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In linear and local stability analysis, the small amplitude disturbance behaviour has been

well understood for decades. In this context, convectively unstable flows act as noise am-

plifiers. In other words, a continuous excitation source at a fixed location triggers the

spatial growth (or decay) of disturbances downstream of it. Hence, these flows have been

traditionally analysed using a spatial stability analysis, where disturbances are assumed

temporally-periodic and spatially-unstable. Such a behaviour has been consistently veri-

fied by direct numerical simulations. The present investigation shows that this agreement

indeed occurs, but only close enough to the excitation source under certain parametric

conditions. When the excitation source triggers disturbances that decay in space, far away

from this source, spatially-periodic and temporally-unstable disturbances are allowed to

grow and become dominant. Evidence for the scenario just described is provided using

direct numerical simulations of the two-dimensional Prats problem.

I. INTRODUCTION

The distinction between convective and absolute instabilities lies in the long-time behaviour of an

infinitesimal wavepacket introduced in a fixed spatial location. If the wavepacket amplitude decays

in this limit, at its excitation point, the flow is stable or convectively unstable. Otherwise, the flow

is absolutely unstable. A good definition and review of this concept can be found in the paper by

Huerre and Monkewitz 1 , as well as in the books by Drazin and Reid 2 and Barletta 3 .

In a convectively unstable regime, disturbances grow in amplitude as they are convected away

from their excitation source. When this source acts over a finite period of time, they eventually

leave the domain, returning the flow to its equilibrium state. On the other hand, when this excitation

source emits a continuous time periodic signal at an unstable frequency, disturbances that oscillate

at this same frequency and grow in time are continuously generated and convected downstream.

In this case, an observer should see, in an asymptotic regime, disturbances that are temporally-

periodic and spatially-unstable (grow in space at given instant of time). Instead, if the excitation

source emits a continuous time periodic signal at a stable frequency, disturbances that oscillate at

this same frequency are damped in time. In this situation, the observer sees disturbances that are

temporally-periodic and spatially-stable (decay in space at given instant of time).

The pioneering stability analyses that identified the parametric condition characterizing the on-

set of convective instabilities in a fluid saturated porous medium were reported by Horton and

Rogers Jr 4 and by Lapwood 5 . Later on, Prats 6 investigated the effect of a basic throughflow on

this onset. In the following years, several analyses have been done by considering additional effects,

such as different ways of heating or different kinds of fluids7–10. The analyses mentioned above are

related to the study of spatially-periodic disturbances that can grow in time. When a zero temporal

growth rate is imposed, the onset of convective instability can be determined for these cases.

Another way to understand instability is to consider temporally-periodic disturbances that can

grow in space. This approach is usually employed in a spatial stability analysis to investigate the

flow behaviour when it is convectively unstable. There are not many studies in the literature dealing

with spatial stability analyses, especially in the context of fluid saturated porous media. Delache,

Ouarzazi, and Combarnous 11 investigated the spatio-temporal instability of mixed convective flows

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
1
9
9
0
5



2

in porous media, without detailing all the features relative to the spatial framework, focusing on the

transition to absolute instability. Results for the transition to absolute instability of this problem can

be also find in Barletta and Alves 12 and Barletta 3 .

Spatially unstable problems can be treated as initial values problems13–15. The idea, in that case,

is to consider the forcing oscillator as acting only for t > 0. In this sense, due to the persistence of

the initial condition, the spatial instability branches are divided into those that exist downstream and

upstream of the source. This problem, also known as the signaling problem, was first analysed by

Gaster 16 . Recently, Barletta 17,18 investigated the spatially developing modes on the Prats problem

by means of the linear theory. Barletta considered temporally-periodic disturbances that have no

memory of the initial conditions. For this reason, the persistence of the initial conditions is not

an issue here. As expected, instead of the single mode found in a temporal stability analysis, this

author found four modes. These particular spatial stability results, however, provide a perspective

different from that of an initial value problem.

Nonlinear simulations are often used both to validate and to give further insights into the the-

oretical results. Dufour and Neel 19 have investigated this same problem by means of numerical

simulation, without detailing the spatial behaviour of disturbances developing from a source. They

focused on self-sustained oscillations, which appear above the absolute instability threshold. Then,

Dufour and Néel 20 demonstrated the existence of the time-periodic convective patterns between

the convective and the absolute instability thresholds. It is important to note that they did not find

spatially-periodic disturbances in this convectively unstable flow.

The present paper, on the other hand, identifies conditions where the disturbance behaviour does

not necessarily follow the trends of the studies mentioned before. This is observed in direct numer-

ical simulations of the Prats problem. In the present study, we remain always below the absolute

instability threshold in order to avoid the possibility of self-sustained oscillations. In addition, we

remain above the convective instability threshold.

The goal is to investigate the existence of spatially-periodic temporally-unstable disturbances in

the Prats flow excited by a time periodic source located at a fixed spatial position. In other words, we

aim to demonstrate that, in a convectively unstable regime, even when temporally-periodic spatially-

stable disturbances are excited, spatially-periodic temporally-unstable disturbances may appear far

enough from the excitation source.

A buffer zone is employed at the outlet to avoid numerical waves propagating back into the

solution, in order to emulate a semi-infinite domain. Hence, the present study cannot be classified

as being part of either temporal or spatial instability studies in the sense described above. It is set

up in such a way as to allow both types of modes to co-exist. The next section presents the Prats

problem to the reader, the following two sections describe in detail the mathematical formulation

of this problem and the numerical tools employed to solve it, respectively. They are followed by

a results section, showing the co-existence of both disturbances types. The paper then ends with

conclusions and future work. An appendix is also included to summarize the extensive parametric

numerical study performed to make sure that the observed behaviour is physical and not a numerical

artefact.

II. PRATS PROBLEM

The appearance of convective cells in an initially purely conductive state is an important phe-

nomenon that is nowadays widely explored in the literature. Studies in this area started with the

experiments carried on by Bénard 21 , in which he observed the appearance of convective cells in

a layer of fluid heated from below. Such convective cells could be observed just for certain val-

ues of the temperature difference between the upper and lower bounds. In other words, there is a

critical temperature difference beyond which there succeed a transition between these two different

regimes. Later on, Lord Rayleigh 22 proposed the first theoretical explanation for this phenomenon,

by considering buoyancy as the driving mechanism of it. Based on small disturbances analysis, he

was able to find a theoretical value for such critical temperature difference. In honour of these two

important pioneering contributions, the phenomenon of buoyancy-driven convection in a fluid layer

is known nowadays as Rayleigh-Bénard (RB) convection.
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g

T=0 v=0

T=1 v=0

T=1-z+γsin(ω0t)sin(πy)

u=Pe

FIG. 1. Sketch of the problem.

The counterpart of the RB problem for a porous media is also known as Horton-Rogers-Lapwood

(HRL) problem, in honour of the pioneering works made by Horton and Rogers Jr 4 and by Lap-

wood 5 in this field. They investigated the appearance of convective cells in a porous medium

saturated by a Newtonian fluid at rest bounded by horizontal impermeable walls at prescribed tem-

peratures. In order to the convective cells to take place, the lower wall must be hotter than the

upper one. They found that the critical dimensionless temperature difference (which is given by the

Darcy-Rayleigh number) for this case is R = 4π2.

As mentioned in the last Section, Prats 6 was responsible to take into consideration the effect of

a throughflow in the analysis of the HRL problem. He found that the presence of the throughflow

did not affect the critical temperature difference, but only the characteristics of the convective mo-

tion. Namely, in the presence of throughflow the emerged convective cells are not stationary, but

oscillatory. For this reason, the problem of investigating the emergence of convective cells in a

saturated porous medium with uniform throughflow is nowadays called Prats problem. Theoretical

and experimental investigations have found that the convective structures emerging in the transition

to instability in the Prats problem are transverse, and consequently two-dimensional9,23.

III. MATHEMATICAL FORMULATION

A two-dimensional fluid saturated porous layer of height H, represented in Figure 1, is consid-

ered. The flow is defined in the (x,y) plane, where the y axis is vertical. The fluid is assumed to

be Newtonian and the layer is horizontal and bounded by impermeable y = constant walls with

prescribed temperatures. The lower wall at y = 0 has a temperature T = Th, while the upper wall at

y = H has a temperature T = Tc < Th. In the basic stationary state, the fluid is assumed to flow with

a constant Darcy velocity u0 and the layer is assumed to be infinitely wide in the flow direction.

Local thermal equilibrium between the fluid and solid phases is invoked. The Oberbeck-Boussinesq

approximation is adopted where the momentum balance equation is given by Darcy’s law. The

mass balance, momentum balance and energy balance equations are represented in the following

dimensionless formulation:

∇·u= 0, (1)

u=−∇P−RTg, (2)
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∂T

∂ t
+u ·∇T = ∇2T, (3)

with the boundary conditions

y = 0 : v = 0, T = 1, (4a)

y = 1 : v = 0, T = 0. (4b)

The scaling adopted to nondimensionalize Eqs. (1)-(4) is defined as

u
H

α
→ u, x

1

H
→ x, t

α

σH2
→ t,

T −Tc

Th −Tc

→ T, P
K

αµ
→ P. (5)

Here, u = (u,v) is the velocity vector, α is the effective thermal diffusivity, x = (x,y) is the

Cartesian coordinate vector, σ is the heat capacity ratio, P is the difference between the pressure

and the hydrostatic pressure, K is the permeability of the medium, µ is the dynamic viscosity and

ey is the unit vector in the vertical direction. The gravitational acceleration is g = −gey, where g

denotes the modulus of g. Two dimensionless groups emerge from this procedure,

R =
ρgβ (Th −Tc)HK

µα
, and Pe =

u0H

α
, (6)

namely, the Darcy-Rayleigh number and the Péclet number, respectively. In Eq. (6), ρ is the fluid

density at the reference temperature, which is chosen to be Tc, and β is the thermal expansion

coefficient.

A. Stationary solution

As already mentioned, the objective here is understanding how infinitesimal disturbances de-

velop, in time and space, from a source placed at a given position. More specifically, the task is

understanding how an equilibrium solution responds to infinitesimal disturbances generated by a

periodic source localized in space. This is done by considering simulations of large enough do-

mains over long enough times to allow for the existence of both temporally and spatially-periodic

disturbances. In order to do so, it is necessary to define a steady-state.

The stationary solution of Eqs. (1)-(4) is the conductive state for the temperature field induced

by the temperature difference between the vertical walls

T (y) = 1− y, (7)

where the overline is hereafter employed to denote the quantities relative to the stationary solution.

The dimensional throughflow velocity in the longitudinal direction is u0 which, in a dimensionless

formulation, becomes Pe. In a conductive regime, no flow is expected to take place in the vertical

direction. Hence, the stationary solution of Eqs. (1)-(4) for the velocity field is given by

u= (Pe,0). (8)

B. Streamfunction-temperature formulation

In order to solve numerically Eqs. (1)-(4), some efforts can be made to simplify the numerical

treatment without losing any generality in the physics. As mentioned before, according to theoreti-

cal and experimental results, the convective patterns that first emerge in the vicinity of the convec-

tive instability threshold in the Prats problem are transverse, and consequently two-dimensional23.
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5

This fact allow us to treat the problem by means of a two-dimensional streamfunction-temperature

formulation of the balance equations, namely

∇2ψ =−R
∂T

∂x
, (9)

∂T

∂ t
+

∂ψ

∂y

∂T

∂x
−

∂ψ

∂x

∂T

∂y
= ∇2T. (10)

The boundary conditions, for the present formulation, are rewritten as

y = 0 :
∂ψ

∂x
= 0, T = 1, (11a)

y = 1 :
∂ψ

∂x
= 0, T = 0, (11b)

with

u =
∂ψ

∂y
, v =−

∂ψ

∂x
. (12)

The stationary solution for the streamfunction variable, considering the definition (12) and the

stationary solution for the velocity (8), is given by

ψ = Pey+constant, (13)

where the constant is defined in such a way to have ψ(y = 0) = 0.

IV. NUMERICAL PROCEDURE

The direct numerical simulation is performed here by means of finite-difference-based meth-

ods. The discretization of the convective terms in the energy equation (10) uses the third-order

upwind scheme, while the diffusive terms are discretized by the fourth-order central finite differ-

ence scheme. The time integration is done by the third-order Runge-Kutta scheme. The Poisson’s

equation (9) is solved by means of an over-relaxed Gauss-Seidel method. The relaxation parameter

is assumed to be equal to 1.9. More details about the simulations that generated the results shown

in the following section are discussed next. However, it must be emphasized here that several other

tests were performed to make sure these results are physical and not numerical artefacts. These

additional tests are briefly described in Appendix A.

A. Initial, inlet and outlet conditions

The problem is initially formulated for a semi-infinite domain in the longitudinal direction. For

obvious reasons, it is not possible to simulate numerically a truly semi-infinite domain. Therefore,

it is imperative to truncate the domain.

The initial condition is considered to be the same stationary solution presented in the previous

section. By assuming that the fluid is moving in the positive direction of the longitudinal axis x,

inlet and outlet boundary conditions for this direction are considered. The inlet condition is defined

by equation (15). At the outlet, it is assumed a zero normal derivative boundary condition for both

streamfunction and temperature, namely
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∂T

∂x

∣

∣

∣

∣

x=L

= 0,
∂ψ

∂x

∣

∣

∣

∣

x=L

= 0. (14)

In order to investigate the flow response to infinitesimal disturbances, we localize the periodic

source at the inlet, i.e. x = 0. In other words, the inlet condition is formed by a superposition of the

stationary solution and a temporal oscillator in the form of,

T (x = 0,y, t) = T (y)+ γ sin(ωot)sin(πy), (15)

where ωo is the oscillation frequency, γ is the amplitude coefficient, and the y-dependence is chosen

in such a way as to satisfy the boundary conditions at the upper and lower walls. Here, we assume

γ = 10−3.

B. Non-reflecting boundary condition

As disturbances start to grow, and the solution departs from the stationary regime, numerical

reflection issues might arise when these disturbances reach the outlet of the domain. Here, we

adopted a technique, developed for aerodynamic and aeroacoustic simulations, that attempts to

impose a non-reflecting boundary condition to avoid such problems. This technique consists of

introducing a buffer in a specific area of the computational domain within which the solution is

smoothly attenuated and forced to converge to a desirable target, without producing a reflection.

Further details about this technique can be found in Freund 24 and Richards et al. 25 .

There are three distinct ways of applying this technique: (i) explicitly, after each time step; (ii)

implicitly, by adding the buffer in the governing equations; (iii) implicitly, by adding an artificial

convection in the governing equations. In the present work, only (i) and (ii) are considered. The

second type is applied in the energy equation, in order to damp temperature, while the first type is

applied directly to the streamfunction variable after each solution of Poisson’s equation.

The first type can be represented by

ψ̂ = ψ −δ (x)
(

ψ −ψtarget

)

, (16)

where ψ̂ is the damped streamfunction, δ is the damping function and ψtarget is the reference solution

towards which the solution is forced to converge in the buffer zone. For the second type, the buffer

is added to the energy equation

∂T

∂ t
+

∂ψ

∂y

∂T

∂x
−

∂ψ

∂x

∂T

∂y
= ∇2T −δ (x)

(

T −Ttarget

)

, (17)

where, analogously, Ttarget is the reference solution to which the solution is forced to converge in the

buffer zone. The damping function δ (x) is defined by

δ (x) =







0 0 ≤ x ≤ L− l

δm

[

x−(L−l)
l

]b

L− l ≤ x ≤ L,
(18)

where l represents the dimension of the buffer zone at the outlet and β represents the form of the

damping curve. Here, l = 3, δm = 104, b = 2 and L = 100. In this study, the stationary solution is

used as the reference solution.
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∆x = ∆y wavenumber spatial growth-rate

1/10 2.89272 0.466697

1/15 2.87805 0.467054

1/20 2.87425 0.468653

1/25 2.87149 0.468616

1/30 2.87090 0.469331

LSA 2.84295 0.515850

TABLE I. Wavenumber and spatial growth-rate obtained by interpolating the streamfunction disturbance for

R = 50, Pe = 10 and ωo = 30; dimensionless time t = 10 and time step ∆t = 10−5; results from linear stability

analysis (LSA) are presented in the bottom line.

V. DISCUSSION OF THE RESULTS

Results are presented for the streamfunction perturbation field, which is obtained by subtracting

the steady state from the total field. All simulations have been done with a fixed time step of ∆t =
10−4 and a fixed spatial resolution of ∆x=∆y= 1/25. Mesh and time step convergence studies were

performed for the particular case of R = 50,Pe = 10 and ωo = 30 using the disturbance wavenumber

and spatial growth-rate measured just downstream of the source. Higher Pe flow simulations require

higher temporal and spatial resolutions. This is the reason why the temporal and spatial resolutions

specified for the higher Pe chosen for the verification study is maintained when studying the physics

behind the smaller Pe cases discussed. Tables I and II show these results for a fixed temporal

resolution and a fixed spatial resolution, respectively, at dimensionless time t = 10. This results

are the aim of doing a convergence analysis of the spatio-temporal resolution of the numerical

procedure. While the results for wavenumber coincide well with those from the linear analysis,

there is a higher discrepancy for the results concerning the spatial growth-rate. It is expected that

linear stability results can be reproduced in asymptotic regimes. In order to get more accurate results

for the spatial growth-rates, larger values of the dimensionless time should be considered. Even so,

a reasonable agreement between ours and linear results can be found for both wavenumber and

spatial growth-rate. These results justify the aforementioned resolution choices.

In order to understand the transition process, the streamfunction disturbance spatial spectra at

different times and temporal spectra at different positions are analysed. Since we are interested in

the dominant modes, i.e. their wavenumber and frequency, each spectrum presented here has been

normalized to its maximum. In order to compute the spatial and temporal spectra for this problem,

we consider the discrete Fourier transform of the streamfunction disturbances

Ψp =
N

∑
q=1

(ψ −ψ)q exp
i2π(q−1)(p−1)

N , (19)

where Ψ represents the discrete Fourier transformed variable, ψ −ψ is the disturbance stream-

function, q is the primitive discrete independent variable, p is the transformed discrete independent

variable and N is the number of points of the discrete domain (temporal or spatial). It is important

to note that the general form of this transformation is the same one for both spatial and temporal

transformations. In the spatial case, p is related to the wavenumber, while in the temporal case p is

related to the frequency.

For the next results, we considered two values of Pe, namely Pe = 2 and Pe = 5. Since we are

interested in convectively unstable regimes, we consider values of control parameters that are within

this range. The onset of convective instability occurs, for every Pe, at R = 4π2 ≃ 39.4784. The

transition to absolute instability, it occurs at R= 40.4548 for Pe= 2 and at R= 45.0276 for Pe= 57,9.

For this reason, we set R = 40 for Pe = 2 and R = 43 for Pe = 5 in the following analysis.
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∆t wavenumber spatial growth-rate

1×10−4 2.86787 0.469472

5×10−5 2.86970 0.469167

1×10−5 2.87149 0.468616

LSA 2.84295 0.515850

TABLE II. Wavenumber and spatial growth-rate obtained by interpolating the streamfunction disturbance for

R = 50, Pe = 10 and ωo = 30; dimensionless time t = 10 and spatial resolution ∆x = ∆y = 1/25; results from

linear stability analysis (LSA) are presented in the bottom line.
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FIG. 2. Streamfunction disturbance distribution (a) for Pe = 2, R = 40 and ωo = 6 for different instants of time

and its respective spatial spectrum (b); dashed line represent the wavenumber kto = 3 obtained from temporal

analysis at Pe = 2, R = 40 and ωo = 6; dot-dashed line represent the wavenumber ks = 2.95949 obtained from

spatial analysis at Pe = 2, R = 40 and ωo = 6.

Figures 2 (a) to 5 (a) show the absolute value of the streamfunction disturbance distribution along

x for the fixed value of y = 0.5 and (b) their respective spatial spectra, where A is the normalized

amplitude of Ψp. Figures 2 (a) and 4 (a) suggest a spatial amplification of the disturbances from

the inlet. On the other hand, Figures 3 (a) and 5 (a) show an initial spatial decay from the periodic

source followed by a growth at large times.

Figures 2 (b) and 4 (b) show that, for t = 100, the dominant modes remain quite close to the

wavenumber kto = 3 (dashed line), which is obtained from the temporal analysis considering the

source oscillation frequency ωo. In this case, it is possible to demonstrate that the angular frequency

is given by ω = k Pe. In fact, kto = ωo/Pe = 3, which is close to ks for both cases. The wavenumber

ks, relative to the spatial instability mode that should be observed in a initial value problem according

to the signalling theory13–15 is represented by the dot-dashed line. The spectra peaks seem to be

closer to kto, even if ks is also very close to these values.

On the other hand, Figures 3 (b) and 5 (b) show that, for long times, the dominant mode wavenum-

t=10

t=100

t=200

t=300

t=400

t=500

0 20 40 60 80 100 120

10
-17

10
-13

10
-9

10
-5

0.1

x

|ψ
-
ψ
|

(a)

t=10

t=100

t=200

t=300

t=400

t=500

kt+

ks

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

wavenumber

A

(b)

FIG. 3. Streamfunction disturbance distribution (a) for Pe = 2, R = 40 and ωo = 10 for different instants of

time and its respective spatial spectrum (b); dashed line represent the wavenumber kt+ = 3.16222 relative to

the disturbance with maximum growth rate obtained from temporal analysis at Pe = 2 and R = 40; dot-dashed

line represent the wavenumber ks = 4.09292 obtained from spatial analysis at Pe = 2,R = 40 and ωo = 10.
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t=1

t=10

t=100

0 20 40 60 80 100

10
-15

10
-11

10
-7

0.001

x

|ψ
-
ψ
|

(a)

t=1

t=10

t=100

kto

ks

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

wavenumber

A

(b)

FIG. 4. Streamfunction disturbance distribution (a) for Pe = 5, R = 43 and ωo = 15 for different instants

of time and its respective spatial spectrum (b); dashed line represent the wavenumber kto = 3 obtained from

temporal analysis at Pe = 5, R = 43 and ωo = 15; dot-dashed line represent the wavenumber ks = 2.88725

obtained from spatial analysis at Pe = 5, R = 43 and ωo = 15.
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FIG. 5. Streamfunction disturbance distribution (a) for Pe = 5, R = 43 and ωo = 10 for different instants of

time and its respective spatial spectrum (b); dashed line represent the wavenumber kt+ = 3.27596 relative to

the disturbance with maximum growth rate obtained from temporal analysis at Pe = 5 and R = 43; dot-dashed

line represent the wavenumber ks = 2.13929 obtained from spatial analysis at Pe = 5, R = 43 and ωo = 10.

ber is almost equal to kt+, which is the wavenumber, computed from temporal analysis, relative to

the maximum temporal growth rate. If the source excites an unstable spatial mode, one expects

their frequencies to match. Figures 6 and 7 show the temporal spectra of the disturbances measured

at y = 0.5 and different positions along x. For the cases in which the source frequency excites di-

rectly an unstable temporal mode (a), the dominant frequency observed is the oscillator frequency

ωo (dot-dashed line). Instead, for the cases in which the unstable temporal modes are not excited

directly by the source (b), the dominant frequency is ωo only in the vicinity of the source. Far from

it, the dominant frequency is that predicted by the temporal analysis with largest temporal growth

rates, ωt+ (dashed line).
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FIG. 6. Temporal spectra of streamfunction disturbance for Pe = 2, R = 40, ωo = 6 (a) and ωo = 10 (b) for

different positions in the spatial domain; ωt+ = 6.32444.
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FIG. 7. Temporal spectra of streamfunction disturbance for Pe = 5, R = 43, ωo = 15 (a) and ωo = 10 (b) for

different positions in the spatial domain; ωt+ = 16.3793.

These results suggest that, when the oscillator frequency does not excite directly an unstable

temporal mode, the solution is dominated by the temporal mode with the largest growth rate. In

fact, the dominant modes in Figures 3 (b) and 5 (b) seem to coincide with those relative to the must

unstable mode kt+ = 3.16 and kt+ = 3.27, respectively. In the same way, the dominant frequencies

far from the source in Figures 6 (b) and 7 (b), coincide with the frequency of the most unstable

modes, ωt+ = 6.32444 and ωt+ = 16.3793, respectively. Furthermore, the temporal spectra for x= 5

indicate that, near the source, the frequency is always coincident to that of the source. This evidence

indicates that, in the vicinity of the oscillator, the spatial modes can be present and dominant. Away

from the source, the dynamics seems to be entirely determined by the dominant temporal mode.

It is important to remark that, in Figures 6 (a) and 7 (a), the temporal spectra is calculated for

dimensionless time up to t = 100, while for Figures 6 (b) and 7 (b) it is done up to t = 500. This is

done here in order to avoid the presence of harmonic modes due to the nonlinear saturation.

The linear stability results used here to facilitate the comprehension of the nonlinear results were

obtained from the analytical dispersion relation presented by Barletta 18 . This relation is the same

for both temporal and spatial analyses. In practice, the only difference is that the frequency is

real and the wavenumber is complex for a spatial analysis, while the wavenumber is real and the

frequency is complex for a temporal analysis. The analytical expression for the dispersion relation

is given by18

− k2
− π2 + iω +

k2 R

k2+π2
− i k P = 0, (20)

where k is the wavenumber and ω is the frequency. In a temporal approach, by fixing a real value

for k it is possible to obtain the complex value of ω for each assigned value of P and R. On the

other hand, in a spatial approach, it is possible to obtain the complex value of k by fixing a real

value of ω . Figure 8 shows how the frequency varies as a function of the real wavenumber for

both temporal (continuous curves) and spatial (dashed curves) analyses. Basically, if one expect

the disturbance behaviour to follow the spatial linear analysis, it is sufficient to look for the corre-

spondent wavenumber (ks) relative to ωo in Figure 8 (b) and its correspondent growth rate given by

Figure 8 (a). On the other hand, the most unstable temporal modes are given by the correspondent

wavenumber (kt+) of the maximum value of the continuous curves in Figure 8 (a), with ωt+ being

the correspondent frequency of such wavenumber.

VI. CONCLUSIONS

In the present study, we provided evidence for the existence of spatially-periodic temporally-

unstable disturbances in the convectively unstable Prats flow. We considered a source located at

x = 0 that produced a time-periodic signal with a constant frequency. The nonlinear equations

were solved directly by means of a high-order finite difference scheme. The main results can be

summarized as follows:
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FIG. 8. Temporal (solid curves) and spatial (dashed curves) growth rate (a) and oscillation frequency (b)

versus wavenumber computed from linear stability analysis18.

1. Near the excitation source, temporally-periodic spatially-stable/unstable modes emerge and

decay/grow downstream with the same frequency.

2. When the temporally-periodic mode excited is spatially-unstable, spatially-periodic temporally-

unstable modes do not appear. Otherwise, spatially-periodic temporally-unstable modes

eventually appear far from the excitation source.

3. When the excitation source frequency is within the range of temporally-unstable frequencies

of the spatially-periodic mode, they will have the same frequency. Otherwise, the spatially-

periodic mode with the highest temporal growth rate appears.

4. Nonlinear simulations were performed under several different numerical conditions (see Ap-

pendix A), but they all yield similar results, strongly suggesting that these results are physical

and not numerical artefacts.

Although the present results are specific for the two-dimensional Prats problem, we have no

reason to think that this dynamics should change for three-dimensional problems. For this reason,

we believe that this same dynamics could be observed for other types of parallel flows.

The present results suggest several new research paths. For instance, one could investigate if

the same trends observed here are indeed observed in other convectively unstable flows. This can

be done for instabilities that are either thermal or hydrodynamic in nature. Examples of the former

include the Prats problem in the presence of viscous dissipation, as well as the effect of local thermal

non-equilibrium and anysotropic media. Examples of the latter include Poiseuille and Couette flows.

A specially important and challenging development, is an alternative nonlinear approach where the

focus is on the time-periodic regime induced by the oscillating source of the flow disturbances. Such

different paths will be the subject of future investigation.
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Appendix A: Numerical tests

In order to guarantee that the results shown here are physically meaningful, and not a byproduct

of undesirable numerical influences, the following parametric tests were performed:

1. Different values for the disturbance amplitude (γ in equation (15)) in x= 0: γ = 10−3,10−5,10−7.

2. Different lengths for the horizontal channel: L = 20,50,100,150,200.
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FIG. 9. Comparison between different locations of the excitation source for Pe = 2, ω = 10, and R = 40 (left)

and Pe = 5, ω = 10, and R = 43 (right).
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FIG. 10. Comparison between different dimensions of the channel for Pe = 10, ω = 80, and R = 45 (top-left),

Pe = 5, ω = 10, and R = 43 (top-right) and Pe = 2, ω = 10, and R = 40 (bottom).

3. Different locations for the excitation source: inlet, outlet, and middle of the domain. At the

inlet and outlet boundaries, the disturbances are introduced in the same way, as described

by equation (15). On the other hand, when introducing the disturbances in the middle of

the domain, a Gaussian-like source term was added to the energy equation. Introducing the

disturbances at the outlet provides different results from a physical perspective. Since we

are below the absolute instability threshold, there should be no disturbance waves travelling

upstream, in such a way that in this case the disturbances travel directly outside the domain,

leaving the domain undisturbed.

4. Different buffer parameters. From these tests, the optimal parameters defined in Section IV B

were determined.

All the tests mentioned above provided the same behaviour of the numerical results, as it can

be confirmed by Figures 9-12. For each figure, the same simulation time was considered for the

different cases. This fact leads us to believe that the numerical scheme is robust and the results

observed are indeed physically meaningful.
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