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Cosmology from Schwarzschild black hole revisited

Roberto Casadio∗ and Alexander Kamenshchik†

Dipartimento di Fisica e Astronomia, Alma Mater Università di Bologna, 40126 Bologna, Italy
Istituto Nazionale di Fisica Nucleare, I.S. FLaG Sezione di Bologna, 40127 Bologna, Italy

Jorge Ovalle‡

Research Centre for Theoretical Physics and Astrophysics, Institute of Physics,
Silesian University in Opava, CZ-746 01 Opava, Czech Republic.

We study cosmological models based on the interior of the revisited Schwarzschild black hole
recently reported in [Phys. Rev. D109 (2024) 104032]. We find that these solutions describe a
non-trivial Kantowski-Sachs universe, for which we provide an explicit analytical example with all
the details and describe some general features of the singularity.

I. INTRODUCTION

The Schwarzschild metric is the most famous and sim-
plest black hole (BH) solution in general relativity (GR),
containing a point-like singularity of ADM mass M hid-
den behind the event horizon or radius 2M. Ref. [1]
investigated alternative sources for the exterior region of
the Schwarzschild BH in GR, under the conditions that
it does not contain any form of exotic matter nor does
it depend on any new parameter other than M. A large
set of new solutions was then found that can describe
the inner region before all matter energy contributing to
the total mass M has collapsed into the singularity in
accordance with Penrose’s singularity theorem [2].

The most attractive features of these interiors are that
the space-time across the horizon is continuous (without
additional structures like a thin shell) and tidal forces
remain finite everywhere for (integrable [3–5]) singular
solutions. The importance of some of these solutions
lies in the fact that they might be alternative to the
Schwarzschild BH as the final stage of the gravitational
collapse and are therefore potentially useful for study-
ing the gravitational collapse of compact astrophysical
objects: if we enforce the weak cosmic censorship con-
jecture [6] to avoid naked singularities, the event horizon
must form before the central singularity. This means that
(at least) part of the total mass M enclosed within the
event horizon is still on the way to the final singularity.
Such a scenario is precisely described by the (integrable)
singular solutions reported in Ref. [1].

Finally, we want to highlight that the existence of such
an (incomplete) set of solutions shows very explicitly the
broad diversity that is possible in the interior region of
the Schwarzschild geometry. This is very attractive if
we want to study the appearance of singularities, not
only associated with the formation of BHs, but also in
the very early Universe. The main goal of this work is
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precisely to investigate cosmological consequences that
can be derived from the aforementioned solutions.

II. INSIDE THE BLACK HOLE

We begin by recalling that the most general static and
spherically symmetric metric can be written as [7]

ds2 = −eΦ(r)f(r) dt2 +
dr2

f(r)
+ r2 dΩ2 , (1)

where

f = 1− 2m(r)

r
. (2)

The Schwarzschild solution [8] is obtained by setting

Φ(r) = 0 (3)

and the Misner-Sharp mass function

m(r) = M , for r > 0 , (4)

where M is the ADM mass associated with a point-like
singularity at the center r = 0. The coordinate singular-
ity at r = 2M ≡ h indicates the event horizon [9–13].
We are interested in exploring extensions of the

Schwarzschild BH which still belong to the Kerr-Schild
class [14] and will therefore keep the condition (3) but
relax the condition (4) to

m(r) = M , for r≥h , (5)

where 1

M ≡ m(h) = h/2 (6)

1 We shall denote F (h) ≡ F (r)
∣∣
r=h

for any F = F (r). We shall
also use units with c = 1 and κ = 8πGN.
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stands for the total mass of the BH and h is again the
radius of its event horizon. In summary, the line element
for the problem we want to solve is given by

ds2 =


−
(
1− 2m

r

)
dt2 + dr2

1− 2m
r

+ r2 dΩ2 , 0 < r≤h

−
(
1− 2M

r

)
dt2 + dr2

1− 2M
r

+ r2 dΩ2 , r > h ,

(7)
where m is the mass function associated with a La-
grangian LM representing ordinary matter only, so that
our theory is described by the Einstein-Hilbert action

S =

∫ (
R

2κ
+ LM

)√
−g d4x , (8)

with R the scalar curvature. Notice that Eqs. (7) and (8)
imply that LM = 0 for r > h only, and the Einstein field
equations in the interior 0 < r < h yield an energy-
momentum tensor

Tµ
ν = diag [pr,−ϵ, pθ, pθ] , (9)

such that the energy density ϵ, radial pressure pr and
transverse pressure pθ satisfy

ϵ =
2m′

κ r2
, pr = −2m′

κ r2
, pθ = −m′′

κ r
. (10)

We remark that Eq. (9) takes into account the fact that
the radial and temporal coordinates exchange roles for
0 < r < h. Finally, since Eqs. (10) are linear in the mass
function m, any two solutions can be linearly combined
to produce a new solution, which represents a trivial case
of the so-called gravitational decoupling [15, 16].

The contracted Bianchi identities ∇µ G
µ
ν = 0 leads to

∇µ T
µν = 0, which yields the continuity equation

ϵ′ = −2

r
(pθ − pr) . (11)

Since the energy density ϵ is expected to decrease mono-
tonically from the origin outwards, that is ϵ′ < 0, Eq. (11)
implies that

pθ > pr , (12)

so that the fluid experiences a pull towards the center as
a consequence of negative energy gradients ϵ′ < 0 that
is canceled by a gravitational repulsion caused by the
anisotropic pressure.

We next need to examine the compatibility of the
Schwarzschild exterior with the above interior, i.e. the
continuity of the metric (7) across the horizon r = h.
This clearly implies that the mass function must satisfy
the matching conditions

m(h) = M , m′(h) = 0 . (13)

Finally, we see from Eqs. (10) and (13) that the conti-
nuity of the mass function implies the continuity of both
density and radial pressure,

ϵ(h) = pr(h) = 0 . (14)

However, the pressure pθ can be in general discontinuous.

III. BLACK HOLES WITH
INTEGRABLE SINGULARITIES

BH geometries are usually grouped into two types:
(i) singular BH with a physical singularity of some kind,
and (ii) regular BH without singularities. The existence
of regular BHs is, of course, very attractive but it is well
known that they usually display an inner (Cauchy) hori-
zon inside the event horizon, which turns out to give rise
to problems such as mass inflation, instability, and even-
tual loss of causality [17, 18] (see also Refs. [5, 19–26] for
recent studies). Between the two aforementioned families
we can also find integrable BHs [3], which are character-
ized by a singularity in the curvature R that occurs at
most as

R ∼ r−2 , (15)

so that their Einstein-Hilbert action is indeed finite.
Their main features are that tidal forces remain finite
everywhere, the mass function is well-defined and finite,
and (in general) there are no Cauchy horizons.
Regarding the last feature, we here review the work

in Ref. [1] and start with the scalar curvature for the
interior metric (7), which reads

R =
2 rm′′ + 4m′

r2
, for 0 < r ≤ h . (16)

In order to have an integrable singularity, we demand [1]

R =

∞∑
n=0

Cn r
n−2 , n ∈ N , (17)

which, from Eq. (16), yields the mass function

m = M − Q2

2 r
+

1

2

∞∑
n=0

Cn r
n+1

(n+ 1)(n+ 2)
, (18)

for 0 < r ≤ h, where M and Q are integration constants
that can be identified with the mass of the Schwarzschild
solution and a charge for the Reissner-Nordström (RN)
geometry, respectively. However, since it is known that
the RN geometry contains a Cauchy horizon, we impose
Q = 0. This leaves us with the two charges M and M.
Let us notice that the series (18) converges around r =

h as soon as we impose the condition (6), but it remains
to see if it can represent an analytic function in its whole
domain 0 < r ≤ h. Moreover, the Schwarzschild metric
is simply given by the condition in Eq. (4), that is M =
M ≠ 0 and Q = Cn = 0 for all n in Eq. (18). In Ref. [1],
other interior solutions where found with

M = Q = 0 , (19)

which are determined by the total mass M and some
of the Cn ̸= 0, so that the exterior is still given by the
Schwarzschild solution in Eq. (7). From the mass func-
tion (10), the energy density and pressures associated
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with these interior geometries read

κ ϵ =

∞∑
n=0

Cn r
n−2

n+ 2
= −κ pr (20)

κ pt = −1

2

∞∑
n=0

n

n+ 2
Cn r

n−2 , (21)

for 0 < r ≤ h.
The simplest of such solutions was found by imposing

the continuity conditions (13) on the mass function (18)
[see Ref. [1] for all details], which yields

m = r − r2

2h
, (22)

corresponding to the interior line element

ds2 =
(
1− r

h

)
dt2 − dr2

1− r
h

+ r2 dΩ2 , for 0 < r≤h.

(23)
The source is given by

κ ϵ = −κ pr =
2

r2

(
1− r

h

)
, κ pθ =

1

h r
, (24)

generating the curvature

R =
4

r2

(
1− 3 r

2h

)
, for 0 < r ≤ h . (25)

A second solution can be found by imposing a
smoother transition between the two regions separated
by the horizon, that is

m′′(h) = 0 , (26)

which yields

m = r − r3

h2
+

r4

2h3
. (27)

The line element is

ds2 =

(
1− 2 r2

h2
+

r3

h3

)
dt2 − dr2

1− 2 r2

h2 + r3

h3

+r2 dΩ2 , for 0 < r ≤ h , (28)

sourced by

κ ϵ = −κ pr =
2

r2 h3
(h− r)

2
(h+ 2 r) ,

κ pθ =
6

h3
(h− r) , (29)

which produces a curvature

R =
4

r2

(
1 +

5 r3

h3
− 6 r2

h2

)
, for 0 < r ≤ h . (30)
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FIG. 1. Mass function in Eq. (36) (upper panel) and cor-
responding metric function f = 1 − 2m/r (lower panel) for
N = 10. The vertical line represents the horizon h = 2M for
M = 1 and red (blue) colour is for the interior (exterior).

Finally, it can be proven [1] that the mass function (27)
is a particular case of

m = r +
r

n2 − 2n− 1

( r
h

)n [
1− (n− 1)

2

2

( r
h

) 2
n−1

]
,

(31)
where n > 1 ∈ N includes the polynomial case n = 2
in Eq. (27). The mass function (31) yields the metric
function

f = 1 +
( r
h

)n [2− (n− 1)
2
(r/h)

2
n−1

]
n2 − 2n− 1

. (32)

It is easy to show that the BHs in Eqs. (23), (28)
and (32) have no inner horizon. Indeed, as conjectured
in Ref. [1], apart from the Schwarzschild BH, the sim-
plest two single horizon BH solutions, with the total mass
M as a unique charge, are those displayed in Eqs. (23)
and (28) for the region 0 < r < h, which smoothly join
the Schwarzschild exterior at the horizon r = h = 2M.

We can obtain more solutions by considering the metric
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function in Eq. (18) and truncating the series as 2

m = r +

N∑
i=2

Ci r
i , (33)

where N > 2 and the (N − 1) unknown Ci can be found
by the condition (6) and

dnm

drn
(h) = 0 , (34)

for all n ≤ N − 2. A straightforward consequence of the
differential constraints (34) is that the energy-momentum
tensor is continuous at the horizon for N > 3, that is,

Tµ
ν(h) = 0 . (35)

For example, the solution with N = 10 is given by

m = r +
27 r2

2h
− 84 r3

h2
+

231 r4

h3
− 378 r5

h4
+

399 r6

h5

−276 r7

h6
+

243 r8

2h7
− 31 r9

h8
+

7 r10

2h9
, (36)

which is displayed in Fig. 1. A simple analysis of the ex-
pression for the mass function (33) shows that the strong
energy condition is violated for N > 4 (pθ < 0 for r ≳ 0).
However, the weak energy condition still holds. If we
instead consider a polynomial solution of the form

m = r +Arl +B rn + C rp , p ̸= n ̸= l > 1 , (37)

where A, B and C are constants to be determined from
Eqs. (13) and (26), we generate the solutions displayed
in Table I. Indeed, we could go further by including ad-
ditional terms in (37), or just by relaxing the energy con-
ditions, which are most likely violated at high curvature.
Therefore, we can safely conclude that the inner region is
much richer than illustrated in Table I. This will be par-
ticularly important for the cosmological models, as we
will see next.

IV. COSMOLOGY

All of the interior BH solutions in Table I can be con-
sidered as a whole universe [27], which is precisely what
we will explore next. Let us start by noticing that for
0 < r ≤ h the line element has the form

ds2 = F (r) dt2 − dr2

F (r)
+ r2 dΩ2 , (38)

where

F = 1− 2µ(r)

r
≥ 0 , (39)

2 Expressions in Eqs. (22) and (27) correspond to (33) for N = 3
and N = 4, respectively.

and

µ = −
(
Arl +B rn + C rp

)
(40)

can be read directly from Table I. We can rewrite the
metric (38) by making explicit the role of time and radial
coordinates as

ds2 = − dt2

F (t)
+ F (t) dr2 + t2 dΩ2 , (41)

where

F = 1− 2µ(t)

t
≥ 0 (42)

is displayed in Table II for each case of Table I, respec-
tively, with 0 < t < t0 = h.
We can further write the metric (41) in terms of the

cosmic (or synchronous) time defined by

dτ = ± dt√
F (t)

, (43)

which leads to the generic cosmological solution

ds2 = −dτ2 + a2(τ) dr2 + b2(τ) dΩ2 . (44)

The metric (44) represents a Kantowski-Sachs uni-
verse [28, 29] with the two scale factors

a2(τ) ≡ F (τ)

(45)

b2(τ) ≡ t2(τ) .

This solution in general describes an homogeneous but
anisotropic universe, with Einstein tensor

G0
0 = −

(
1

b2
+

2 ȧ ḃ

a b
+

ḃ2

b2

)
(46)

G1
1 = −

(
1

b2
+

2 b̈

b
+

ḃ2

b2

)
(47)

G2
2 = −

(
ȧ ḃ

a b
+

ä

a
+

b̈

b

)
. (48)

Let us consider, for instance, the simplest inner BH
given by the metric (23), which yields

ds2 = − dt2

1− t/t0
+

(
1− t

t0

)
dr2 + t2 dΩ2 , (49)

for 0 < t < t0. We have

F = 1− t

t0
, (50)

which leads to the cosmic time

τ(t) = −2 t0

√
1− t

t0
, for t < t0 , (51)
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TABLE I. Interior geometries with mass function (37) satisfying m′(h) = m′′(h) = 0.

{l, n, p} m(r) = r +Arl +B rn + C rp ϵ > 0 Energy condition

{2, n, p} m(r) = r − [2−2p+n(p−2)]
2(n−2)(p−2)

r2

h
+ h

(n−2)(n−p)

(
r
h

)n
+ h

(p−2)(p−n)

(
r
h

)p
Yes Strong

{3, 4, p} m(r) = r − r3

h2 + r4

2h3 Yes Strong

{3, 5, p} m(r) = r − h
4

(3p−8)
(p−3)

(
r
h

)3
+ h

4
(p−4)
(p−5)

(
r
h

)5 − h/2
(p−3)(p−5)

(
r
h

)p
Yes (6 ≤ p ≤ 16) Strong

{3, 6, p} m(r) = r − h
3

(2p−5)
(p−3)

(
r
h

)3
+ h

6
(p−4)
(p−6)

(
r
h

)6 − h
(p−3)(p−6)

(
r
h

)p
Yes (7 ≤ p ≤ 10) Strong

{3, 7, 8} m(r) = r − 7r3

10h2 + r7

2h6 − 3r8

10h7 Yes Strong

{4, 5, 6} m(r) = r − 5r4

2h3 + 3r5

h4 − r6

h5 Yes Strong

TABLE II. Cosmological form (41) of the geometries in Table I with t ≤ t0 = h where µ′(t0) = 1 and µ′′(t0) = 0.

{l, n, p} F (t) = 1− 2µ(t)
t

≥ 0 . ϵ > 0 Energy condition

{2, n, p} F (t) = 1− [2−2p+n(p−2)]
(n−2)(p−2)

(
t
t0

)
+ 2

(n−2)(n−p)

(
t
t0

)n−1

+ 2
(p−2)(p−n)

(
t
t0

)p−1

Yes Strong

{3, 4, p} F (t) = 1− 2
(

t
t0

)2

+
(

t
t0

)3

Yes Strong

{3, 5, p} F (t) = 1− 1
2

(3p−8)
(p−3)

(
t
t0

)2

+ 1
2

(p−4)
(p−5)

(
t
t0

)4

− 1
(p−3)(p−5)

(
t
t0

)p−1

Yes (6 ≤ p ≤ 16) Strong

{3, 6, p} F (t) = 1− 2
3

(2p−5)
(p−3)

(
t
t0

)2

+ 1
3

(p−4)
(p−6)

(
t
t0

)5

− 2
(p−3)(p−6)

(
t
t0

)p−1

Yes (7 ≤ p ≤ 10) Strong

{3, 7, 8} F (t) = 1− 7
5

(
t
t0

)2

+
(

t
t0

)6

− 3
5

(
t
t0

)7

Yes Strong

{4, 5, 6} F (t) = 1− 5
(

t
t0

)3

+ 6
(

t
t0

)4

− 2
(

t
t0

)5

Yes Strong

and

ds2 = −dτ2 +
τ2

τ20
dr2 +

τ20
4

(
τ2

τ20
− 1

)2

dΩ2 , (52)

where τ0 ≡ 2 t0. Notice that in this case the scale factors
satisfy

b2 =
τ20
4

(
a2 − 1

)2
. (53)

The source of the metric (52) is given by

κ ϵ = −κ pr =
8 τ2

(τ2 − τ20 )
2 (54)

κ pθ =
4

τ20 − τ2
, (55)

with curvature

R =
8
(
3 τ2 − τ20

)
(τ2 − τ20 )

2 . (56)

The anisotropy for this example is therefore given by

∆ ≡ pθ − pr =
4

κ

τ2 + τ20

(τ2 − τ20 )
2 . (57)

The above example contains a curvature singularity
in Eq. (56) for τ → τ0. In fact, we can study the be-
haviour of these universes in the vicinity of the cosmo-
logical singularity in general. The curvature scalar of the

metric (41) is given by

R = F ′′ +
4F ′

t
+

2F

t2
+

2

t2
, (58)

where primes stand for derivatives with respect to t.
Since all of the functions F in Table II are polynomials
in t with the constant term equal to 1, Eq. (58) is singu-
lar at t = 0. In fact, it is easy to see that the curvature
behaves as

R ≈ 4

t2
, for t → 0 , (59)

for all the functions F .
We can also consider the cosmic time

dτ =
dt√
F (t)

. (60)

The function F (t) ≈ 1 in the vicinity of the singularity
t = 0 and, with a convenient choice of the integration
constant, we have

τ ≈ t . (61)

Thus, the curvature singularity in Eq. (59) can also be
written as

R ≈ 4

τ2
, for τ → 0 . (62)

It is interesting to compare this result with the singu-
larities arising in isotropic Friedmann cosmologies. Let
us consider a flat Friedmann universe with the metric

ds2 = −dτ2 + a2(τ)
(
dr2 + r2 dΩ2

)
, (63)



6

whose scalar curvature is given by

R = 6

(
ä

a
+

ȧ2

a2

)
, (64)

where dots stand for derivatives with respect to τ . For a
power law expansion,

a = a0 τ
k , (65)

we have

R =
6 k (2 k − 1)

τ2
. (66)

This leads to the same singularity as the one in Eq. (62)
if 6 k (2 k − 1) = 4, or

k =
1

4

(
1 +

√
19

3

)
. (67)

It is known that a homogeneous and isotropic universe
which expands according to the power law (65) is filled
with a barotropic fluid with equation of state

p = w ε , (68)

where the parameter w is constant and

k =
2

3 (1 + w)
, (69)

or

w =
2

3 k
− 1 . (70)

From Eq. (67), we then find

w =
8

3
(
1 +

√
19/3

) − 1 ≃ −0.24 . (71)

This means that our homogeneous but anisotropic uni-
verse behaves near the singularity like a homogeneous
and isotropic universe driven by a isotropic fluid with
negative pressure but equation of state parameter w >
−1/3, which is the critical value below which the decel-
eration would turn into acceleration.

V. CONCLUSION

Generating cosmological models from BH geometries
is a well-known procedure which, in general, allows us
to develop solutions beyond the standard (isotropic and
homogeneous) cosmological models. On the other hand,
a plethora of new BH solutions have been reported in
recent years, whose interest is especially due to their in-
terpretation in terms of nonlinear electrodynamics [30].
This leads to the possibility of constructing a plethora of
new cosmological models as well. Obviously, this could
become counterproductive if what we seek are cosmo-
logical alternatives, beyond the standard model, whose
origin is fully justified by first principles.
In this sense, the advantage of our cosmological solu-

tions in Table II is that they are derived from a family
of very non-trivial BH geometries. They are solutions
that in fact tell us a lot about how complex the inte-
rior of the simplest spherically symmetric BHs could be.
Therefore, their cosmological versions, as well as possible
extensions, are quite attractive, especially if we want to
justify processes that are not yet well understood, such
as the phenomenology of dark matter and dark energy,
and possible explanations based on cosmological models
other than the presently dominant one.
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