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A B S T R A C T   

Global energy consumption increases year after year, causing the depletion of non-renewable sources. According 
to the International Energy Agency (IEA), global demand for electrical energy is expected to increase by 3.3 % in 
2024. Therefore, developing new renewable sources is urgent, including new devices for energy storage and 
conversion, particularly those based on electrochemical reactions. Water splitting is a clean and sustainable 
technology capable of facing this issue by producing oxygen and hydrogen from water and electricity. However, 
an issue related to this technology is the slow kinetics of oxygen evolution reaction, making it necessary to 
develop new electrocatalysts with high electrochemical performance. To meet this requirement, this work deals, 
for the first time, with a high entropy oxide with a rock-salt structure synthesized by a green sol–gel synthesis 
using red seaweed (Rhodophyta) as a polymerizing agent. Sol-gel synthesis allows the large-scale production of 
nanomaterials with high uniformity and dispersion of the involved chemical elements. The literature, which 
discussed the synthesis of these oxides, reveals that agents harmful to the environment are employed, including 
sodium hydroxide, acetic acid, hexadecyltrimethylammonium bromide, urea, and ammonium hydroxide. The 
composition of the high entropy oxide is (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O. As electrocatalyst for oxygen evolution 
reaction, it exhibits a low overpotential (336 mV vs. RHE at 10 mA cm− 2), a Tafel slope of 68 mV dec-1, and 
excellent durability. The electrochemical performance of the high entropy oxide prepared in this work is superior 
to other electrocatalysts of the same class that were produced using transition metal-based precursors.   

1. Introduction 

In recent decades, mainly due to the advent of new technologies with 
the exponential growth of the population, there has been a search for the 
development of new materials with better functional properties [1]. In 
this scenario, the class of high entropy ceramic materials stands out 
among various groups, such as carbides, borides, nitrides, and oxides 
[2]. High entropy oxides (HEO) [3] or entropy stabilized oxides (ESO) 
have attracted much attention due to their remarkable physicochemical 

properties such as thermal and chemical stability, enormous dielectric 
constant, electrocatalytic performance, stability, increased ionic con-
ductivity, magnetic properties, besides being environmentally friendly 
and low cost [4–9]. Furthermore, HEO are solid solutions of MO6 species 
formed by five or more different cations (M) with equimolar or nearly 
equimolar concentrations, which generate synergistic effects producing 
thermodynamic stabilizations to obtain a highly configurable system 
entropy [7,8]. 

Based on the above concept, the first high entropy oxide 
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NixMgxCoxCuxZnxO system with (x = 0.2) was synthesized in 2015 by 
Rost et al. [8]. Later, in 2017, they used the EXAFS technique to observe 
and understand the average local environment surrounding individual 
absorbing species [10]. The samples were prepared by the solid state 
reaction method from a mixture of the divalent oxides of NiO, MgO, 
CoO, CuO and ZnO. They were able to obtain a single-phase, charac-
terized by the rock-salt crystal structure (face-centered cubic-FCC), 
despite the different crystalline structure usually found for Cu oxides 
(tenorite, monoclinic) and Zn (wurzite, hexagonal) with space group 
(C2/c) and (P63mc), respectively [11]. The high entropy oxides can be 
synthesized by other methods such as combustion [12], citrate precursor 
[2], co-precipitation [13], spray pyrolysis [14], solvo/hydrothermal 
[15], and sol–gel [16]. 

Among them, the proteic sol–gel method is based on the green syn-
thesis and provides a solution to the negative effects of chemical and 
physical methods, such as toxicity, due to the harmful substances which 
are released in the environment [17]. Moreover, it is considered a ver-
satile, fast, easy-to-perform, and low-cost [18,19]. The method uses a 
gelatin (Agar-agar) obtained from a red algae of the type Rhodophyta, 
which has the function of polymerizing agent to synthesize complex 
oxides [20,21]. Other polymerizing agents can be, for example, com-
mercial gelatin [22], and coconut water [23]. 

Agar-agar is a polysaccharide extracted from two different species of 
red seaweed (Gracilaria sp. and Gelidium sp.), and forms the supporting 
structure in the cell walls of those vegetables [24]. In addition, it is a 
biopolymer, hydrocolloid, and a polysaccharide source which, when in 
contact with water, forms a gel, called mucilage. Agar-agar is consti-
tuted by a heterogeneous mixture of two types of polysaccharides: 
agarose, a neutral polymer, and agaropectin, a charged sulfated poly-
mer. Agarose is the molecule responsible for the gelling action of agar- 
agar [25]. Due to its gelling properties, non-toxicity, biodegradability, 
and biocompatibility [24], it is widely used in food, cosmetics, and 
pharmaceutical industries, among others [25]. 

High entropy oxides can be used in various technological applica-
tions, such as catalysis, lithium-ion batteries, electrocatalysis, and en-
ergy storage and conversion devices [15,26,27]. Regarding the energy 
conversion processes, the electrochemical water splitting takes place 
through two semi-reactions: Hydrogen Evolution Reaction (HER) and 
Oxygen Evolution Reaction (OER) [15,28]. For the OER occurrence, a 
high overpotential is required to transfer the four electrons involved in 
the reaction, leading to a slow kinetics and low efficiency of the process 
[29]. Therefore, it is important to develop new electrocatalysts in order 
to reduce the overpotential and accelerate the reaction [30]. It is well 
known that the most efficient electrocatalysts are iridium and ruthenium 
oxides, but their high cost and scarcity in nature have limited their large- 
scale applications [15]. Therefore, one of the main challenges in elec-
trocatalysis is the development of materials with high electrochemical 
performance, low cost and composed of elements that are earth- 
abundant [7,15,26]. An example is the chemical compound used in 
this work which, in addition to having the characteristics mentioned 
above, displays a phase stabilization effect driven by entropy, mainly 
due to the high-temperature stability of Co, Ni and Cu [31,32]. Within 
this perspective, a catalyst made of high entropy oxides emerge as an 
alternative for OER processes. 

The main purpose of the present work is to synthesize a high entropy 
oxide of the type (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O by the green synthesis 
method using agar-agar as a polymerizing agent and to study its struc-
tural, morphological, optical and electrochemical properties. 

2. Materials and methods 

2.1. Chemicals 

All the reagents were of analytical grade and used without further 
purification. Magnesium nitrate (Mg(NO3)2⋅6H2O), nickel nitrate (Ni 
(NO3)2⋅6H2O), cobalt nitrate (Co(NO3)2⋅6H2O), copper nitrate (Cu 

(NO3)2⋅3H2O), zinc nitrate (Zn(NO3)2⋅6H2O) and Nafion solution (5 wt 
%) were acquired from Sigma-Aldrich (Saint-Louis, MO, USA). Isopropyl 
alcohol was obtained from Synth. Agar-agar was purchased from 
Gelialgas-Argargel (João Pessoa, Brazil). Nickel foam (porosity > 95 %) 
was purchased from QiJing Ltd., Ninghai, China. The electrode made 
with Ni foam has a square like shape with size of 1 cm2. 

2.2. Green synthesis 

The green synthesis method was used to obtain the high entropy 
oxide MgxNixCoxCuxZnxO (x = 0.2) using agar-agar as the polymerizing 
agent. The amounts of the Mg, Ni, Co, Cu, and Zn nitrates were equi-
molar, each equal to 5.7 mmol (totalizing 28.5 mmol). 

The synthesis was performed in several steps. First, the polymer so-
lution was prepared by mixing 2.0 g of agar-agar and 50 mL of distilled 
water at 60 ◦C, under stirring. Then, after adding the metal salts, the 
resulting solution was warmed up to 90 ◦C and kept under stirring until a 
gel was formed. Afterwards, the gel was pre-calcined at 350 ◦C for 2 h, 
the obtained powder was grinded and calcined at 900 ◦C for 2 h. Finally, 
the pre-calcination and calcination steps were repeated. All steps to 
obtain the high entropy oxide and the microstructural and electro-
chemical characterizations are shown in Fig. 1. 

2.3. Characterizations 

2.3.1. Structural and morphological characterization 
The crystalline properties of the high entropy oxide were studied by 

X-ray diffractometry (XRD) by employing a Shimadzu XRD-7000 
diffractometer, endowed with a Cu Kα source with wavelength λ =
1.5418 Å. The morphology and chemical homogeneity of the sample 
were investigated by field emission scanning electron microscopy 
(FESEM, Carl Zeiss, Supra 35-VP Model) equipped with a Bruker EDS 
detector (XFlash 410-M). Fourier transform infrared spectroscopy 
(FTIR) spectra of powders were obtained using a Shimadzu IRTracer- 
100 spectrometer, between 400 and 4000 cm− 1, using KBr pellets. 
Raman spectroscopy measurements were performed at room tempera-
ture using a laser with 532 nm as the excitation source. Magnetic 
measurements were obtained using a vibrating sample magnetometer 
(VSM) from Lakeshore, model 7400, at room temperature, with an 
applied maximum magnetic field of +15.0 kOe. The chemical states of 
the elements at the surface of the nanoparticles were studied by X-ray 
Photoelectron Spectroscopy (XPS) using a SPECS Phoibos 150 spec-
trometer with a monochromatized Al Kα X-ray source (1486.6 eV). 

2.3.2. Electrochemical characterization 
With regard to the electrochemical measurements, cyclic voltam-

metry (CV), linear sweep voltammetry (LSV), electrochemical imped-
ance spectroscopy (EIS), and chronopotentiometry were carried out 
using a PGSTAT204 potentiostat/galvanostat with a FRA32M (Metrohm 
Autolab) and a conventional three-electrode cell, consisting of the Ag/ 
AgCl reference electrode, a platinum wire as the counter electrode, and 
the sample of the high entropy oxide deposited on Ni foam used as 
working electrode, in a 1 M KOH electrolyte solution. The catalytic ink 
was prepared by mixing 5 mg of the HEO sample with 500 μL of iso-
propyl alcohol and dispersing the mixture in 50 μL of Nafion solution. 
Then, the ink was drop-casted onto clean substrates of Ni foam and dried 
at room temperature for 24 h. The potential was converted from Ag/ 
AgCl to the reversible hydrogen electrode (RHE) according to the 
following Eq. (1): 

ERHE = EvsAg/AgCl + E0
(Ag/AgCl) + 0.0059 pH (1) 

LSV measurements (sweep rate of 5 mV s− 1) were performed from 
0 to 1 V vs. Ag/AgCl with iR correction. The overpotential (η10) was 
calculated at a current density of 10 mA cm− 2, according to the Eq. (2): 

η10 = ERHE − 1.23 V (2) 
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Chronopotentiometry measurements were performed at a fixed 
current density of 10 mA cm− 2 for a time interval of 10 h. Impedance 
experiments were performed at the potential values of 0.5, 0.6, and 0.65 
V (vs. RHE) from 0.1 to 10 kHz and a voltage amplitude of 10 mV. CV 
scan rates were varied between 5 mV s− 1 and 200 mV s− 1. The electrical 
double layer capacitance (CDL) of the electrode was measured in a non- 
Faradaic region, determined from the LSV, recording CVs at various scan 
rates. Depending on the electrical system, the specific capacitance for 

materials based on transition metals is (Cs, 40 μF cm− 2) [33] was used in 
the calculation of the electrochemically active surface area (ECSA) by 
the following Eq. (3): 

ECSA = CDL/Cs (3)  

Fig. 1. Steps involved in the green synthesis process of high entropy oxide (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O, and microstructural and electrochemical characterizations 
carried out. 

Fig. 2. (a) X-ray diffraction, (b) Fourier transform infrared spectroscopy, (c) Raman spectrum and (d) vibrating-sample magnetometry of (Mg0.2Ni0.2Co0.2-

Cu0.2Zn0.2)O. 
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3. Results and discussion 

3.1. Microstructural characterization 

Fig. 2 shows the structural and magnetic characteristics of 
(Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O. As seen in Fig. 2a, all observed reflections 
are well-defined and characteristic of a solid solution with rock-salt 
structure (with lattice parameters a = b = c = 4.235 Å, ICSD no. 
14564, space group Fm-3m (225)) [34]. Five diffraction peaks located at 
36.7◦, 42.62◦, 61.92◦, 74.14◦, and 78.04◦ are indexed to the crystal 
planes (111), (200), (220), (311) and (222), respectively. Within the 
XRD sensitivity no other oxide phases were detected, although existing 
literature on high entropy oxides has revealed that copper oxide phases 
can precipitate during the cooling stage, hindering the formation of a 
single-phase compound [35,36]. This precipitation occurs when the 
sample is slowly cooled after the sintering treatment. For instance Nal-
lathambi et al. [35] noticed the formation of a CuO second phase in their 
HEO when the samples were cooled at rates equal or smaller than 5 ◦C 
min− 1. In our work, there was no precipitation, as the sample was air 
quenched immediately after the sintering. The FTIR spectrum of 
(Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O is shown in Fig. 2b. According to Usharani 
et al. [34] and Su et al. [37], the band located below 500 cm− 1 (insert in 
Fig. 2b) is attributed to the presence of cations in the lattice, and in-
dicates the formation of a metal–oxygen bond. Raman spectroscopy was 
performed from 150 to 3000 cm− 1 to investigate the structure of the 
high entropy oxide, and the relevant spectrum is shown in Fig. 2c. The 
bands located at 536 cm− 1 and 1072 cm− 1 are the result of the 1P LO and 
2P LO modes, which indicate the formation of an asymmetric structure 
[37] and the Frohlich interaction between the second-order longitudinal 
optical phonon and the local free carrier [38]. The magnetization (M) 
versus magnetic field (H) measurement was obtained to study the 
magnetic state of the sample at room temperature. Since Cu2+ has one 
unpaired electron in the d-orbital, this ion is magnetic. Co2+ and Ni2+ in 
their high spin states have three and two unpaired electrons in their d- 
orbitals, respectively, so these ions are magnetic too. As Co, Ni, and Cu 
represent 60 % of the total amount of cations in the lattice, a magnetic 
ordered structure is expected. As observed in Fig. 2d, the M-H curve 
shows a linear behaviour with a positive angular coefficient. This result 
suggests that the sample could be antiferromagnetic at room 

temperature. In fact, Usharani et al. studied (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2) 
O, by performing magnetization versus temperature (5–300 K) mea-
surements, and concluded that their sample was antiferromagnetic in 
the whole range of temperatures [39]. That confirms that green syn-
thesis using agar-agar as polymerizing agent is efficient in producing 
high entropy oxides. The effectiveness of agar-agar has also been proven 
for the syntheses of simple oxides [40], ferrites [35], and cobaltites 
[21,42]. 

FESEM analyses accompanied by chemical mapping and energy 
dispersive X-ray spectroscopy of (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O are 
shown in Fig. 3. As seen in Fig. 3a–b, the FESEM images reveal the 
formation of spherical aggregated grains, with particle sizes larger than 
1 μm, characteristic of samples obtained at high calcination tempera-
tures (900 ◦C). The mapping (Fig. 3c) shows the elements Mg (green, 
Fig. 3c1), Ni (indigo blue, Fig. 3c2), Co (purple, Fig. 3c3), Cu (red, 
Fig. 3c4), Zn (yellow, Fig. 3c5) and O (blue, Fig. 3c6) uniformly 
distributed throughout all micrometric particles and without visible 
segregations, thus confirming the chemical and microstructural homo-
geneity. The spectrum of (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O is shown in 
Fig. 3d. The spectral atomic percentages of Mg, Ni, Co, Cu and Zn 
resulted 18.11, 19.55, 21.08, 21.14, and 20.12, respectively. The result 
reveals that the composition obtained experimentally is in agreement 
with the nominal composition. 

To understand the surface chemical composition of the (Mg0.2Ni0.2-

Co0.2Cu0.2Zn0.2)O sample, X-ray photoelectron spectroscopy (XPS) was 
performed, and the spectra are displayed in Fig. 4. The Mg 2p3/2 core 
level is shown in Fig. 4a, displaying one main peak related to MgO [43]. 
Fig. 4b shows the high-resolution Ni 2p3/2 spectrum, which was fitted to 
three contributions. The peak at the lowest binding energy (855.170 eV) 
is close to that reported for NiO, the other two peaks are related to shake- 
up satellite features [44]. Conversely, the high-resolution spectra ob-
tained for the Co 2p3/2 and the Cu 2p3/2 core levels were each decon-
voluted into two main peaks (Fig. 4c and 4d, respectively). In both cases, 
the first peak at lower binding energy corresponds to CoO [45] or CuO 
[46,47], whereas the second peak can be ascribed to Co(OH)2 [45] or Cu 
(OH)2 [47]. In addition, at higher binding energies, two additional peaks 
were further deconvoluted for both Cu 2p3/2 and the Co 2p3/2 core 
levels, corresponding to the shake-up satellite features [45,47]. The Zn 
2p3/2 core level is shown in Fig. 4e, displaying one main peak related to 

Fig. 3. (a-c) Scanning electron microscopy images at different magnifications, (c1-c6) Elemental mapping images and (d) typical EDS spectra of (Mg0.2Ni0.2Co0.2-

Cu0.2Zn0.2)O. 
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ZnO [48]. Finally, the high-resolution O 1s core-level spectrum is 
depicted in Fig. 4f, showing three main contributions. The first peak, O1, 
at approximately 529.569 eV is due to the presence of lattice oxygen at 
the surface (Olat, O2− ), whereas the second peak, O2, at nearly 531.245 
eV is ascribed to surface chemisorbed oxygen species, Oads, O2− , O2

2− , 
and O− . The third contribution, O3, at 532.613 eV is related to un-
avoidable surface physically adsorbed/residual water molecules (OH2O), 
in accordance with previous works [41,49,50]. Therefore, it is observed 
from the EDS analyses and XPS, that the elements are homogeneously 
distributed across the surface, which generates synergistic effects of the 
different cations, contributing to the high configurational entropy, lat-
tice distortion, formation of a single phase, high density of oxygen va-
cancies, more active sites and load transfer capacity. These features lead 
to a better electrocatalytic performance through the intermediate spe-
cies of the reaction, such as *O, *OH and *O–OH, and longer stability, 
as verified in the next paragraph [51,52]. 

3.2. OER performance 

The electrochemical performance of the HEO for OER was evaluated 
by several electrochemical techniques, including LSV, CV, chro-
nopotentiometry, and EIS. The results from LSV and Tafel slope of 
(Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O were compared with those obtained from 

Ni foam, which has been widely used as an electrode support material, 
due to its excellent physical properties, such as three-dimensional 
structure, high conductivity, high porosity, resistance in alkaline 
media and low cost for commercialization [53]. According to the po-
larization curves (Fig. 5a), overpotentials of 336 and 515 mV vs. RHE 
were determined at 10 mA cm− 2 for (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O and Ni 
foam, respectively. The electrochemical performance of (Mg0.2Ni0.2-

Co0.2Cu0.2Zn0.2)O over the entire current density range is presented in 
Fig. 5b. The overpotential of our sample is compatible with the one 
displayed by other high entropy oxides prepared by high-energy milling 
((Co0.2Ni0.2Mn0.2Zn0.2Fe0.2)3O3.2, η = 336 mV) [54]. Furthermore, our 
electrocatalyst has greater OER activity than (Co,Cu,Fe,Mn,Ni)3O4 (η =
400 mV) [55], SrNb0.1Co0.7Fe0.2O3–δ (η = 390 mV) [56], (Fe0.73Cr0.71-

Co0.78Ni0.81Al0.1)O4.01 (η = 381 mV) [51,57]. Generally, the results 
observed in our research for the high entropy oxide with the rock-salt 
structure agree well with the results of the best electrocatalysts re-
ported in the literature (Table S1). The overpotential of the HEO 
investigated in the present work, equal to 336 mV at 10 mA cm− 2, is 
lower than the one displayed by commercial iridium oxide (400 mV, at 
10 mA cm− 2) [58]. 

To thoroughly understand the oxygen evolution reaction process, the 
Tafel slope of the electrocatalyst was obtained from the linear scanning 
voltammetry, as well as cyclic voltammetry experiments were 

Fig. 4. X-ray photoelectron spectroscopy (XPS) spectra of (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O obtained at high-resolution (a) Mg 2p, (b) Ni 2p, (c) Co 2p, (d) Cu 2p, (e) Zn 
2p, and (f) O 1s regions. 
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conducted to determine the double-layer capacitance (CDL, mF), the 
electrochemical active surface area (ECSA = CDL/Cs, where CS = 0.04 
mF cm− 2 was used for materials based on transition metals) [33] and 
specific activity (SA = J/ECSA, where J represents the density of current 
at a potential of 1.9559 V vs. RHE). Fig. 5c shows the Tafel slopes for 
(Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O and Ni foam, where it is possible to 
observe values of 68 mV dec-1 and 147 mV dec-1, respectively. These 
results indicate that (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O has greater electro-
catalytic and kinetic activity for the oxygen evolution reaction. The CVs 
obtained at various scan rates (5–200 mV s− 1) in the potential range of 
1.16–1.21 V vs. RHE are presented in Fig. 5d. The CDL of (Mg0.2Ni0.2-

Co0.2Cu0.2Zn0.2)O was obtained by linear adjustment of the CV results 
and was determined to be 3.11 mF (Fig. 5e), thus generating ECSA and 
SA values of 77.75 cm2 and 12.27 mA cm− 2 (Fig. 5f), respectively. The 
chronopotentiometry test for a time interval of 10 h at 10 mA cm− 2 was 
conducted to verify the stability of the electrocatalyst, and its result is 
presented in Fig. 5g. As observed, the overpotential remains almost 
constant, demonstrating that (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O has good 
electrochemical stability. In addition to this observation, the inset in 
Fig. 5g shows that LSV traces, before and after chronopotentiometry 
tests, overlap so proving once again the excellent stability of the catalys. 

The electrocatalytic assessment was complemented by electro-
chemical impedance spectroscopy to assist in understanding the OER 

kinetics of the (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O sample. The EIS spectra 
were recorded at two different DC potentials (1.46 and 1.56 V vs. RHE), 
both in the OER regime. Fig. 5h shows the Nyquist plot consisting of a 
high-frequency resistance, Rs (uncompensated solution resistance), fol-
lowed by a large semicircle that can be attributed to the total polari-
zation resistance of the electrode, Rp (and denotes the overall rate of the 
OER process). The data were fitted using the equivalent circuit shown in 
Fig. 5h, which contains two resistances (Rs, Rc.t.) and a constant phase 
element (CPEDL) parallel to Rc.t (the resistance to the charge transfer), 
aiming to represent the double-layer capacitive phenomenon. 

Table S2 lists the electrochemical parameters extracted from the 
equivalent circuit model analysis of the (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O 
sample in the OER regime. Rs was found to be effectively constant at 
both applied potentials. However, we may observe a drastic decrease in 
Rp with increasing the applied DC potential, as a result of an increased 
OER kinetics. This enhanced behavior is also demonstrated in the Bode 
plot presented in Fig. 5i, which shows the phase angle as a function of 
the measured frequency, where the dominant peak shows a lower 
magnitude for increased DC potentials. Interestingly, at the same time, 
CDL was found to decrease in such conditions (Table S2). This behavior 
can be attributed to the momentaneous decrease in the surface area of 
the electrocatalyst due to the presence of gas bubbles formed on its 
surface, which aggravates at higher potentials [59–61]. 

Fig. 5. (a) LSV curves, (b) overpotential at different current densities, (c) Tafel slopes, (d) cyclic voltammetry, (e) electrical double layer capacitance, (f) electro-
chemical active surface area/specific activity, (g) chronopotentiometry test at J = 10 mA cm− 2 for 10 h, (h) Nyquist plot accompanied by the equivalent circuit and 
(i) Bode plot. 
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4. Conclusions 

In this work, we synthesized a high entropy oxide of the type 
(Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O using a green synthesis method and eval-
uated the performance for OER in an alkaline environment. The 
microstructural and magnetic properties of the electrocatalyst were 
elucidated using XRD, FE-SEM, FT-IR, RAMAN, XPS, and magnetometry 
techniques. The electrochemical properties were investigated using 
several techniques. Thus, the (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)O exhibited 
excellent electrocatalytic activity for OER, with overpotential and Tafel 
slope of 336 mV vs. RHE and 68 mV dec-1, respectively, as well as 
electrochemical stability, as confirmed by chronopotentiometry mea-
surements. The excellent OER activity is ascribed to the synergistic effect 
of the transition metals present in the high entropy oxide, as well as to 
the synthesis method presented here. 
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