
Welch et al. 
BMC Medical Research Methodology          (2024) 24:155  
https://doi.org/10.1186/s12874-024-02248-9

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Research
Methodology

The performance of a Bayesian value-based 
sequential clinical trial design in the presence 
of an equivocal cost-effectiveness signal: 
evidence from the HERO trial
Charlie Welch1*, Martin Forster2, Sarah Ronaldson1, Ada Keding1, Belen Corbacho‑Martín1 and 
Puvan Tharmanathan1 

Abstract 

Background There is increasing interest in the capacity of adaptive designs to improve the efficiency of clinical trials. 
However, relatively little work has investigated how economic considerations – including the costs of the trial – might 
inform the design and conduct of adaptive clinical trials.

Methods We apply a recently published Bayesian model of a value‑based sequential clinical trial to data 
from the ‘Hydroxychloroquine Effectiveness in Reducing symptoms of hand Osteoarthritis’ (HERO) trial. Using param‑
eters estimated from the trial data, including the cost of running the trial, and using multiple imputation to estimate 
the accumulating cost‑effectiveness signal in the presence of missing data, we assess when the trial would have 
stopped had the value‑based model been used. We used re‑sampling methods to compare the design’s operating 
characteristics with those of a conventional fixed length design.

Results In contrast to the findings of the only other published retrospective application of this model, the equivocal 
nature of the cost‑effectiveness signal from the HERO trial means that the design would have stopped the trial close 
to, or at, its maximum planned sample size, with limited additional value delivered via savings in research expenditure.

Conclusion Evidence from the two retrospective applications of this design suggests that, when the cost‑effective‑
ness signal in a clinical trial is unambiguous, the Bayesian value‑adaptive design can stop the trial before it reaches its 
maximum sample size, potentially saving research costs when compared with the alternative fixed sample size design. 
However, when the cost‑effectiveness signal is equivocal, the design is expected to run to, or close to, the maximum 
sample size and deliver limited savings in research costs.

Introduction
There is increasing interest in the use of adaptive designs 
to improve the efficiency of clinical trials. Such designs 
monitor outcome data as they arrive over the course of 
the trial, so that planned design changes can be made 
in response to accumulating evidence [1–8]. There is 
also growing interest in using clinical trials to examine 
the cost-effectiveness of the technologies under inves-
tigation, alongside their clinical effectiveness, with the 
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objective of assessing their ‘value for money’ to the health 
care system [9, 10]. However, relatively little work has 
investigated how economic considerations – including 
the cost of carrying out a clinical trial – might inform the 
design and conduct of adaptive clinical trials.

Recent NIHR-funded research initiatives in the United 
Kingdom – notably the ‘EcoNomics of Adaptive Clini-
cal Trials’ (ENACT) and the ‘Costing of Adaptive Tri-
als’ (CAT) projects1 – have sought to address this gap 
in the literature. In this paper, we focus on one of the 
principal outputs of the ENACT project; a retrospective 
application of a recently developed Bayesian value-based 
sequential clinical trial design [13, 14] to data from the 
‘Hydroxychloroquine Effectiveness in Reducing symp-
toms of hand Osteoarthritis’ (HERO) trial [15–17].

The HERO trial was a fixed sample size, non-sequential 
clinical trial designed according to frequentist principles. 
It recruited and randomised a fixed, predetermined num-
ber of patients to its two arms, collected data on a key 
primary clinical endpoint and tested a null hypothesis 
positing that the experimental treatment (hydroxychlo-
roquine) was no better than placebo for the treatment 
of hand osteoarthritis (OA) with respect to this end-
point. The sample size was chosen to target 80% power 
for this hypothesis test. In this paper we investigate: (1) 
what would have happened had the HERO trial been 
conducted as a Bayesian value-based, sequential, clinical 
trial; (2) how much additional value such a design might 
have delivered to the health care system, over and above 
that delivered by a non-adaptive design and (3) how mul-
tiple imputation methods for missing data can be incor-
porated into the implementation of the value-based 
sequential model.

The sequential model that we investigate permits the 
clinical trial to stop short of its maximum sample size 
through explicit consideration of the trade-off between 
the benefits and costs of continuing the trial. As we dis-
cuss below, the sequential trial’s maximum sample size 
can be chosen to be equal to, smaller than, or greater 
than the sample size that is required for a traditional, fre-
quentist, fixed sample size design. In contrast to notions 
of efficiency considered by most proposed sequential 
designs, where the objective is to reduce the expected 
sample size of a trial (subject to some constraints), the 
objective of the value-based sequential model is to max-
imise the overall expected net benefit of the trial and 
subsequent treatment adoption recommendation to the 
health care system. As our results show, a value-based 

approach could motivate a sample size that exceeds that 
which would be planned for a traditional, frequentist, 
fixed sample size clinical trial.

To date, the published literature contains only one 
other retrospective application of this model: [18] 
applied it to the ‘PROximal Fracture of the Humerus: 
Evaluation by Randomisation’ (ProFHER) pragmatic 
trial [19] and found that the design could have reduced 
the number of patients randomised by an estimated 
14% (saving about 5% of the research budget), while at 
the same time resulting in an adoption recommenda-
tion which was consistent with that of the actual trial. 
A bootstrap analysis investigating the performance 
of the model ‘on average’ suggested a reduction in 
expected sample size of approximately 38% (compared 
with a fixed length design), an estimated 13% saving in 
the research budget, and an estimated probability of 
0.92 of an adoption recommendation consistent with 
that of the actual trial.

These results were driven by a relatively strong cost-
effectiveness signal in favour of one of the two inter-
ventions that were under investigation. In contrast, the 
HERO trial’s cost-effectiveness evidence was much less 
clear-cut, with neither of the treatments showing a clear 
cost-effectiveness advantage over the other. The data 
from the HERO study therefore provide an ideal opportu-
nity to assess the value-based sequential model’s perfor-
mance in the presence of an equivocal cost-effectiveness 
signal. In doing so, we note that our focus in this paper is 
not on whether the Bayesian sequential rule that is pro-
posed could replace a frequentist fixed sample size or 
group sequential design. Instead, our interest is whether 
the model could complement existing designs, by provid-
ing additional information to trials teams about whether 
or not interim evidence suggests that the expected ben-
efit of continuing the trial outweighs the expected benefit 
of stopping it.

The rest of this paper is structured as follows. In  the 
Methods  section we provide an overview of the value-
based sequential model and the HERO trial, and describe 
in detail the application of the former to the latter. In the 
Results section we report the quantitative findings of our 
application. The Discussion section discusses our results, 
compares them with those from the ProFHER applica-
tion and considers directions for future research.

Methods
The Bayesian value‑based model of a sequential clinical 
trial
In this section we provide an intuitive account of the 
Bayesian value-based sequential model that we apply 
to the HERO trial. Full details may be found in the two 
papers which state and solve the model [13, 14].

1 The principal publication from the ENACT project is [11]. A principal 
publication from the CAT project is [12] and the project’s website is https:// 
www. newca stle- biost atist ics. com/ metho dology_ resea rch/ adapt ive_ desig ns/

https://www.newcastle-biostatistics.com/methodology_research/adaptive_designs/
https://www.newcastle-biostatistics.com/methodology_research/adaptive_designs/
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Consider a randomised clinical trial in which a new 
health technology, N, is to be compared with a control, 
or standard, technology, S, on cost-effectiveness grounds. 
Patients are randomised sequentially, and in a pairwise 
manner, to the two arms of the trial and outcome and 
treatment cost data are measured over a follow-up period 
of defined length. The outcome of interest is whether 
technology N is a cost-effective choice for the reimburse-
ment agency responsible for funding the health tech-
nology, where cost-effectiveness is measured in terms 
of incremental net monetary benefit (INMB). Label the 
pairwise allocations as i = 1, . . . ,Tmax , where Tmax is the 
maximum number of pairwise allocations that can be 
made. Define the net benefit of technology j for pairwise 
allocation i as NBij = �Eij − Cij , j ∈ {N , S} , where the 
random variables E and C denote effectiveness and cost, 
respectively, and � denotes the reimbursement agency’s 
maximum willingness to pay for one unit of effectiveness 
(as an example, in the HERO trial, E is a Quality Adjusted 
Life Year (QALY), so � could be the UK National Health 
Service’s valuation of one QALY, generally taken to equal 
between £20,000 and £30,000 [20]).

Define the incremental net monetary benefit of the new 
technology versus the standard for pairwise allocation i, 
denoted hereafter as Xi , as the net benefit of N minus the 
net benefit of S for allocation i:

The Xi are assumed to have a normal distribution with 
unknown expected value µX ≡ E[X] , but known variance 
σ 2
X (the assumption of normality of the data is something 

that could be tested during the course of the trial, and 
is something we carry out in our application). Taking a 
Bayesian perspective, prior beliefs about µX are modelled 
using a normal prior distribution with expected value 
and variance equal to µ0 and σ 2

0  , respectively. These val-
ues can be informed by existing evidence concerning the 
two technologies, a pilot study, or expert opinion, with 
limited or unreliable prior evidence being represented by 
a ‘diffuse’ prior distribution with expected value close to, 
or equal to, zero.

As the trial progresses, measurements of incremen-
tal net monetary benefit arrive sequentially from pairs 
of patients who have been followed-up and Bayes’ rule 
is used to obtain successive posterior distributions for 
µX . Under the assumptions of the model, namely that 
the prior distribution is normal and the data and associ-
ated likelihood function are normal, the posterior distri-
bution is also normal. After n pairwise allocations have 
been observed, the posterior mean and variance for µX , 
denoted µn and σ 2

n  respectively, are given by standard 
expressions [21]:

(1)
Xi = NBiN −NBiS = �(EiN − EiS)− (CiN − CiS).

where n0 = σ 2
X/σ

2
0  is the prior’s so-called ‘effective sam-

ple size’ and x̄ is the sample average of the n observations 
of INMB.

The objective of the model is to define a policy, or rule, 
that determines whether, conditional upon the observed 
data and hence the resulting posterior distribution, 
recruitment to the trial should stop, or another pair of 
patients should be recruited and randomised. The policy 
maximises the expected net benefit of the trial and sub-
sequent technology adoption decision, defined as the 
difference between the expected benefit accruing to the 
P patients whose treatment will be determined by the 
adoption of the superior technology once the trial con-
cludes, minus any costs incurred in switching technolo-
gies, minus the expected cost of carrying out the trial. 
The policy takes the form of a stopping boundary in ( n × 
prior/posterior mean space) which indicates that recruit-
ment should continue if the posterior mean for µX lies 
within the area enclosed by the stopping boundary and 
recruitment should cease if the posterior mean lies out-
side the boundary.

The stopping boundary is obtained by solving what is 
known as an ‘optimal stopping problem’, using the tech-
niques of dynamic programming [22, 23]. It is important 
to note that the solution to this problem uses information 
provided by the posterior distribution for the unknown 
value of µX and not just the expected value of the pos-
terior distribution. That is, the expected benefit from 
stopping the trial uses a distribution which predicts the 
value of µX once remaining pipeline patients have been 
observed, and the expected value of recruiting an addi-
tional pair of patients (continuing the trial) weights opti-
mal values for continuing the trial once that additional 
pair of patients has been recruited, using information 
derived from the posterior distribution. Full details of 
this process, and the so-called ‘Bellman equation’ which 
compares the expected values of stopping and continu-
ing the trial, may be found in the discussion of Equations 
(6)–(8b) of [13].

In line with frequentist approaches to sequential trial 
design (see, for example, [24]), it is necessary to specify 
a maximum sample size for the clinical trial, represented 
here by the maximum number of pairwise allocations, 
Tmax , that can be recruited. In theory, Tmax could be any 
value that the research team or funder chooses. There 
are a number of ways in which Tmax could be chosen. For 
example, one method sets it to equal the sample size that 
would be set for a fixed sample size trial designed accord-
ing to frequentist principles. This approach permits the 
trial to stop at, or before, the frequentist design’s target 

(2)µn =
n0µ0 + nx̄

n0 + n
, σ 2

n =
σ 2
X

n0 + n
,
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sample size. Alternatively, Tmax could be set equal to the 
sample size which maximises the expected net benefit of 
sampling in a so-called ‘value of information’ calculation 
for a fixed sample size design [25]. Whatever method is 
chosen, the value-based sequential design stops the trial 
as soon as the estimated additional benefit of recruiting 
an extra pair of patients is estimated not to be worth the 
additional cost of doing so.

Under the value-based sequential model, the trial has 
three stages: during Stage I, patients are recruited and 
randomised to the two arms, but no accrual of cost-
effectiveness data takes place because no patient has 
completed their follow-up period; during Stage II, val-
ues of INMB are observed sequentially and Eq. (2) are 
used to update the posterior distribution for µX . After 
each observation of INMB, there is the option to ran-
domise a further pair of patients to each arm of the 
trial, or stop recruitment. During Stage III, recruitment 
has stopped, but follow-up continues for the remaining 
pipeline patients. Once all patient outcomes have been 
observed and used to update the posterior mean for µX , 
Stage III concludes and the decision about whether to 
adopt the new technology is made. Adoption of technol-
ogy N is recommended if the total reward from adopt-
ing the technology exceeds any switching cost (that is, 
if P × µñ > I , where ñ is the total number of pairwise 
allocations made and I ≥ 0 is the cost of switching from 
technology S to N).

Figure 1 shows how the policy works in practice for the 
case in which I = 0 . Consider first the region marked 
(Stage) ‘I’. Under the assumption that the prior mean, 
µ0 , lies between the values indicated by points labelled 

‘D’ and ‘C’ on the vertical axis, the sequential design is 
preferred. Recruitment takes place during Stage I and 
the first observation of INMB occurs once the first pair 
of patients have been followed up. The point marked τ 
in Fig. 1 is the delay to observation of outcomes, and is 
measured in terms of the number of pairwise allocations 
that are expected to have been made during the follow-
up period for the first (and subsequent) observation(s) 
of INMB. During Stage II, as outcomes are observed, Eq. 
(2) are used to calculate the posterior mean and variance 
for µX in a series of interim analyses. If, at an interim 
analysis, the posterior mean lies within the area marked 
‘Continuation region’ in Fig.  1, it is optimal to continue 
recruitment to the trial. The first time that an interim 
analysis shows that the posterior mean has crossed the 
upper or the lower part of the stopping boundary, it is 
optimal to halt recruitment and move to Stage III. Dur-
ing Stage III, cost and outcome data for the remaining 
patients in the pipeline are observed. Once all data from 
all pipeline patients have been observed and used to 
update the posterior mean for µX , the adoption recom-
mendation is made. If the posterior mean is greater than 
zero, technology N is recommended over technology S, 
otherwise it is not2.

There are two scenarios in which it is not optimal to 
run the sequential trial, defined because their expected 
rewards are higher than the expected reward of the 
sequential design. If the prior mean lies on, or between, 

Fig. 1 Stopping boundary for the value‑based sequential model, showing the three stages of the trial (marked ‘I’, ‘II’ and ‘III’), the stopping boundary 
and the continuation region. [Source: adapted from [13, 18]]

2 The Stage III that is labelled in Fig.  1 refers to a trial which runs to the 
maximum sample size, Tmax . Stage III starts earlier if Stage II finishes before 
reaching Tmax.
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the points marked ‘A’ and ‘C’ or ‘D and B’, it is optimal 
to run a fixed sample size trial where the optimal sam-
ple size is chosen so that the expected net benefit of sam-
pling is maximised, according to established one-stage 
expected net benefit of sampling calculations (see, for 
example, [25]). We call such a trial design the ‘value-
based one stage design’. If the prior mean is greater than 
‘A’ or less then ‘B’, it is optimal to not run any trial and 
adopt N if µ0 > A and adopt S if µ0 < B , for a reward 
equal to Pµ0.

The HERO trial
The HERO trial was a double-blind, randomised, clinical 
trial carried out in 13 primary and secondary care centres 
across England. It evaluated whether hydroxychloroquine 
is superior to placebo for the treatment of hand osteoar-
thritis (OA). Recruitment took place between 24 Septem-
ber 2012 and 27 May 2014, with follow-up completed on 
29 June 2015. The study was funded by Arthritis Research 
UK (now Versus UK) and had a budget of £900,000.

For the clinical evaluation, follow-up of the primary 
endpoint took place at six months post-randomisation. 
For the economic evaluation it took place at 12 months 
post-randomisation. The trial protocol is published in 
[15] and results of the clinical evaluation are published in 
[16]. The original trial analyses/reporting were conducted 
according to CONSORT standards. Results of the within-
trial economic evaluation are reported in [17]. Costs in 
the study were measured in UK £sterling, at 2015 prices.

The trial recruited 248 patients presenting with symp-
tomatic pain and radiographic hand OA. Patients were 
randomised to receive either: (1) hydroxychloroquine 
in 200mg, 300mg or 400mg doses or (2) placebo. The 
primary clinical endpoint was average hand pain sever-
ity during the previous two weeks, measured on an 
eleven-point (0 to 10) numerical rating scale (NRS), at 
six months post-randomisation. Secondary endpoints, 
including quality of life, were also recorded. In particu-
lar, the trial used the EQ-5D-5L instrument to meas-
ure quality of life at baseline, 6 months and one year 
post-randomisation.

The economic evaluation consisted of a cost-utility 
analysis (estimating the cost per Quality Adjusted Life 
Year (QALY) at one year follow-up) and a cost-effec-
tiveness analysis (estimating the cost per unit reduction 
in pain score). It was characterised by a considerable 
amount of missing data, particularly missing healthcare 
resource use data, a frequent problem in RCTs [26, 27]. 
The missing data problem is amplified when the sum-
mary measures used for analysis (e.g. total costs incurred 
during the follow-up period) are derived using repeated 
measurements of a large number of variables, as in the 
HERO trial’s economic evaluation. For example, the total 

cost associated with a given participant’s treatment and 
healthcare resource use during the follow-up period 
is missing if the participant is missing any one of the 
numerous variables that are used to derive this total.

The assumption that the missing cost and QALY data 
are ‘Missing Completely at Random’ (MCAR) is often 
less less plausible than the assumption that they are 
‘Missing at Random’ (MAR) or ‘Missing not at Random’ 
(MNAR). In essence, MCAR means that the missing 
values are independent of both the observed and miss-
ing data, so that analysis which ignores them remains 
unbiased, albeit at the cost of precision. If the data 
are MAR, the missing values are not independent of 
observed data, potentially causing bias if this is ignored 
during analysis. In such a situation, multiple imputa-
tion and likelihood based methods can be used for valid, 
unbiased inference; see, amongst others, [26, 28–30]. 
Missing data are MNAR if the probability of missing-
ness depends on the unobserved values themselves. 
The issue of MNAR outcome data in RCTs has received 
some interest recently [31, 32], but is beyond the scope 
of the current paper.

The base case economic analysis reported in [17] takes 
the perspective of the UK National Health Service and 
Personal Social Services and uses multiple imputation by 
chained equations under the assumption that the miss-
ing data are MAR [33–35]. Analysis of the clinical data 
found that hydroxychloroquine was not superior to pla-
cebo in terms of its effect on expected severity of pain 
at six months [16] and expected QALYs at one year [17]. 
The base case economic analysis found essentially no evi-
dence that hydroxychloroquine is superior to placebo on 
cost-effectiveness grounds. Using a maximum willingness 
to pay for one QALY of £30,000, the estimate of expected 
incremental net monetary benefit of hydroxychloroquine 
compared to placebo was –£144.34 (95% confidence 
interval of (–£158.67, –£130.02)) and the probability that 
hydroxychloroquine is cost-effective was estimated to be 
0.39 [17].

Applying the Bayesian value‑based sequential design 
to HERO
Referring to Eq. (1), we consider the new technology, N, 
to be hydroxychloroquine and the standard technology, 
S, to be placebo. Assuming a maximum willingness to pay 
for one QALY of £30,000, the incremental net monetary 
benefit for pairwise allocation i is:

Positive values of INMBi indicate greater net benefit 
from hydroxychloroquine and negative values indicate 
greater net benefit from placebo.

(3)INMBi = £30, 000(Ei,hyd − Ei,placebo)− (Ci,hyd − Ci,placebo).
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Although the value-based sequential model can, in 
principle, operate in a fully sequential manner (that is, 
the posterior mean for E[INMB] during Stage II can be 
updated after each observed value of INMB and com-
pared with the relevant Stage II stopping boundary), the 
analyses presented in this paper assume that the poste-
rior mean is updated once every 10 pairwise allocations. 
This recognises the fact that continuous monitoring of 
the cost-effectiveness signal is unlikely to be feasible in 
most trials3. We assume that recruitment stops imme-
diately following the first interim analysis that indicates 
the posterior mean for E[INMB] has crossed the stopping 
boundary.

Total costs and QALYs accruing during the follow-up 
period are derived in an identical manner to the origi-
nal HERO economic analysis. For the purposes of this 
paper, point estimates of E[INMB] are obtained via sim-
ple comparisons of mean net monetary benefit between 
randomised groups, absent conditioning on any baseline 
covariates. This is sufficient to assess the performance of 
the value-based sequential model that is the focus of this 
paper, but is in contrast to the analysis reported in [17], 
which estimated E[INMB] using a seemingly unrelated 
regression model that conditioned on several baseline 
covariates.

Our analysis proceeded as follows. Firstly, we obtained 
the path of the posterior mean of E[INMB] using the 
actual trial data and assuming a time to follow-up 
equal to that used in the trial’s economic evaluation (12 
months). Observations were ordered according to the 
date of randomisation, and we used multiple imputation 
to fill in missing values (refer to Handling missing data 
using multiple imputation section). We used the imputed 
datasets (generated using the entire sample) to obtain the 
estimate of the sampling standard deviation, σX . We used 
this estimate, together with estimates of other relevant 
parameter values (see Choice of parameter values  sec-
tion), to obtain the stopping boundary for the value-
based sequential model. We then compared the path of 
the posterior mean to the stopping boundary to answer 
the question: ‘had the Bayesian value-based sequen-
tial model been used, when would the HERO trial have 
stopped?’ Next we considered the average performance 
of the value-based model by re-sampling from the HERO 
data and comparing these re-sampled paths of posterior 
mean with the relevant stopping boundary (Re-sampled 

data analysis section). In light of the fact that researchers 
have flexibility in setting the maximum sample size for 
the value-based sequential trial, Tmax , our main re-sam-
pled data analyses set Tmax = 124 and Tmax = 248 pair-
wise allocations.

Finally, we carried out sensitivity analysis to investigate 
how robust our results were to: (1) increasing the maxi-
mum sample size to 1000 pairwise allocations and (2) 
reducing the time to follow-up of the cost-effectiveness 
data from 12 to 6 months.

Handling missing data using multiple imputation
The value-based sequential model assumes that the 
recruitment and follow-up of patients provides a series 
of independent and identically distributed observations 
of incremental net monetary benefit. If cost-effectiveness 
data are MAR or MNAR, then the observations of incre-
mental net monetary benefit that are obtained using just 
the observed data on costs and utilities may not result in 
a representative sample from the population distribution 
of incremental net monetary benefit. As with any statisti-
cal analysis of incomplete data, the precise impact of the 
missing values will depend on the mechanisms that gave 
rise to them. These are, in general, not known. Hence the 
validity of any quantities obtained using the incomplete 
data, such as the posterior distribution for the expected 
value of incremental net monetary benefit, will generally 
rest on strong and largely unverifiable assumptions about 
the mechanisms that resulted in the missing data.

As noted in The HERO trial  section, the HERO tri-
al’s economic evaluation used multiple imputation by 
chained equations to address potential bias resulting 
from missing quality of life outcome and cost data, under 
the assumption that the missing values were MAR. We 
follow this approach in the analyses undertaken in this 
paper and use the same imputation model that was used 
for the base case analysis reported in [17]. Details of the 
variables included in the imputation model are given 
in Appendix Table  1. Assuming the imputation model 
encoded by this set of chained equations does a reason-
able job of approximating the true joint model of the 
observed and incomplete cost-effectiveness data, the 
imputed datasets can be used to obtain unbiased obser-
vations of incremental net monetary benefit, which can 
then be used to update the posterior distribution. Clearly, 
this depends on unverifiable assumptions regarding the 
missing data mechanism. If for example, the missing data 
were truly MNAR, and particularly if the MNAR mecha-
nisms differed by allocation, the observations of incre-
mental net monetary benefit obtained from our imputed 
datasets may not be representative of the distribution 
that would have been obtained were the cost-effec-
tiveness data complete. While a more comprehensive 

3 In principle, interim analyses could take place as frequently, or as infre-
quently, as desired. We have chosen to hold an interim analysis every ten 
pairwise allocations because we believe it strikes a reasonable balance 
between continuous data monitoring during the trial – we believe this to 
be unrealistic – and only monitoring the data once during Stage II – which, 
we believe, minimises the sequential benefits which could be provided by 
the model.
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discussion of MNAR cost-effectiveness data is beyond 
the scope of the current paper, we note that recent work 
on sensitivity analyses using controlled multiple imputa-
tion - for example, [32, 36] - could be applied in the con-
text of the value-based sequential model.

For each interim analysis, we firstly imputed missing 
cost and QALY data using all data available at the time 
of that interim analysis, generating five imputed datasets, 
as per [17]. We then obtained an estimate of E[INMB] for 
the most recent interim analysis by obtaining five esti-
mates of E[INMB] , one from each of the five imputations, 
for just the most recent block of pairwise allocations. 
We then combined these using Rubin’s rules [28, 37, 38]. 
These ‘by-block’ estimates were then used to obtain the 
values of the posterior mean and variance at each interim 
analysis using Eq. (2). It was not possible to obtain an 
estimate for the first interim analysis (that would have 
been based on 10 pairs) owing to data sparsity, which 
caused numerical difficulties for the chained equations 
algorithm used for the multiple imputation.

Re‑sampled data analysis
We re-sampled observations with replacement from the 
HERO data, placed them into sequential blocks of 10 
pairwise allocations based on a random order, and used 
the estimates of E[INMB] from these blocks to obtain the 
posterior mean of E[INMB] , following the same approach 
to sequential multiple imputation as outlined in Handling 
missing data using multiple imputation section.

For the Tmax = 248 analyses, 5000 paths were gener-
ated by drawing two re-samples of 124 pairwise alloca-
tions and placing them into a single dataset, with the 248 
pairs then randomly sorted into sequential blocks of 10 
pairwise allocations. We recognise that this approach 
uses the data twice, which places limitations on the sta-
tistical validity of conclusions drawn based on the re-
sampled data for the Tmax = 248 setting. However, in 
the absence of additional data, we feel that this is a rea-
sonable approach to approximating the path of the pos-
terior mean, had the original trial been permitted to run 
beyond its planned sample size of 248 patients. A further 
limitation of the re-sampling of participant level data 
described here is that it treats the observations as being 
independent, ignoring potential clustering of costs and 
health outcome data by centre. This is primarily because 
it is not possible to undertake re-sampling at the level of 
centre in the present study, because the centres recruited 
to the HERO trial differed substantially in terms of the 
number of patients they recruited. This implies that, were 
re-sampling to be undertaken by centre, there would 
be substantial fluctuations in the number of patients in 
each of the re-samples, would make it difficult to esti-
mate sample sizes and research costs. While failure to 

properly account for dependence between observations 
obtained from patients recruited from the same cluster 
would compromise the frequentist properties of boot-
strap standard errors and confidence intervals, we do not 
think this issue compromises our analyses. Again this is 
because the re-sampling undertaken in the present study 
was primarily a means of simulating some plausible paths 
of posterior mean of expected incremental incremen-
tal net monetary benefit with a weak signal, as opposed 
to being used for any formal frequentist inference. The 
re-sampled datasets for the Tmax = 124 analyses were 
obtained by using just the first half of the randomly 
sorted re-sampled datasets generated for the Tmax = 248 
analysis. Appendix A provides further details.

To investigate the potential influence of increasing 
the maximum possible sample size of the HERO trial, 
we simulated trials with Tmax set equal to the following 
values: 250, 500, 750, 1000, 1500, 2000, 2500, 3000, 4000 
and 5000 pairwise allocations. We simulated 5000 repli-
cates for each value of Tmax . In each case, Tmax observa-
tions of incremental net monetary benefit were drawn 
from a Gaussian distribution with a mean of -£45 (as 
estimated using the multiply imputed HERO trial data), 
and a standard deviation of £7,615 (see Table  1). These 
simulated data were then used to obtain 5,000 paths of 
the posterior mean for the expected value of incremen-
tal net monetary benefit to compare with a value-based 
sequential model stopping boundary for the relevant 
value of Tmax.

Choice of parameter values
We used the parameter values reported in Table 1 to cal-
culate the stopping boundary for the value-based sequen-
tial model. Here we discuss some of the main choices of 
parameter values. Full details about how each was chosen 
are presented in Appendix B.

We used the trial data to estimate the rate of accrual 
of patients and information on how the trial budget was 
spent to estimate the variable costs of research. For the 
valuation of the total benefit provided by the trial to the 
UK healthcare system, we set the maximum willingness 
to pay for one Quality Adjusted Life Year to £30,000. 
After reviewing literature on the prevalence and inci-
dence of hand OA within the United Kingdom, we set 
the size of the population to benefit from the adoption 
decision, P, to 24,500 (equal to 2,450 patients per year for 
10 years). Absent guidance about how fixed and variable 
costs in a clinical trial’s budget should be allocated, we 
assumed an even split between fixed and variable costs 
during the recruitment and follow-up periods. This gives 
an estimate of the cost of randomising a pair of patients 
of £1,650. We estimated σX using multiply imputed data 
from all 124 patient pairs recruited in the trial.
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We set the prior mean for the expected value of 
incremental net monetary benefit, µ0 , to zero, reflect-
ing the idea that, prior to the HERO trial, there was 
little evidence suggesting that hydroxychloroquine was 
more, or less, cost-effective than placebo. We set the 
prior variance, σ 2

0  , to give a low weight to the prior 
mean relative to the trial data, equivalent to an effec-
tive sample size of the prior of n0 = σ 2

X/σ
2
0 = 2 pair-

wise allocations. Our choice of prior distribution is 
intended to reflect the lack of cost-effectiveness infor-
mation available to investigators prior to the trial tak-
ing place.

In line with the HERO trial’s economic analysis, 
we set the follow-up period for the cost-effectiveness 
data to be one year and we assumed a constant rate of 
recruitment to the trial that matched the average rate 
of accrual (124 pairs recruited over 611 days). Hence 
we assume that approximately τ = 74 pairwise allo-
cations were made by the time Stage II commences. 
This implies that, during Stage II, there are 74 pairs of 
patients in the so-called ‘pipeline’ of the trial. These 
are patients who have been randomised into the trial, 
but whose outcomes have yet to be observed. Hence, 
if the trial stops when an interim analysis has assessed 
outcome data for 30 patient pairs, the total sample size 
for the trial is 30 + 74 = 104 pairs, so 208 patients.

Results
First, we consider the HERO trial’s research expendi-
ture and cost-effectiveness signal over time. The black 
continuous line in Fig. 2 (left axis scale) plots the cumu-
lative spend of its research budget, using data from the 
financial accounts. Cumulative spend includes all costs 
recorded in the financial accounts, for whatever reason. 
Also plotted as a red dashed line on the right axis scale 
is the estimate of E[INMB] at one year as evidence from 
the trial accumulated. These sequential point estimates 
are based on the multiply imputed data. The plotted 
values are given in column (5) of Appendix Table  2, 
with key milestones in the project marked as follows: ‘A’ 
(recruitment starts); ‘B’ (recruitment finishes); ‘C’ (one 
year follow-up finishes); ‘D’ (publication of [16], pre-
senting the results of the clinical evaluation).

Figure  2 shows that, during follow-up, the estimate of 
E[INMB] was never greater than zero, meaning that there 
was never evidence that hydroxychloroquine was cost-effec-
tive. The first estimate, based on cost and outcome data from 
the first 20 pairs of patients allocated, is equal to –£2172. By 
the end of follow-up, the estimate had risen to –£45, with a 
95% confidence interval of (-£1387 to £1296). This implies 
that the trial provides little evidence that one technology is 
superior to the other on cost-effectiveness grounds, which 
we take to be an ‘equivocal’ cost-effectiveness signal.

Table 1 Parameter values used to obtain the stopping boundary for the Bayesian value‑based sequential model applied to the HERO 
trial

Parameter Definition Value Source

Estimated annual number of patients affected by the adoption decision 2,450 [39]

Time horizon for the post‑trial adoption population 10 years Assumption

P Number expected to benefit from the technology adoption decision 24,500 Defined from above parameters

σX Standard deviation of incremental net monetary benefit in population £7,615 Multiple imputation data sets

n0 Effective sample size of the prior distribution for E[INMB] 2 pairwise allocations Assumption

µ0 Prior mean for E[INMB] 0 Assumption

� Delay for observing EQ‑5D‑5L endpoint (in years) 1 [16]

Estimated annual rate of recruitment to trial 74 pairwise allocations [16]

τ Delay for observing EQ‑5D‑5L endpoint (in pairwise allocations) 74 pairwise allocations Annual rate of recruitment

Time horizon of trial 611 days [16]

I Fixed cost of adopting hydroxychloroquine £0 HERO team advice

Estimated spend on fixed costs prior to starting trial £90,216 HERO trial’s accounts

Estimated spend on fixed costs during trial £204,581 HERO trial’s accounts

Estimated spend on variable costs £204,581 HERO trial’s accounts

Estimated spend on fixed costs post follow‑up £336,042 HERO trial’s accounts

cfixed Total spend on fixed costs £630,839 HERO trial’s accounts

Total spend £835,419 HERO trial’s accounts

c Estimated cost per pairwise allocation £1,650 HERO trial’s accounts

� Maximum willingness to pay for one QALY £30,000 [20]
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Comparison of the spend and cost-effectiveness pro-
files provides insight into how much, if any, of the 
research budget might have been saved had the trial 
been allowed to stop recruitment early: approximately 
one third of the trial’s budget had been spent by the time 
that one year follow-up commenced and just under 60% 
had been spent by the time it had finished (‘C’). Crucially, 
around 45% had been spent by the time recruitment 
finished (‘B’). This means that only about 12-15% of the 
trial’s expenditure occurred between the beginning of 
the one year follow-up period and the end of participant 
recruitment.

Figure  3 breaks down the sequential point estimates 
of E[INMB] at one year that are plotted in Fig.  2 into 
estimates of expected incremental QALYs (Fig.  3a) and 
expected incremental treatment costs (Fig.  3b) at one 
year. Limits showing plus and minus two standard errors 
are also shown, to provide some indication of the uncer-
tainty surrounding the estimates. Values above zero show 
hydroxychloroquine to be more effective (Fig. 3a) / more 
costly (Fig. 3b). The plots show that hydroxychloroquine 
was estimated to be less effective than placebo through-
out the follow-up period, although the final estimate 
of incremental QALYs is very close to zero. Figure  3b 
shows that treatment with hydroxychloroquine was esti-
mated to be more expensive than placebo throughout the 

follow-up period, except at the very end, when it was esti-
mated to be £39 cheaper. These plots explain the equivo-
cal estimate of cost-effectiveness that is shown in Fig. 2.

Finally, a plot of the pairwise INMB data is presented 
in Fig.  4, where observations have been paired accord-
ing to their order of arrival in the data set. The histogram 
is superimposed with a kernel density estimator and a 
Gaussian distribution with the same mean and variance 
as the sample mean and variance of the observations on 
INMB. Our tests for normality of the INMB data did not 
reject the null hypothesis of normality at the 5% signifi-
cance level. The Shapiro-Wilk test, Shapiro-Francia test 
and Skewness-Kurtosis test gave p values of 0.439, 0.406 
and 0.680, respectively.

Running the HERO trial as a value‑based sequential design
Figure 5a presents the stopping boundary for the value-
based sequential model applied to the HERO trial when 
the maximum sample size is set equal to the trial’s actual 
sample size (124 pairwise allocations). The Stage II stop-
ping boundary is marked in black, using unnumbered, 
circled points linked by a continuous line. Also marked 
are the letters ‘A’ to ‘D’, showing the ranges of the prior 
mean for which no trial, a value-based one stage design 
and the value-based sequential design are optimal (refer 
to Fig.  1). Where the value-based one-stage design is 

Fig. 2 Estimate of cumulative budget spend (left axis, solid black line) and the point estimate of the expected value of incremental net monetary 
benefit (right axis, red dashed line) for the HERO trial. ‘A’ – recruitment starts; ‘B’ – recruitment finishes; ‘C’ – one year follow‑up finishes; ‘D’ – principal 
publication of the clinical analysis [16]. The cost‑effectiveness data are presented in column 5 of Appendix Table 2
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optimal, a range of optimal sample sizes for that design 
is indicated by blue circles. Figure 5a shows that, under 
the chosen parameter values (refer to Table  1), the 
value-based sequential design is optimal, from the per-
spective of maximising overall expected net benefit to 
the health care system, if the absolute value of the prior 
mean for E[INMB] is less than about £12,000 (points C 

and D). It also shows that no trial is optimal if the abso-
lute value of the prior mean for E[INMB] is greater than 
about £16,000, with immediate adoption of hydroxy-
chloroquine recommended only if the prior mean 
exceeds £16,000.

As noted in  the Choice of parameter values  sec-
tion, we assume a prior mean for the expected value of 

Fig. 3 Estimate of expected incremental QALYs and treatment costs at one year as evidence accumulated, together with limits at ± two standard 
errors, using imputed data. For the expected incremental QALYs values above zero suggest hydroxychloroquine to be superior to placebo 
and for the expected incremental treatment cost values above zero suggest hydroxychloroquine to be more expensive than placebo. The data 
series for a is presented in column 3 of Appendix Table 2. The data series for b is presented in column 4

Fig. 4 Histogram showing the distribution of the paired observations (paired according to their order of arrival in the data set) of incremental net 
monetary benefit for the HERO trial. The solid black line shows a kernel density estimate based on an Epanechnikov kernel, and the dashed black 
line shows a Gaussian distribution with mean and variance equal to the sample mean and variance of the 124 observations of pairwise INMB
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incremental net monetary benefit that is equal to £0. 
Since this value lies between the points C and D, the 
sequential design is optimal. Figure  5a also shows the 
path of the posterior mean for the expected value of 
incremental net monetary benefit, obtained using the 
multiply imputed HERO trial data, assuming that interim 
analyses take place every ten pairwise allocations (with 
the exception of the first interim analysis, which takes 
place at 20 pairwise allocations for the reason stated in 
Handling missing data using multiple imputation). The 
path remains in the continuation region throughout 
Stage II, showing that, under the value-based sequen-
tial design, recruitment would have continued until the 
sample size of the actual trial, 124 pairwise allocations, 
had been reached, and would have resulted in a final esti-
mate of the posterior mean equal to approximately –£30 
(hydroxychloroquine not cost-effective) and a technology 
adoption recommendation consistent with the results of 
the original trial, that is, that hydroxychloroquine should 
not be adopted.

This part of our application shows that, had the HERO 
trial been run according to the value-based sequential 
trial model, with a switching cost, I, assumed equal to 
zero, it would not have stopped before reaching the max-
imum planned sample size, and therefore the sequential 
design would not have saved any of the trial’s research 
budget. The principal reason for this is the relatively weak 
cost-effectiveness signal in the trial. However, an addi-
tional factor is the relatively small number of interim 
analyses (three) that occurred during Stage II of the trial, 

which offer limited scope for early stopping, and there-
fore limited scope for the sequential design to deliver 
increase value via reduced research expenditure.

Re‑sampled data analysis
Figure 5b shows the same Stage II stopping boundary and 
path of the posterior mean that are plotted in Figure 5a, 
together with the stopping boundary for Tmax = 248 and 
three re-sampled paths for the posterior mean generated 
according to the procedure described in Re-sampled data 
analysis. These paths show three scenarios in which the 
value-based sequential design would cease recruitment 
before reaching a maximum sample size of 124 pairwise 
allocations. For example, ‘Re-sampled path 1’ first crosses 
the Stage II stopping boundary at the third interim analy-
sis, informed by outcome data from the first 40 pairwise 
allocations, at which point recruitment stops, having 
recruited a total of 114 pairs of patients – the 40 that 
contributed to the interim analysis, plus the 74 ‘pipeline’ 
pairs. The posterior mean upon conclusion of follow-up 
is positive and so favours adoption of hydroxychloro-
quine. Similarly, ‘Re-sampled path 3’ crosses the stopping 
boundary at the first interim analysis, after outcomes 
for 20 pairwise allocations have been observed, so that 
94 pairwise allocations have been recruited to the trial. 
However, for this path, the final estimate of E[INMB] is 
negative and so favours placebo.

As described in Re-sampled data analysis, in our main 
analysis we obtained 5000 paths for two different trial 

Fig. 5 Stopping boundary and paths for the posterior mean for the HERO trial for: a the case of Tmax = 124 and b Tmax = 124 and Tmax = 248 , 
together with three resampled paths
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scenarios, Tmax = 124 and Tmax = 248 . We obtained 
summary statistics regarding the final estimate of the 
posterior mean of E[INMB] and the number of pairs ran-
domised, and compared them with fixed length designs 
equal to the chosen values of Tmax . Table 2 presents sum-
mary statistics for the two scenarios. The proportions of 
re-sampled paths that conclude that hydroxychloroquine 
is cost-effective under each of the designs are presented 
in Table 3.

When the maximum sample size of the value-based 
sequential model is set to 124 pairwise allocations, 
only around 3% of the re-sampled paths cease recruit-
ment before the maximum sample size. As alluded to 
in the Running the HERO trial as a value-based sequen-
tial design section, this is due to the equivocal cost-effec-
tiveness signal in the trial data, combined with the small 
number of interim analyses that can take place during 
Stage II. As a result, the final estimates of the posterior 
mean of E[INMB] , and the expected sample size and 
the proportion of re-sampled paths that conclude that 
hydroxychloroquine is cost-effective are very similar to 

those of the fixed sample size design. Under the assumed 
cost per pairwise allocation of £1,650 (see Table  1), the 
small reduction in expected sample size under the value-
based sequential approach translates to an estimated 
cost-saving for the trial of around £700 in total, less than 
0.1% of the HERO trial’s budget.

When the maximum sample size is set to 248 pairwise 
allocations, about 22% of the re-sampled paths cease 
recruitment before the maximum sample size is reached. 
This is driven by the increased length of Stage II, which 
now permits 16 interim analyses. However, the sample 
sizes for these ‘early-stopping’ paths are generally quite 
close to the maximum number of pairwise allocations 
permitted in the trial, again due to the equivocal cost-
effectiveness signal. As a result, the expected sample size 
is only around 4.5% smaller for the value-based sequen-
tial design than it is for the fixed length design. Apply-
ing the same assumptions as before, this translates into 
an estimated cost saving of around £18,000 (=(248-237) 
× £1650) over the fixed design. Despite there being more 
paths stopping early under this version of the value-based 

Table 2 Re‑sampled data analysis: comparison of the performance of the value‑based sequential model designs with fixed sample 
size designs with maximum sample sizes of 124 and 248 pairwise allocations

Average Standard deviation Minimum Maximum

Maximum sample size = 124 pairwise allocations
   HERO trial (original fixed sample size design)

      Posterior mean for E[INMB] (£) ‑91.47 647.51 ‑2559.69 2538.94

   Value-based sequential model

      Posterior mean for E[INMB] (£) ‑92.85 654.24 ‑2817.26 2538.94

      Sample size (pairwise allocations) 123.56 2.93 94 124

Maximum sample size = 248 pairwise allocations
   Fixed length trial

      Posterior mean for E[INMB] (£) ‑87.78 474.12 ‑1683.60 1804.17

   Value-based sequential model

      Posterior mean for E[INMB] (£) ‑101.07 543.69 ‑2559.69 2466.24

      Sample size (pairwise allocations) 236.91 27.77 94 248

Table 3 The proportion of re‑sampled paths which suggest that hydroxychloroquine is cost‑effective, for the designs summarised in 
Table 2

Final decision

Hydroxychloroquine not cost‑effective Hydroxychloroquine 
cost‑effective

Maximum sample size = 124 pairwise allocations
    HERO trial (original fixed sample size design) 0.552 0.448

    Value-based sequential model 0.552 0.448

Maximum sample size = 248 pairwise allocations
    Fixed length trial 0.570 0.430

    Value-based sequential model 0.570 0.430
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sequential model, the final estimates of E[INMB] for the 
fixed and sequential designs are again similar. Finally, the 
proportions of paths favouring hydroxychloroquine from 
the cost-effectiveness perspective, equal to 0.430, are 
essentially identical across the two Tmax = 248 designs 
that we consider, albeit being slightly lower than the pro-
portions observed for the Tmax = 124 designs (0.448).

To summarise, the qualitative message from the appli-
cation of the value-based sequential model to the HERO 
trial is that, contrary to the findings reported in [18] for 
the ProFHER trial, there is little prospect of stopping ear-
lier than the planned maximum sample size of the trial, 
and therefore little prospect of saving research monies, 
regardless of whether the maximum sample size is set at 
124 or 248 pairwise allocations. This is primarily due to 
the equivocal evidence concerning cost-effectiveness in 
the HERO trial, with a secondary reason being the lim-
ited number of Stage II interim analyses that are feasible, 
given the choices of Tmax.

Sensitivity analyses
To test how our main result is affected by alternative 
specifications of the design, we undertook two additional 
analyses. The first of these analyses increased the trial’s 
maximum possible sample size, examining the operating 
characteristics of the value-based sequential model for 

Tmax equal to the following values: 250, 500, 750, 1000, 
1500, 2000, 2500, 3000, 4000 and 5000 pairwise alloca-
tions. The second analysis reduced the delay to observ-
ing cost-effectiveness outcomes (from 12 months to 6 
months). Both of these specifications increase the num-
ber of interim analyses during Stage II. Further methodo-
logical details are contained in Appendix D.

The impact of increasing Tmax on expected sample 
size is plotted in Fig. 6. This plot shows the ratio of the 
expected sample size of the value-based sequential trial 
(across the 5000 replicates) to Tmax as a function of Tmax . 
We found that, while expected sample size increases as 
Tmax increase, it appears to do so at a diminishing rate. 
For example, when Tmax = 250 the average sample 
size across the 5000 simulated paths was 239 (96% of 
Tmax ), roughly aligning with the re-sampled data analy-
ses undertaken for Tmax = 248 (see Re-sampled data 
analysis  section). For Tmax = 1000 it was 640 (64% of 
Tmax ) and by Tmax = 5000 it was 1460 (29% of Tmax ). 
These results suggest that even in the context of a very 
weak cost-effectiveness signal, the value-based sequen-
tial model can deliver substantial reductions in expected 
sample size and variable costs, compared to an equivalent 
fixed sample size design. However, they also suggest that 
large values of Tmax may be required to realise important 
reductions in these quantities. For example, Tmax = 1000 

Fig. 6 The ratio of expected sample size to Tmax as a function of Tmax for the HERO trial
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pairwise allocations is around eight times the sample 
size of the original trial, and the expected sample size of 
640 pairwise allocations is more than a five-fold increase 
in the sample size of the original trial, equating to an 
increase in research costs of approximately £851,400 
(assuming a cost per pairwise allocation of £1,650). Fur-
ther, around 27% of the simulated paths continued to 
1000 pairwise allocations. Indeed, the proportion of sim-
ulated paths reaching Tmax dropped rapidly from around 
77% when Tmax = 250 to around 20% for Tmax = 2000 , 
but changed little thereafter with around 19% of simu-
lated paths running to Tmax for all values of Tmax larger 
than 2000. Finally, we note that despite the clear impact 
of the choice of Tmax on expected sample size, the final 
estimates of expected incremental net monetary ben-
efit and the proportion of paths concluding in favour of 
hydroxychloroquine varied little with changes in Tmax . A 
full set of operating characteristics are shown in Appen-
dix Tables 3 and 4 for the Tmax = 1000 scenario.

On the one hand, these results suggest that, in the 
context of an equivocal cost-effectiveness signal, the 
value-based sequential model can provide a meaning-
ful reduction in expected research expenditure if given 
sufficient opportunity to do so. On the other hand, it is 
perhaps unrealistic to think that a healthcare system 
would set a maximum sample size so large, relative to 
the planned sample size of the frequentist design. We 
therefore do not consider the substantial reductions in 
expected sample size evident for Tmax = 1000 and above 
to alter materially the conclusions of our main analyses, 
at least in the context of the HERO trial.

Appendix Table  3 shows that halving the time to fol-
low-up for measuring the cost-effectiveness outcomes, by 
setting a six month time horizon instead of a 12 month 
horizon, has relatively little impact on the results. For 
the trial with Tmax = 124 , the expected sample size for 
the value-based sequential design was 120 pairwise allo-
cations. When Tmax = 248 , the value-based sequential 
design showed a modest reduction in expected sample 

size of around 30 pairwise allocations compared with the 
fixed length design. In both cases the additional value 
delivered to the healthcare system via reduced costs of 
research is small.

Discussion
The analysis reported in this paper represents only the 
second published application of the Bayesian value-based 
sequential model of [13, 14] to data from a clinical trial. 
It is the first application to investigate the behaviour of 
the model in the presence of an equivocal cost-effective-
ness signal, and also the first to use multiple imputation 
to address the problem of missing cost-effectiveness data.

Table 4 compares some of the principal results reported 
in the Results section with those from the application of 
the value-based sequential model to data from the ProF-
HER trial [18]. Column (2) reports the final estimate of 
E[INMB] based on the original trial data, showing that 
the cost-effectiveness signal was much stronger in the 
ProFHER trial than in the HERO trial. Columns (4) to 
(7) show the actual and percentage changes in the sample 
size and budget when Tmax is equal to the actual sample 
size of the trials (124 pairwise allocations for HERO, 125 
for ProFHER) and with a sample size equal to double that 
number. For columns (6) and (7), which report the results 
for the re-sampled data, the figures are based on the 
expected values. Column (8) reports the percentage of 
re-sampled paths that report a result consistent with the 
trial’s recommendation (that surgery is not cost-effective 
(ProFHER); that hydroxychloroquine is not cost-effective 
(HERO)).

The table shows that the value-based sequential model 
offers non-negligible savings in sample size and budget 
in the ProFHER application (equal to 14% for the trial’s 
sample size and 5% of the budget, with averages from the 
re-sampled data estimated to be 42%/38% and 14%/13%, 
respectively), but not the HERO application. This is prin-
cipally due to the strong evidence suggesting that sur-
gery is not cost-effective in the ProFHER trial (the final 

Table 4 Performance of some of the principal operating characteristics in the ProFHER and HERO applications of the Bayesian value‑
based sequential model

a The trial’s actual sample size, measured in pairwise allocations

(1) (2) (3) (4) (5) (6) (7) (8)
Estimate of E[INMB]

(£) (95% CI)
Tmax Original trial data Re‑sampled data % paths consistent 

with trial 
recommendationSample size Budget % 

change
Sample size 
Mean (SD)

Budget % 
change

ProFHER ‑1758 (‑2389, ‑1126) 125a 107 ‑5 73 (19) ‑14 91

250 ‑ ‑ 77 (27) ‑13 92

HERO ‑45 (‑1387, 1296) 124a 124 0 124 (3) 0 55

248 ‑ ‑ 237 (28) +22 57
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estimate of the expected value of incremental net mone-
tary benefit is -£1758), a result not reflected in the HERO 
trial, where the equivalent figure is -£45.

The absence of material reductions in expected sample 
size or costs in the HERO application should not be taken 
to be a negative result. Early termination of recruitment 
would generally not be indicated, or indeed desirable, in 
such a scenario. The absence of evidence of early stop-
ping indicates that the expected benefits from continu-
ing to learn about the comparative cost-effectiveness of 
the two technologies for the 24,500 patients who will be 
impacted by the adoption decision is, in general, greater 
than the expected benefits of stopping recruitment dur-
ing Stage II.

Our results also show that the impact of the equivo-
cal cost-effectiveness signal on the expected cost-savings 
delivered by the value-based sequential model is affected 
by the duration of Stage II, as well as the proportion of 
variable costs committed by the time Stage II starts. This 
is particularly evident for the scenario which sets the 
maximum sample size of the sequential design, Tmax , to 
be the sample size chosen for the HERO trial (124 pair-
wise allocations), with a time to follow-up of cost-effec-
tiveness data equal to one year. In this scenario, 60% of 
patients are randomised into the trial before Stage II 
starts and only three interim analyses occur prior to Tmax 
being reached. Hence, even in the presence of a stronger 
cost-effectiveness signal, the cost-saving offered by the 
value-based sequential model is likely to be small. In con-
trast, for the application to the ProFHER trial, only 38% 
of the maximum sample size was committed prior to the 
start of Stage II and seven, not three, interim analyses 
could be undertaken during Stage II. This relationship 
between the recruitment horizon and time to follow-up 
is consistent with what has already been observed in the 
literature [40].

It is important to note that there is no requirement 
to set Tmax to the sample size chosen for the conven-
tional frequentist design. It could be set to a value that 
is considerably greater than that, such as the Tmax = 248 
scenario we have considered. Or it could be set to the 
sample size that would maximise the expected net ben-
efit of sampling, using the Bayesian one-stage trial design 
principles, which would permit comparison of expected 
values of the one stage and the value-based designs to 
be made4. Such an increase could be advantageous in 
terms of maximising the overall net-benefit delivered 
by the value-based sequential model. Of course, if a 
strong cost-effectiveness signal emerges during Stage II, 

the value-based sequential model is likely to terminate 
recruitment well before Tmax is reached, as is shown in 
the ProFHER application. It would also be interesting to 
explore in more detail the implications of deploying the 
model in very large trials, buiding on the analysis that is 
reported in the Sensitivity analyses section.

One further difference between the ProFHER and 
HERO applications that is evident from Table  4 con-
cerns the proportion of re-sampled paths that result 
in a decision consistent with the results of the original 
trial. For the ProFHER trial, more than 90% of the paths 
show that surgery is not cost-effective in the UK setting. 
For the HERO trial, only around 55% of paths conclude 
in favour of placebo. This is again due to the difference 
in the strength of the cost-effectiveness signal between 
the two studies, but it is also a consequence of the dif-
ferences in inferential and/or decision-making criteria 
that are adopted by the value-based sequential model 
and the original frequentist methods, particularly with 
regards to the strength of evidence that is required to 
induce a switch to a new health technology. If the one-
time switching cost of adopting the new technology (i.e. 
hydroxychloroquine in the HERO trial) is assumed to 
be £0, then under the value-based sequential model, 
the new treatment should be adopted if and only if the 
final estimate of the posterior mean of E[INMB] exceeds 
£0. Given the equivocal cost-effectiveness signal in the 
HERO data, a reasonably large proportion of the re-
sampled paths – approximately 45% – conclude with 
a posterior mean that is slightly greater than £0. This 
is in contrast to the frequentist approach (see [17]), for 
which hydroxychloroquine would only have been recom-
mended for adoption if the data provided sufficient infor-
mation to refute the null hypothesis of no difference in 
a direction favouring hydroxychloroquine. A discussion 
of the advantages and disadvantages of different systems 
of inference and decision-making is beyond the scope of 
this paper. However, the asymmetry and conservatism of 
the frequentist approach – which would likely be desir-
able if a given technology is expected to impose impor-
tant costs to the health system – can be incorporated 
into the value-based sequential model in an explicit and 
readily interpretable way, via the inclusion of the non-
zero switching cost I > 0 in the derivation of the optimal 
policy.

The quantitative findings that we report in  the 
Results section are dependent on the precise values of the 
various parameters what we have chosen for our appli-
cation, including the size and timing of interim analy-
ses. However, the qualitative results, and the contrast 
between the HERO and ProFHER results, are likely to be 
relatively insensitive to any reasonable choice of param-
eters, owing to the nature of the cost-effectiveness signals 

4 Although not the central focus of this paper, we note that such compari-
sons are reported in the HERO trial in [11].
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from the two trials. That said, a limitation of our analysis 
is that all choices of parameter values were fully retro-
spective, and in some cases, were based on the observed 
trial data and records of actual trial expenditure. In prac-
tice, the unknown parameter values required for the 
value-based sequential model would need to be specified 
during trial set-up. Obtaining accurate estimates of some 
of these parameters prospectively could be challenging, 
although we note that the issue of specifying prospective 
estimates of unknown design parameters is by no means 
unique to the value-based sequential approach.

As an example, consider estimation of the delay to 
observing outcomes in terms of pairwise allocations ( τ ). 
This requires an accurate estimate of the expected rate of 
patient recruitment during the trial, as well as the time 
horizon for follow-up. Although trial teams generally spec-
ify target recruitment figures during trial set-up, observed 
rates of accrual can differ considerably from those that are 
anticipated. While small departures from the anticipated 
rate of accrual may not be a major issue, large deviations 
could compromise the validity of the Stage II stopping 
boundary because the number of pipeline patients may 
differ considerably from the planned number. One way 
that this could be addressed in practice is by using an 
internal pilot phase to assess the rate of accrual, and mod-
ify the Stage II stopping boundary accordingly.

A second example concerns the number of patients, P, 
affected by the technology adoption decision. This depends 
on both the incidence of the condition and the time hori-
zon over which the adoption decision will apply. While, 
from a value-based perspective, it is clear that these param-
eters are a prerequisite to informed and rational decision 
making, in practice there is likely to be uncertainty regard-
ing both incidence and time horizon. Further work could 
explore the practicalities of eliciting prospective estimates 
of these parameters, as well as the potential impact of dis-
crepancies between such estimates and their true values.

A final example concerns the cost per pairwise alloca-
tion, c. Our estimate of this parameter was derived under 
the assumption of an even split between fixed and vari-
able costs during the recruitment and follow-up periods, 
a strong and probably overly simplified assumption. We 
believe our results concerning sample size and resource 
savings in the Results section are unlikely to be materially 
affected by small-to-moderate changes in this input, at 
least for Tmax = 124 or 248. However in other scenarios, 
accurate estimation of the cost per pairwise allocation 
could be of great importance in terms of its impact on 
both the optimal policy and any cost-savings that might 
be obtained by stopping recruitment early under the 
sequential design. While there is some literature on costs 
per patient in the commercial context (for example, [41]), 
there is little published literature providing figures for 

non-commercial clinical trials (such as the HERO trial). 
Published data concerning expected costs per patient in 
the non-commercial context would likely be of consider-
able value to any future work investigating the potential 
economic benefits of sequential clinical trials, whether 
they take a value-based perspective or otherwise.

The analyses reported in this paper assumed a fixed, 
known value for the sampling standard deviation of 
pairwise observations of incremental net monetary ben-
efit, σX . We based this estimate on the observed data, 
but in practice, a reasonable estimate of σX is required 
prospectively in order to derive the optimal policy. It is 
worth noting that accurate specification of variance/
nuisance parameters prior to a trial’s commencement is 
also necessary for many other approaches to trial design, 
whether they be frequentist or Bayesian. Furthermore, 
the assumption that the sampling standard deviation, σX , 
is known can be relaxed so that the prior-posterior dis-
tributions of both the expected value of incremental net 
monetary benefit and the variance of incremental net 
monetary benefit are updated as outcomes are observed 
(see Section 4 of [13]). Finally, although our tests of nor-
mality of the data for incremental net monetary benefit 
were not rejected in the HERO trial, the general question 
of the performance of the model when data are not nor-
mal is an interesting topic for future research.

A further area for future research effort is to consider 
the additional costs of designing and running a trial 
according to the value-based sequential model. It is plau-
sible that, although increasing the number of interim 
analyses introduces additional flexibility and is therefore 
likely to deliver better value, the additional costs arising 
from frequent monitoring could outweigh this increase 
in expected net benefit. Future work could consider how 
to estimate the additional costs of running a trial accord-
ing to the value-based sequential model (possibly follow-
ing similar methods to those used in [12]), and the extent 
to which this impacts the expected net benefit of this 
approach over some comparable designs.

We also did not explore alternative approaches to 
incorporating multiple imputation into the sequential 
analyses that were undertaken as part of our applica-
tion of the value-based sequential model, or the poten-
tial impacts of leveraging informative baseline covariates 
when obtaining estimates of E[INMB] . While the quali-
tative results for HERO are unlikely to be particularly 
sensitive to either aspect, there might be alternative trial 
settings where these analytical choices matter more. 
Future work could explore different methods of incorpo-
rating both multiple imputation and more sophisticated 
model-based estimation of E[INMB] into the value-
based sequential approach, and their advantages and 
disadvantages.
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Two final matters are worthy of note. Firstly, we 
have focused exclusively on applying the value-based 
sequential model in the context of two-arm individually 
randomised trials. This is motivated by the theory under-
lying the value-based sequential model of [13], which 
focused on this setting. However, there are potential ave-
nues for theoretical developments to extend the value-
based sequential framework to handle hierarchical data 
as, for example, are encountered in cluster-randomised 
trials [42–44]. Secondly, there exist alternative metrics 
to evaluate the value-based sequential design, using met-
rics from the Bayesian value of information literature (see 
[25] and related literature). These were deemed beyond 
the scope of this article, but are included in Appendix E 
for the interested reader.

Conclusions
We have investigated the implementation of the Bayesian 
value-based sequential model proposed by [13, 14] in the 
context of the HERO trial’s equivocal cost-effectiveness 
signal, and illustrated how multiple imputation might 
be used to address missing data within this framework. 
Considered alongside the findings from the ProFHER 
application, our results suggest that, in the presence of 
an unambiguous cost-effectiveness signal, such as in the 
ProFHER trial, the value-based sequential model can 
produce material reductions in expected sample size 
and research costs, but that this is not the case when the 
signal is equivocal, such as in the HERO trial. This work 
helps build a more complete picture of the behaviour of 
the value-based sequential model under different scenar-
ios, which can help inform any future prospective appli-
cation of this approach alongside existing trial designs 
and decision making criteria.

Abbreviations
CAT   Costing of adaptive trials project
ENACT   Economics of adaptive clinical trials project
HERO  Hydroxychloriquine effectiveness in reducing symptoms of hand 

osteoarthritis
INMB  Incremental net monetary benefit
MAR  Missing at random
MCAR   Missing Completely at random
MNAR  Missing not at random
NIHR  National institute for health and care research
NRS  Numerical rating scale
OA  Osteoarthritis
ProFHER  PROximal fracture of the humerus: evaluation by randomisation
QALY  Quality adjusted life year

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12874‑ 024‑ 02248‑9.

Supplementary Material 1.

Acknowledgements
We thank Stephen E. Chick, Laura Flight and participants of the 6th MRC‑NIHR 
International Clinical Trials Methodology Conference, Harrogate, 2022, for 
comments and support that improved this article.

Authors’ contributions
MF contributed to the development of the value‑based sequential model that 
is the focus of this paper. MF, SR, AK, BCM and PT were involved in obtaining 
funding for the ENACT project, and CW, MF, SR, AK, BCM and PT contributed 
to the planning of the HERO case‑study. CW, SR, AK and PT contributed to the 
extraction of the HERO trial data. CW and MF undertook the data analyses and 
prepared the tables and figures. CW checked the derivation of the stopping 
boundaries used in the paper using the Matlab code available from https:// 
github. com/ sechi ck/ htade lay, conducted the re‑sampling and multiple 
imputation analysis and contributed to the writing of all sections of the paper. 
MF derived the stopping boundaries, checked the re‑sampled data analysis 
carried out by CW, and contributed to the writing of all sections of the paper. 
All authors read and approved the final manuscript.

Funding
The ENACT project was funded by the National Institute for Health Research 
(NIHR) CTU Support Funding scheme (2019 call) to support efficient/innova‑
tive delivery of NIHR research. The views expressed are those of the authors 
and not necessarily those of the NIHR or the Department of Health and Social 
Care. The HERO trial, which provides the data for the application, was funded 
by an Arthritis Research UK (now Versus UK) clinical studies grant (reference 
19545). The funding bodies played no role in the design of the study and col‑
lection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
Analysis of the original trial data used Stata 13 [35] and the multiple imputa‑
tion used the ice command of [33, 34]. Calculation of the stopping bounda‑
ries used the Matlab code that is available from https:// github. com/ sechi ck/ 
htade lay and used Matlab R2022a [45]. Re‑sampling and multiple imputation 
were undertaken using Stata 17 [46] with the generated paths of posterior 
mean of expected incremental net monetary benefit being analysed using 
Matlab R2022a (with replication using Stata 17).

Declarations

Ethics approval and consent to participate
The HERO trial had research ethics committee approval from the Leeds East 
Research Ethics Committee and the UK Medicine and Healthcare Products 
Regulatory Agency. The trial was registered as ISRCTN91859104. All partici‑
pants gave written informed consent before screening.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 23 August 2023   Accepted: 17 May 2024

References
 1. Wason J, Magirr D, Law M, Jaki T. Some recommendations for multi‑arm 

multi‑stage trials. Stat Methods Med Res. 2016;25(2):716–27.
 2. Bhatt DL, Mehta C. Adaptive designs for clinical trials. New Engl J Med. 

2016;375:65–74.
 3. Cui L, Zhang L, Yang B. Optimal adaptive group sequential design 

with flexible timing of sample size determination. Contemp Clin Trials. 
2017;63:8–12.

 4. Yin G, Lam C, Shi H. Bayesian randomized clinical trials: from fixed to 
adaptive design. Contemp Clin Trials. 2017;59:77–86.

https://doi.org/10.1186/s12874-024-02248-9
https://doi.org/10.1186/s12874-024-02248-9
https://github.com/sechick/htadelay
https://github.com/sechick/htadelay
https://github.com/sechick/htadelay
https://github.com/sechick/htadelay


Page 18 of 18Welch et al. BMC Medical Research Methodology          (2024) 24:155 

 5. Pallmann P, Bedding AW, Choodari‑Oskooei B, Dimairo M, Flight L, Hamp‑
son LV, et al. Adaptive designs in clinical trials: why use them, and how to 
run and report them. BMC Med. 2018;16(29).

 6. Ryan EG, Bruce J, Metcalfe AJ, Stallard N, Lamb SE, Viele K, et al. Using 
Bayesian adaptive designs to improve phase III trials: a respiratory care 
example. BMC Med Res Methodol. 2019;19(99).

 7. Grayling M, Wheeler G. A review of available software for adaptive clinical 
trial design. Clin Trials. 2020;17(3):323–31.

 8. Heath A, Yaskina M, Pechlivanoglou P, Rios D, Offringa M, Klassen T, et al. A 
Bayesian response‑adaptive dose‑finding and comparative effectiveness 
trial. Clin Trials. 2021;18(1):61–70.

 9. Ramsey SD, Wilke RJ, Briggs AH, et al. Good research practices for cost‑
effectiveness analysis alongside clinical trials: the ISPOR RCT‑CEA Task 
Force Report. Value Health. 2005;8(5):521–33.

 10. Ramsey SD, Wilke RJ, Glick HA, et al. Cost‑effectiveness analysis alongside 
clinical trials II: an ISPOR Good Research Practices Task Force Report. Value 
Health. 2015;18(2):161–72.

 11. Forster M, Flight L, Corbacho B, Keding A, Tharmanathan P, Welch C, et al. 
Report for the EcoNomics of Adaptive Clinical Trials (ENACT) project : 
Application of a Bayesian Value‑Based Sequential Model of a Clinical Trial 
to the CACTUS and HERO Case Studies (with Guidance Material for Clini‑
cal Trials Units). The University of Sheffield: White Rose Research Online. 
2021. https:// eprin ts. white rose. ac. uk/ 180084/. Accessed 8 Nov 2021.

 12. Wilson N, Biggs K, Bowden S, et al. Costs and staffing resource require‑
ments for adaptive clinical trials: quantitative and qualitative results from 
the Costing Adaptive Trials project. BMC Med. 2021;19:251. https:// doi. 
org/ 10. 1186/ s12916‑ 021‑ 02124‑z.

 13. Chick SE, Forster M, Pertile P. A Bayesian decision‑theoretic model of 
sequential experimentation with delayed response. J R Stat Soc Ser B. 
2017;79(5):1439–62.

 14. Alban A, Chick SE, Forster M. Value‑based clinical trials: selecting recruit‑
ment rates and trial lengths in different regulatory contexts. Manag Sci. 
2023;69(6):3516–35.

 15. Kingsbury SR, Tharmanathan P, Adamson J, et al. Hydroxychloroquine 
effectiveness in reducing symptoms of hand osteoarthritis (HERO): study 
protocol for a randomized controlled trial. Trials. 2013;14(64).

 16. Kingsbury SR, Tharmanathan P, Keding A, et al. Hydroxychloroquine 
effectiveness in reducing symptoms of hand osteoarthritis: a randomized 
trial. Ann Intern Med. 2018;168:385–95.

 17. Ronaldson SJ, Keding A, Tharmanathan P, et al. Cost‑effectiveness of 
hydroxychloroquine versus placebo for hand osteoarthritis: economic 
evaluation of the HERO trial [version 1; peer review: 2 approved]. 
F1000Research. 2021;10:821. https:// doi. org/ 10. 12688/ f1000 resea rch. 
55296.1.

 18. Forster M, Brealey S, Chick S, et al. Cost‑effective clinical trial design: Appli‑
cation of a Bayesian sequential stopping rule to the ProFHER pragmatic 
trial. Clin Trials. 2021;18(6):647–56. https:// doi. org/ 10. 1177/ 17407 74521 
10329 09.

 19. Handoll H, Brealey S, Rangan A, et al. The ProFHER (PROximal Fracture of 
the Humerus: Evaluation by Randomisation) trial ‑ a pragmatic multicen‑
tre randomised controlled trial evaluating the clinical effectiveness and 
cost‑effectivesness of surgical compared with non‑surgical treatment 
for proximal fracture of the humerus in adults. Health Technol Assess. 
2015;19:1–280.

 20. NICE. Guide to the Processes of Technology Appraisal. National Institute 
for Health and Care Excellence; 2018. https:// www. nice. org. uk/ proce ss/ 
pmg19.

 21. Spiegelhalter DJ, Freedman LS, Parmer MKB. Bayesian approaches to 
randomised trials. J R Stat Soc Ser A. 1994;157:357–416.

 22. Bellman RE. Dynamic Programming. 1st ed. Princeton: Princeton Univer‑
sity Press; 1957.

 23. Bellman RE, Dreyfus S. Applied Dynamic Programming. 1st ed. Princeton: 
Princeton University Press; 1962.

 24. Hampson L, Jennison C. Group sequential tests for delayed responses. J R 
Stat Soc Ser B. 2013;75:3–54.

 25. Claxton K. The irrelevance of inference: a decision‑making approach to 
the stochastic evaluation of health care technologies. J Health Econ. 
1999;18(3):341–64.

 26. Carpenter JR, Kenward MG. Multiple Imputation and its Application. 1st 
ed. New York: Wiley; 2012.

 27. Faria R, Gomes M, Epstein D, White IR. A Guide to Handling Missing Data 
in Cost‑Effectiveness Analysis Conducted Within Randomised Controlled 
Trials. PharmacoEconomics. 2014;32:1157–70.

 28. Rubin DB. Inference and missing data. Biometrika. 1976;63:581–92.
 29. Allison PD. Missing data. Sage University Papers Series on Quantitative 

Applications in the Social Sciences, 07‑136. Thousand Oaks, CA: Sage: 
Sage University Paper; 2001.

 30. Bell M, Fiero M, Horton N. Handling missing data in RCTs; a review of the 
top medical journals. BMC Med Res Methodol. 2014;14(118).

 31. White I, Carpenter J, Nicholas H. A mean score method for sensitivity 
analysis to departures from the missing at random assumption in ran‑
domised trials. Stat Sin. 2018;28(4):1985–2003.

 32. Cro S, Morris TP, Kenward MG, Carpenter JR. Sensitivity analysis for clinical 
trials with missing continuous outcome data using controlled multiple 
imputation: A practical guide. Stat Med. 2020;39(21):2815–42.

 33. Royston P. Multiple imputation of missing values. Stata J. 
2004;4(3):227–41.

 34. Royston P. Multiple imputation of missing values: update. Stata J. 
2005;5(2):188–201.

 35. StataCorp. Stata: Release 13.. Statistical Software. College Station: Stata‑
Corp LP; 2013. https:// www. stata. com.

 36. Gorst‑Rasmussen A, Tarp‑Johansen MJ. Fast tipping point sensitivity 
analyses in clinical trials with missing continuous outcomes under mul‑
tiple imputation. J Biopharm Stat. 2022;32(6):942–53. https:// doi. org/ 10. 
1080/ 10543 406. 2022. 20585 25.

 37. Rubin D, Schenker N. Multiple imputation from random samples with 
ignorable non‑response. J Am Stat Assoc. 1986;81(394):366–74.

 38. Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: 
Wiley; 1987.

 39. Morgan OJ, Hillstrom HJ, Ellis SJ, Golightly YM, Russell R, Hannan MT, et al. 
Osteoarthritis in England: Incidence Trends From National Health Service 
Hospital Episode Statistics. ACR Open Rheumatol. 2019;1(8):493–8.

 40. Sully BGO, Julious S, Nicholl J. An investigation of the impact of futility 
analysis in publicly funded trials. Trials. 2014;15(61). https:// doi. org/ 10. 
1186/ 1745‑ 6215‑ 15‑ 61.

 41. Moore TJ, Heyward J, Anderson G, Alexander GC. Variation in the esti‑
mated costs of pivotal clinical benefit trials supporting the US approval of 
new therapeutic agents, 2015–2017: a cross‑sectional study. BMJ Open. 
2020;10(6):e038863. https:// doi. org/ 10. 1136/ bmjop en‑ 2020‑ 038863.

 42. Grieve R, Nixon R, Thompson SG. Bayesian Hierarchical Models for Cost‑
Effectiveness Analyses that Use Data from Cluster Randomized Trials. Med 
Decis Making. 2010;30(2):163–75. https:// doi. org/ 10. 1177/ 02729 89X09 
341752.

 43. Gomes M, Ng ESW, Grieve R, Nixon R, Carpenter JR, Thompson SG. Devel‑
oping Appropriate Methods for Cost‑Effectiveness Analysis of Cluster 
Randomized Trials. Med Decis Making. 2012;32(2):350–61. https:// doi. org/ 
10. 1177/ 02729 89X11 418372.

 44. Ng ESW, Grieve R, Carpenter JR. Two‑Stage Nonparametric Boot‑
strap Sampling with Shrinkage Correction for Clustered Data. Stata J. 
2013;13(1):141–64. https:// doi. org/ 10. 1177/ 15368 67X13 01300 111.

 45. The Math Works, Inc . MATLAB. Version 2022a. Natick: The Math Works, Inc; 
2022. https:// www. mathw orks. com.

 46. StataCorp. Stata: Release 17.. Statistical Software. College Station: Stata‑
Corp LP; 2021. https:// www. stata. com.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://eprints.whiterose.ac.uk/180084/
https://doi.org/10.1186/s12916-021-02124-z
https://doi.org/10.1186/s12916-021-02124-z
https://doi.org/10.12688/f1000research.55296.1
https://doi.org/10.12688/f1000research.55296.1
https://doi.org/10.1177/17407745211032909
https://doi.org/10.1177/17407745211032909
https://www.nice.org.uk/process/pmg19
https://www.nice.org.uk/process/pmg19
https://www.stata.com
https://doi.org/10.1080/10543406.2022.2058525
https://doi.org/10.1080/10543406.2022.2058525
https://doi.org/10.1186/1745-6215-15-61
https://doi.org/10.1186/1745-6215-15-61
https://doi.org/10.1136/bmjopen-2020-038863
https://doi.org/10.1177/0272989X09341752
https://doi.org/10.1177/0272989X09341752
https://doi.org/10.1177/0272989X11418372
https://doi.org/10.1177/0272989X11418372
https://doi.org/10.1177/1536867X1301300111
https://www.mathworks.com
https://www.stata.com

	The performance of a Bayesian value-based sequential clinical trial design in the presence of an equivocal cost-effectiveness signal: evidence from the HERO trial
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	The Bayesian value-based model of a sequential clinical trial
	The HERO trial
	Applying the Bayesian value-based sequential design to HERO
	Handling missing data using multiple imputation
	Re-sampled data analysis
	Choice of parameter values


	Results
	Running the HERO trial as a value-based sequential design
	Re-sampled data analysis
	Sensitivity analyses

	Discussion
	Conclusions
	Acknowledgements
	References


