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Venetoclax: a new player in the treatment of children with high-risk
myeloid malignancies?
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Venetoclax selectively inhibits B-cell lymphoma 2 (BCL-2) and restores apoptotic signaling

of hematologic malignant cells. Venetoclax, in combination with hypomethylating and low-

dose cytotoxic agents, has revolutionized the management of older patients affected by

acute myeloid leukemia (AML) and that of patients unfit to receive intensive chemotherapy.

In a single phase 1 pediatric trial conducted on relapsed or refractory AML, the combination

of venetoclax and intensive chemotherapy was shown to be safe and yielded promising

response rates. In addition, several retrospective studies in children with AML reported that

venetoclax, when combined with hypomethylating agents and cytotoxic drugs, seems to be

a safe and efficacious bridge to transplant. The promising results on the use of venetoclax

combinations in advanced myelodysplastic syndromes (MDS) and therapy-related MDS/

AML have also been reported in small case series. This review summarizes the available

current knowledge about venetoclax use in childhood high-risk myeloid neoplasms and

discusses the possible integration of BCL-2 inhibition in the current treatment algorithm of

these children. It also focuses on specific genetic subgroups potentially associated with

response in preclinical and clinical studies.

Introduction

Overexpression of anti-apoptotic proteins of the B-cell lymphoma 2 (BCL-2) family, including BCL-2,
BCL-extra large (XL), and myeloid cell leukemia-1 (MCL-1), is one of the primary mechanisms hemato-
logic cancers employ to escape cell death signaling.1 Venetoclax (ABT-199) is a compound that
selectively inhibits BCL-2, thereby mimicking the function of BH3-only proteins (a BH3 mimetic) and
restoring apoptosis signaling.2 After its first clinical application in chronic lymphocytic leukemia,3 ven-
etoclax has shown efficacy in acute myeloid leukemia (AML) models. Myeloid blasts rely on Bcl-2 for
survival, and the overexpression of Bcl-2 is responsible for resistance to chemotherapy.4 Conversely,
normal hematopoietic stem cells are dependent on MCL-1, making venetoclax an agent that is capable of
more selective killing of AML cells while sparing healthy bone marrow components.4,5 Venetoclax, in
combination with hypomethylating agents (HMAs) such as azacytidine or decitabine, eradicates quiescent
myeloid leukemia stem cells that overexpress BCL-2 by abrogating cellular oxidative phosphorylation,
suggesting that it has an effect on cell metabolism beyond the classical proapoptotic signal6,7 (Figure 1).
Venetoclax with azacytidine and low-dose cytarabine was demonstrated to be effective with an accept-
able safety profile in patients with newly diagnosed AML,8,9 which led to its US Food and Drug
Administration approval for use in the United States for this indication in 2020. In a few years, venetoclax-
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Figure 1. Mechanism of action of venetoclax (ABT-199) in myeloid malignant cells. In blast cells, venetoclax inhibits BCL-2 protein, thereby reducing the inhibitory effect

of BCL-2 on the proapoptotic complex. Venetoclax also inhibits oxidative phosphorylation (OXPHOS) in the mitochondria. Upregulation of MCL-1 or BCL-XL, metabolic

reprogramming, or BCL-2/BAX mutations can occur in blast cells as a compensatory effect and escape mechanism (red text and arrows). Normal cells, which rely on MCL-1

signaling, are less sensitive to venetoclax inhibition. BAX, BCL-2–associated X protein.
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containing regimens have significantly modified the management of
older patients with AML and that of patients who are unfit to receive
intensive therapies, which led to similar survival rates as CPX-351 (a
dual-drug liposomal encapsulation of cytarabine and daunorubicin)
and lower infection rates and shorter inpatient hospital stays in a
real-world observational analysis.10 After these results, interest
emerged in testing venetoclax therapies in younger patients. Several
experiences have been reported so far, and clinical trials are
currently ongoing in pediatric myeloid neoplasms.
3584 MASETTI et al
In this review, we critically evaluated and summarized the current
evidence regarding the treatment of pediatric high-risk myeloid
diseases, including relapsed/refractory AML (r/r AML), therapy-
related myelodysplastic syndromes (MDS)/AML (t-MDS/AML),
and advanced MDS (or MDS with an excess of blasts [MDS-EB]).
We also discussed how venetoclax combination therapies can be
integrated into the management of these disorders, often outside
defined recommendations (Figure 2). In addition, we focused on
identifying specific subgroups of interest and speculated on
9 JULY 2024 • VOLUME 8, NUMBER 13
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Figure 2. Clinical indications of venetoclax combination therapies and possible predictors of response. The lower section of the figure illustrates the clinical settings in

which various venetoclax combinations may be applied. In the upper section, the relationship between genetic drivers, BH3 profiling results, and sensitivity to therapy is depicted.

On the left, genes with higher resistance potential are presented, whereas on the right, genes associated with higher sensitivity are highlighted.
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genetic lesions associated with peculiar venetoclax sensitivity or
resistance in pediatric myeloid diseases.

Venetoclax as bridge to transplant in

pediatric r/r AML

Childhood AML is a genetically heterogeneous disease with sig-
nificant biologic differences when compared with adults. Genomic
characterization plays a critical role in the management of pediatric
AML, ensuring a more precise risk stratification and tailored treat-
ment. Standard AML chemotherapy is not selective and does not
ensure adequate response in all patients because of the biologic
heterogeneity of this disease, and it is also associated with a high
rate of treatment-related toxicities.11 Integration of genomic char-
acterization and measurable residual disease (MRD) assessment in
the treatment of pediatric AML have improved clinical outcomes
with overall survival (OS) rates now approaching 70%.12,13

Unfortunately, disease relapse represents the major cause of
treatment failure, affecting 30% to 40% of patients.12 No universal
standard of care exists regarding the management of r/r AML, and
poor OS rates that ranged from 20% to 40% have been
9 JULY 2024 • VOLUME 8, NUMBER 13
reported.14,15 Standard intensive chemotherapy, with or without
the addition of gemtuzumab ozogamicin (GO), is often employed
during reinduction therapy of children with r/r AML with response
rates ranging between 20% and 80% and OS rates of 20% to
40%.16,17 Remarkably, AML cells develop resistance to anticancer
drugs through a series of cytogenetic events upon exposure to
chemotherapy, demonstrating the importance of adopting drugs
that cause total remission in an early phase of disease and pre-
venting the development of refractory clones.18 In recent years,
major efforts to modify treatment protocols have been made by
incorporating novel targeted therapies and redesigning existing
therapeutics, as in the case of CPX-351.19 Administration of 1
CPX-351 cycle, followed by standard chemotherapy in patients
with r/r AML, led to complete response (CR) rates of 81% with
encouraging OS at 2 years of 52.7%.20 Other novel strategies are
currently being tested with promising results, including monoclonal
antibodies and cellular therapies, such as chimeric antigen
receptor targeting CD123–natural killer (CAR.CD123-NK)
cells.21,22 Moreover, genomic analysis at the time of relapse with
extensive characterization of clonal evolution of AML can help to
identify novel molecular therapeutic target.23,24
VENETOCLAX IN PEDIATRIC HIGH-RISK MYELOID DISEASES 3585
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Regimens containing venetoclax plus HMAs or low-dose chemo-
therapy are rarely used in newly diagnosed childhood AML as a
first-line approach, because children are generally fit to tolerate
more intensive regimens. However, these approaches increasingly
have been applied to children, especially in heavily pretreated r/r
AML cases in which they can benefit from less intensive regimens.
In children, venetoclax has been tested in combination with the
intensive chemotherapy regimens typically adopted in pediatric
hematology.25 First, robust data on the safety and efficacy of
venetoclax with high-dose chemotherapy came from the VENAML
phase 1 dose-escalating trial (NCT03194932) that enrolled 38
patients with r/r AML and identified the recommended phase 2
dose (RP2D) of 360 mg/m2 (600 mg maximum) of venetoclax in
combination with high-dose cytarabine with or without idarubicin.
Of the patients treated with the RP2D, 70% and 80% achieved CR
and CR/partial response (PR), respectively, with treatment-related
death occurring in only 1 patient.26 Following the publication of
these data, several retrospective series and individual cases, pre-
dominantly from 2023, have evaluated the role of venetoclax
combinations in young patients with myeloid diseases, particularly
r/r AML, as summarized in Table 1.27-36 Variable response rates
were reported with CR ranging from 10% to 92% and overall
response rates ranging from 42% to 92%. Patient populations
varied largely across the different studies and in each study cohort
but generally included heavily pretreated patients. Different dosage
and length cycles of venetoclax were reported with suboptimal
responses recorded in studies adopting doses lower than the
RP2D.32 Moreover, different drug partners have been described,
making it difficult to compare these studies and to draw solid
conclusions. An analysis of selected venetoclax combinations,
particularly with HMAs, is highly anticipated because of the high
efficacy of this approach, the generally good toxicity profile of this
combination, and the applicability in an outpatient setting.32,33 This
combination could be of particular interest as a bridge for
hematopoietic cell transplantation (HCT) by reducing toxicities in
the immediate pretransplant phase.27,31-33 Other agents have also
been combined with these regimens, including mostly GO and fms-
like tyrosine kinase 3 (FLT3) inhibitors, confirming preclinical
studies on the synergistic effect of FLT3 and BCL-2 inhibition.34,37

When available, analysis on the blast percentage at the time of
therapy showed that these approaches had satisfactory efficacy,
even in the presence of a high disease burden.26,31,33 Notably,
some patients with mixed phenotype acute leukemia were included
in these studies, demonstrating favorable clinical outcomes when
used as a bridge for HCT after venetoclax with both HMAs and
cytotoxic agents.26,28,38-41 A variable percentage of patients (25%-
100%) was bridged to HCT after achieving the maximum best
response with 1 or 2 cycles.27,30,31,33 Considering the dismal
prognosis of these diseases, the outcome in patients who under-
went transplantation was generally satisfactory with 50% to 70%
of them being alive and disease-free at the last follow-up.30,31,33 In
1 study, venetoclax was incorporated with daratumumab in the
preparative myeloablative regimen of children with refractory AML
who received αβ T-cell–depleted haploidentical HCT. No increased
transplant-related mortality was reported, and 2-year OS and
event-free survival was 65% and 44%, respectively.42 When
analyzed, no detrimental effect on engraftment/kinetics of neutro-
phil recovery or on the occurrence of graft-versus-host
disease after HCT was reported.30,42 In all studies, toxicities
were generally manageable with no reported toxicity-related death.
3586 MASETTI et al
Dose-escalation during the first 2 days of the first cycle was
generally adopted to avoid tumor lysis syndrome. The most
frequent adverse event was neutropenia, often prolonged or pro-
found and associated with severe infection,29,32 that required
premature venetoclax interruption.

Because of the absence of published phase 3 trials, recommend-
ing an optimal duration of venetoclax cycles is challenging. Various
ongoing trials are currently employing either 21- or 28-day cycles.
Regarding the number of cycles, the results of the phase 1 trial
indicated that a good response (>50% blast reduction) during the
first cycle was associated with a high probability of achieving CR
with MRD negativity at the end of second cycle.26 In the study by
Niswander and colleagues on azacytidine plus venetoclax combi-
nation, 4 of 12 patients who achieved MRD negativity after first
cycle did not maintain the remission after the second cycle.33 In our
experience, patients who achieved CR after the first cycle with
different combinations maintained CR in 5 of 8 cases, whereas 7 of
8 with PR after the first cycle successfully achieved CR after the
second one.31 Recommended criteria for venetoclax interruption
are also lacking. We generally consider drug interruption only in the
case of clinically significant infection or other severe adverse
events. If possible, we attempt to temporarily interrupt venetoclax
and restart as soon as possible when clinical conditions permit it so
as to administer at least 21 days of therapy. Interestingly, patients
who did not achieve complete hematologic recovery after therapy
underwent successful transplantation with a generally favorable
outcome.30,31,33 Regarding anti-infective support measures, anti-
bacterial and antiviral prophylaxis is not routinely administered,32

whereas antifungal prophylaxis, active against both yeasts and
molds, has to be administered because of the expected prolonged
course of neutropenia with dose reduction in the case of azole
coadministration.

A potential role of venetoclax in pediatric

de novo MDS and therapy-related MDS/

AML

Childhood MDS present unique biologic characteristics that differ
significantly from MDS in older patients.43 Particularly, MDS-EB is
defined as the presence of 5% to 19% of blasts according to the
recent International Consensus Classification.44 Differentiating
between MDS-EB and AML is crucial for selecting the appropriate
therapeutic strategies because the treatment approaches vary
significantly between the 2 conditions.43,45 However, no standard
recommendation exists on the best therapeutic approach for
advanced MDS/MDS-EB or AML that evolved from MDS, defined
in adults as myelodysplastic-related (MDR)-AML.46 Of note, pedi-
atric MDS can arise from a germ line predisposition condition that
frequently presents an excessive and a unique risk for toxicities
secondary to treatment.47,48 In advanced MDS, conventional AML-
chemotherapy alone led to a high risk for treatment-related toxic-
ities and long-term survival lower than 30%.49,50 More favorable
outcomes have been reported with allogeneic HCT, but patients
who were given HCT as the first therapy without any bridge had a
substantial risk for relapse.51 For clinicians who manage children
with advanced MDS/MDS-EB, the role of therapy as a bridge for
HCT remains the most controversial issue that has not been
investigated in a systematic manner so far.52 In the largest Euro-
pean Working Group study, it was reported that intensive AML
9 JULY 2024 • VOLUME 8, NUMBER 13



Table 1. Venetoclax therapies in pediatric myeloid disease

Study

Pts, n (age,

range) Disease Combination therapies Venetoclax Response HCT post ven Survival post-HCT Toxicities

Karol
et al26

38 (10 y, 3-22) rel-AML (33), refr-AML (4),
refr-MPAL (1) [KMT2Ar
(12); FLT3 (5); TP53 (4)]

[median disease burden: 33%
(18-68)]

Cytarabine (1000 mg/m2 per
dose for 8 doses) ±
idarubicin (12 mg/m2 as a
single dose)

240 or 360 mg/m2 per day
(28 d)* [2 cycles]

In 35 pts evaluable for
response: ORR 69% (24),
CR (20; 13 MRD neg; 4
CRi); PR (4); NR (11)

In 20 pts treated at R2PD:
ORR 80%, CR/CRi (14),
PR (2), NR (4)

16 of 20 pts
achieving CR

N/A† Grade 3-4 AEs: febrile
neutropenia (25), BSI (6),
IFI (6)

Winters
et al27

8 (11 y, 2-20) MDS-EB (2) t-MDS/AML (1)
r/r AML (5) [FLT3 (3), TP53
(2)]

Azacytidine (75 mg/m2 per d;
days 1-7)

Adult-equivalent dose of
800 mg (28 d) [median no.
cycles: 1 (1-9)]

CR 75% (6; 1 CRi) NR
25% (2)

4 + 2 pending/8 N/A Grade 3-4 neutropenia (8)

Bobeff
et al28

5 (national
survey: age
<10 y)

MDR-AML (2), rel- AML (1), t-
AML (1) refr-MPAL (1)
[KMT2Ar (2)]

Cytarabine + idarubicin (2),
cytarabine (1), cytarabine +
azacitdine (2), azacitdine (1)

360 mg/m2 per day (28 d)
[median no. cycles: 1 (1-2)]

CR 60% (3; 1 CRi), NR
40% (2)

2/5 1 alive disease-free N/A

Marinoff
et al29

10 (10 y, 1-29) t-MDS/AML (2), r/r AML (6),
MDS (1), MDR-AML (1)‡
[GATA2 (1), KMT2Ar (2),
GLIS2 (1), SDS (1)]

Cytarabine (1000 mg/m2 per
dose for 8 doses) (5),
decitabine (20 mg/m2 per
day for 5 d) (4), azacitdine
(1)

Adult-equivalent dose of
400 mg [median no. cycles:
1 (1-3)]

CR 10% (1), PR/SD 50% (5),
NR/PD 40% (4)

½0 1/2 alive disease-
free

Grade 3-4 AEs: cytopenia,
infections (5)

Pfeiffer et
al30

28 (13, 1-21) Refr-AML (5); rel-AML (23)
[adverse genetics in 12]

Cytarabine (17), cytarabine +
idarubicin (5), cytarabine +
azacitdine (3), decitabine
(2), azacitidine (1)

240-360 mg/m2 per day
[median no. cycles: 2 (1-7)]

CR 92% (26) (2 CRi), PR/NR
18% (2)

28/28 20/28 alive disease-
free, 8 relapse§

N/A (no impact on GVHD
incidence or neutrophil and
platelet engraftment)

Trabal
et al32

43 (18, 1-21) r/r AML (43) [KMT2Ar (17),
FLT3-ITD (10), NPM1 (4),
TP53 (3), IDH1/2 (2)]

HMA (37), cytotoxic agents
(6) [+ trametinib (1), GO
(7), TKI (5), MCL-1 inhibitor
(1)]

median dose 93 mg/m2 per
day (28 d cycles; effective
duration median 14 d)
[median no. cycles: 2 (1-9)]

CR 37% (16, 6 Cri), PR 5%
(2), NR 51% (22) N/E.
7% (3)

11/43 6/11 alive disease-
free‖

Grade 3 neutropenia/febrile
neutropenia (49%)

Masetti
et al31

31 (10.2, 1.3-
17.4)

MDS-EB (4), rel-AML (11), refr
AML (7), t-MDS/AML (9)
[KMT2Ar (8), FLT3 (5)]

[median disease burden, 20%
(0-80)]

HMA (19), cytotoxic agents
(9), HMA + cytotoxic (3) [+
gilteritinib (1)]

median 350 mg/m2 per day
(28 d) [median no. cycles 2
(1-15)]

CR, 51.6% (16; 6 MRD neg; 5
CRi), PR, 19.4% (6), NR,
25.8% (8)

20/31 15/20 alive disease-
free¶

Grade 3-4 cytopenia (4), IFI
(3) (1 TF due to severe
pancytopenia)

Niswander
et al33

29 (8, 0-19) r/r AML (27), MPAL (2)
[KMT2Ar (8), GLIS2 (4),
FLT3 (1)]

[median disease burden,
10.5% (0.01-91.5)]

Azacitidine 100 mg/m2 (days
1-5) [+GO (9)]

Adult-equivalent dose of
800 mg (28 d) [median no.
cycles 2 (0-6)]

CR with MRD neg,
44.8% (13)

12/29 7/12 alive disease-
free

Severe cytopenia (7),
bacteremia (6), IFI (2)

AEs, adverse events; BSI, bloodstream infection; CRi, complete response with incomplete recovery; EFS, event-free survival; GVHD, graft-versus-host disease; IFI, invasive fungal infection; MDR-AML, myelodysplastic related AML; MPAL,
mixed-phenotype acute leukemia; N/A, not available; N/E, not evaluable; NR, nonresponse; ORR, overall response rate; PD, progression of disease; pts, patients; refr-AML, refractory AML; rel-AML, relapsed AML; SD, stable disease; SDS,
Shwachman-Diamond syndrome; TF, treatment failure; TKI, tyrosine kinase inhibitor; TP53, tumor protein 53.
*RP2D of venetoclax plus chemotherapy = 360 mg/m2 per day (600 mg maximum).
†1-year OS (whole cohort): 20 of 38 dead.
‡One patient with SDS who developed AML.
§Median follow-up of 344 days (111-1056) from HCT: 1-year OS, 80.5%; 1-year EFS, 69.2%; cumulative incidence of relapse at 1-year post-HCT, 30.8%; and cumulative incidence of relapse at 2 years post-HCT, 43.2%.
‖Median OS and EFS duration, 8.7 months (range, 0.2-53 months) and 3.7 months (range, 0.1-53), respectively.
¶30-month estimated OS after the start of venetoclax treatment, 29.9% in the whole cohort and 74.4% for patients who underwent HCT.
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chemotherapy before HCT did not have an impact on relapse or
transplant-related mortality and led to comparable OS or event-free
survival in patients who did or did not receive chemotherapy. In the
MDR-AML subgroup, intensive chemotherapy was associated with
a lower risk for relapse, leading to improved event-free survival,
even if not statistically significant.53 In a recent retrospective study
on 36 children with MDS, a blast count ≥5% and having received
pre-HCT chemotherapy were both significantly associated with
inferior OS (54% vs 87%) because of an increased risk for relapse,
whereas patients who achieved MRD-negative status before HCT
showed improved OS (63.9% vs 33.3%) in a mixed population of
patients with primary and secondary MDS.54,55 Similar to primary
MDS, therapy-related or postcytotoxic therapy MDS/AML (t-MDS/
AML) represent a difficult-to-treat condition in which the optimal
management has not been fully identified.44 Patients with these
conditions frequently present a poor biologic response to con-
ventional chemotherapy and a high risk for treatment-related tox-
icities. The time from diagnosis to HCT has been demonstrated to
be the only significant prognostic factor,46 suggesting that novel
approaches, such as CPX-351, should be tested as a bridge to
HCT.56

These considerations highlight the importance of finding interven-
tions that are able to control disease burden while avoiding inten-
sive chemotherapy to improve the overall outcomes.54 Currently,
intensive chemotherapy is not routinely recommended for child-
hood advanced MDS. However, cytoreduction is often necessary
in cases with an excess of blasts, and the role of novel, less
intensive agents, such as HMAs or targeted therapies, remains to
be fully elucidated.46 Azacytidine was well tolerated with variable
response in some retrospective series of pediatric primary MDS
cases.57,58 However, results on patients with treatment-naive pri-
mary advanced MDS who received azacytidine in the AZA-JMML-
001 trial showed poor response, suggesting the ineffectiveness
of HMAs as monotherapy.59 The synergistic effect of venetoclax
plus HMA was tested in adult MDS with encouraging clinical
benefits, and this experience was translated to the pediatric
setting.60 For instance, a few cases of childhood primary advanced
MDS and MDR-AML who received venetoclax-containing regimens
have been reported and are summarized in Table 2.27-29,31,41,61-63

In de novo MDS, results differ in terms of the response rate, but
these strategies seem to represent a potential effective bridge to
HCT. Patients who do not proceed to HCT after therapy almost
invariably relapse, highlighting the need for these patients to
undergo transplant at the time of best response.29,31,61,62

Furthermore, when MDS progress to MDR-AML, the efficacy of
venetoclax is lower, even when used in combination with cytotoxic
therapy.28,29 Interestingly, venetoclax combinations showed activity
in patients with MDR-AML in the context of Schwachman-Diamond
syndrome and Fanconi anemia, representing a fascinating oppor-
tunity to limit toxicities in these peculiar conditions.28,62,63 Among
the reported t-MDS/AML cases, 9 or 13 patients achieved CR/PR
with venetoclax combinations; 8 were bridged to HCT and were
reported to be alive and disease-free. In light of these results,
venetoclax plus HMA can represent a valid alternative option to
other more intensive therapies.31

Some clinical issues still remain unresolved; these pertain to the
use of venetoclax-containing regimens in this peculiar population.
The optimal number of venetoclax cycles in these disorders has not
been definitively elucidated, and these combinations should be
3588 MASETTI et al
tested in rigorously conducted trials. In case of poor response to a
first cycle, a second cycle should be avoided and other alternatives
should be explored. In the case of PR or CR, a second cycle before
HCT seems to be an option to consider. Lastly, the best clinical
end point to assess the efficacy of the different approaches, either
blast reduction before HCT or post-HCT outcomes, remain unde-
fined and this limits, to some extent, the ability to clearly define the
best treatment option and the best partner drug to be used with
venetoclax. MRD-negative remission, morphologic CR (blasts
<5%), PR (blasts 5%-20%), or stable disease with a lack of
leukemic progression has been adopted as the required criteria to
proceed to HCT in different centers.64 Defining the treatment
algorithm of these diseases represents an unmet need for the
pediatric hematology community.46
Identifying genetic lesions predictive of

response in AML and MDS cases

With the wider clinical use of venetoclax in pediatric hematology, it
became increasingly important to identify recurrent genetic
abnormalities that can help to predict the response to venetoclax
therapy.25 Importantly, no mechanistic link between genetic lesions
and venetoclax response has been demonstrated so far; however,
specific molecular subtypes have been investigated in clinical
reports. Rearrangements of the KMT2A gene are frequent in
pediatric and infant leukemia and are generally associated with an
aggressive clinical course.65,66 In the International Consensus
Classification, the presence of ≥10% of blasts is sufficient for the
diagnosis of KMT2A-rearranged AML.52 Revumenib, a potent and
selective oral inhibitor of the menin-KMT2A interaction, has shown
promising remission rates with a favorable toxicity profile in patients
with KMT2A-rearranged AML refractory to multiple previous
lines.67 Of the 12 patients with KMT2A rearrangements in a phase
1 trial on venetoclax plus chemotherapy, 6 responded to therapy (5
with CR/CR with incomplete recovery).26 In the retrospective study
that we published, 8 patients presented KMT2A rearrangements;
of them, 6 and 1 achieved CR and PR, respectively.31 A CR of
40% was achieved in 17 KMT2A-rearranged AML cases included
in another report.32 Of 8 patients with KMT2A-rearranged acute
leukemias who received a cycle of venetoclax plus azacytidine, 2
achieved MRD negativity.33 In vitro models showed high response
rates to venetoclax plus azacytidine in lymphoblastic KMT2A-rear-
ranged acute leukemia.68 Moreover, adult KMT2A-rearranged AML
seems to be sensitive to this combination.69 The role of the
association of venetoclax with menin inhibitors is currently under
investigation with preliminary results of a phase 1-2 study on HMA
plus venetoclax and revumenib reporting high efficacy in KMT2A-
rearranged, nucleophosmin (NPM1)-mutated, and nucleoporin 98
and 96 precursor–rearranged AML.70 These results confirmed
preclinical studies that showed a synergistic lethal effect of menin
plus BCL-2 inhibition in AML lines.71 Moreover, novel compounds,
such as bromodomain inhibitor, I-BET151, sunitinib, or thioridazine,
have been shown to decrease BCL-2 expression and significantly
synergized with venetoclax, thereby enhancing blast death in
KMT2A-rearranged myeloid cell lines.72

The role of venetoclax in AML with FLT3 aberrations is more
controversial. FLT3-ITD is common in children with AML with a
prognostic negative effect in patients treated with conventional,
multiagent chemotherapy.73 FLT3 inhibitors are currently adopted
9 JULY 2024 • VOLUME 8, NUMBER 13



Table 2. Patients with primary advanced MDS or t-MDS/AML treated with venetoclax combination therapies

Study

Age

(y) Diagnosis Genetics

Previous

lines

Venetoclax combination

therapy Response HCT

Outcome (disease status/

cause of death)

Winters 2021 7 MDS-EB/RAEB in SDS Mon7, ETV6, GATA2 0 VEN + AZA (1 cycle) CR (morphological <5%; cytogenetic
monosomy 7 10%)

Yes Alive; disease-free

Marinoff et al29 17 MDS GATA2 germ line 1 VEN + AZA NR Yes Dead; relapse after HCT

Masetti et al31 15 MDS-EB LIG4 and SH2B3 germ line, mon7, RIT1,
EZH2, SETBP1, ASXL1, ETV6

0 VEN + cytotoxic (IDA-FLA)
(1 cycle)

CR Yes Alive; disease-free

Masetti et al31 14 MDS-EB Del7q 4 VEN + DEC (5 cycles) CR* Yes Dead; TRM

Winters 2021 8 MDR-AML/RAEB-t in NF1 Del17p/loss TP53, ASXL1, TET2 0 VEN + AZA (3 cycles) CR (morphological <5%; cytogenetic
persistence del17p/loss TP53)

Yes Alive; relapse cytogenetic
del17/TP53 and MRD pos†

Bobeff et al28 <6 MDR-AML in NF1 Mon7 1 VEN + cytotoxic therapy (IDA-
FLA) (1 cycle)

CR Yes Dead; relapse post-HCT

Bobeff et al28 6-10 MDR-AML in familial platelet
disorder

RUNX1 4 VEN + cytotoxic therapy
(Idarubicin + ARA-C)
(1 cycle)

NR No Dead; PD before HCT

Marinoff et al29 14 MDR-AML in SDS IDH1, KMT2A 0 VEN + DEC CR (MRD neg) Yes Alive; disease-free

Raedler et al61 16 MDR-AML/RAEB-t Complex karyotype 2 VEN + DEC (4 cycles) CR (for 10 months, then molecular relapse) No Alive; molecular relapse‡

Naviglio et al62 14 MDR-AML in SDS neg 2 VEN + AZA (1 cycle) PR No Dead; PD before HCT

Wen et al41 3 MDR-AML Complex karyotype, NRAS 1 VEN + AZA CR (MRD neg) Yes Alive; disease-free

Ma et al63 7 MDS/MDR-AML in FA§ NPM1, GATA2, WT1 1 VEN+AZA (2 cycles) CR (MRD neg) Yes Alive; disease-free

Masetti et al31 17 MDR-AML FLT3, WT1 1 VEN + AZA (1 cycle) NR Yes Dead; TRM

Masetti et al31 14 MDR-AML WT1 2 VEN + AZA (1 cycle) + VEN +
ARA-C (1 cycle)

CR Yes Dead; relapse post-HCT

Bobeff et al28 6-10 t-AML KMT2A, t (9;11) 1 VEN + ARA-C (1 cycle) CR (MRD neg) Yes Alive; disease-free

Marinoff et al29 17 t-AML Mon7, t (7;11), PTPN11, SED2, RUNX1,
BCOR

3 VEN + DEC PR No Dead; PD before HCT

Winters 2021 11 t-MDS/AML RUNX1 1 VEN + AZA (9 cycles) CR (MRD neg) No Alive; disease-free‖
Marinoff et al29 9 t-MDS PTPN11 1 VEN + DEC PR (stable disease) No Dead; PD before HCT

Masetti et al31 7 t-MDS/AML T (11;17), KMT2A 1 VEN + IDA-FLA (2 cycles) CRi Yes Alive; disease-free

Masetti et al31 5 t-MDS/AML t (9;11), SDHC, KMT2A 1 VEN + IDA-FLA (2 cycles) CRi Yes Alive; disease-free

Masetti et al31 1 t-MDS/AML t (4;11), KMT2A 1 VEN + ARA-C + idarubicin NR No Dead; PD before HCT

Masetti et al31 10 t-MDS/AML Mon7 1 VEN + AZA (15 cycles) PR (stable disease)¶ Yes Alive; disease-free

Masetti et al31 10 t-MDS/AML Del3q, PTPN11, WT1 1 VEN + AZA NR Yes Alive; disease-free

Masetti et al31 6 t-MDS/AML t (11;19), KMT2A 2 VEN + AZA (5 cycles) PR No Dead; PD before HCT

Masetti et al31 9 t-MDS/AML Mon7, TP53 1 VEN + AZA (1 cycle) PR Yes Alive; disease-free

Masetti et al31 14 t-MDS/AML Mon7, CBL, KRAS, ASXL2 1 VEN + AZA (2 cycles) CR Yes Alive; disease-free

Masetti et al31 6 t-MDS/AML t (9;11), KMT2A 1 VEN + FLA (1 cycle); VEN +
AZA (1 cycle)

CR (MRD neg) Yes Alive; disease-free

ARA-C, cytarabine; AZA, azacytidine; CRi, complete response with incomplete recovery; DEC, decitabine; FA, Fanconi anemia; FLA, fludarabine, cytarabine; IDA-FLA, fludarabine, cytarabine, idarubicin; IDH1, isocitrate dehydrogenase 1;
Mon7, monosomy 7; N/A, not available; NF1, neurofibromatosis type 1; PD, progression of disease; PTPN11, protein tyrosine phosphatase nonreceptor type 11; RAEB, refractory anemia with excess of blasts; RAEB-t, refractory anemia with
excess of blasts in transformation; SDS, Shwachman-Diamond syndrome; TP53, tumor protein 53; TRM, transplant-related mortality; VEN, venetoclax.
*CR after 2 cycles, maintained for 10 months, then relapsed, another 3 cycles with response, bridged to HCT.
†Received AZA post-HCT.
‡Therapy ongoing.
§Previous HCT for FA; donor-cell derived leukemia (DCL) 43 months after HCT.
‖Maintaining MRD-negative status after 9 cycles.
¶Stable disease maintained for 15 cycles, then relapse, received AML-type induction therapy, bridged to HCT.
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in adult AML and favorable results also have been observed in a
Children Oncology Group report on pediatric patients who
received sorafenib in combination with chemotherapy.74 Encour-
aging results have been reported with gilteritinib and quizartinib,
and pediatric trials are currently ongoing.75,76 Adult patients with
FLT3-ITD AML showed limited response to venetoclax-containing
treatments, and these results were confirmed in the pediatric
phase 1 trial in which none of the 5 children with FLT3-AML
responded to therapy.26 At the same time, preclinical tests
showed a synergistic effect between venetoclax and FLT3 inhibi-
tors.37 Some pediatric reports have incorporated these drugs
into venetoclax combinations, leading to improved response
rates31,32,34 and suggesting evaluation of the triplet approach
(venetoclax plus FLT3 inhibitor plus cytotoxic drugs or HMA) in this
genetic subgroup.

The CBFA2T3::GLIS2 fusion gene, a consequence of the cryptic
inversion of chromosome 16, defines a rare subtype of AML that is
peculiarly diagnosed in young children and is characterized by an
aggressive clinical course with an OS ranging from 10% to 30%.77

In very recent years, novel therapies have been tested in this
setting. Specifically, the identification of folate receptor alpha as
target for CAR T cells and monoclonal antibodies (STRO-002) has
the potential to modify the management paradigm.78,79 Although 4
patients with AML with CBFA2T3::GLIS2 fusions in 2 different
studies29,31 did not respond to therapy, venetoclax plus azacytidine
led to effective treatment of molecular relapse of CBFA2T3::GLIS2
AML posttransplant80 and achieving MRD-negative remission in 3
of 4 children with CBFA2T3::GLIS2 AML.33 Interestingly, preclin-
ical tests showed that dual Bcl-2 family protein inhibition is
necessary to treat these diseases by combining venetoclax with
MCL-1 or BCL-XL inhibitors.81,82 Integration of proapoptotic
agents with novel target therapies will represent a fascinating
opportunity that warrants future investigations.

Mutations in NPM1 and isocitrate dehydrogenase 1 and 2 are
associated with a good response to venetoclax in adult AML.83,84

Isocitrate dehydrogenase 1 and 2 mutations are rare in children,
being detected in less than 3% of pediatric AML cases,85 whereas
mutations of NPM1 are found in ~5% to 8% of cases.86 Mutant
NPM1 demonstrated a critical oncogenic mechanism in AML in
that it was associated with the upregulation of HOX genes in a
menin-dependent manner.87 Cooperation with KMT2A complex is
responsible for the sensitivity to menin inhibitors observed in
NPM1-mutated AML.67,88 Favorable response rates to venetoclax
were confirmed in a retrospective pediatric study in NPM1-mutated
AML32 and in 1 case of NPM1-mutated MDS/AML in a patient with
Fanconi anemia.63 Interestingly, NPM1 mutations have been
reported in 14 of 235 pediatric MDS-EB cases in the European
Working Group registry with potential implications on the man-
agement of these rare entities.89

Mutations in tumor protein 53 confer resistance to venetoclax in
adult AML.90 These numbers among the pediatric reports are low
with surprisingly favorable results in a phase 1 trial26 that were not
confirmed in other reports, showing a general association between
tumor protein 53 mutations and diseases resistant to therapy or a
high risk for relapse after HCT.27,32 Protein tyrosine phosphatase
nonreceptor type 11 mutations were also associated with
venetoclax-resistant pediatric AML, confirming adult reports.26,32,91

Venetoclax combinations has to be considered with caution in
3590 MASETTI et al
these genetic subgroups and other therapies, if available, should
be preferred.25,92

Regarding MDS-EB, only preliminary results have been reported so
far on the susceptibility of specific genetic subgroups to BCL-2
inhibition. A recent study showed particularly high BCL-2 expres-
sion in GATA2 MDS-EB cases when compared with GATA2
refractory cytopenia of childhood, suggesting de-regulation of
apoptosis as a potential driver of disease progression of GATA2
disease to overt MDS and AML and providing biologic evidence for
the use of venetoclax therapies in this disease.93 Moreover, there is
increasing understanding of the role of tandem duplications in exon
13 of the upstream binding transcription factor (UBTF-TDs) gene in
pediatric myeloid hematology.94 UBTF-mutated AML cases pre-
sent a distinct genetic profile that is associated with poor out-
comes.95 In adult AML, UBTF-TD has been associated with
myelodysplastic features, lower response rates to induction ther-
apy, and worse survival when compared with UBTF-wild type.95,96

Preliminary data from a German cohort of children revealed that
UBTF-TDs are present in nearly a third of pediatric MDS-EB cases
and are associated with worse outcome post-HCT when
compared with UBTF-wild type MDS.97 The poor prognosis of
patients with UBTF in both the AML and MDS setting, despite the
use of allogeneic HCT, suggests that conventional treatment
algorithms need to be revised in the management of these patients
who carry this molecular abnormality. Preliminary data suggest a
role for menin inhibitors in UBTF-TD AML.98 The possible role of
BCL-2 inhibition may warrant further exploration in light of the
overexpression of HOX genes in these diseases, a biomarker for
sensitivity to Bcl-2 inhibitors, and the genetic expression profile that
overlap with NPM1-mutated diseases.88,96,99 A single case report
has been published recently that described a patient with UBTF-TD
MDS who experienced relapse after 2 HCT procedures and who
showed a dramatic optimal response to venetoclax plus
azacitydine.100

Future directions

Despite the promising results we summarized and discussed,
several questions remain to be addressed to optimize the use of
venetoclax in pediatric myeloid neoplasms. First, we urgently need
prospective studies aimed at obtaining regulatory approval and
taking into consideration the lack of a pediatric formulation and the
limited effectiveness of intensive chemotherapy alone in children
with r/r AML. With this perspective, several clinical trials are
currently ongoing (as reviewed in Leśniak et al25), and preliminary
findings of venetoclax in combination with intensive chemotherapy
plus GO or CPX-351 are certainly promising.101,102 Moreover,
factors that predict response should be investigated systematically
in large pediatric cohorts and will potentially help clinicians in the
future to determine the best therapeutic approach on a single-
patient basis. These factors include both the genetic lesions pre-
viously discussed and the pharmaco-typing assays that are
becoming part of clinical practice in recent years. In this regard,
BH3 profiling is a functional assay that measures apoptotic priming
and determines dependence on BCL-2, BCL-XL, or MCL-1 by the
relative release of cytochrome-c by mitochondria. As an exploratory
objective of the pediatric phase 1 trial, AML blasts of patients with
BCL-2 dependence presented a major reduction in circulating
blasts and higher CR rates when compared with samples with
9 JULY 2024 • VOLUME 8, NUMBER 13
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BCL-XL dependance.26 Ex vivo drug sensitivity screening of blasts
to venetoclax with exposure to serial drug dilution has also been
used in some reports and generally correlates with clinical
response to Bcl-2 inhibition in pediatric acute leukemia.35,103

Different mechanisms of resistance to venetoclax have been
identified in recent years, including downregulation of the proap-
optotic proteins BCL-2 interacting mediator of cell death and BCL-
2–associated X protein secondary to venetoclax exposition,
acquisition of MCL-1 or BCL-XL dependence of myeloid blasts,
and acquisition of BCL-2 mutations.104-106 Possible strategies to
overcome venetoclax resistance are currently being tested107-110

and have been reviewed extensively in Griffioen et al.111 Finally,
interest in testing venetoclax therapies in other potential pediatric
myeloid settings is emerging, including the management of AML
molecular relapse after HCT80 and different diseases such as
chronic myeloid leukemia112 and juvenile myelomonocytic leuke-
mia.28,113 Future studies will also have to dissect the optimal
duration of venetoclax treatment and the number of cycles to be
administered.

Conclusions

The integration of venetoclax into clinical practice represents a
potential opportunity to enhance the clinical care of pediatric
patients with myeloid diseases. BCL-2 inhibition provides a
potential option that can be considered in different conditions. In r/r
AML and t-MDS/AML, venetoclax, in combination with both cyto-
toxic therapies and HMAs, can be used as bridge to HCT
depending on the clinical condition of the patient and the impact of
genetic characterization in predicting response. In advanced MDS,
a peculiar setting that lacks largely validated therapeutic options,
venetoclax with azacytidine certainly represents a promising
9 JULY 2024 • VOLUME 8, NUMBER 13
approach, potentially reaching the ambitious goal of reducing dis-
ease burden pre-HCT while avoiding intensive AML-type
chemotherapy.
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