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Abstract 

Background Recent trials of anti‑amyloid‑β (Aβ) monoclonal antibodies, including lecanemab and donanemab, 
in early Alzheimer disease (AD) showed that these drugs have limited clinical benefits and their use comes with a sig‑
nificant risk of serious adverse events. Thus, it seems crucial to explore complementary therapeutic approaches. 
Genome‑wide association studies identified robust associations between AD and several AD risk genes related 
to immune response, including but not restricted to CD33 and TREM2. Here, we critically reviewed the current knowl‑
edge on candidate neuroinflammatory biomarkers and their role in characterizing the pathophysiology of AD.

Main body Neuroinflammation is recognized to be a crucial and contributing component of AD pathogenesis. The 
fact that neuroinflammation is most likely present from earliest pre‑stages of AD and co‑occurs with the deposition 
of Aβ reinforces the need to precisely define the sequence and nature of neuroinflammatory events. Numerous clini‑
cal trials involving anti‑inflammatory drugs previously yielded unfavorable outcomes in early and mild‑to‑moderate 
AD. Although the reasons behind these failures remain unclear, these may include the time and the target selected 
for intervention. Indeed, in our review, we observed a stage‑dependent neuroinflammatory process in the AD brain. 
While the initial activation of glial cells counteracts early brain Aβ deposition, the downregulation in the functional 
state of microglia occurs at more advanced disease stages. To address this issue, personalized neuroinflammatory 
modulation therapy is required. The emergence of reliable blood‑based neuroinflammatory biomarkers, particularly 
glial fibrillary acidic protein, a marker of reactive astrocytes, may facilitate the classification of AD patients based 
on the ATI(N) biomarker framework. This expands upon the traditional classification of Aβ (“A”), tau (“T”), and neurode‑
generation (“N”), by incorporating a novel inflammatory component (“I”).
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Introduction
Alzheimer’s disease (AD), the predominant type of 
dementia, accounts for approximately two-thirds of all 
dementia cases in individuals aged 60 years and older [1]. 
At present, it affects a staggering 33 million people glob-
ally and continues to grow at an alarming rate, with its 
incidence doubling every 5–10 years [1]. Notably, devel-
oping countries play a substantial role in the increas-
ing incidence of new AD cases [2]. This trend may be 
attributed to the rapid growth of the older population in 
these regions, which is increasingly affected by demen-
tia. Recently, there has been a significant increase in the 
focus on disease-modifying therapies that utilize mono-
clonal antibodies. One notable example is aducanumab, 
an anti-amyloid agent that received conditional approval 
from the U.S. Food and Drug Administration (FDA) in 
2021 for the treatment of early-stage AD [3]. In 2023, 
the FDA approved lecanemab, a monoclonal antibody 
designed to target soluble amyloid-β (Aβ) protofibrils. 
This groundbreaking approval came after the successful 
outcomes of a phase III randomized, controlled clinical 
trial. The results demonstrated, for the first time, that 
reducing cerebral Aβ plaques through lecanemab led 
to a noticeable deceleration in cognitive decline over an 
18-month treatment period [4]. A recent phase III clini-
cal trial evaluated the efficacy of donanemab, a mono-
clonal antibody targeting a pyroglutamate form of Aβ, 
in individuals with prodromal AD and mild demen-
tia due to AD [5]. The study revealed that donanemab 
effectively slowed both cognitive and functional decline. 
However, the magnitude of the clinical effects observed 
with donanemab, along with other similar drugs, such as 
aducanumab and lecanemab, was limited. This suggests 
that additional mechanisms, including neuroinflamma-
tion [6], tau processing [7], apolipoprotein E (APOE) iso-
forms imbalance [8], mitochondrial dysfunction [9], and 
synaptic degeneration [10], should be explored to fully 
understand and address the pathogenesis of AD. Neuro-
inflammation refers to the activation of the brain’s innate 
immune system in response to inflammatory challenges 
such as injury, infection, toxin exposure, neurodegenera-
tive diseases, or aging. Microglia, the innate immune cells 

of the central nervous system (CNS), are pivotal in medi-
ating these neuroinflammatory responses [11]. Activated 
microglia and reactive astrocytes can phagocytize senile 
plaques or dystrophic neurites, induce intraneuronal 
inflammatory reactions towards neurofibrillary tangles, 
and activate the complement cascade in response to vas-
cular amyloid, thereby contributing to cerebral amyloid 
angiopathy.

Currently, there are 164 ongoing clinical trials in phase 
I, II, and III, evaluating the effectiveness of 127 distinct 
drugs. Interestingly, in phase II, approximately 23% of 
these compounds are specifically targeting inflamma-
tory mechanisms [12]. These efforts highlight the urgent 
requirement for innovative pharmacological treatments 
that can effectively prevent or delay the onset of demen-
tia, while also significantly slowing down the progression 
of the disease. However, inflammatory mechanisms may 
cycle between inflammation and resolution, and also 
convert into a chronic type which means that any inter-
vention will require a precise knowledge on the nature 
and site of inflammation to target.

In this context, the identification of reliable biomarkers 
of the initial pathological processes assumes paramount 
significance in disease management during all stages. Con-
ducting biomarker studies becomes imperative in unrave-
ling the intricate interplay between specific immune and/or 
inflammatory molecules in the development and progres-
sion of AD clinical manifestations. Employing longitudinal 
biomarker studies can unveil varying expression patterns 
in the initial stages of AD pathology and thus potentially 
shed light on variances in treatment response [13]. Efforts 
are currently underway to identify and validate innova-
tive blood-based biomarkers that can effectively reflect 
the pathophysiological mechanisms associated with AD at 
a peripheral level. These biomarkers offer several advan-
tages, such as being non-invasive and well-tolerated com-
pared to brain imaging techniques and cerebrospinal fluid 
(CSF) biomarkers [14], which together will ease longitu-
dinal assessment over years and decades. Plasma levels of 
hyperphosphorylated tau at position 217 (p-tau217) have 
demonstrated clinical performance that is equivalent to or 
superior to the FDA-approved CSF tests in detecting brain 

Conclusions The present review outlines the current knowledge on potential neuroinflammatory biomarkers and, 
importantly, emphasizes the role of longitudinal analyses, which are needed to accurately monitor the dynamics 
of cerebral inflammation. Such a precise information on time and place will be required before anti‑inflammatory 
therapeutic interventions can be considered for clinical evaluation. We propose that an effective anti‑neuroinflam‑
matory therapy should specifically target microglia and astrocytes, while considering the individual ATI(N) status 
of patients.

Keywords Alzheimer’s disease, Neuroinflammation, Biomarkers, GFAP, YKL‑40, ATI(N) classification system, Microglia, 
Astrocytes, Longitudinal studies, Clinical trials
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Aβ pathology [15, 16]. Plasma neurofilament light chain 
(NfL) protein, which is a scaffolding cytoskeleton protein 
released when neurons are damaged. Research has shown 
that plasma NfL concentrations can effectively predict 
brain imaging biomarkers of neurodegeneration and initial 
cognitive decline in middle-aged individuals [17].

Currently, there are several fluid biomarkers available 
for detecting AD dementia development. The AT(N) bio-
marker framework, which assesses the brain deposition of 
Aβ (“A”), tau pathology (“T”), and neurodegeneration (“N”), 
can be further expanded to include neuroinflammatory 
(“I”) candidate biomarkers, resulting in an ATI(N) system 
[18, 19]. By monitoring activated microglia and reactive 
astrocytes, CSF and blood “I” biomarkers enable the track-
ing of neuroinflammatory processes [20].

In this review, we will provide an overview of the involve-
ment of microglia and astrocytes in the neuroinflammatory 
processes that impact the AD brain. Furthermore, we will 
conduct a thorough evaluation of the key studies focusing 
on biomarkers that track the activation of microglial cells 
and reactive astrocytes. We will also assess the ability of 
longitudinal neuroinflammatory biomarker studies to pre-
dict the onset of AD and cognitive decline (see Table  1). 
Lastly, we will analyze the significance of neuroinflamma-
tory biomarkers in the diagnosis of AD and their role in AD 
clinical trials.

Search strategy and selection criteria
This non-systematic literature review aims to provide an 
informative overview of the current state of biomarkers 
for neuroinflammation in AD. The manuscript is based 
on a selective analysis of high-quality, contemporary arti-
cles on neuroinflammation biomarkers in AD. The primary 
objective is to identify trends and enhance understanding 
of the current landscape of neuroinflammation biomarkers 
in AD. References for this review were identified through 
searches of PubMed databases for peer-reviewed articles 
published in English between January 1, 2013, and Decem-
ber 31, 2023. The search terms employed included “Neuro-
inflammation” and “Alzheimer,” “longitudinal studies” and 
“Alzheimer,” “TREM2” and “Alzheimer,” “GFAP” and “Alz-
heimer,” and “YKL40” and “neurodegeneration.” Addition-
ally, bibliographies of relevant papers were reviewed. Only 
papers published in English were considered for inclusion. 
The final list of references was selected by SL, MG, and AF, 
and validated by BPI.

The role of microglia and astrocytes in Alzheimer’s 
disease pathophysiology
Astrocytes and microglia, the brain-resident mac-
rophages, are vital components in the development 
of neural circuits. These dynamic cells establish bidi-
rectional communications with synapses, exerting a 

profound influence on synaptic function. Contrary to 
popular belief, synaptic information processing is not 
solely dependent on neurons. Astrocytes envelop syn-
apses and microglia interact with synapses in an activity-
dependent manner [21], collectively contributing to the 
intricate network of neural connectivity. Prior studies 
[22, 23] have also demonstrated that astrocytes, micro-
glia, and synapses interact in a “quad-partite” model, 
where the axon terminal and dendritic spine commu-
nicate directly with microglial and astrocytic processes. 
Disruptions to this quad-partite arrangement can lead 
to abnormal plasticity, which consequently affects the 
encoding of information in neuronal circuits (Fig. 1).

Astrocytes play a crucial role in the formation of syn-
apses and regulating the release of neurotransmitters, 
thereby maintaining the balance of glutamate in the 
brain. This function of astrocytes is essential for promot-
ing various physiological activities associated with synap-
tic plasticity and, consequently, cognitive function [24]. 
Moreover, astrocytes can facilitate neuroinflammatory 
processes through the release of inflammatory cytokines 
and chemokines. These cells are also involved in the 
clearance of Aβ, which subsequently activates them, lead-
ing them to encircle senile plaques. This, in turn, con-
tributes to Aβ-induced damage to the BBB, ultimately 
depriving neurons of their metabolic supply [25].

Microglia cells, which represent approximately 5–20% 
of all glial cells, serve as the main type of macrophages 
in the CNS. Their primary function is to regularly survey 
brain regions for pathogens and cellular debris, ensur-
ing the preservation of neuronal circuits. Additionally, 
microglia protect and remodel synapses to support brain 
function [26]. These cells express various receptors that 
detect both internal and external insults to the CNS. 
When triggered by pathological factors such as protein 
aggregates or neuronal death, microglia migrate to the 
site of injury and initiate innate immune responses [27].

During the inflammatory processes involved in the 
pathogenesis of AD, there is a transition from the rest-
ing to the active functional state of microglia. Inflam-
mation is primarily triggered by the accumulation of 
Aβ aggregates, including soluble oligomers and insolu-
ble fibrils [28]. In the early stages of AD, Aβ oligomers 
and fibrils build up in the extracellular space, initiating 
a pathological cascade that leads to neuronal apopto-
sis and depletion. Microglia also play a crucial role in 
clearing Aβ oligomers, fibrils, and dead cells through 
phagocytosis and by secreting proteolytic enzymes. 
Additionally, microglia surround plaques and fibrils, 
forming a barrier that prevents their spread and limits 
their toxicity [29]. As Aβ deposition becomes increas-
ingly severe, microglia undergo a transition from 
their normal, homeostatic state to a dysfunctional 
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phenotype. This shift prompts the release of pro-
inflammatory factors, oxidative stress, and neuro-
inflammation, while also reducing the secretion of 
neurotrophic factors. Ultimately, this leads to synaptic 
impairment and the exacerbation of neuronal damage 
[30, 31]. Despite the potential benefits of early activa-
tion, chronic activation of microglia by Aβ can be det-
rimental. This leads to amplified Aβ deposition and 
prolonged inflammatory processes, ultimately accel-
erating neurodegeneration. In advanced stages of the 
disease, microglia can exacerbate AD by circulating 
proinflammatory cytokines—such as interleukin-1β 
(IL-1β) and tumor necrosis factor-alpha (TNF-α)—
which cause neuronal cell death, as well as by stimu-
lating astrocytes, which can impact neuronal survival 
[26].

Biomarkers of neuroinflammation in Alzheimer’s 
disease
Biomarkers play a crucial role in enhancing our under-
standing of the molecular mechanisms underlying the 
onset and progression of AD. Specifically, plasma bio-
markers offer a convenient method to evaluate individu-
als at various stages of the disease continuum, including 
healthy individuals, those at risk of developing AD, and 
patients with AD. By monitoring these biomarkers over 
time, we can gain valuable insights into the individual’s 
longitudinal progression within the AD spectrum.

As of 2009, genome-wide association studies (GWAS) 
led to the identification of novel genetic associations, 
revealing genome-wide statistically significant links 
between AD and variants within the CLU, PICALM, and 
CR1 genes. Since then, more than 50 risk loci and over 

Fig. 1 A Pathological interactions between glia and neurons in AD. Amyloid‑beta species can be recognized by and activate microglia, which 
contribute to activate astrocytes. These cells release pro‑inflammatory cytokines and chemokines and lose their homeostatic functions, leading 
to disruption of the BBB and neuronal damage. Deficit of anti‑inflammatory cytokines (e.g. TGF‑β1) also contributes to microglial activation 
and synaptic dysfunction. Disease associated microglia can also directly eliminate synaptic structures. B “Eat‑me” signals and the quad‑partite 
synapse in AD. Neuronal eat‑me signals are recognized by several phagocytic receptors on both astrocytes and microglia. Some of these signals 
include milk fat globule‑EGF factor 8 protein (MFGE8) and Protein S, both bound to exposed phosphatidylserine, and complement component 
3 (C3) and 1q (C1q). Microglia use as cell‑surface receptors the complement receptor 3 (CR3), vitronectin receptor (VNR), MER receptor tyrosine 
kinase (MERTK) and triggering receptor expressed on myeloid cells 2 (TREM2) among others. Astrocytes may also contribute to synaptic engulfment 
via the binding of C1q to multiple EGF‑like domains 10 (MEGF10). Metabotropic glutamate receptor 5 (mGluR5) may also induce synaptotoxicity 
via calcium dysregulation and complement activation, making the synapses a target for removal by astrocytes and microglia. Interactions 
between α7 nicotinic acetylcholine receptors (α7nAChRs) and soluble amyloid‑β (Aβ) can also contribute to reactive astrogliosis and neuronal 
death, through the excessive release of glutamate from astrocytes in a Ca2 + ‑dependent manner. α7nAChRs α7 nicotinic acetylcholine receptors, Aβ 
amyloid‑β, AD Alzheimer disease, BBB blood–brain barrier, C1q complement component, C3 complement component 3, CR3 complement receptor 
3 (CR3), IL interleukin, MEGF10 multiple EGF‑like domains 10, MERTK MER, receptor tyrosine kinase, MFGE8 milk fat globule‑EGF factor 8 protein, 
mGluR5 Metabotropic glutamate receptor 5, TGF-β1 transforming growth factor‑beta 1, TNF tumor necrosis factor, TREM2 triggering receptor 
expressed on myeloid cells 2, VNR vitronectin receptor
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70 gene variants associated with an increased risk of 
developing sporadic late-onset AD (LOAD) have been 
identified [32]. These findings underscore the intercon-
nected network of molecular and cellular pathways that 
significantly influence the progression and pathogen-
esis of AD. Interestingly, several of these identified vari-
ants are intertwined with genes that play a crucial role in 
immune responses and inflammation. These include, but 
are not limited to, TREM2, CD33, PILRA, CR1, MS4A, 
CLU, ABCA7, EPHA1, and HLA-DRB1 [23, 33]. The 
majority of these genes play significant roles in various 
functions such as proinflammatory intracellular signal-
ing, cytokines/interleukins/cell turnover, synaptic activ-
ity, lipid metabolism, and vesicle trafficking. The crucial 
involvement of neuroinflammation is supported by 
extensive GWAS studies that reveal a notable rise in the 
likelihood of developing LOAD in individuals carrying 
rare variants of microglial immunoreceptors.

CD33 encodes a transmembrane receptor expressed on 
myeloid lineage cells, functioning as a sialic acid-binding 
immunoglobulin-like lectin that modulates innate immu-
nity. The minor allele of the CD33 SNP rs3865444, which 
confers protection against AD, has been associated with 
reduced levels of insoluble Aβ42 in AD brains. In micro-
glial cell cultures, CD33 inhibits the uptake and clearance 
of Aβ42. Therefore, CD33 inactivation has been shown to 
mitigate Aβ pathology, suggesting that CD33 inhibition 
could represent a novel therapeutic strategy for AD [34]. 
PILRA encodes the paired immunoglobulin-like type 
2 receptor alpha, a cell surface inhibitory receptor that 
recognizes specific O-glycosylated proteins. PILRA is 
expressed on various innate immune cell types, including 
microglia. It has been proposed that the common PILRA 
missense variant (G78R, rs1859788) protects individuals 
from AD risk by reducing inhibitory signaling in micro-
glia and microglial infection during herpes simplex virus 
1 (HSV-1) recurrence [35]. Complement component 
(3b/4b) receptor 1 (CR1) is a notable candidate gene with 
a significant connection to AD. Polymorphisms in CR1 
have been reported to be associated with LOAD suscep-
tibility. A recent review identified that the rs6656401 var-
iant in CR1 increases the risk of LOAD [36]. Additionally, 
a common variant in the membrane-spanning 4-domains 
subfamily A (MS4A) gene, specifically MS4A4A, has 
been linked to increased CSF sTREM2 concentrations 
and a reduced risk of AD [37]. The CLU gene, which con-
tains several AD-associated intronic SNPs, encodes clus-
terin, a secretory protein predominantly synthesized in 
astrocytes. Clusterin levels are elevated in the brain tis-
sues, CSF, and plasma of AD patients and may play anti-
amyloidogenic roles [38].

Rare variants of the ATP-binding cassette sub-family 
A member 7 (ABCA7) gene are significantly enriched 

in patients with AD, while a common ABCA7 missense 
variant may confer protection against the disease. Meth-
ylation at several CpG sites within the ABCA7 locus is 
significantly associated with AD and correlates with amy-
loid deposition and brain morphology [39]. The EPHA1 
gene encodes ephrin type-A receptor 1 (EphA1), a mem-
ber of the ephrin receptor subfamily within the protein-
tyrosine kinase family. Ephrin receptors and related 
proteins have been implicated in mediating immune 
cell recruitment. The P460L variant of the EPHA1 gene 
is associated with an increased risk of LOAD and has 
recently been shown to impact immune responses and 
blood vessel function in the brain [40]. HLA-DRB1 is 
part of the human leukocyte antigen (HLA) class II beta 
chain paralogues. This class II molecule is a heterodimer 
composed of an alpha (DRA) and a beta (DRB) chain, 
both of which are membrane-anchored. HLA-DRB1 
plays a pivotal role in the immune system by presenting 
peptides derived from extracellular proteins. Specific 
HLA-DRB1*04 alleles have been shown to confer pro-
tection against AD [41]. Below, we provide an in-depth 
description of the TREM2 protein and other significant 
neuroinflammatory proteins.

Soluble triggering receptor expressed on myeloid cells 2 
(sTREM2)
TREM2, a cell surface receptor, is predominantly 
expressed on microglial cells. Its primary function 
includes enhancing the phagocytic capabilities of micro-
glia and macrophages while also modulating inflam-
matory signaling. TREM2 transduces its intracellular 
signaling through the adapter protein DAP12 [42]. The 
binding of TREM2 to ligands, including anionic lipids, 
lipoproteins, and Aβ, initiates downstream signaling 
cascades that promote microglial survival, proliferation, 
chemotaxis, and phagocytosis [43, 44]. The significance 
of TREM2 in the pathogenesis of AD was underscored 
by the discovery of a specific heterozygous mutation, 
R47H, which substantially elevates the risk of developing 
LOAD [45, 46]. Subsequent research has established that 
TREM2 activation in microglia plays a crucial role in the 
pathological processes underlying AD [47]. This receptor 
also plays a pivotal role in regulating microglial-related 
activities, particularly in response to the presence of Aβ 
plaques and tau tangles [48]. A soluble form of TREM2 
(sTREM2), which is generated through the proteolytic 
cleavage of the receptor found on the surface of cells, 
has the ability to promote microglial activation. Proper 
receptor ligation is anti-inflammatory and facilitates 
microglial survival.

TREM2 gene variants have been found to increase 
the risk of developing AD by impairing the ability of 
microglia cells to effectively clear Aβ and disrupting 
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the normal proinflammatory response of these immune 
cells [49]. Currently, approximately 50 variants of 
the TREM2 gene have been studied in relation to AD 
[50]. The rare R47H variant of TREM2 (rs75932628) 
has been linked to a two- to three-fold increase in the 
risk of developing AD in European and North Ameri-
can (Caucasian) populations [51–53]. The R47H variant 
is believed to contribute to a loss of TREM2 function, 
leading to a reduction of microglia and an increase in 
neuritic dystrophy at the site of Aβ deposition [54]. 
A meta-analysis involving more than 73,000 partici-
pants found that individuals carrying this variant had 
a four-fold higher risk of developing AD compared to 
non-carriers, which is similar to the effect size of the 
APOE ε4 variant [55]. Additionally, it has been sug-
gested that the R47H variant may be associated with 
an earlier age at AD onset [56]. However, this variant 
is extremely rare or undetectable in African-American 
[57] and Asian populations [58, 59]. Another variant, 
R62H (rs143332484) [60], has been associated with an 
increased risk of AD in individuals of European descent 
[61]. Interestingly, patients with AD harboring TREM2 
risk variants show an abundance of autophagic vesicles 
in their microglia [62].

An additional variant, H157Y (rs2234255), is located at 
the TREM2 site and is cleaved by two α-secretases (a dis-
integrin and metalloproteinase 10 and 17 [ADAM-10 and 
ADAM-17]), resulting in increased shedding of TREM2 
and reduced cell surface expression of the receptor [63]. 
Unlike the R47H and R62H variants, H157Y is more fre-
quently observed in Asians and is particularly associated 
with an increased risk of AD in a Han Chinese cohort 
[64, 65]. Prior studies conducted on Caucasian, Japanese, 
and African-American cohorts did not find any signifi-
cant association between this variant and AD. However, 
a comprehensive meta-analysis revealed a strong correla-
tion with an odds ratio of 3.65 [65]. Additionally, further 
analyses conducted on Chinese cohorts identified the 
presence of the p.Ala130Val and p.Ala192Thr variants, 
specifically observed in cases of LOAD. Another vari-
ant, p.Ser183Cys, was found to be more prevalent among 
Chinese patients with AD [50]. The presence of multiple 
variants associated with a higher susceptibility to devel-
oping AD in Chinese and African-American populations 
highlights the presence of diverse mutations across dif-
ferent cohorts and ethnic groups. This underscores the 
need to investigate various ethnic populations to dis-
cover specific disease risk variants and explore potential 
associations between these variants and specific disease 
phenotypes [50]. Notably, individuals carrying TREM2 
variants exhibit an earlier onset of the disease and expe-
rience faster cerebral atrophy. Therefore, identifying 
TREM2 carriers can be valuable in improving patient 

stratification for clinical trials and supporting the devel-
opment of personalized therapeutic approaches [33].

In general, the published literature has shown a slight 
increase in CSF sTREM2 concentrations in patients with 
AD [66–68] and individuals with mild cognitive impair-
ment (MCI) [69] compared to CU controls. However, 
other studies did not find significant differences in CSF 
sTREM2 levels between AD or MCI participants and CU 
controls [70]. Notably, increasing CSF sTREM2 concen-
trations were associated with changes in brain structure, 
specifically an increase in grey matter volume in regions 
such as the bilateral inferior and middle temporal corti-
ces, precuneus, supramarginal and angular gyri, in indi-
viduals with MCI. This suggests that sTREM2 may play a 
role in modulating neuroinflammatory responses to early 
neurodegeneration [71].

Despite the fact that CSF sTREM2 values are higher in 
patients with AD compared to CU controls, this potential 
biomarker lacks sufficient discriminatory power. Specifi-
cally, it falls short of the 80–90% range required in clini-
cal diagnostic practice to effectively differentiate between 
patient groups [69]. However, the increase in CSF 
sTREM2 concentrations during the early stages of AD 
may indicate a change in microglial activation status due 
to neurodegeneration. This suggests that sTREM2 exhib-
its a dynamic response linked to microglial activity as the 
disease progresses. These findings highlight the potential 
of CSF sTREM2 as a biomarker for tracking the progres-
sion from preclinical AD/MCI to AD dementia [68, 72]. 
Consequently, it may also serve as a valuable biomarker 
in clinical trials focusing on secondary AD prevention. 
The dynamics of CSF sTREM2 should be investigated 
in relation to the key pathophysiological mechanisms of 
AD, namely Aβ and tau pathologies. Decreased levels 
of CSF sTREM2 are linked to Aβ pathology [73] while 
increased levels are associated with tau-related neurode-
generation [74]. In a cross-sectional study of 127 individ-
uals with autosomal dominant AD (ADAD) mutations, 
it was observed that CSF sTREM2 concentrations began 
to rise five years before symptom onset, but quite a long 
time after the accumulation of Aβ in the brain [72].

Significant insights have also been gained from longi-
tudinal studies on CSF sTREM2. For instance, a 1.5-year 
study involving 268 CU individuals with initial brain Aβ 
deposition revealed that a decline in basal forebrain vol-
ume was associated with a greater accumulation of CSF 
sTREM2 over time [75]. In another longitudinal study 
spanning 4 years and including 72 individuals with MCI, 
it was found that CSF sTREM2 levels correlated with 
the progression of CSF Aβ and tau [76]. Additionally, a 
3-year study on 231 AD patients showed that higher 
CSF sTREM2 levels at baseline were linked to slower 
clinical progression [77]. Finally, a 3-year study on 148 
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pre-symptomatic ADAD patients indicated that higher 
annual rates of increase in CSF sTREM2 corresponded 
to a reduced rate of cognitive decline [78]. These studies 
suggest that sTREM2 should be considered not an early 
marker, but indicative of the MCI to AD conversion, 
although further studies are needed to validate its role as 
biomarker in this scenario.

Limited reports have investigated the dynamics of 
TREM2 in blood. However, the available research sug-
gests that both TREM2 mRNA and protein expression 
levels are elevated in monocytes of patients with AD 
compared to controls. Furthermore, these increased 
levels were found to be inversely correlated with cogni-
tive performance, as measured by the Mini-Mental State 
Examination (MMSE). A positive correlation between 
TREM2 mRNA and protein expression was observed 
in monocytes. In addition, a tendency towards upregu-
lation of TREM2 protein was also noticed in granulo-
cytes and plasma [79]. Other studies have demonstrated 
higher expression levels of TREM2 mRNA in leukocytes 
of patients with AD than in controls, which were found 
to be associated with cognitive decline and hippocam-
pal atrophy [80, 81]. In a longitudinal study involving 57 
individuals with MCI, higher plasma TREM2 levels and 
mRNA expression were detected in peripheral blood 
mononuclear cells (PBMCs) of APOE ε4 positive indi-
viduals who later developed AD during the two-year 
follow-up period [82]. Another investigation focusing on 
peripheral leukocytes revealed higher expression levels 
of TREM2 in LOAD compared to early-onset AD. Inter-
estingly, the expression of this receptor was markedly 
increased in LOAD individuals who carried the APOE ε4 
allele [83].

Chitinase-3-like protein 1 (YKL-40)
The glycoprotein YKL-40, also known as chitinase-3-like 
protein 1 (CHI3L1), is detected primarily in various cell 
types, including macrophages, chondrocytes, fibroblasts, 
vascular smooth muscle cells, endothelial cells, and even 
certain cancer cells [84]. Expression is most prominent 
in reactive astrocytes [85]. While the exact physiologi-
cal role of YKL-40 is still debated, there is consensus 
regarding its involvement in tissue remodeling and ren-
ovation during inflammation, as well as in angiogenic 
mechanisms that affect the infiltration, differentiation, 
and maturation of macrophages. Consequently, YKL-40 
is considered a candidate biomarker for inflammation 
and endothelial dysfunction [84], a specific biomarker 
for human macrophage activation/differentiation and its 
expression is induced in reactive astrocytes by the pres-
ence of activated macrophages [86]. A critical review 
of the literature has identified YKL-40 as a pathophysi-
ological biomarker indicating the activation of glial cells, 

including astrocytes and microglia, which are associ-
ated with tau pathology [87, 88]. In addition, prior stud-
ies have shown that CSF levels of YKL-40 are linked to 
biomarkers of neurodegeneration (total tau, t-tau), dam-
age to large-caliber myelinated axons (NfL), tau-medi-
ated toxicity (p-tau), and synaptic damage (neurogranin, 
SNAP-25) in various neurodegenerative diseases [89].

Interest in YKL-40 in AD was sparked by initial obser-
vations that CSF levels of YKL-40 were significantly 
higher in individuals with AD and MCI compared to 
controls [90, 91]. Notably, early histopathological stud-
ies have demonstrated that YKL-40 expression is local-
ized near Aβ plaques and tau neurofibrillary tangles 
[92]. YKL-40 can effectively differentiate patients with 
overt dementia from CU individuals [91–94]. Secondly, 
YKL-40 serves as a predictor of cognitive decline, allow-
ing for the identification of individuals progressing 
from preclinical AD to prodromal AD and later stages 
of dementia. Finally, it aids in distinguishing individuals 
with MCI who will convert to AD from those who will 
remain stable at five years [86]. However, it should be 
noted that CSF YKL-40 is not clinically useful in differ-
entiating the characteristic AD phenotype (i.e., amnestic 
syndrome of hippocampal type) from other atypical pres-
entations of AD [95]. In addition, patients exhibited a sig-
nificant correlation with the corresponding CSF values. 
Significantly, patients in a 6-year longitudinal study by 
Craig-Schapiro and colleagues (2010) exhibited a strong 
association between YKL 40 levels in CSF and plasma 
[92]. Moreover, plasma YKL-40 concentrations were 
found to be elevated in individuals with very mild and 
mild AD dementia (CDR = 0.5 and CDR = 1, respectively) 
compared to control individuals (CDR = 0) [92]. Another 
study discovered a significant increase in plasma YKL-40 
levels in patients with early AD than in individuals with 
MCI and healthy older controls. Moreover, YKL-40 dem-
onstrated a positive correlation with neuropsychological 
test results in both MCI and early AD [96]. In a longi-
tudinal study conducted by Vergallo et al. (2020) [97], it 
was found that plasma YKL-40 concentration can serve 
as a valuable biomarker to assess the severity of AD. The 
investigation focused on a cohort of CU individuals at 
risk for AD and revealed a positive association between 
plasma YKL-40 and episodic memory performance 
(assessed using the Free and Cued Selective Rating Test). 
Conversely, a negative association was observed between 
plasma YKL-40 and brain Aβ accumulation [97]. These 
findings suggest that glia activation, reflected by elevated 
YKL-40 levels, may have a potentially protective effect 
on initial brain Aβ deposition and neuronal homeosta-
sis, without causing clinical harm. Moreover, the study 
also observed a sexual dimorphism, with men exhibiting 
higher YKL-40 concentrations than women [97]. Another 
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study investigating biomarker differences across different 
ethnicities reported elevated plasma YKL-40 concentra-
tions specifically in Hispanic women with prodromal AD 
compared to both CU controls and prodromal AD par-
ticipants of African or Caucasian origins. This empha-
sizes the impact of potential modulating factors on the 
variability of YKL-40 levels [98].

YKL-40 has also emerged as a compelling candidate 
biomarker for investigating the clinical evolution of AD. 
Its potential role in clinical trials lies in its ability to track 
the dynamics of glial neuroinflammatory mechanisms 
in relation to neurodegeneration. According to Balda-
cci et al. (2017), CSF YKL-40 exhibits a correlation with 
elevated levels of CSF t-tau, even in asymptomatic and 
preclinical AD individuals. This suggests an early associa-
tion between YKL-40 and tau protein during the course 
of neurodegeneration [86].

In conclusion, exploring the connection between YKL-
40 and AD features could shed light on the intricate 
relationship between Aβ dysmetabolism, neuronal activ-
ity, and neuroinflammation. YKL-40 thus represents a 
promising biomarker for accurate classification of neu-
roinflammatory phenotypes, facilitating advancements in 
neuroinflammatory clinical trials [97].

Glial fibrillary acidic protein (GFAP)
Astrogliosis refers to the abnormal activation and pro-
liferation of astrocytes that occurs in response to initial 
brain damage [99]. This process leads to significant cel-
lular, molecular, and functional changes. In acute brain 
injuries—as well as in AD, other neurodegenerative dis-
eases, and low-grade astrocytoma—astrocytes adopt 
a reactive phenotype [99]. Transcriptomic analyses of 
human patients and disease models have demonstrated 
the presence of multiple putative reactive astrocyte sub-
states. In CNS disorders, there is a marked upregulation 
and reorganization of intermediate filament proteins, 
leading to the formation of an intricate network compris-
ing various isoforms of GFAP (ten isoforms), vimentin, 
synemin, and nestin [100]. GFAP, a type III intermedi-
ate filament protein, serves as a key cytoskeletal compo-
nent in astrocytes. In AD, astrocytes exhibit a complex 
response to both neurofibrillary tangles and Aβ plaques, 
which may exert either neuroprotective or deleterious 
effects [101]. The capacity of astrocytes to colocalize with 
Aβ plaques in the AD brain has been demonstrated using 
labeled tracers [102]. Moreover, studies have reported a 
significant correlation between GFAP expression levels 
and the density of Aβ plaques in the hippocampus and 
entorhinal cortex of AD brains [103]. Interestingly, ele-
vated concentrations of GFAP within the CSF have been 
reported in patients with AD and other forms of demen-
tia compared to healthy individuals [104]. An increase 

in plasma GFAP concentrations was also noted in both 
early-onset AD and LOAD [105, 106]. This increase 
was positively correlated with the extent of white mat-
ter injury, as determined through the quantification of 
white matter hyperintensities [105, 106], whereas cog-
nitive function assessed with MMSE showed an inverse 
association [106]. When combined with plasma Aβ1-42/
Aβ1-40 ratio, the APOE ε4 status, and/or age, the diag-
nostic value of plasma GFAP was found to be increased 
[107–109].

The potential of blood GFAP as a biomarker for AD has 
been significantly highlighted by longitudinal investiga-
tions. A study conducted over 3  years on 23 asympto-
matic AD patients revealed an increase in plasma GFAP 
concentrations in mutation carriers compared to non-
carrier controls. This suggests that plasma GFAP altera-
tions can be detected up to a decade before the onset of 
AD clinical symptoms [110]. Additionally, a 6-year lon-
gitudinal study on 106 individuals with MCI found that 
baseline serum GFAP levels were significantly higher 
in patients who progressed to AD at follow-up [111]. 
In a cross-sectional analysis conducted in preclini-
cal AD, a plasma biomarker panel consisting of GFAP, 
p-tau181, and p-tau231 exhibited increased levels in CU 
Aβ-positron emission tomography (PET)-positive indi-
viduals compared to those who tested negative [112]. 
The study subsequently confirmed the longitudinal pre-
dictive value of two of the three biomarkers (GFAP and 
p-tau181), emphasizing their diagnostic and monitoring 
potential in preclinical AD [112]. In a 2-year, longitudinal 
study, researchers examined 288 CU individuals and 141 
patients. The study found that plasma GFAP levels were 
associated with both longitudinal Aβ-PET deposition and 
cognitive decline [113]. Another extensive 2-year longi-
tudinal study involving 1,106 CU participants revealed 
that Aβ-dependent tau accumulation occurred only in 
individuals who tested positive for astrocyte reactiv-
ity—which was defined by plasma GFAP levels above a 
specified cutoff (mean + 2.0 standard deviations of con-
trols without Aβ pathology) [114]. These data suggest 
that secondary astrocytosis caused by Aβ aggregation 
might promoting tau accumulation, although further 
longitudinal studies are needed. A 5-year longitudinal 
study involving 169 individuals with MCI showed that 
higher baseline plasma GFAP concentrations were asso-
ciated with the progression to AD and faster rates of 
cognitive decline [109]. Another 3-year longitudinal 
study conducted on 300 CU older individuals found that 
higher serum GFAP levels at baseline were linked to 
an increased risk of incident dementia [115]. An analy-
sis conducted within the ESTHER cohort, a German 
population-based study of older individuals living in 
the community, revealed a substantial early association 
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(spanning between 9 and 17 years prior to clinical diag-
nosis) of plasma GFAP with the incidence of AD. Nota-
bly, this association was found to be significantly earlier 
than that of NfL and p-tau181, which were typically asso-
ciated within approximately 9  years of diagnosis [116]. 
These results suggested that GFAP may serve as a more 
effective prognostic biomarker for incident AD dementia 
compared to NfL [115]. The diverse prognostic values of 
these cytoskeletal proteins are believed to stem from dif-
ferent underlying mechanisms. Notably, NfL is released 
into the bloodstream following axonal degeneration, 
while increased levels of GFAP are a response to damage 
triggered by Aβ and tau aggregates [101]. Continual acti-
vation of astrocytes in response to this damage leads to a 
pro-inflammatory neurotoxic state, which further exacer-
bates neurodegeneration [117].

A recent 17-year longitudinal study involving 1712 CU 
participants found that serum GFAP levels at baseline 
were associated with a hazard ratio of 1.38 (95% confi-
dence interval = 1.15–1.66) for incident dementia and 
2.76 (95% confidence interval = 1.73–4.40) for dementia-
specific mortality, supporting the notion that circulat-
ing GFAP can be a valuable tool for assessing dementia 
risk and prognosis [118]. In another recent study involv-
ing 318 CU participants, including 158 individuals who 
later converted to AD and 160 who remained cognitively 
unimpaired, the authors observed elevated plasma lev-
els of GFAP in AD-converters up to 10 years before the 
onset of cognitive impairment [119]. This finding sug-
gests that increased astrocyte reactivity, as indicated by 
higher GFAP levels, is an early event in the progression 
of blood biomarker changes during the preclinical stage 
of AD. Taken as a whole, these results indicate that GFAP 
holds promise an early blood-based biomarker for reac-
tive astrogliosis associated with Aβ pathology in pre-
clinical AD. Consequently, this marker could be used to 
identify individuals at risk of AD before the onset of clini-
cal symptoms [108].

Transforming growth factor-beta 1 (TGF-β1)
Recent studies indicate that a deficiency in anti-inflam-
matory cytokines, particularly transforming growth 
factor-β1 (TGF-β1), in the brains of patients with AD 
significantly contributes to microglia activation and 
neuroinflammation, thereby playing a crucial role in the 
pathophysiological mechanisms underlying cognitive 
decline in AD. [120, 121].

Building on this evidence, researchers have explored 
the potential of TGF-β1 as a novel biomarker for AD 
[120]. The deficit of TGF-β1 can contribute to neurode-
generation through multiple mechanisms. Notably, TGF-
β1 plays a constitutive role in suppressing inflammation 
and regulates the degree of microglial activation in the 

CNS in an age-dependent manner [122]. TGF-β1 also 
plays a pivotal role in synaptic plasticity and memory for-
mation by facilitating the transition from early to late hip-
pocampal long-term potentiation [123] and stimulating 
the uptake of Aβ by microglia [122]. Notably, numerous 
studies have shown that the TGF-β1 signaling pathway 
is selectively impaired in the early stages of AD, leading 
to microglia activation, neuroinflammation, increased 
neuronal vulnerability to Aβ oligomers, hippocampal 
atrophy, and cognitive decline [121, 124]. In addition, 
the AD brain exhibits a reduced expression of TGF-βR2, 
a specific receptor which correlates with the pathologi-
cal hallmarks of the disease [125]. When evaluating the 
potential of TGF-β1 as a novel biomarker for early AD, it 
is essential to consider the differing results obtained from 
its measurement in the plasma versus the CSF of AD 
patients. AD patients display decreased concentrations of 
active and inactive forms of TGF-β1 in their plasma [126] 
as well as a decline in its secretion from PBMCs [127]. 
TGF-β1 levels were found to be elevated in the CSF and 
brain of AD patients compared to non-demented individ-
uals, and positively correlated with the extent of cerebro-
vascular Aβ deposition [128].

Consequently, patients with AD exhibit elevated levels 
of TGF-β1 in their CSF [129], while decreased concentra-
tions of both total and cleaved (active) forms of this mol-
ecule have been observed in their plasma [130]. These 
seemingly contradictory findings can be clarified by lon-
gitudinally assessing TGF-β1 levels at various stages of 
AD in future prospective long-term observational stud-
ies. We hypothesize that elevated levels of TGF-β1 may 
act as a neuroprotective factor in the early phases of AD 
pathogenesis, while decreased levels contribute to neu-
rodegeneration and cognitive decline in individuals with 
MCI [121]. Interestingly, a study on patients with demen-
tia found lower CSF concentrations of TGF-β1 in individ-
uals with fast disease progression compared to those with 
slower progression [131]. Genetic investigations have 
provided only preliminary and partial evidence regarding 
the deficit of TGF-β1 in AD [121].

The TGF-β1 gene is located on chromosome 19q13.1–3 
and contains multiple functional single nucleotide pol-
ymorphisms (SNPs) in the upstream and transcript 
regions [132]. Two studies demonstrated that the SNPs 
at codons + 10 (T/C) and + 25 (G/C), as well as the CC 
genotype of the TGF-β1 gene, which are associated with 
reduced TGF-β1 levels, have been linked to an increased 
conversion from MCI to AD [133, 134], whereas another 
research involving oldest-old individuals aged over 75 
demonstrated that carriers of at least one minor T allele 
displayed a significant decline in cognitive and func-
tional performance in the short-term, while those har-
boring the CC genotype of the TGF-β1 codon + 10 T > C 
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polymorphism remained stable [135]. Building on the 
evidence obtained from AD patients, various studies have 
been conducted in animal models of AD to validate the 
role of TGF-β1 as both a novel biomarker and a potential 
pharmacological target [136]. It has been hypothesized 
that the selective deficit of the canonical TGF-β1/Smad 
pathway in AD may impair the cross-talk between astro-
cytes and microglia, subsequently leading to microglia-
mediated neurodegeneration [136]. APOE ε4 impairs the 
microglial response in AD by inducing TGFβ1-mediated 
checkpoints, suggesting a neurobiological link between 
APOE ε4 and the deficit of TGFβ1 signaling in the dis-
ease process [137]. Despite conflicting findings regarding 
TGF-β1 levels at various stages of AD, this anti-inflam-
matory cytokine has emerged as one of the leading 20 
CSF candidate biomarkers associated with the rate of 
cognitive decline in dementia patients, as demonstrated 
in longitudinal studies [131]. To validate the role of TGF-
β1 as a novel biomarker in early AD, future prospective 
long-term observational studies are essential.

Other neuroinflammatory biomarkers
Numerous cytokines and chemokines, commonly linked 
to inflammation, vascular injury, and angiogenesis, have 
emerged as potential neuroinflammatory biomarkers. 
Among these, eight can be measured in serum—includ-
ing basic fibroblast growth factor (bFGF), C-reactive 
protein (CRP), interleukin-16 (IL-16), soluble fms-like 
tyrosine kinase-1 (sFLT-1), soluble intercellular adhe-
sion molecule-1 (sICAM1), the Tie-2 receptor tyrosine 
kinase, vascular endothelial growth factor-C (VEGF-C), 
and vascular endothelial growth factor-D (VEGF-D). 
Three others, interleukin-15 (IL-15), monocyte chemoat-
tractant protein-1 (MCP-1), and sFLT-1, are quantifiable 
in the CSF[138]. The addition of these neuroinflamma-
tory biomarkers to traditional AD biomarkers improved 
diagnostic accuracy by 13.9% and 12.5%, respectively, in 
older individuals with cognitive decline [139]. However, 
further studies are needed to confirm their utility in clini-
cal settings.

A multicenter study has highlighted the significance 
of complement dysregulation as a potential predictor of 
disease progression in MCI [140]. Specifically, the results 
revealed higher levels of Factor B enzyme and lower lev-
els of Factor H regulator in MCI progressors as compared 
to non-progressors. Collectively, these findings suggest 
that the dysregulation of the complement system’s ampli-
fication loop may act as an early event that predisposes to 
AD progression [140].

Multiple meta-analyses have explored the potential of 
various molecules as biomarkers for AD. In one meta-
analysis, which included 54 studies measuring cytokine 
concentrations (40 in peripheral blood and 14 in the 

CSF), patients with AD exhibited higher concentra-
tions of IL-6, TNF-α, IL-1β, TGF-β, IL-12, and IL-18 in 
peripheral blood, and elevated levels of TGF-β in CSF, 
compared to healthy controls [141]. Another meta-anal-
ysis comprising 175 studies on peripheral blood revealed 
increased levels of IL-1β, IL-2, IL-6, IL-18, interferon-γ, 
homocysteine, high-sensitivity CRP (hs-CRP), C-X-C 
motif chemokine-10, epidermal growth factor, vascular 
cell adhesion molecule-1, TNF-α converting enzyme, 
soluble TNF receptors 1 and 2, α1-antichymotrypsin, as 
well as decreased concentrations of IL-1 receptor antago-
nist and leptin in patients with AD compared to controls 
[142].

A comprehensive meta-analysis of 170 studies revealed 
significantly elevated blood concentrations of various 
proteins including hs-CRP, IL-6, soluble tumor necro-
sis factor receptors 1 and 2 (sTNFR1 and TNFR2), 
α1-antichymotrypsin (α1-ACT), IL-1β, and soluble CD40 
ligand (sCD40L) in patients with AD compared to con-
trols. Additionally, the CSF concentrations of certain pro-
teins such as IL-10, MCP-1, TGF-β1, sTREM2, YKL-40, 
α1-ACT, nerve growth factor, and visinin-like protein-1 
(VILIP-1) were also found to be higher in AD [143]. Fur-
thermore, patients with MCI exhibited increased periph-
eral blood concentrations of sTNFR2, IL-6, MCP-1, 
and decreased concentrations of IL-8. The authors also 
observed elevated CSF concentrations of YKL-40, VILIP-
1, and sTREM2 in MCI patients compared to controls. 
Finally, patients with AD were found to have increased 
peripheral blood concentrations of sTNFR1 and sTNFR2 
compared to those with MCI [143]. Another meta-analy-
sis comprising 88 studies found increased levels of CRP, 
IL-1β, IL-2, IL-6, IL-12, IL-18, MCP-1, MCP 3, IL-8, and 
interferon-γ-inducible protein 10 (IP-10) in patients with 
AD [144]. These findings were at least in part consistent 
with a separate meta-analysis involving 13 studies that 
indicated an association between inflammatory candi-
date proteins—including CRP, IL-6, α1-ACT, lipoprotein-
associated phospholipase A2, and fibrinogen—and an 
increased risk of all-cause dementia, although these bio-
markers were not specific to AD [145].

The role of neuroinflammatory biomarkers 
in Alzheimer’s disease diagnosis and therapy
Role of neuroinflammatory biomarkers in the diagnostic 
work-up of Alzheimer’s disease
The definitive diagnosis of AD—in the absence of neu-
ropathological confirmation—continues to pose a sig-
nificant challenge. Despite extensive research into the 
molecular and biological mechanisms underlying the dis-
ease, the effective identification of AD remains an elusive 
task. This poses limitations on therapeutic interventions, 
as they are often initiated after the onset of symptoms. 
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In this scenario, there is a growing interest in studying 
and treating the prodromal stages of AD. One unresolved 
question in understanding AD pathophysiology is why a 
considerable percentage of brain Aβ-positive CU individ-
uals do not develop detectable downstream tau pathol-
ogy and subsequent clinical decline. Recent research has 
shown that elevated levels of phosphorylated tau in the 
blood are associated with Aβ accumulation in the brain 
only in individuals with abnormally high blood levels of 
GFAP [114]. These findings suggest that astrocyte reac-
tivity, evaluated through the measurement of plasma 
GFAP, is a significant precursor event that connects brain 
Aβ accumulation to the onset of tau pathology. This con-
nection may have important implications for the bio-
logical characterization of preclinical AD. Furthermore, 
considering that neurotoxic reactive astrocytes are stim-
ulated by activated microglia [117], the availability of a 
biomarker for activated microglia becomes essential in 
identifying individuals who are at a higher risk of devel-
oping AD. While CSF sTREM2 and 18 kDa translocator 
protein (TPSO)-PET imaging are effective for identifying 
activated microglia, they do not inform about the precise 
molecular and functional cellular status. Furthermore, a 
reliable blood biomarker remains elusive. The availability 
of blood-based biomarkers for both activated microglia 
and reactive astrocytes could assist in the clinical recog-
nition of MCI and AD, or even earlier stages[138, 146]. 
Moreover, these biomarkers could facilitate tracking dis-
ease progression over time in patients as a part of thera-
peutic strategies and potentially provide personalized 
drug targets for early intervention in MCI and AD cases.

Role of neuroinflammatory biomarkers in anti-Alzheimer’s 
disease trials and individualized therapy
Targeting neuroinflammation may prove to be an 
extremely effective strategy for AD prevention and ther-
apy during the preclinical stage before significant neu-
ronal loss occurs. Figure 2 shows the number of ongoing 
AD clinical trials with anti-neuroinflammatory agents 
[12].

Overall, there are 25 ongoing clinical trials targeting 
neuroinflammation in AD: four in phase 1, 19 in phase 
2, and two in phase 3 [masitinib (tyrosine-kinase inhibi-
tor) and NE3107 (insulin-sensitizing agent)]. Promising 
results have been observed in several phase I/II clini-
cal trials that targeted TNF-α, TREM2, or CD33. We 
strongly advocate for the utilization of neuroinflam-
matory biomarkers, such as blood GFAP for tracking 
reactive astrocytes and CSF-sTREM2 for monitoring 
microglial activation, throughout clinical trials [147]. In 
our view, these biomarkers present a significant poten-
tial for tracking disease progression within the AD con-
tinuum in the field of drug development, including 
trials with compounds not directly impacting biological 
inflammatory targets. Accordingly, blood GFAP concen-
trations have already been successfully employed as a 
biomarker in clinical trials evaluating anti-Aβ monoclo-
nal antibodies, such as lecanemab [148] and donanemab 
[149]. In general, we are confident that adopting a bio-
marker-guided strategy for AD treatment, which tailors 
specific interventions to relevant molecular pathways, 
will enhance therapeutic effectiveness, as witnessed in 
the field of oncology. This approach has already seen 

Fig. 2 Presently ongoing clinical trials in AD by mechanism of action of the tested agents. Twenty‑five trials are testing anti‑neuroinflammatory 
agents. AD Alzheimer disease, APOE Apolipoprotein E. Modified from Cummings et al. Alzheimers Dement (N Y). 2024 [12]
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application in the NSAID treatment of AD. A post-hoc 
analysis of a trial of naproxen and rofecoxib for mild-to-
moderate AD demonstrated that those who responded 
favorably exhibited a distinct plasma neuroinflammatory 
profile (TNF-α, CRP, IL-6 and IL-10) [150]. These results 
imply that the use of anti-inflammatory drugs for AD 
should be reserved for patients who show clear signs of 
systemic inflammation. A Phase II trial, conducted more 
recently, with donanemab—a potent anti-Aβ(p3-42) 
monoclonal antibody—exclusively enrolled patients who, 
as confirmed by  [18F]flortaucipir-PET scans, exhibited 
pathologic tau deposition (> 1.10 SUVR), but with quan-
titative tau levels below a specific upper threshold (1.46 
SUVR) [151]. This strategic approach was undertaken 
to address concerns surrounding the limited efficacy of 
donanemab in advanced disease situations, as suggested 
by the presence of extensive tau pathology. Another sig-
nificant investigation is the AHEAD prevention study, 
currently in its fourth year. This research is analyzing the 
effects of lecanemab in CN participants at risk of devel-
oping AD due to the presence of brain Aβ accumulation, 
as evidenced by Aβ-PET scans [152]. This investigation is 
divided into two sub-studies (AHEAD 45 and AHEAD 3). 
AHEAD 45 focuses on participants exhibiting elevated 
brain Aβ-PET pathology, specifically above 40 Centi-
loids, measured during the screening phase. In contrast, 
AHEAD 3 is being conducted on individuals with inter-
mediate brain Aβ pathology levels, defined as 20 to 40 
Centiloids, also measured during the screening process. 
The primary purpose of this comprehensive study is 
twofold. Firstly, it aims to determine if lecanemab treat-
ment outperforms a placebo in modifying baseline Pre-
clinical Alzheimer Cognitive Composite 5 (PACC5) after 
216 weeks of treatment (A45 Trial). Secondly, it seeks to 
establish if lecanemab treatment is superior to a placebo 
in mitigating brain Aβ accumulation, as measured by 
PET scans, following 216  weeks of treatment (A3 Trial) 
[152]. We posit that the integration of a reliable blood 
biomarker of neuroinflammation is essential for the 
effective and predictive ATN(I) categorization of the AD 
continuum. During the pathological progression of AD, 
a pivotal moment occurs when innate immune and glial 
cells begin to sustain an excessively expressed chronic 
inflammatory response. This process acts in synergy with 
the accumulation of Aβ and tau proteins, driving synap-
totoxicity and neurodegeneration in a self-perpetuating 
cycle. The precise timing of this neuroinflammatory shift 
in individual cases remains elusive, possibly explain-
ing why past clinical trials exploring anti-inflammatory 
compounds have failed to yield successful results. Plasma 
GFAP displays a compelling ability to predict individual 
clinical AD risk and is thus suggested as a potential pre-
liminary screening tool for AD risk stratification in the 

older adult population [153]. The presence of plasma 
GFAP “positivity” may be a straightforward indicator 
for initiating a comprehensive therapy. This treatment—
which would combine anti-inflammatory drugs with 
agents that modulate either Aβ or tau—may be particu-
larly applicable to those with preclinical AD or individu-
als at risk of developing AD.

Risk stratification tools tailored to each individual are 
crucial for applying precision medicine principles in AD. 
Blood biomarkers for AD offer a promising strategy that 
is both time and cost-effective. They hold potential to 
identify and categorize patients at risk of developing AD, 
thereby enhancing the screening procedures for poten-
tial participants in AD clinical trials. Additionally, these 
biomarkers can significantly improve patient manage-
ment in clinical settings. This includes making informed 
decisions about treatment, such as choosing a disease-
modifying therapy based on altered biomarker profiles, 
or referring patients to specialized memory clinics for 
focused care [19].

Tracking neuroinflammatory biomarkers could also 
be crucial for monitoring amyloid-related imaging 
abnormalities (ARIA), a significant adverse event asso-
ciated with anti-Aβ monoclonal antibodies, including 
lecanemab and donanemab [154]. These ARIA manifest 
as brain edema (ARIA-E), microbleeds, and occasion-
ally large brain hemorrhages (ARIA-H), and have been 
associated with some fatalities in clinical trials. ARIA are 
considered an inflammatory reaction to cerebral amyloid 
angiopathy. Specifically, ARIA-E resembles cerebral amy-
loid angiopathy-related inflammation, a rare and seri-
ous condition caused by auto-antibodies to Aβ. Anti-Aβ 
antibodies may bind to vascular amyloid, triggering the 
complement cascade to attack cerebral blood vessels. 
This process can create small holes, leading to fluid leaks 
and microbleeds. It is recommended to identify preexist-
ing medical disorders that may predispose individuals to 
ARIA or increase the likelihood of ARIA-related com-
plications. Such conditions include pre-existing auto-
immune or inflammatory disorders, seizures, transient 
ischemic attacks, cerebrovascular disease, or significant 
changes in brain white matter.

AD is frequently associated with cerebrovascular dis-
orders, which may contribute to neuronal dysfunction 
and death. Notably, both conditions share common risk 
factors, including APOE ε4, hyperlipidemia, and obe-
sity [155]. Several lines of evidence support the role of 
neuroinflammation and cerebrovascular dysfunction 
in AD. A study involving 508 CU older individuals and 
313 patients with MCI and AD found that CSF levels of 
five biomarkers of neuroinflammation and cerebrovascu-
lar dysfunction (YKL-40, ICAM-1, VCAM-1, IL-15, and 
Flt-1) were elevated in AD, even during the preclinical 
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and prodromal stages, and were associated with CSF 
tau. Additionally, longitudinal data suggested that higher 
levels of these neuroinflammatory and cerebrovascu-
lar biomarkers were linked to cognitive decline and an 
increased risk of subsequent development of AD [156].

Regulatory perspectives on neuroinflammatory 
biomarkers in Alzheimer’s disease
In the past decade, the identification of biomarkers rel-
evant to AD has become a crucial tool in the develop-
ment of disease-modifying therapies. Regulatory bodies 
such as the FDA (https:// www. fda. gov/ regul atory- infor 
mation/ search- fda- guida nce- docum ents/ quali ficat 
ion- proce ss- drug- devel opment- tools- guida nce- indus 
try- and- fda- staff) and the European Medicines Agency 
(EMA) (https:// www. ema. europa. eu/ en/ human- regul 
atory/ resea rch- devel opment/ scien tific- advice- proto 
col- assis tance/ novel- metho dolog ies- bioma rkers/ opini 
ons- lette rs- suppo rt- quali ficat ion- novel- metho dolog ies- 
medic ine- devel opment) have established pathways for 
the qualification of these biomarkers to facilitate drug 
development. A qualified biomarker may be defined as 
a”tool that, within the stated context-of-use, can be relied 
upon to have a specific interpretation and application 
in medical product development and regulatory review” 
[157]. However, despite the initial EMA opinion on the 
CSF biomarkers positive signature, which includes low 
Aβ1-42 and high p-tau concentrations, as a predictor for 
dementia evolution in individuals with MCI (https:// 
www. ema. europa. eu/ en/ docum ents/ regul atory- proce 
dural- guide line/ quali ficat ion- opini on- alzhe imers- disea 
se- novel- metho dolog ies/ bioma rkers- use- cereb rospi nal- 
fluid- amylo id- beta-1- 42-t- tau- signa ture/ posit ron- emiss 
ion- tomog raphy- amylo id- imagi ng- posit ive), only a small 
number of biomarkers have undergone a formal regula-
tory process for qualification. Significantly, the absence of 
qualified biomarkers for diagnosing AD, predicting dis-
ease prognosis, and evaluating treatment efficacy remains 
a notable issue. This can be attributed to our limited 
understanding of the neurobiology of AD and its connec-
tion to cognitive and behavioral decline over time. The 
disease progresses along a continuum of states, which 
are not fully characterized presently, and exhibits con-
siderable variability among patients. Consequently, the 
identification and validation of prognostic and predictive 
biomarkers are urgently required, but their achievement 
poses substantial challenges.

The FDA recent approval of aducanumab for the treat-
ment of AD through the accelerated approval pathway 
was met with criticism due to the lack of demonstrated 
clinical benefit. While the drug induced a reduction in 
the Aβ biomarker, the EMA did not replicate the FDA 
approval. The recent FDA full approval of lecanemab, 

which reduces brain Aβ burden but shows limited cogni-
tive and clinical benefit, further highlights the challenge 
of using individual biomarkers as efficacy endpoints in 
AD. The results of recent clinical trials in AD indicate the 
importance of identifying a broader range of positive bio-
marker signatures. These should include inflammatory 
biomarkers, as well as other markers of brain damage or 
susceptibility to damage. Such biomarkers can be used to 
monitor and anticipate disease progression across vari-
ous stages, and to measure the effectiveness of new dis-
ease-modifying drugs.

Discussion
In the AD brain, neuroinflammation is a multifac-
eted biological process that entails the recruitment of 
peripheral immune cells, the activation of intracellular 
signaling pathways, and the release of various proinflam-
matory cytokines. The key contributors to the neuroin-
flammatory process are microglia and astrocytes. Their 
involvement exhibits distinct phenotypic variations, 
both spatially and temporally, which can be observed at 
different stages of disease progression [99, 158]. Recent 
GWAS have provided compelling evidence supporting 
the significant involvement of the innate immune sys-
tem and neuroinflammation in the pathogenesis of AD. 
A comprehensive GWAS conducted on over 1 million 
participants has specifically highlighted the relevance of 
microglia and immune cells in the pathogenesis of LOAD 
[159]. Furthermore, the identification of several AD risk 
genes associated with immune response and micro-
glia, such as CD33 and TREM2, through GWAS has 
shed light on their role in the disease [160]. In addition 
to these genes, sTREM2 and YKL-40, as well as other 
emerging cytokines, such as IL-6, MCP-1, and TGF-β1 
are showing promising potential as inflammatory candi-
date biomarkers. However, to fully comprehend the clini-
cal implications of these neuroinflammatory biomarkers, 
it is paramount to conduct large-scale longitudinal stud-
ies across the entire AD continuum [13].

sTREM2 has emerged as a promising biomarker of 
activated microglia and has been validated in longitudi-
nal studies in both pre-clinical and early AD. However, its 
widespread use is impeded by the fact that it can be easily 
measured in CSF, but not in blood. Despite this limita-
tion, TREM2 is still considered a promising therapeutic 
target for AD. One such investigational therapy is AL002, 
a humanized monoclonal IgG1 antibody that enhances 
TREM2 signaling to improve microglia survival and pro-
liferation [161]. AL002 is currently undergoing investiga-
tion in a 96-week, double-blind, placebo-controlled study 
that involves 265 patients with early AD (INVOKE-2 
study, ClinicalTrials.gov NCT04592874). The primary 
objective of this phase 2 study is to evaluate the impact 
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of AL002 on disease progression, measured through the 
Clinical Dementia Rating Sum Boxes (CDR-SB).

Numerous cross-sectional and longitudinal studies 
have consistently shown the potential of YKL-40 as a 
reliable biomarker of neuroinflammation in AD. YKL-
40 serves as an indicator of both activated microglia and 
reactive astrocytes and can be detected in both CSF and 
blood samples. Notably, several studies in the field of AD 
have highlighted the diagnostic significance of plasma 
YKL-40 levels in the early stages of dementia, such as 
MCI and mild clinical AD [92, 96, 97]. In addition, ele-
vated plasma concentrations of YKL-40 have been found 
to be positively associated with cognitive performance 
in individuals with subjective cognitive complaints [97]. 
However, it is important to note that increased YKL-40 
concentrations in CSF or plasma do not exclusively indi-
cate an inflammatory biomarker specific to AD or other 
neurodegenerative diseases. Accordingly, elevated YKL-
40 concentrations have also been observed in other con-
ditions such as stroke, atrial fibrillation, hypertension, 
and diabetes, as well as in association with vascular risk 
factors [86]. The non-specificity of YKL-40 expression 
in various age-related pathological conditions, includ-
ing neoplastic and cardiovascular diseases, as well as 
inflammatory disorders of different etiologies, poses a 
constraint on its future application as a biomarker in the 
older adult population [84, 162]. Moreover, while CSF 
YKL-40 concentrations have shown a moderately positive 
correlation with p-tau and t-tau, there was no correlation 
with Aβ, further substantiating its lack of specificity for 
AD [163]. Therefore, when utilizing YKL-40 in diagnos-
tic examinations, it is crucial to gather a comprehensive 
medical history of patient comorbidities to avoid misin-
terpretation of biomarker values [164].

IL-6 shows promise as a potential peripheral inflam-
matory biomarker for evaluating the severity of cognitive 
decline. However, there is currently a lack of a standard-
ized molecular panel of fluid inflammatory biomarkers 
that can be effectively used for screening purposes [33].

It is important to note that the literature on inflamma-
tory biomarkers and their ability to track the progression 
of AD contains some seemingly contradictory findings. 
A recent 10-year longitudinal study involving CU older 
individuals identified a positive correlation between CSF 
sTREM2 levels and the risk of CDR conversion [165]. 
Conversely, other studies have found that elevated CSF 
sTREM2 levels are associated with a slower cognitive and 
clinical decline in AD [166] and in Aβ-PET-positive MCI 
[167]. Therefore, TREM2-related immune activation may 
influence the progression of age-related cognitive decline 
and AD symptoms differently, depending on the disease 
status and amyloid pathology. It has been hypothesized 
that throughout the AD continuum, neuroinflammatory 

biomarkers in blood and CSF exhibit a complex tempo-
ral progression, with distinct profiles for CSF and blood 
sTREM2, GFAP, and YKL-40 [168] (Fig. 3).

This complexity accounts for the apparent discrepan-
cies in the results of some neuroinflammatory biomarker 
studies and may also partially explain the failure of anti-
inflammatory therapies across the AD continuum to date. 
It is reasonable to assume that anti-inflammatory drugs 
were tested without considering the inflammatory sta-
tus of the trial participants. This situation is analogous to 
the initial studies with anti-Aβ drugs, which were tested 
in AD patients without assessing their brain Aβ deposi-
tion and tau load status. Ideally, future anti-inflammatory 
candidates should be tested in homogeneous subject 
populations, characterized by reactive astrocytosis (esti-
mated via plasma GFAP levels) and microglial activation 
(estimated via CSF sTREM2 levels).

A crucial consideration when utilizing AD neuroin-
flammatory biomarkers is their lack of specificity. For 
instance, it is well-established that blood GFAP eleva-
tions are not exclusive to AD, as they are also observed 
in other acute CNS conditions such as ischemic stroke or 
traumatic brain injury [169]. Similarly, while low plasma 
sTREM2 has been associated with Aβ accumulation 
and CSF p-tau levels, a comparable decrease has been 
reported in vascular dementia [170]. To enhance specific-
ity, a combination of inflammatory biomarkers might be 
a viable option [139].

However, we posit that the lack of disease specificity in 
blood biomarkers should not be viewed as a limitation. 
Instead, it could serve as a valuable initial screening tool. 
A positive result for a specific blood biomarker test could 
be interpreted as a non-specific signal of neuroinflamma-
tion, neurodegeneration, or Aβ brain deposition, under-
scoring the need for additional confirmatory testing and 
further clinical examinations [171].

Currently, the AT(N) classification system is extensively 
utilized as a biological staging model for AD. It assesses 
three specific classes of biomarkers, i.e., Aβ, tau pathol-
ogy, and neurodegeneration/neuronal injury. Recent 
advancements have identified promising blood-based 
biomarkers for each category—including Aβ1-42/Aβ1–40 
ratio, phosphorylated tau, and NfL. The Alzheimer’s 
Association has published recommendations for blood-
based biomarkers, emphasizing the need for longitudi-
nal and observational clinical trials to establish changes 
in peripheral biomarkers over time in patients with AD. 
These trials should also monitor changes in clinically rel-
evant outcomes, such as cognition and motor functions 
[172, 173]. Recently, there has been a proposal to enhance 
the AT(N) matrix by introducing the ATI(N) system, 
with the addition of a neuroinflammatory biomarker 
denoted as “I”. The Alzheimer’s Association workgroup 
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is proposing the inclusion of glial GFAP as a biomarker 
of inflammation and astrocyte activation in their revised 
diagnostic criteria for AD. This proposal is based on the 
growing evidence supporting the role of astrocyte reac-
tivity in the pathogenesis of AD. In the near future, it is 
anticipated that specific “threshold” serum GFAP lev-
els will be established to define “astrogliosis positivity” 
along the AD continuum [171], providing a standard-
ized approach for assessing astrocyte activation in AD 
patients. To support this endeavor, a study involving 371 
healthy Danish volunteers aged between 21 and 90 years 
has already determined the normal range of serum GFAP 
levels across different age groups [174]. This expanded 
plasma ATI(N) system, in combination with APOE geno-
typing and cognitive testing, presents an opportunity for 
personalized assessment, enabling a therapy approach 
tailored to the specific biomarker profiles of patients with 
AD.

Conclusion and future directions
Recent longitudinal studies have successfully recruited 
large cohorts of individuals with accurate clinical char-
acterizations, leading to the identification of poten-
tially reliable blood-based candidate biomarkers of 

neuroinflammation in AD. These markers offer a prac-
tical and non-invasive means of screening and moni-
toring the inflammatory status of the brain in the AD 
continuum and hold potential to identify and categorize 
patients at risk of developing AD, thereby enhancing the 
screening procedures for potential participants in AD 
clinical trials and choosing a disease-modifying therapy 
based on altered biomarker profiles [19].

Longitudinal studies suggest that CSF sTREM-2 exhib-
its a dynamic response linked to microglial activity as the 
disease progresses and increased CSF sTREM-2 concen-
trations are associated with high levels of NfL, indicating 
axonal injury [76]. CSF sTREM-2 might be validated as 
a new biomarker for tracking the progression from pre-
clinical AD/MCI to AD dementia that correlates with the 
progression of CSF Aβ and tau. However, the widespread 
use of sTREM-2 is impeded by the fact that it can be eas-
ily measured in CSF, but not in blood. Despite this limita-
tion, TREM-2 is still considered a promising therapeutic 
target for AD. One such investigational therapy is AL002, 
a humanized monoclonal IgG1 antibody that enhances 
TREM-2 signaling to improve microglia survival and pro-
liferation [161]. AL002 is currently undergoing investiga-
tion in a 96-week, double-blind, placebo-controlled study 

Fig. 3 Hypothetical time course profiles of main fluid neuroinflammatory biomarkers (GFAP, sTREM2, and YKL‑40) across the AD continuum. The 
biomarker levels presented in the graph are referred to their normal range and should not be compared with each other. AD Alzheimer disease, CSF 
cerebrospinal fluid, GFAP glial fibrillary acidic protein, MCI mild cognitive impairment, sTREM2 soluble triggering receptor expressed on myeloid cells 
2, YKL-40 chitinase‑3‑like protein 1
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that involves 265 patients with early AD (INVOKE-2 
study, ClinicalTrials.gov NCT04592874). The primary 
objective of this phase 2 study is to evaluate the impact 
of AL002 on disease progression, measured through the 
Clinical Dementia Rating Sum Boxes (CDR-SB).

According to cross-sectional and longitudinal stud-
ies YKL-40 possesses a good potential as a reliable bio-
marker of neuroinflammation in AD, because its levels 
are increased in preclinical AD [92] and linked to bio-
markers of neurodegeneration (total tau, t-tau), tau-
mediated toxicity (p-tau) [89]. YKL-40 might be helpful 
in distinguishing individuals with MCI who will convert 
to AD from those who will remain stable at 5 years [86]. 
Additionally, serum concentrations of YKL-40 can effec-
tively distinguish between CU individuals and those with 
mild dementia, with a sensitivity and specificity of 85% 
[164], although it is not clinically useful in differentiat-
ing the characteristic AD phenotype and increased YKL-
40 concentrations in CSF or plasma have been found in 
various age-related pathological conditions, posing a 
constraint on its future application as a biomarker in the 
older population [84].

When considering all neuroinflammatory biomarkers 
and all recent longitudinal studies, GFAP emerges as the 
most promising biomarker, effectively tracking reactive 
astrocytes and enabling the identification of Aβ-positive 
CU individuals who exhibit early signs of p-tau pathol-
ogy, with its plasma concentrations being indicative of 
early-stage dementia and in MCI who progress into AD 
[175]. By assessing a combination of plasma biomarkers, 
such as the ratio between the Aβ1–42 and Aβ1-40, p-tau217, 
NfL, and GFAP concentrations, it may be possible to cre-
ate a novel effective panel for assessing the risk of devel-
oping AD [19, 116].

According to the evidence discussed in the present 
review, we believe that enhancing the AT(N) matrix 
by introducing the ATI(N) system, with the addition of 
neuroinflammatory biomarkers denoted as “I” (CSF and 
blood “I” biomarkers), such as GFAP, might significantly 
improve, in combination with the other biomarkers and 
cognitive testing, both the early diagnosis of AD and the 
development of disease-modifying drugs in future AD 
clinical trials.
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