Clinical Features of 2,876 Patients With MDS From the GenoMed4All Cohort Collected at the Time of Diagnosis
(continued)
Treatment No. (%)

Erythroid stimulating agents 356 (12.3)

Hypomethylating agents 673 (23.4)

AML-like chemotherapy 301 (10.4)

Transplantation 964 (34)

Other 89 (3.1)

NOTE. Continuous variables were described asmedian and ranges, while categorical variables were described as frequency and percentage. The diagnosis
of MDS, was formulated according to the criteria of the 2016WHO classification of myeloid neoplasms; patients were then re-classified according to the 2022
WHO criteria and the ICC criteria.
Abbreviations: AML, acute myeloid leukemia; ICC, International Consensus Classification of Myeloid Neoplasms and Acute Leukemia; IPSS-M, Molecular

International Prognostic Scoring System; IPSS-R, Revised International Prognostic Scoring System; MDS, myelodysplastic syndromes; MDS-5q-/MDS-
del(5q), MDS with isolated deletion of long arm of chromosome 5; MDS-biTP53, MDS with biallelic TP53 inactivation; MDS-EB, MDS with excess of blasts;
MDS-EB1, MDS with excess of blasts type 1; MDS-EB2, MDS with excess of blasts type 2; MDS-IB, MDS with increased blasts (1, 2); MDS-LB, MDS with low
blasts; MDS-LB-5q-, MDS with low blasts and isolated 5q deletion; MDS-LB-SF3B1, MDS with low blasts and SF3B1 mutation; MDS-MLD, MDS with
multilineage dysplasia; MDS-RS-MLD, MDS with ring sideroblasts and multilineage dysplasia; MDS-RS-SLD, MDS with ring sideroblasts and single-lineage
dysplasia; MDS-SF3B1, MDS with mutated SF3B1; MDS-SLD, MDS with single-lineage dysplasia; MDS-U, MDS unclassifiable; MLD, multilineage dysplasia;
NOS, not otherwise specified; SLD, single-lineage dysplasia.
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FIG 2. Clinical assessment of IPSS-R and IPSS-M in the GenoMed4All MDS cohort. Kaplan-Meier probability estimates of (A and B) OS and (C and D) LFS for
2,876 patients with MDS from the GenoMed4All cohort stratified by IPSS-R and IPSS-M risk categories, respectively. P values are from log-rank test. (E)
Restratification of IPSS-R to IPSS-M risk groups in the MDS cohort. Each bar represents an IPSS-R category and shows the percentage of patients that is
restratified in the IPSS-M categories (indicated with different colors). (F) Distribution of the restratified patients in each IPSS-R category, counting the proportion of
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IPSS-M showed superior performance with respect to con-
ventional IPSS-R scoring system: concordance was 0.81
(95% CI, 0.79 to 0.82) versus 0.74 (95% CI, 0.73 to 0.76) for
OS and 0.89 (95% CI, 0.87 to 0.91) versus 0.76 (95% CI,
0.73 to 0.79) for LFS, respectively. In addition, to evaluate the
effect of IPSS-M versus IPSS-R, we fitted two separate mul-
tivariable Cox’s models including age and sex as covariates,
comparing them by the AIC. AIC for the model with IPSS-M
versus IPSS-R was 17,455.43 versus 17,469.33 for OS and
3,973.26 versus 4,011.64 for LFS, thus confirming the im-
portance of accounting for gene mutations in the prognostic
model.

The five-to-five comparison of IPSS-R and IPSS-M patients’
distribution (in which we merged moderate low and
moderate high to moderate in IPSS-M) resulted in the
restratification of 46% of patients (1,324 of 2,876). Of
these, 23.6% (n 5 679) were upstaged and 22.4%
(n 5 645) were downstaged (Fig 2). A total of 115 patients
(4%) were reclassified by more than one risk strata.
Highlighting the implications of this restratification, marked
differences in survival were observed between IPSS-M
categories within each IPSS-R risk category; by contrast,
the IPSS-R did not stratify patient outcomes within IPSS-M
risk strata (Data Supplement).

We specifically studied the prognostic impact of gene mu-
tations on main effect IPSS-M genes that were associated
with adverse prognosis9 and their contribution on patients
restratification from IPSS-R to IPSS-M risk categories (Data
Supplement). Among restratified patients, 193 (26%) had
onemutated adverse IPSS-Mmain effect gene, whereas 275
(37%) had two or moremutated genes. In details, in the very
low 1 low IPSS-R category (n 5 1,099), 214 patients
(19.5%)were upstaged, of which 198 (93%) havemore than
one mutated IPSS-M genes. Considering patients classified
in the intermediate IPSS-R category (n 5 610), 180 (29%)
were downstaged, the majority of them had no mutations
(67%); by contrast, 159 subjects (26%) were upstaged, and
69% of these patients carried two or more main effect
IPSS-M mutated genes. In the very high 1 high IPSS-R
category (n 5 1,167), instead, 189 patients (16%) were
reclassified in lower-risk classes and only 33% of these
presented more than one mutated gene. Thus, patient
restratification was not a single gene effect, but the cumulative
contribution of the prognostic mutations for each subject.

Then, we addressed the issue of the prognostic value of
IPSS-M in those patients without detectable mutations in
the 31 IPSS-M–related genes. 507 subjects entered the
analysis. IPSS-M categories maintained a significant effect
on probability of both OS and LFS (both P , .001; Data
Supplement). IPSS-M maintained superior performance to
conventional IPSS-R scoring system in this patient setting:
concordance was 0.89 [0.86-0.91] versus 0.73 [0.69-
0.77] for OS and 0.91 [0.90-0.92] versus 0.81 [0.75-0.87]
for LFS, respectively. By comparing two multivariable
models including IPSS-M versus IPSS-R, AIC was 1,573.04

versus 1,590.11 for OS, respectively, and 491.91 versus
498.61 for LFS, respectively, thus confirming the best
prognostic performance of IPSS-M in this population.

Finally, we evaluated the prognostic impact of IPSS-M–related
variables in terms of percentage of explained variation for
clinical outcomes (OS and LFS; Fig 2). Clinical features
had a high predictive power for both OS (bone marrow
blasts and cytopenias) and LFS (bone marrow blasts).
IPSS-M–related genomic variables had a strong predictive
power, that is increased for the LFS outcome, highlighting
the impact of genomic landscape on the prediction of the
risk of disease evolution.

Predictive and Prognostic Effect of IPSS-M in Patients

Receiving Specific Treatments

In MDS, an increasing proportion of patients undergo to
disease-modifying therapies, including HSCT and HMA (for
high-risk subjects who are not eligible to HSCT). Therefore,
it is relevant to know if IPSS-M may provide information on
the probability of response to specific treatments (predic-
tive value) and the probability of survival after treatment
(prognostic value).

We therefore analyzed the predictive/prognostic value of
IPSS-M in two populations treated with HSCT and HMA
according to currently available guidelines on the basis of
IPSS-R, age, performance stats, and donor avaialbility.1 To
investigate the predictive value of IPSS-M, the risk of dis-
ease relapse in patients treated with HSCT and the overall
response rate (including the achievement of complete
response (CR), partial response, marrow CR, and stable
disease with hematologic improvement according to 2006
IWG criteria)15 for patients treated with HMA were used as
primary end points, while the prognostic value of IPSS-M
was tested on the probability of OS since the start of
treatment in both cases.

Nine hundred sixty-four patients receiving HSCT entered
the analysis, in which clinical and genomic information for
IPSS-M calculation was available at the time of transplant in
patients who were transplanted upfront and before
chemotherapy/HMA in those receiving treatment before
transplantation (Data Supplement). Patients receiving
HSCT were reclassified according to IPSS-M criteria: 126
(13.1%) patients were classified as low-risk, 108 (11.2%)
patients as moderate low, 136 (14.1%) as moderate high,
and 290 (30.1%) and 304 (31.5%) as high and very high
risk, respectively. As illustrated in Figure 3, the 5-year OS
probability was 61% in low-, 55% in moderate low-, 46% in
moderate high-, 33% in high-, and 27% in very high-risk
patients (P , .0001). In these risk groups, by competing
risk analysis, the 5-year cumulative incidence of relapse was
14%, 14%, 15%, 20% and 29%, respectively (P , .001;
Fig 3). A five-to-fivemapping between the IPSS-R and IPSS-M
categories resulted in the restratification of 45% (n5 433) of
the patients. Of these, 21% (n 5 204) were upstaged and
24% (n 5 229) were downstaged (Fig 3).
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We analyzed the prognostic effect of the IPSS-M score by a
multivariable model, including recipient age and sex, time
from diagnosis to transplantation, source of hematopoietic
stem cells, type of donor, disease status at transplant (active/
progressive disease v complete remission), and conditioning
regimen (reduced-intensity v standard conditioning). The
IPSS-M score was significantly associated with OS (HR, 1.18
[95% CI, 1.08 to 1.27]; P, .001) and probability of relapse
(HR, 1.38 [95% CI, 1.21 to 1.56]; P , .001)

IPSS-M showed superior performance to conventional IPSS-R
in predicting both OS and probability of relapse after HSCT
(concordance was 0.76 [95% CI, 0.73 to 0.78] v 0.60 [95%
CI, 0.57 to 0.64] for OS, and 0.89 [95% CI, 0.87 to 0.91] v
0.70 [95% CI, 0.65 to 0.74] for probability of relapse, re-
spectively). By comparing two multivariable models including
IPSS-M versus IPSS-R, AIC was 6,545.87 versus 6,559.96 for
OS, respectively, and 2,404.97 versus 2,416.78 for probability
of relapse, respectively, thus confirming the best prognostic
performance of IPSS-M in predicting post-transplantation
outcomes.

Recipient age was a significant risk factor for OS and NRM
(HR, 1.01 [95% CI, 1.00 to 1.02]; P5 .028, and HR, 1.01
[95% CI, 1.01 to 1.02]; P , .001, respectively). Lack of
complete remission after pretransplantation treatment
(induction chemotherapy/HMA) showed an independent
effect on relapse (HR, 1.78 [95% CI, 1.32 to 2.41]; P ,
.001). Patients receiving standard conditioning regimens
showed a reduced probability of relapse (HR, 0.63 [95%
CI, 0.49 to 0.82]; P , .001). With respect to donor-
recipient HLA match, patients receiving transplant from
mismatched unrelated donors showed a significantly
reduced OS (HR, 1.2 [95% CI, 1.082 to 1.33]; P 5 .012)
and a significantly increased NRM (HR, 1.33 [95% CI,

1.08 to 1.63]; P 5 .007) than those transplanted from a
HLA-matched donor.

We then investigated the predictive/prognostic effect of
IPSS-M in a cohort of high-risk patients with MDS ineligible
for HSCT who received HMA. Inclusion criteria were bone
marrow blasts $ 10% and availability of clinical and ge-
nomic information before starting treatment. 268 patients
entered the analysis.

Patients were reclassified according to IPSS-M criteria:
39 patients (15%) had moderate high, 87 (32%) had high,
and 142 (53%) had very high risk (Data Supplement).
Median duration of MDS before the onset of HMA was
5 months (range, 1-11 months). Patients received HMA for
a median of six cycles (range, 1-32 cycles) without signif-
icant difference among IPSS-M categories (P 5 .41). The
probability of overall response (CR, marrow CR, partial re-
sponse, and stable disease with hematologic improvement)
evaluated after 4-6 cycles of treatment was 42%, without
significant difference among IPSS-M categories (P 5 .19).

Median OS in thewhole population treated by HMAwas 13.9
months. As illustrated in Figure 4, the estimated median OS
was 20.7 months in moderate high-, 17.9 months in
high-, and 12.7 in very high-risk patients (P , .001; HR,
1.34 [95% CI, 1.08 to 1.65]; P 5 .006 in a multivariable
model adjusted by age and sex).

Accuracy of IPSS-M Prediction when Molecular

Information was Missed

We analyzed the loss of accuracy of IPSS-M prediction
when one or more IPSS-M–related molecular features are
missing.
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FIG 3. (Continued). incidence of disease relapse (estimated with a competing risk approach including NRM) for 964 patients from the GenoMed4All
cohort who received HSCT, stratified by IPSS-M risk categories. P values are from log-rank test. (C) Restratification of IPSS-R to IPSS-M risk groups in the
MDS cohort. Each bar represents an IPSS-R category and shows the percentage of patients that is restratified in the IPSS-M categories (indicated with
different colors). HSCT, hematopoietic stem-cell transplantation; IPSS-M, Molecular International Prognostic Scoring System; IPSS-R, Revised Inter-
national Prognostic Scoring System; LFS, leukemia-free survival; MDS, myelodysplastic syndromes; NRM, nonrelapse mortality; OS, overall survival.
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GenoMed4all and IWG-PM9 populations were used as
learning and validation cohorts, respectively. We first eval-
uated the impact of a missing information from each of the
IPSS-M genomic features.9 Figure 5 shows the accuracy loss
of IPSS-M prediction for each missing genomic variable.
Then, we evaluated the IPSS-M prediction accuracy in the
presence of a combination of missing genomic features
(starting frommissing information on residual genes and then
considering themain effect genes ordered by their prognostic

weights estimated on probability of LFS; Fig 5).12 Information
on mutational status of a set of 15 genes (ASXL1, CBL,
DNMT3A, ETV6, EZH2, FLT3, IDH2, MLLPTD, NPM1, NRAS,
RUNX1, SF3B1, SRSF2, TP53multihit, and U2AF1) was re-
quired to have an accuracy of IPSS-M prediction of 80% and
70% in the GenoMed4all and IWG-PM cohorts, respectively,
while considering a set of 10 and seven genes, the accuracy of
IPSS-M prediction decreased to , 70% versus , 60%, re-
spectively, and to, 60% versus, 50%, respectively (Fig 5).
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FIG 4. Clinical assessment of IPSS-R and IPSS-M in patients with MDS from the GenoMed4All cohort who received HMA. (A) Kaplan-Meier
probability estimates of OS of patients with MDS from the GenoMed4All cohort who received HMA (n 5 268) stratified by IPSS-M risk categories. P
values are from log-rank test. (B) Restratification of IPSS-R to IPSS-M risk groups in the HMA-treated MDS patients. Each bar represents an IPSS-R
category and shows the percentage of patients that is restratified in the IPSS-M categories (indicated with different colors). HMA, hypomethylating
agents; IPSS-M, Molecular International Prognostic Scoring System; IPSS-R, Revised International Prognostic Scoring System; LFS, leukemia-free
survival; MDS, myelodysplastic syndromes; OS, overall survival.
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FIG 5. Accuracy of IPSS-M prediction whenmolecular information wasmissed. (A) Impact of amissing information from each of the IPSS-M genomic feature on
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DISCUSSION

A more precise risk score is essential to improve precision
medicine strategies for patients with MDS. These in turn
can identify patient groups that may respond better versus
do not benefit from current treatment approaches.1-9 In this
study, we provided an extensive validation of the recently
developed IPSS-M9 and we confirmed that the molecular
score performed better than the conventional IPSS-R. This
was also true in patients without detectable mutations, thus
suggesting that the statistical model used to develop
IPSS-M is more efficient per se in capturing prognostic
information with respect to conventional Cox’s model.9

The precise definition of the probability of leukemic evolution
is particularly important in the lower-risk groups, which
represent the majority of patients with MDS, and in whom
new treatment approaches, including HSCT, may be
addressed in a refined manner.1,21 In this context, our
findings confirmed that in the very low-low intermediate
IPSS-R risk group, 20% of patients were reclassified into a
less favorable prognostic category,. 90% of which had one
or more mutated main effect IPSS-M genes. Thus, the
clinical implementation of IPSS-M is expected to result in a
more effective selection of candidates to disease-modifying
therapies (including HSCT) among patients with early-stage
disesase.21-23 Transplantation performed early after the di-
agnosis is associated with themost favorable outcome,21 and
therefore, patients with higher risk according to IPSS-M
should be considered to receive a transplant procedure
earlier than the conventional scoring system (IPSS-R) would
dictate.24,25 We observed in addition that, in patients with
MDS treated with HSCT, IPSS-M significantly improved the
prediction of the probability of OS with respect to IPSS-R. In
particular, IPSS-M was able to efficiently capture the
probability of relapse, thus potentially refining the choice of
the optimal conditioning regimen at individual patient level26

(a myeloablative conditioning should be preferable in eligible
subjects who are at higher risk of relapse according to ge-
nomic features) and improving the identification of patients
with high risk of transplantation failure that can be consid-
ered for preemptive treatments of disease recurrence.22,23

HMA are the only class of drugs approved for the treatment
of higher-risk MDS not eligible for HSCT. However, only
40%-50% of patients experience hematologic improve-
ment, and CR occurs in 10%-15% of cases.1,27 Effective
methods for identifying patients who are most likely to

respond to HMA would be of immediate clinical utility.
Models on the basis of clinical features are not sufficiently
conclusive to deny eligible patients a trial of HMA based on
their predictions alone.28,29

In our study, IPSS-M failed to stratify individual proba-
bility of response; however, response duration and
probability of OS were inversely related to IPSS-M risk.
This is in line with observation that the IPSS-M is a very
good tool to reflect the disease biology and the aggres-
siveness of MDS subtypes.28-30 Additional factors other
than gene mutations can be involved in determining
sensitivity to HMA.31,32

Molecular testing is not yet routine globally because of cost,
infrastructure, and reimbursement considerations.1,9

We analyzed the accuracy of IPSS-M prediction in both
GenoMed4All and IWG-PM cohorts when one or more
molecular features are missing. Considering a minimum
data set of 15 relevant genes, the accuracy of IPSS-M
prediction was 80% and 70%, respectively, while re-
ducing the number of available genes to 10 or less, the
accuracy of IPSS-M prediction was significantly lower in
both cohorts. These findings may facilitate the clinical
implementation of the score into a real-world clinical
setting and may help clinicians to define the robustness of
the prognosis prediction according to the amount of
available information.

Our study may present some limitations, mainly because of
the retrospective nature of the data. However, we were able
to analyze a large population of patients with MDS, and the
collection of DNA for genomic screening was provided
independently from disease diagnosis, risk category, and
treatment, thus limiting the risk of a selection bias effect
and improving the generalizability of the results.

Despite the improved prognostication provided by IPSS-M,
we observed that demographic features have a high pre-
dictive prognostic power, and clinical parameters (bone
marrow blasts and anemia) still retain a strong predictive
effect on survival, suggesting that these variables reflect
important features of the disease state that are not captured
by genomic landscape.4 Accordingly, including sex and
age information and combining gene mutation with gene
expression data33 might further improve outcome predic-
tion in MDS in next future.
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