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Abstract
In recent times, particularly in the last few years, we have observed the rise of numerous Artificial Intelligence and Natural 
Language Processing semantic technologies. These advancements have subtly yet profoundly transformed our understand-
ing of knowledge and truth, and the mechanisms for expressing, preserving, and disseminating them. This article aims to 
explore the dual challenge of assessing the effects of Large Language Models and associated semantic technologies on text 
dissemination and production, especially across the Internet. It specifically examines the implications for trust in online 
knowledge repositories, the creation of indirect or deliberate forms of ignorance, and the general perception of AI as a criti-
cal component of autonomous systems from the users’ viewpoint. The discussion will also consider potential strategies to 
mitigate the epistemic risks posed by the employment of AI semantic tools, in both suitable and unsuitable scenarios. The 
suggested approach contributes to the debate on AI intelligence measurement, proposing the evaluation of an AI system’s 
expected intelligence (as perceived by users) as a means to address the challenges associated with the “knowledge” gener-
ated by these systems. My claim is that measuring the expected intelligence in AI systems places humans at the forefront 
of the issue without necessitating a precise definition of intelligence for AI systems. This approach preserves therefore the 
essential attribute of these systems: intelligence.
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1 Introduction

In recent years, especially the most recent ones, we have 
witnessed the emergence of numerous Artificial Intelligence 
(AI) and Natural Language Processing semantic technolo-
gies, which have subtly but undeniably revolutionized our 
perception of knowledge, truth, and the tools used to express, 
preserve, and communicate them. Of course, over the past 
two decades, the proliferation of the Internet and various 
social networks has already challenged traditional methods 
of information dissemination, exposing phenomena such as 
cognitive self-segregation and informational sectarianism. 
These phenomena, including fake news, filter bubbles, and 
echo chambers, have human motivations as well as algorith-
mic causes (Falxman et al. 2016). However, the landscape 
has become even more complex with the introduction of 
increasingly powerful tools for processing, comprehending, 
and generating human knowledge and natural language. 

These tools range from ontologies and knowledge graphs 
to Neural Language Models and Large Language Models 
(LLM). The latter, in particular, pose a challenge due to their 
immense computational power, allowing them to handle nat-
ural language in a manner that is (almost) indistinguishable 
from human processing—a realization that appears to fulfill 
one of the earliest dreams or fears surrounding AI.

The extensive literature produced in recent years on 
LLMs based on neural networks is undoubtedly a reflection 
of their widespread adoption beyond the realm of experts. 
The accessibility of generative language models like GPT 
to the general public has propelled attention toward these 
models for at least two reasons: their ubiquitous use and 
the remarkable results they produce compared to earlier 
technologies. These two factors account for the significant 
scientific, as well as social, philosophical, and epistemo-
logical interest in these models. They find applications in 
numerous tasks, even in an era like the present one, where 
AI is ubiquitous, including tasks such as understanding and 
creatively writing texts based on natural language prompts. 
The importance and impact of this disruptive attention 
seem to exceed that reserved for other generative AI, such 
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as those dedicated to image generation (e.g., DALL-E or 
Midjourney). This discrepancy is not surprising, given the 
different ways humans perceive original creations. It is more 
plausible to perceive an original image within a set of ran-
domly scattered spots than to discern an original sentence 
among randomly written letters or words. Meaning does not 
appear to reside, even partially, in the eye of the beholder or 
the reader, but rather in intentional constructions of sense, 
governed by well-defined rules and precise communicative 
intentions. A well-formed expression in natural language is 
diametrically opposed to chance. Hence, it is astonishing 
that such accuracy can be achieved by algorithmic systems 
aptly labeled “stochastic parrots” (Bender et al. 2021)—sys-
tems that extensively leverage both input data and computa-
tional power for processing. This processing, as is typical in 
complex neural networks, relies on mathematical-statistical 
models.

Is it accurate to classify these systems as mere “parrots”, 
implying they are simple imitative repeaters? The type of 
imitation they engage in is far removed from both human-
like repetition (which involves various cognitive and percep-
tual dimensions) and mere computational string matching. 
If we envision a continuum with human-like repetition on 
one hand and straightforward computational matching on the 
other, these systems fall somewhere in between, employing 
complex techniques and computational power for imitation, 
and perhaps even demonstrating a form of creativity in their 
output. While imitation typically suggests deception rather 
than the accurate production of knowledge, it serves as the 
foundation for various forms of cultural learning (Tennie 
et al. 2009), and therefore is not inherently negative. Thus, 
the crucial factor lies in evaluating the quality of imitation, 
distinguishing between performances that enhance knowl-
edge and those that perpetuate ignorance. This evaluation 
becomes particularly significant for semantic technologies 
capable of generating natural language in a highly imitative 
manner, according to specific parameters. Consequently, the 
issue outlined here raises two fundamental questions: first, 
the notion of imitation in artificial systems, starting from 
how it was conceptualized by Turing; and second, the evalu-
ation of artificial systems themselves for their performance 
and results, a topic that has gained relevance in the ongoing 
AI debate.

The article will delve into the dual issue of examining 
the impact of LLMs and related semantic technologies on 
the dissemination and production of texts, especially via the 
Internet. Specifically, it will evaluate this impact concern-
ing potential breaches of trust in the knowledge available 
through online repositories, the generation of indirect or 
intentional forms of ignorance, and the broader perception 
of AI as a defining element of autonomous systems from 
the user’s perspective. The latter point will be explored to 
outline potential measures to mitigate the epistemic risks 

posed by the use of AI semantic tools, both in appropriate 
and inappropriate contexts.

The article will proceed by initially discussing the rela-
tionship between Turing’s proposal on imitation and LLMs 
(“Turing and LLMs” section), followed by an examination 
of the evaluation of intelligence as demonstrated through 
performance and results in AI (“Intelligence Evaluation in 
AI” section). It will then address the challenge of measuring 
expected intelligence in artificial systems, particularly those 
based on AI (“Measuring Expected Artificial Intelligence” 
section), and the issue of quantifying intelligence in LLMs 
as a means of addressing the epistemic challenges that their 
widespread use may pose (“Measuring Intelligence in LLMs 
as an Antidote to Ignorance” section). I will then show and 
discuss an example of produced scientific knowledge by an 
LLM (“An Example on LLMs and Scientific Knowledge” 
section), and finally I will draw conclusions and outline 
potential short-term developments (“Conclusion” section).

2  Turing and LLMs

Turing deals with the challenge of linguistic interaction 
with computers, initially addressing a broader question 
about machines: “Can machines think?” (Turing 1950). 
This theme was not novel to him, and its development was 
gradual. For several years, he had been exploring the pos-
sibility of answering this question posed by the emergence 
of new digital computers, pondering whether a machine 
capable of displaying intelligent behavior could indeed exist 
(Turing 1948). The response to this inquiry, too intricate 
to be directly provided, hinges on the concept of imitation, 
as embodied in the Imitation Game, serving as a test for 
the machine’s capabilities. But what kind of test? Or rather, 
what kind of imitation? The behavior to be imitated, implic-
itly assumed as intelligent, is linguistic—the only domain 
Turing identifies as potentially impervious to counterfeit-
ing when conducted correctly. The criterion for correctness 
is that of interactive linguistic conversation, open to any 
topic. Such proficiency symbolizes intelligence due to the 
infinitely productive and nuanced nature of language from a 
semantic standpoint. Essentially, one cannot feign fluency in 
a language convincingly. Either one speakes it or not.

From Turing’s conception emerges the well-known 
Turing Test, sparking enduring debates about its true scope 
and limitations (Moor 2003), while also laying the ground-
work for discussions on the essence of AI and the feasibil-
ity of its recognition and evaluation. Efforts to demonstrate 
how easily a human user could be deceived and bypass the 
Turing Test in its original form emerged swiftly, giving 
rise to phenomena such as the ELIZA effect, named after 
the program which, through syntactic tricks, managed to 
dupe human interlocutors (Weizenbaum 1966). However, 
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Turing’s underlying intention in presenting the seminal 
question about machine thinking appears broader. These 
“machines” are not generic machinery but rather software, 
i.e., computer programs. As such, they operate on rigid logi-
cal principles (programming languages are rooted in classi-
cal logic) but must also exhibit general linguistic behavior 
that inherently transcends rigid classical logical constraints 
(natural language is intrinsically ambiguous, laden with sub-
texts and ellipsis, and infinitely expressive on various levels), 
and they must do so interactively (merely generating text is 
insufficient).

One might question whether the genuine linguistic behav-
ior proposed by Turing truly constitutes evidence of think-
ing ability. Is it genuine thought in the terms that a human 
being would define it? Turing’s answer is affirmative. From 
this perspective, the Turing Test remained unconquered for 
a considerable period. However, with the advent of LLMs, 
the situation appears to be changing, as they seem to have 
achieved Turing’s envisioned goal. Nonetheless, the inquiry 
regarding the actual presence of thought partially contradicts 
how Turing frames the question. Initially, he dismisses this 
type of query, opting instead to contextualize it within the 
framework of imitation. The issue of genuine thinking in 
AI systems has sparked ongoing debate throughout history, 
initially leading to the distinction between strong and weak 
artificial intelligence, and subsequently fueling discussions 
surrounding artificial general intelligence.

Setting aside this primarily philosophical debate, another 
trend that has emerged in the course of AI history revolves 
around not so much thought, but rather knowledge. To what 
extent do these systems possess knowledge, or can they be 
attributed with knowledge? What form of knowledge does 
an AI system possess? The debate over knowledge repre-
sentation has been a persistent theme throughout the his-
tory of AI. In Turing’s terms, a machine—i.e., a computer 
program—equipped with a repository of symbolic knowl-
edge explicitly encoded in a logical format demonstrates 
syntactic knowledge. However, the semantic efficacy of this 
knowledge clashes, on one hand, with the issue of refer-
ence or grounding of its symbols (Harnad 1990), and on the 
other, with the rigidity of logical-symbolic representational 
systems.

Responses to the question of whether an AI system is gen-
uinely intelligent in relation to the knowledge it possesses 
have taken two distinct paths. The affirmative stance sug-
gests that systems equipped with knowledge indeed exhibit 
intelligence. This category encompasses knowledge systems, 
expert systems, and all knowledge-based models leveraging 
a knowledge base to address variously complex problems. 
Additionally, it includes systems whose semantic knowledge 
relies on syntactic structures. This perspective contrasts with 
the view that regards such knowledge as fake knowledge 
inasmuch merely symbolic manipulation, devoid of genuine 

semantic content. The underlying assumption here is that 
semantics can not emerge solely from syntactic structures, 
thereby rendering these systems incapable of being classified 
as intelligent. Such a lack of genuine knowledge would effec-
tively render them ignorant in the truest sense of the term. 
However, LLMs seem to possess characteristics that tran-
scend the dichotomy of knowledge equating to intelligence 
and fake knowledge equating to ignorance/non-intelligence.

The knowledge representation challenge in LLMs is 
equivalent to that in neural networks. LLMs are a specific 
type of deep neural network, wherein their knowledge is 
widely distributed throughout the network, as is typical in 
neural networks. The intelligence they exhibit is operation-
ally tied to mathematical-statistical processes, categorizing 
them as black box systems—systems whose operations lack 
semantic interpretability, making their performance difficult 
to explain. While these issues have long been recognized in 
AI, they experience an unusual resurgence in LLMs due to 
their increasingly remarkable performances, which do not 
resolve the aforementioned problems: the absence of explicit 
knowledge and the explanation of procedural operations.

LLMs are generative AI models capable of producing 
natural language texts based on questions or prompts in natu-
ral language. They rely on a specific type of deep neural 
network architecture known as Transformers, which employ 
mechanisms for statistically modeling language production. 
Among these mechanisms, attention mechanism stands out 
as particularly significant (Vaswani et al. 2017). While 
previous models for language modeling, such as recurrent 
neural networks or Long Short-Term Memory (Hochreiter 
and Schmidhuber 1997), already existed, Transformers dis-
tinguish themselves by not only utilizing a greater number 
of parameters1 (in the billions) but also by their conceptual 
differences. The attention mechanism, akin to the cognitive 
function of attention but focused solely on word occurrence 
context, serves to capture word embeddings—the contextual 
representation of a word in a sequence—and return a vec-
tor space where proximity denotes semantic similarity: “An 
attention function can be described as mapping a query and 
a set of key-value pairs to an output, where the query, keys, 
values, and output are all vectors. The output is computed 
as a weighted sum of the values, where the weight assigned 
to each value is computed by a compatibility function of the 
query with the corresponding key” (Vaswani et al. 2017, p. 
6003). This mechanism is exploited in a particular version, 
self-attention, which derives from the implementation of 
decomposable forms of attention (Parikh et al. 2016) and, 

1 In broad terms, parameters refer to the coefficients of a model, 
encompassing both weights and biases, which undergo adjustment 
during the model's training process. The quantity of parameters 
expands in tandem with the proliferation of nodes and connections 
within the model.
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put in rough terms, allows, in the encoding and decoding, 
to process the elements of a sequence in the transition from 
one layer to another with the most relevant ones in the same 
sequence, in order to correlate them with each other. This 
mechanism is “self” as it connects the sentences with their 
most relevant elements, by representing the context in a vec-
torial way. Particularly in its self-attention version, it facili-
tates processing relevant elements within a sequence transi-
tion from one layer to another, correlating them with each 
other and providing context in a vectorial manner. Moreo-
ver, it achieves computational efficiency compared to recur-
rent layers, especially in domains where sequence length is 
more critical than dimensionality, such as linguistic strings. 
Consequently, this statistical contextualization, based on 
extensive training datasets and ongoing refinements, yields 
a semantic capacity or impression thereof, encompassing 
syntactic processing treated similarly in terms of vector rep-
resentations (words and word contexts).

Without delving too deeply into further technical aspects, 
this mechanism enables the assignment of different vector 
representations to the same word based on its context. A 
series of scores is assigned to the elements of the word 
sequence (the sentence in question), indicating the probabil-
ity that words in the sentence are more or less relevant. The 
more relevant the words, the more “attention” they receive. 
The result, which may appear unexpected but aligns with 
the mathematical-statistical principles governing neural 
networks, is that predicting the next word in text generation 
occurs stochastically. However, due to the vast number of 
computations involved, the output aligns closely with user 
expectations. This outcome has seen a continual improve-
ment in appropriateness across various subsequent versions 
of LLMs, resulting in texts that are increasingly challenging 
to distinguish from those produced by humans.

From a historical perspective, it’s notable that the initial 
applications of Transformers, as described in the seminal 
article by Vaswani and colleagues, were related to machine 
translation—one of the earliest topics addressed in the field 
of language automation and NLP, with significant attention 
to linguistic modeling since 2010 (Bahdanau et al. 2014). 
Machine translation necessitates precise language mod-
eling and presents a range of semantic challenges related to 
sentence and text context. However, despite the numerous 
linguistic questions it raises, from an epistemological stand-
point, it’s important to note that this is not Turing’s concept 
of imitation and linguistic interaction. At most, it can be 
argued that the techniques initially developed for machine 
translation, as they contribute to text production, have been 
effectively repurposed for interactive text generation. What 
implications can be drawn from this shift from machine 
translation to text production?

To address these questions, it’s essential to recognize that 
the comprehension capacity of these models does not equate 

to what it is typically meant as human understanding, dis-
tancing them from human cognition. However, their behav-
ior closely resembles certain aspects of human language 
use. LLMs, for instance, are pre-trained and can interact 
in natural language via prompts, even on topics they have 
not been explicitly trained on. LLMs can respond to queries 
with minimal guidance or even without any examples related 
to the task at hand (Brown et al. 2020). Nevertheless, their 
responses align with the user’s expectation of coherent and 
human-like text. Particularly in the latest releases, such as 
GPT-4, the performance reaches such levels that one can 
perceive this is the Turing’s concept of imitation coupled 
with linguistic interaction. Furthermore, in LLMs (self-)
learning continues to be an active element post-training, 
often supplemented by supervised fine-tuning by humans, 
although this does not impart semantic knowledge. Instead, 
it serves to tailor the system to user preferences (Ouyang 
et al. 2022). Thus, the shift from machine translation to 
text generation applications signifies the potential to pass 
the Turing test in its original form—emphasizing imita-
tion and linguistic interaction without involving embodied 
aspects—based on extensive use of learning techniques, a 
notion underscored by Turing himself (1950). According 
to Turing’s criteria, these models would likely pass the test 
for a duration longer than that initially proposed by him to 
consider it successfully passed. However, something still lies 
outside Turing’s framework. In Turing’s terms, LLMs are 
essentially machines performing verbal behavior and that 
do not know what they are saying. They computationally 
generate a right word sequence by computing the probability 
of sequences of token. In essence, they predict language and 
do not produce language. This underscores their generative 
capability; while impressive, it is a good performance, not 
intelligence. So, what precisely are they? Are they simply a 
modern iteration of the Eliza Effect? If so, one could argue 
that this does not align with Turing'’ concept of intelligence, 
and thus, these machines can not be deemed truly intelligent.

3  Intelligence Evaluation in AI

Labeling the operation of these models as simplistic when 
addressing their intelligence may not do justice to the 
functionality that users perceive as intelligent. Is it then 
appropriate to attribute intelligence to LLMs? If affirma-
tive, how should we frame this intelligence? This line of 
inquiry is intimately tied to their application in domains of 
knowledge. The information that LLMs provide with their 
answers is in some way a form of knowledge that adds to 
the user’s knowledge with all the problems that systems so 
different from human beings generate when knowledge is 
at stake. Addressing these challenges is crucial, not a mere 
afterthought. Assessing their intelligence might offer some 
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insights. The evolution of the Turing Test over the years 
(French 2000) has paved the way for a nuanced discussion 
on artificial intelligence measurement in AI entities. This 
discussion has moved beyond Turing’s binary framing of 
intelligence (the simple yes/no question on the presence of 
intelligence) to a multifaceted and graded approach. Such 
progress also demands a broader reflection on the definition 
of intelligence—an enduring debate in the context of AI and 
its correlation with human beings.

The assessment of intelligence in AI systems can be seen 
through two principal lenses: first, as a collection of specific 
skills tailored to particular tasks; and second, as a broader 
capacity for learning and performing in an open-ended man-
ner (Hernandez-Orallo 2017a; Chollet 2019). This dichot-
omy stems from the understanding of natural intelligence 
from a cognitive perspective, also informing the develop-
ment of potential measurement methodologies (Hernandez-
Orallo 2017b). In the former approach, the focus is on quan-
tifying an AI system’s accuracy in performing its designated 
tasks. Such measurement is a fundamental process, neces-
sary to gauge the AI’s effectiveness in achieving its intended 
purpose. However, this method does not account for the AI’s 
adaptability to novel situations; there is no generalization to 
unprecedented situations, neither of the program (narrow 
generalization) or the developer (broad generalization). Sim-
ply put, the AI operates within the confines of its program-
ming, adept at handling specific tasks without venturing 
beyond the domain it was originally designed to operate in.

In the latter approach, the AI system is appraised for its 
versatility and the ability to transcend the confines of spe-
cific tasks, demonstrating its utility across various domains, 
including those unforeseen by its creators. Evaluating such 
adaptability entails navigating a set of unique and intricate 
challenges. The capacity for domain generalization may 
serve as an assessable criterion. This perspective encom-
passes more extensive concerns, which have fueled some of 
the grandest aspirations in AI, dating back to Newell et al. 
General Problem Solver (1959). Bridging theoretical con-
cepts with practical applications, recent endeavors aim to 
capture the essence of AI generalization. On the futuristic 
end, there is the pursuit of Artificial General Intelligence; 
on the pragmatic front, the development of cognitive archi-
tectures like SOAR or ACT-R (Anderson 1983) has a well-
established history of studies and research. These architec-
tures, whether symbolic, subsymbolic, or hybrid, often adopt 
a modular design. Their shared goal is to facilitate an AI 
system's acquisition of behaviors that are transferable across 
various domains through the incorporation of modules spe-
cialized in different cognitive functions.2 Nonetheless, while 
AI performance can be measured against a diverse array of 

parameters, assessing its generalization potential is inher-
ently more nebulous. Considering the multitude of potential 
domains for the application of an AI system, the challenge is 
compounded by the fact that these domains are often unde-
fined, interlinked, and overlapping, complicating the precise 
evaluation of behaviors or performances. In psychology and 
neuroscience, specific methodologies, such as the subtrac-
tion method, are employed to address these issues. Translat-
ing these approaches to the AI field proves to be significantly 
more challenging.

A measurement, as opposed to a qualitative assessment, 
provides a value scale that allows for the precise quantifica-
tion of success in relation to certain desired attributes or 
parameters. It also enables comparison between different 
systems designed for identical tasks, serving as an additional 
mechanism for the control and enhancement of AI systems, 
which are primarily characterized by autonomous behavior. 
Therefore, while measuring performance means offering a 
value scale to quantify accuracy, assessing the intelligence 
of AI systems typically involves evaluating task-specific per-
formance on a scale. Hernandez-Orallo (2017a) delineates 
three classes of methods and metrics currently employed for 
evaluating task-specific performance: (a) human discrimina-
tion; (b) problem benchmarks; (c) peer comparison. These 
classes of methods and metrics pertain to a type of black-box 
evaluation in AI, stemming from the increasing complexity 
and stochastic behavior of modern systems. This complex-
ity renders traditional white-box evaluations, typical of less 
complex AI systems from more traditional approaches like 
symbolic AI, impractical.

Regarding the three proposed categories, human dis-
crimination involves informal techniques used by humans 
to evaluate AI behavior and performance, such as observa-
tion and interviews. This method is typical in psychologi-
cal disciplines and has a well-known precedent in AI: the 
Turing Test and its variants. The approach based on prob-
lem benchmarks is more common in AI, relying on publicly 
available collections of problems and solutions generated 
by different AI systems. Knowing both the problem to be 
solved and the performance of other AI systems in advance 
can lead to biased evaluations. This issue could be mitigated 
using anonymized benchmarks or dynamic problem genera-
tors within a certain class of similar problems during the 
system’s performance evaluation. The approach of peer con-
frontation contrasts the performance of different AI systems 
on the same task, potentially including multi-agent systems 
competing to achieve specific objectives in a certain domain. 
This approach is effective in domains involving direct com-
petition, such as challenges or games, or indirect competi-
tion, where a performance ranking is established. Evalua-
tion here hinges on the ability to unambiguously identify 
the winner or top performers. From a general point of view, 
it is worth pointing out that the first approach is subjective, 2 For a survey and discussion, see Lieto (2021).



 F. Bianchini 

while the latter two rely on more objective criteria. Bench-
marks use a standard as the reference parameter, whereas 
peer comparison uses the performance of other systems as 
the yardstick. Each method has its strengths and weaknesses, 
yet they enable some level of measurement. Nevertheless, 
these are applicable to specific tasks. The question remains: 
how does one measure generality?

Evaluating the generality of AI systems involves assess-
ing broader cognitive abilities, making the cognitive per-
spective not just relevant, but essential. This approach 
enables the measurement of an AI system’s generality in 
cognitive terms. However, this method is not without its 
pitfalls, such as the risk of anthropocentrism. This arises 
particularly when skills are defined in terms of human cog-
nitive abilities and measured using techniques standardized 
for humans, then adapted for AI systems. An example is the 
adaptation of psychometric tests in Psychometric AI (Bring-
sjord 2011). Conversely, employing more objective or less 
cognitively-oriented methods may lead to a lack of trans-
parency in assessments. For instance, standards rooted in 
algorithmic information theory may yield more precise met-
rics, yet the essence of what is being evaluated or measured 
remains in question. The crux of the issue is that complexity 
and information content do not have a direct correlation with 
intelligence.

4  Measuring Expected Artificial Intelligence

The impasse between task-specific AI systems and general-
abilities AI systems appears insurmountable. However, 
two potential solutions emerge. The first solution pro-
poses accepting that AI systems lack genuine intelligence. 
According to Floridi (2023), AI systems merely act without 
embodying intelligence, making it nonsensical to discuss 
or measure intelligence in their context. This perspective is 
grounded in the belief that an intelligent outcome does not 
necessarily stem from intelligent behavior. While this may 
hold some truth, it’s a rather extreme stance. It dismisses 
the possibility of recognizing certain tools as intelligent, 
which, by conventional standards, are considered intelli-
gent and perform tasks deemed intelligent by humans. This 
viewpoint, however, overlooks the significance of the knowl-
edge AI can generate and its impact on human epistemic 
and communicative practices. A second solution focuses on 
the social/interactive aspects of AI systems, as highlighted 
by Cristianini et al. (2023). This approach is predicated on 
the idea that, in scenarios involving human interaction with 
AI systems (which is almost always the case), the attribu-
tion of intelligence by the user, often in real-time, is crucial 
for achieving optimal outcomes and interactive experiences. 
This perspective emphasizes the importance of the perceived 

intelligence in user-AI interactions, advocating for a more 
nuanced understanding of AI systems’ roles and capabilities.

My claim is that measuring the expected intelligence in 
AI systems places humans at the forefront of the issue with-
out necessitating a precise definition of intelligence for AI 
systems. This approach preserves the essential attribute of 
these systems: intelligence. Additionally, assigning intelli-
gence is crucial for the correct epistemic, practical, and ethi-
cal engagement of AI systems by users. Without a cognitive 
framework for understanding AI systems, there’s a risk of 
misuse, potentially skewing the system’s performance and 
the validity of its knowledge outputs. This perspective also 
allows for the assessment and valuation of outputs generated 
by LLMs.

Consequently, a pertinent question arises: how can one 
measure expected intelligence in AI systems? The proposed 
answer involves four key criteria, creating a framework for 
attributing intelligence from the users standpoint:

1. Pre-use Attribution: Attributing a value to the system’s 
intelligence based on preliminary knowledge of the sys-
tem before interaction.

2. In-use Attribution: Attributing a value to the system’s 
intelligence during its operation or interaction.

3. Outcome Evaluation: Rating the intelligence based on 
the system’s performance outcomes

4. Variability Assessment: Analyzing the fluctuation of 
intelligence ratings through continuous or repeated 
engagement with the AI system over time.

The four key criteria incorporate, at least in part, some 
ideas on the assessment of AI systems already present in 
the literature regarding the evaluation of task-specific per-
formance. For example, criterion three pertains to the eval-
uation of the results produced by the system, an ex post 
assessment based on the accuracy and compliance with the 
required task demonstrated at the end of its performance. 
Criterion 2 aligns with this approach but emphasizes the 
user’s conscious interaction with the AI system. Here, “use” 
should be understood not as the mere utilization of a tool, 
but as the co-evolution of the system’s and the user’s behav-
ior in producing a result or performance in a coordinated 
manner. In this context, the user should be able to evaluate 
the extent to which her contribution influences the desired 
and valid performance of the system and how much the sys-
tem contributes to the task she is implementing. This dual 
assessment requires consideration of the dynamic interaction 
between the user and the system, which shapes the behavior 
of both the AI system and the user.

The two criteria that deviate most from standard meth-
ods of evaluating an AI system are the first and the last. 
Criterion 1 requires the user to consciously, and before, 
evaluate the degree of AI expected from the system and the 
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level of interactivity anticipated. This criterion goes beyond 
merely recognizing that the system is an AI, aligning with 
the transparency principle advocated by many policy bodies, 
which mandates the explicit declaration that the system is 
an AI. According to this criterion, the user is encouraged to 
consider in advance the type of intelligence the system will 
exhibit, the extent of this intelligence, and the forms it will 
take in its outputs. This allows for a conscious interaction 
based on self-set parameters. In other words, the user will 
not only focus on receiving intelligent results but will also 
self-evaluate these results within the context of intelligent 
behavior, rather than seeing them as random, instrumental, 
or mechanical. Criterion 4, on the other hand, is particu-
larly crucial for generative AI systems and those capable 
of modifying their performance over time through data 
accumulation and self-learning processes, both from col-
lective and individual users’ interactions. The user’s role 
is to evaluate whether there are fluctuations in the system’s 
exhibited intelligence, whether it improves or deteriorates, 
and whether it poses any risks (such as negative, misleading, 
biased, or poor performance, including epistemic risks). The 
increasingly complex and user-adaptive nature of these AI 
systems makes real-time, general-level evaluation challeng-
ing, positioning the user as the primary controller/evaluator 
to safeguard themselves. An informed and aware considera-
tion of the AI system’s intelligence can enhance the system’s 
efficiency and reduce unpredictability.

The four key criteria proposal offers two primary advan-
tages. Firstly, it simplifies the creation of a metric by utiliz-
ing a spectrum of values assigned to each item. This allows 
for the individual assessment of each type of AI system, with 
the complexity or detail of the metric tailored to specific 
requirements. Secondly, it embodies the practical application 
of a fundamental principle: intelligence is attributed where 
intelligence is expected, and vice versa. Consequently, the 
recognition of intelligence in an AI system aligns with the 
user’s anticipation of intelligent behavior that is pertinent to 
human cognitive traits. This approach enables individuals 
to assess not only the AI system’s intelligence but also their 
level of trust in it, alongside understanding its risks, capa-
bilities, and limitations. Over time, this strategy aims to fos-
ter responsible engagement between users and AI systems.

Finally, the possible implementations of the four crite-
ria extend beyond the scope of this article. However, as an 
example, some application aspects of these criteria could 
be aligned with the capabilities of LLMs. Various experi-
mental uses of this approach could be explored to analyze 
interactions between humans and AI systems, focusing on 
measuring the expected intelligence or certain intelligent 
characteristics anticipated in the system. More practical 
applications, both for AI systems in general and particularly 
for LLMs, could emerge in training contexts. Training on 
interactions with AI systems is likely to become widespread 

soon at various levels, both educational and professional, to 
ensure the correct use of these systems in compliance with 
safety and social interaction standards in the workplace. This 
area would be particularly relevant for Human Resources.

In general terms, incorporating devices, even virtual ones, 
into AI systems to express scales of assessment of the intel-
ligence expected by the user can generate a continuously 
updated set of data. This data can be utilized from histori-
cal and aggregate perspectives, benefiting not only the sys-
tem producer but also third-party control authorities. With 
appropriate measures, this data can also serve as feedback 
for both the user and the system itself, particularly regarding 
its capabilities as a “producer” of knowledge or intelligent 
activities in a broad sense. Other application contexts could 
include entertainment (including educational purposes), the 
use of artistic and cultural assets, and citizen science, that is, 
all the areas requiring careful consideration of the epistemic 
reliability of systems regarded as intelligent in the sense of 
AI.

5  Measuring Intelligence in LLMs 
as an Antidote to Ignorance

Given the unique characteristics of LLMs, applying the 
aforementioned methodology reveals both interesting 
aspects and potential challenges. The primary issue stems 
from LLMs’ fluctuation between specificity and generality. 
Assessing the expected intelligence of LLMs often involves 
evaluating their performance accuracy, essentially a task-
oriented assessment. Yet, LLMs embody a neural network 
approach to AI, applying uniform principles across diverse 
tasks. This broad generality might seem excessive. However, 
considering LLMs’ capability for natural language interac-
tion, their generality is confined to a broad yet specific task. 
LLMs can linguistically engage across a vast, indeterminate 
array of topics, aligning with the level of generality Turing 
suggested in his discussion on the imitation game. Moreover, 
the versatility of LLMs, particularly in more sophisticated 
versions like OpenAI’s GPT-4, extends to multimodality, 
accepting both image and text inputs, thereby broadening 
the scope for text generation. Thus, LLMs can be seen as 
One-task/Many-topics models, merging task-specific perfor-
mance with a broad applicability.

Efforts to assess AI performance from the user’s per-
spective, diverging from traditional model metrics, have 
been explored, for example by adopting an approach in 
line with the assessment of cognitive abilities in humans 
(Bubeck et al. 2023). However, these methods primarily 
focus on task-specific performance. Other initiatives have 
delved into dialogic interactions with LLMs. For instance, 
studies on abductive reasoning involve critically analyzing 
explanations through questioning by another party (Pareschi 
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2023). Beyond examining specific reasoning capabilities, 
these approaches employ techniques to elicit knowledge 
from LLMs via questioning, not to assess task performance 
but to explore the system’s knowledge on a particular topic 
at varying depths. Such expert-led endeavors utilize stand-
ardized methods to extract “expert” knowledge. Yet, this 
approach also aligns with actions that a non-expert user 
might undertake by intentionally querying an LLM, based 
on the expectation of inherent intelligence. Non-expert users 
can, within reasonable bounds, assess the knowledge level in 
LLMs by interacting with them as they would with a human, 
attributing a certain set of knowledge and skills. They might 
start with a high-level assessment of the LLM’s intelligence 
and progressively examine whether this initial perception 
holds up—evaluating whether the responses are intelligent 
and to what degree. Furthermore, by repeatedly querying 
the model on similar topics, users can observe whether there 
is a trend of improvement or decline in the answers and the 
conveyed knowledge.

The utility of this methodology extends in two significant 
directions. First, collecting such evaluations could serve as 
feedback for the system, offering strategies for data aggrega-
tion to address research queries in human scientific research. 
These queries might include determining the LLM’s knowl-
edge ceiling, identifying the threshold for attributing intel-
ligence, and establishing criteria for establishing them. Fur-
ther, it delves into the roots of intelligence—whether it arises 
from statistical methods, mechanisms, network structures, 
inferential capabilities, or other factors. Second, a method-
ology grounded in the general user’s capacity to assess the 
expected or attributed intelligence of LLMs can address the 
epistemological challenges posed by these models, which 
warrant careful consideration. This paper aims to sketch out 
the broad context in which these issues emerge, focusing on 
those most pertinent to the discourse on knowledge.

LLMs have become integral to our digital landscape, 
necessitating a confrontation with the reality that they 
are widely accessible and their restrictions are easily cir-
cumvented. Beyond the potential for deliberate misuse by 
malicious actors, even standard applications of LLMs can 
lead to concerning outcomes. For instance, LLMs might 
contribute to an overwhelming proliferation of texts on 
the Internet, posing challenges in discerning AI-generated 
content from human-created work. This situation raises 
critical questions about distinguishing between AI and 
human outputs, as well as addressing the accountability 
for misuse, whether intentional or not. Moreover, the reli-
ance of these models on statistical and predictive meth-
odologies may lead to their outputs being perceived as 
devoid of genuine knowledge. This perspective prompts 
a legitimate inquiry into the extent to which these mod-
els might foster ignorance or encourage users to embrace 
it. Specifically, could the vast and growing “knowledge” 

generated by LLMs encourage individuals to opt for or 
retreat into ignorance? And, might ignorance become a 
sought-after refuge in response to the challenges posed by 
this technology? The topic of ignorance is extensive within 
the philosophy of science and epistemology, encompass-
ing a long philosophical history and a multitude of facets 
and contexts that determine its acceptability or unaccept-
ability in various ways [for a comprehensive examination, 
see Peels (2023)]. The notion that ignorance can arise 
from the rejection of knowledge and information has been 
explored alongside the production of fake knowledge [see, 
for example, Townsend (2017)]. The technological fac-
tor associated with knowledge proposed by AI systems, 
i.e. non-human systems, appears to have the potential to 
exacerbate forms of ignorance in predisposed individuals. 
This could occur as LLMs systems can inherently increase 
distrust towards the content they produce because it origi-
nates from such systems.

Moreover, the potential for misuse and knowledge 
manipulation is heightened by the fact that most LLM texts 
originate from human prompts, with users often lacking 
sufficient awareness of the tools they’re utilizing. LLMs 
are susceptible to “hallucinations” (Ji et al. 2023), mean-
ing they can produce outputs that seem plausible but are 
disconnected from reality, potentially leading to the crea-
tion of misleading texts, fake news, and misinformation. 
When it comes to constructing explanations, it’s crucial 
to recognize that although LLMs may simulate reasoning, 
they do not genuinely reason but rather generate statistical 
predictions. As a result, argumentative texts are “fake” in 
the sense that they’re not authentic arguments crafted by 
the model but rather are predictive constructions based on 
training data or input. Thus, there’s no logical assurance 
of the validity of such arguments, which may lack coher-
ence or relevance in their premises. This area of reser-
ach remains dynamic and will likely evolve, especially in 
relation to how reasoning is evaluated in connection with 
the model’s size (Huang and Chang 2023). Additionally, 
challenges regarding access to accurate and reliable infor-
mation online could lead users to rely solely on localized 
and tangible sources, like traditional paper documents or 
multimedia repositories, potentially hindering the accus-
tomed practices of knowledge sharing, verification, and 
dissemination of recent decades.

The overarching issue is the risk of ignorance driven 
by the ambiguous nature attributed to knowledge gener-
ated by these models, which, notwithstanding, is largely 
sourced from extensive, reliable data sets and pre-exist-
ing knowledge bases. Thus, a pressing question emerges: 
what are the effective measures to address the ethical con-
cerns stemming from such epistemological and epistemic 
challenges?
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6  An Example on LLMs and Scientific 
Knowledge

An example of using an LLM in relation to scientific 
knowledge may illustrate the type of issues highlighted 
above. In September 2023, the following prompt was pro-
vided to CHAT-GPT (version 3.5): “Please describe me a 
scientific discovery”. The system response was:

-------------------------

• Discovery: The Structure of DNA
• Date of Discovery: 1953
• Discoverers: James Watson and Francis Crick, with sig-

nificant contributions from Rosalind Franklin and Mau-
rice Wilkins.

• Background: Before the discovery of DNA’s structure, 
scientists knew that genetic information was stored in 
cells, but they didn't fully understand how it was organ-
ized or transmitted. This lack of knowledge was a major 
gap in our understanding of biology and heredity.

• Discovery: In 1953, James Watson and Francis Crick, 
two scientists at the University of Cambridge, proposed 
a groundbreaking model for the structure of DNA. Their 
discovery was based on a combination of their own 
research and the critical X-ray crystallography work 
performed by Rosalind Franklin and Maurice Wilkins.

• Watson and Crick’s model, often depicted as a double 
helix, showed that DNA consists of two long chains of 
nucleotides running in opposite directions, coiled around 
each other. Each nucleotide consists of a sugar molecule, 
a phosphate group, and one of four nitrogenous bases 
(adenine, thymine, cytosine, or guanine). The key insight 
of their discovery was that the two strands were held 
together by hydrogen bonds between complementary 
pairs of nitrogenous bases: adenine (A) always pairs with 
thymine (T), and cytosine (C) always pairs with guanine 
(G).

Significance: The discovery of the structure of DNA 
revolutionized the fields of biology and genetics. It pro-
vided the key to understanding how genetic information 
is stored and replicated. Some of the profound implica-
tions include:

1. Understanding Heredity: The double helix structure 
of DNA explained how genetic information is passed 
from one generation to the next. It clarified how genes 
encode the instructions for building and maintaining liv-
ing organisms.

2. Replication: The complementary base pairing in DNA 
allowed for the accurate replication of genetic informa-

tion during cell division. This insight laid the foundation 
for our understanding of how DNA is copied.

3. Molecular Biology: The discovery of DNA’s structure 
opened the door to the field of molecular biology. It led 
to further research on DNA’s role in protein synthesis, 
gene regulation, and the molecular mechanisms of dis-
eases.

4. Biotechnology and Medicine: Knowledge of DNA’s 
structure has been instrumental in the development of 
biotechnologies like genetic engineering, DNA sequenc-
ing, and the study of genetic diseases.

5. Forensics: DNA fingerprinting and profiling became 
possible due to the understanding of DNA’s structure. 
This has had significant applications in criminal justice 
and paternity testing.

In summary, the discovery of the DNA structure was 
a monumental scientific breakthrough that fundamentally 
changed our understanding of life, genetics, and biology as 
a whole. It continues to shape numerous scientific and tech-
nological advancements to this day.

-------------------------
A person possessing average knowledge should be capa-

ble of discerning that the information supplied by the system 
is trustworthy and beneficial for enhancing their personal 
knowledge, provided that the system operates transparently 
and is credited with a general capacity for possessing knowl-
edge, reflective of an expected level of intelligence. This 
illustration highlights the advantages of utilizing the LLM. 
Nonetheless, the drawbacks are intricately linked, relating to 
the almost indiscernible methods of knowledge generation.

To illustrate this point, it is noteworthy to examine the 
system’s response to a second prompt, issued immediately 
after the first one, which requested: “Please invent a scien-
tific discovery”.

-------------------------
Let's imagine a fictional scientific discovery for the sake 

of creativity and exploration:

• Discovery: Quantum Entanglement Resonance (QER)
• Date of Discovery: 2025
• Discoverers: Dr. Emily Parker and Dr. Michael Chen
• Background: In the realm of quantum physics, scientists 

have long been fascinated by the mysterious phenomenon 
of quantum entanglement, where two particles become 
interconnected in such a way that the state of one particle 
instantaneously influences the state of the other, regard-
less of the distance separating them. This phenomenon 
has been widely studied and used in quantum computing 
and cryptography.

• Discovery: In 2025, Dr. Emily Parker and Dr. Michael 
Chen, working at the cutting edge of quantum physics 
research, made a groundbreaking discovery they called 
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“Quantum Entanglement Resonance” (QER). QER 
involves the identification of specific resonant frequen-
cies at which quantum entangled particles become even 
more interconnected and exhibit novel properties.

Key aspects of the discovery include:

Frequency-Dependent Entanglement: The researchers 
found that when two entangled particles are exposed to 
certain resonant frequencies of electromagnetic radiation, 
their entanglement becomes significantly stronger, allow-
ing for instantaneous communication of not only state but 
also information between the particles.
Quantum Information Transfer: QER enables the transfer 
of quantum information between entangled particles at 
previously unattainable rates. This has profound impli-
cations for the field of quantum computing, potentially 
leading to unprecedented computational power.
Secure Quantum Communication: The discovery of QER 
opens up possibilities for ultra-secure quantum commu-
nication channels. Any eavesdropping attempts would be 
immediately detected due to the disruption of the resonant 
frequencies.
Quantum Sensing: QER also has applications in quantum 
sensing, allowing for extremely precise measurements in 
fields like medicine, environmental monitoring, and navi-
gation.

Significance: The discovery of Quantum Entanglement 
Resonance (QER) represents a major leap forward in the 
field of quantum physics. It not only deepens our under-
standing of quantum entanglement but also unlocks 
practical applications with the potential to revolution-
ize quantum computing, secure communication, and 
high-precision measurement technologies. The scientific 
community is now racing to explore the full range of 
possibilities and harness the power of QER for various 
applications.

Please note that this is a fictional scientific discovery cre-
ated for imaginative purposes, and as of my last knowledge 
update in September 2021, no such discovery existed in the 
real world. Scientific discoveries are typically the result of 
extensive research, experimentation, and peer-reviewed 
validation.

-------------------------
An average person, unaware if the prompt, might find 

clues indicating that the knowledge produced is intended for 
fictitious use. The first clue could be the temporal aspect: the 
event is described as occurring in the future. The second clue 
might involve the purported authors of the discovery, who, 
upon basic research, appear unconnected to the claimed dis-
covery. Lastly, the system’s disclaimer, which states it is 

generating fiction, serves as a clear indicator. However, it’s 
easy to imagine how these elements could be bypassed or 
omitted, allowing the information to be misrepresented as 
factual (e.g., by fraudulent actors).

In today’s interconnected society, we are somewhat accus-
tomed to such risks and, to an extent, prepared for them. The 
challenge with LLMs’ outputs lies in the difficulty, even for 
individuals of moderate or high cultural knowledge but not 
experts in the subject matter, to discern whether the system 
is presenting factual and reliable information or fabricating 
it, especially once explicit markers of falsehood have been 
removed. Distinguishing genuine from invented knowledge 
is not impossible but demands extensive verification and 
resources that might not be readily accessible. A highly plau-
sible fiction can be more deceptive than an obvious lie, espe-
cially since LLMs, by their very design, excel at generating 
statistically plausible word sequences, thereby producing 
seemingly plausible knowledge.

7  Conclusion

Throughout this article, I have examined LLMs as AI 
systems that have become integral to our society, closely 
aligning with Alan Turing’s visions of imitation, linguis-
tic interaction, and intelligent machinery. I delved into the 
functioning of LLMs to explore the nature of the knowl-
edge they produce—a type that diverges significantly from 
human knowledge in its creation and production processes, 
yet mirrors human output in the form of textual responses to 
queries. This duality fosters an ambiguity laden with poten-
tial epistemic and ethical risks concerning the reliability, 
utilization, and dissemination of the generated knowledge, 
potentially fueling varying degrees of ignorance, whether 
consciously or not. As a tentative solution to these chal-
lenges, I proposed a methodology for evaluating AI systems 
and their outputs based on the intelligence users expect. This 
approach does not require in-depth technical knowledge of 
the system’s inner workings but instead relies on assessing 
interactions with the system. Finally, through an example 
focused specifically on scientific knowledge, I aimed to dem-
onstrate the relevance of user evaluation of an AI system, 
in this case, a large language model (LLM). This example 
highlights the importance of distinguishing true scientific 
knowledge from information that appears plausible but is 
difficult to assess based solely on its content, therefore mak-
ing the knowledge of the interaction with the AI system cen-
tral in the evaluation of the system itself.

The goal is to foster a greater overall awareness among 
users regarding their engagement with AI systems—an 
awareness that is presently lacking. This deficiency poses 
numerous concerns, especially regarding the proper 
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acknowledgment of knowledge generated by LLMs, includ-
ing that of a strictly scientific nature.
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