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Abstract: Flow–duration curves (FDCs) provide a compact view of the historical variability of
river flows, reflecting climate conditions and the main hydrologic features of river basins. The
Surface Water and Ocean Topography (SWOT) satellite mission will enable the estimation of river
flows globally, by sensing rivers wider than 100 m with a sampling recurrence from 3 to 21 days.
This study investigated the lifetime mission potential for FDC estimation through the comparison
between remotely-sensed and empirical FDCs. We employed the Global Runoff Data Center dataset
and derived SWOT-like river flows by selecting gauging stations of rivers wider than 100 m with
more than 10-year long daily river flow time series. Overall, 1200 gauged river cross-sections were
examined. For each site, we created a set of 24 SWOT-simulated FDCs (i.e., based on different
sampling recurrences, mean biases, and random errors) to be compared against their empirical
counterparts through the Nash–Sutcliffe efficiency and the mean relative error. Our results show
that climate and the sampling recurrence play a key role on the performance of SWOT-based FDCs.
Tropical and temperate climates performed the best, whereas arid climates mostly revealed higher
uncertainties, especially for high- and low-flows.

Keywords: flow–duration curve; river flow regime; remote sensing; river altimetry; SWOT

1. Introduction

River flow is an essential hydrological variable that deeply influences various aspects
of river management. River flow records are pivotal for monitoring the dynamic behavior
of rivers (also including hydrological extremes such as floods and droughts), regulating
water flows for anthropogenic purposes, assessing river sediment transport and water
quality issues, and ensuring sustainable water resource management.

Despite their relevance, river flow data records are generally sparse in terms of both
spatial and temporal coverage. Moreover, the number of gauging stations is decreasing
worldwide due to economic, technical, or political reasons (e.g., [1]). To date, large portions
of river networks around the world are still ungauged and the percentage of ungauged
areas will likely tend to change, and in some cases might even increase in the future,
together with the dismantling of obsolete river gauges not being replaced with newer
technologies. For instance, in the UK and Ireland, changing societal priorities and/or
financial constraints have caused river gauges to be closed down [2]; similar examples have
occurred in Italy, where the number of river gauges declined sharply in the 1970s when
the national hydrological service was split into regional services. As reported in many
documents, the number of publicly available river flow gauging stations providing data
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has decreased from about 8000, before 1970, to less than 1000, around 2015 [3,4]. Although
global databases might not include all the river flow gauging stations existing worldwide,
mainly due to the different data distribution policies of water agencies, this trend is an
undoubted proxy of a worldwide progressive reduction in the number of at-site gauging
stations. In light of these considerations, observing surface water flows with high accuracy
in space and time still remains one of the 23 unsolved problems in hydrology [5].

Directly related to the availability of river flow records, the flow–duration curve (FDC)
of a given river section depicts its river flow regime since it graphically represents the
percentage of time (or duration, i.e., frequency, in a statistical fashion) with which a specific
river flow is equaled (or exceeded) over a historical period of time [6]. The literature
reports two different representations of empirical FDCs, depending on the reference period
of time that is considered [6]: (i) annual FDCs (AFDCs) are constructed year-wise, while
(ii) period-of-record FDCs (POR-FDCs) refer to the entire observation period. These two rep-
resentations are complementary to each other and are selected by practitioners depending
on the specific water problem at hand. AFDCs are useful for quantifying the river flow
regime in a typical hydrological year, or in a particularly wet or dry year [7]; POR-FDCs
are a steady-state representation of the long-term river flow regime and can be effectively
used for patching and extending river flow data (i.e., [8]) and for addressing water resource
management problems such as the classification of river flow regimes, irrigation planning
and management, definition of environmental flows, hydropower feasibility studies, habi-
tat suitability studies, and the assessment of hydrologic changes [9–13]. Since FDCs reflect
the climatic conditions and the hydrogeological characteristics of the catchment, they are
regularly employed to tackle water resource management challenges [14–16].

The effective construction of empirical FDCs requires the availability of river flow data
at the river cross-section of interest for at least 5–10 years of continuous daily observations.
However, it is common that the target site is ungauged (i.e., absence of hydrometric
observations) or scarcely gauged (i.e., the available hydrometric observations are not
accurate, intermittent, and/or not sufficient). In order to estimate FDCs across these sites,
the scientific literature reports the successful application of a variety of procedures based
on the regionalization of hydrological information (see e.g., [16–19]).

Remote sensing is envisioned as a potentially valuable solution to compensate for
the lack of a ground-based monitoring network, offering the possibility to systematically
and continuously monitor large areas. The scientific literature reports many approaches
intended to estimate the river flow by adopting remotely-sensed data. However, depending
on the intrinsic assumptions and proposed methodologies in each approach, most of them
rely on a significant amount of ancillary data, measurements, and calibration (see [20] for a
general review). Reducing such dependencies on remotely observing inland river flows
represents one of the key challenges of the scientific community.

The Surface Water and Ocean Topography (SWOT) mission, launched at the end
of 2023 by the National Aeronautics and Space Administration (NASA) and the Centre
National D’Etudes Spatiales (CNES), with contributions from the Canadian Space Agency
(CSA) and UK Space Agency, is expected to provide continuous observations of the world’s
oceans and terrestrial surface waters. Specifically, SWOT is devoted to provide, for the first
time, two-dimensional measurements of the extent, elevation, and slope of inland water
bodies (i.e., lakes, wetlands, and rivers wider than 100 m) [21].

Given the SWOT mission’s mandate for a river flow data product for all internal water
bodies matching the dimension requirements, a suite of algorithms with operational viabil-
ity has been developed in the last decade [22]. A significant body of research has proposed
various methodologies for estimating river flow from synthetic SWOT observations, adopt-
ing data assimilation techniques, interpolation approaches, and fundamental hydraulic
laws. While a proper assessment of real satellite observations is currently undergoing
(see e.g., [21,22]), the initial evaluation of the proposed algorithms indicates the expected
accuracy of the river flow estimates based on SWOT-like observations [22–26].
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Among the potential applications, river flow products from SWOT could enhance our
understanding of the hydrological regime of rivers worldwide, with particular attention on
those not traditionally monitored. In this context, Ref. [27] was the first to explore the use
of SWOT-like river flow data for estimating flow–duration curves (FDCs), demonstrating
the feasibility of utilizing SWOT lifetime products along a stretch of the Po River in Italy.
The results of this initial endeavor encouraged the current investigation, which aims to
further analyze the mission potential for FDC estimation. Specifically, this study aims to
elucidate how the SWOT lifetime mission data will be suitable to infer the hydrological
regime of inland rivers worldwide. In particular, we examine the potential of SWOT-based
FDCs on a global scale, considering factors such as (i) the sampling recurrence per orbit
repeat period (~21 days) [28] and (ii) the macro-climatic region of rivers. Various scenarios
of biases and errors within the expected ranges for SWOT-derived river flow data products
were also considered [25].

As of the time of writing, SWOT data are only available for a limited number of
case studies worldwide and only for scientists involved in the SWOT mission science
team, primarily for calibration and validation purposes. Moreover, the lifetime dataset
is anticipated to become available at the conclusion of the mission, which is expected to
span several years. Therefore, in this document, we endeavor to illustrate the potential of
SWOT for describing FDCs on a global scale by referring to available river flow time series.
Following this rationale, we initially introduce the selected datasets and the methodology
employed to generate SWOT-like river flow data and the associated FDCs (Section 2). In
Section 3, we present the results, discussing the implications of macro-climatic regions,
sampling occurrences, and data uncertainty on the characterization of the hydrologic
regimes of numerous gauging stations worldwide.

2. Materials and Methods
2.1. GRDC River Flow Data Processing

The hydrologic data used in this study were based upon the global database of the
Global Runoff Data Center (GRDC, https://grdc.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/
riverdischarge_node.html, accessed on 3 March 2023).

The GRDC is a global data archive that provides coupled hydrologic and geographic
information, thus promoting long-term global hydrological studies. This is a unique
heritage of collected observations recorded by various territorial agencies responsible for
the measurement, processing, and release of river flow data. From the GRDC database,
two types of products were here analyzed and employed as input data: (1) a hydrologic
product (i.e., the global database of river flow records, at daily intervals, available from more
than 9300 stations in 160 countries, with an average duration of 43 years of data available)
and (2) a geographic product, in the form of georeferenced points for the geographical
location of river gauge stations.

To complement the hydrologic data gathered from the GRDC database, we employed
the hydraulic information provided by a freely available global river bankfull width
database ([29], http://gaia.geosci.unc.edu/rivers, accessed on 3 March 2023). This database
estimates plausible values for river widths and depths globally by merging the GRDC river
flow data with the HydroSHEDS river network dataset and by employing geomorphic
power-law equations [30] that relate the river width and depth with the drainage area and
river flow estimates.

We combined the GRDC daily river flow dataset and the global river bankfull width
database as follows.

1. Selected GRDC river gauge stations must belong to river reaches wider than 100 m.
2. The number of consecutive daily river flow records must be equal or larger than

10 years. In the case of small random gaps along the river flow series, up to three
consecutive days, we filled in missing values through linear interpolation. In all other
cases, when the series showed longer gaps, the river gauge station was discarded
from the analysis.

https://grdc.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html
https://grdc.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html
http://gaia.geosci.unc.edu/rivers
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3. A GRDC river gauge station was considered to belong to the river network when the
nearest river reach intersected a circular buffer area with 1 km radius area, centered
on the station spatial coordinates.

Overall, we considered 1200 river gauge stations in our analysis.

2.2. SWOT-like River Flow Data Generation

We then introduced a methodology for simulating SWOT-like river flow data under the
hypothesis that SWOT river flow observations would be comparable to the ones observed
in the same location by at-site river gauge stations installed at the given river cross-section.
To account for SWOT features in observing river altimetry, where SWOT passes occur for
3 years (i.e., expected mission lifetime) every k days, with k being the sampling recurrence
(or revisiting time), and to consider uncertainties in river flow estimation, we corrupted
the observed river flows series measured across the selected 1200 GRDC river gauge
stations as follows. Despite the SWOT nominal repeat cycle of nearly 21 days, most of the
globe will experience more frequent SWOT visits due to orbit overlaps (i.e., swath width
approximately equal to 60 km). According to [28] (see Figure 3a and Figure 4 therein), the
sampling recurrence during each repeat cycle ranges from a maximum of 2 at the equator
to more than 10 for rivers at higher latitudes (above 70◦N/S). In this study, we assumed a k
ranging between 3, 5, 7, and 10 days.

For any river gauge station, a 3-year-long moving time frame is first applied through-
out the river flow time series (Figure 1). The time frame is pushed forward in time by
13 days, being the first non-multiple number among all possible values for k. This shift in
time allows us to collect as many samples as possible from the whole series, without any
duplicate river flow value. Then, a sampling procedure is applied to the selected river flow
series with time intervals between each record equal to the sampling recurrence k.

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 1. Methodological scheme for the estimation of flow–duration curves (FDC) from SWOT-like 
river flow data. (a–d) SWOT-like river flow data sampled from observed GRDC time series every k 
days within a 3-year moving time frame (red areas). (e–f) Computation of FDCs, showing the com-
parison between the observed and SWOT-based FDCs within a single (e) or multiple time frames 
(f). 

Table 1. Description of SWOT-like river flow datasets, accounting for potential biases and random 
errors in estimating river flow values and considering alternative sampling recurrences. 

SWOT-Like River Flow Reconstruction Bias 
Random 

Error 

Sampling 
Recurrence, k 

[Days] 

No perturbation 

QSWOT,0,0,3 − − 3 
QSWOT,0,0,5 − − 5 
QSWOT,0,0,7 − − 7 
QSWOT,0,0,10 − − 10 

No perturbation 
and random error 

QSWOT,0,20,3 − 20% 3 
QSWOT,0,20,5 − 20% 5 
QSWOT,0,20,7 − 20% 7 
QSWOT,0,20,10 − 20% 10 

Minor underestimation and random 
error 

QSWOT,−15,20,3 −15% 20% 3 
QSWOT,−15,20,5 −15% 20% 5 
QSWOT,−15,20,7 −15% 20% 7 
QSWOT,−15,20,10 −15% 20% 10 

Minor overestimation and random 
error 

QSWOT,15,20,3 +15% 20% 3 
QSWOT,15,20,5 +15% 20% 5 
QSWOT,15,20,7 +15% 20% 7 
QSWOT,15,20,10 +15% 20% 10 

Major underestimation and random 
error 

QSWOT,−30,20,3 −30% 20% 3 
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Figure 1. Methodological scheme for the estimation of flow–duration curves (FDC) from SWOT-
like river flow data. (a–d) SWOT-like river flow data sampled from observed GRDC time series
every k days within a 3-year moving time frame (red areas). (e,f) Computation of FDCs, showing
the comparison between the observed and SWOT-based FDCs within a single (e) or multiple time
frames (f).
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To account for possible satellite measurement errors, which may be due to, among
others, atmospheric disturbance, actual river flow conditions spanning from low- to high-
flow conditions, and random faultiness of the instrument, [25] suggests considering both
biases and random errors, estimated around 30% and 20%, respectively. Given this, we
assumed that SWOT-like river flows can be related to sampled GRDC data as follows:

QSWOT,µ,σ,k(j, t) = QGRDC,k(j, t)·(1 + N(µ, σ)) (1)

where QSWOT,µ,σ,k(j, t) is the simulation of remotely sensed river flows from SWOT at the
river gauge station j and time t, assuming a bias and a random error proportional to µ and
σ, respectively, and a sampling recurrence equal to k days. More specifically, j amounts
to 1200 river gauge stations in total and t ranges up to 3 years. QGRDC,k(j, t) is the GRDC
river flow observation measured at the river gauge station j, at time t and sampled every k
days. We assumed that the SWOT measurement errors followed a normal distribution with
mean µ and standard deviation σ, where µ = 0, ±0.15, ±0.30 and σ = 0, ±0.20. Overall, we
considered six possible perturbation scenarios, where river flows were either not perturbed
or they were altered by minor or major biases triggering both over- and underestimations
and by random errors in the detected magnitude (see Table 1 for a detailed list). For each
perturbation scenario, we then defined four alternative sampling recurrences (i.e., k, ranging
between 3, 5, 7, and 10 days). In total, 6 × 4 = 24 alternative SWOT-like river flow datasets
were examined. We acknowledge that the simulation method may likely produce negative
values in the simulated time series, but we assumed that these random occurrences might
simulate missing values, which will be considered as NA (i.e., not available).

Table 1. Description of SWOT-like river flow datasets, accounting for potential biases and random
errors in estimating river flow values and considering alternative sampling recurrences.

SWOT-like River Flow Reconstruction Bias Random
Error

Sampling
Recurrence, k

[Days]

No perturbation

QSWOT,0,0,3 − − 3
QSWOT,0,0,5 − − 5
QSWOT,0,0,7 − − 7
QSWOT,0,0,10 − − 10

No perturbation
and random error

QSWOT,0,20,3 − 20% 3
QSWOT,0,20,5 − 20% 5
QSWOT,0,20,7 − 20% 7
QSWOT,0,20,10 − 20% 10

Minor underestimation
and random error

QSWOT,−15,20,3 −15% 20% 3
QSWOT,−15,20,5 −15% 20% 5
QSWOT,−15,20,7 −15% 20% 7
QSWOT,−15,20,10 −15% 20% 10

Minor overestimation and
random error

QSWOT,15,20,3 +15% 20% 3
QSWOT,15,20,5 +15% 20% 5
QSWOT,15,20,7 +15% 20% 7
QSWOT,15,20,10 +15% 20% 10

Major underestimation
and random error

QSWOT,−30,20,3 −30% 20% 3
QSWOT,−30,20,5 −30% 20% 5
QSWOT,−30,20,7 −30% 20% 7
QSWOT,30,20,10 −30% 20% 10

Major overestimation and
random error

QSWOT,30,20,3 +30% 20% 3
QSWOT,30,20,5 +30% 20% 5
QSWOT,30,20,7 +30% 20% 7
QSWOT,30,20,10 +30% 20% 10
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2.3. Estimation of Flow–Duration Curves from SWOT-like River Flow Data

For a gauged site, the empirical FDC can be obtained from the daily river flow data
by considering the entire record, pooled in one sample (i.e., period-of-record FDC), and
by ranking in ascending order the river flow observations, which are associated with
their corresponding duration (i.e., fractional or percentage). The duration di is equal to an
estimate of the exceedance probability of the i-th observation in the sorted sample, 1-Fi. If
Fi is estimated using a Weibull plotting position, the duration di is expressed as follows:

di =
∫ qi

0
Q dQ = 1 − i

N + 1
(2)

where i is the i-th position in the rearranged sample and N is the length of daily river flows
observed in a gauged site.

Here, we computed FDCs using as input data SWOT-like river flows (Table 1, Figure 1),
and we tested for their statistical representativeness with respect to FDCs from observed
GRDC river flows. To this aim, the Nash–Sutcliffe efficiency index (NSE) and the mean
relative error (MRE) were used.

Given a selected river gauge station j and a sampling recurrence k, for each 3-year-long
SWOT time frame l, where the number of time frames Nl depends on the available GRDC
observations, we computed NSE as follows:

NSEj,k,l = 1 −
∑n

i=1

(
Ψk,l

SWOT(j, di)− ΨGRDC(j, di)
)2

∑n
i=1(ΨGRDC(j, di)− ⟨ΨGRDC(j, di)⟩)2 (3)

where Ψk,l
SWOT(j, di) is the river flow quantile, as derived from the SWOT-based FDC, for

the river gauge station j and duration di within a generic time frame l and sampled from
GRDC data every k days; ΨGRDC(j, di) is the river flow quantile, as derived from the GRDC-
based (i.e., observed daily river flows) FDC for the river gauge station j and duration di;
⟨ΨGRDC(j, di)⟩ is the mean of the GRDC-based river flow quantiles for the river gauge
station j. For each river gauge station j (amounting to 1200), Nl values of NSE are computed,
where the duration di ranges between 0 and 1 and is discretized in n = 366 points.

In order to assess the behavior across duration ranges, we estimated the mean relative
errors (MREs) for three specific duration values, namely d = 0.027, d = 0.5, and d = 0.973,
which are representative of high, median, and low flows, respectively. For a given river
gauge station j and sampling recurrence k, the MRE values can be computed as follows:

MREj,k,d =
1
Nl

∑Nl
l=1

ΨGRDC(j, d)− Ψk,l
SWOT(j, d)

ΨGRDC(j, d)
(4)

where Nl is the number of 3-year-long time frames for the river gauge station j, while other
symbols are as above.

In order to interpret our results from a climatic perspective, and thus understand
how and where SWOT-derived FDCs can better predict long-term flow–duration curves,
we used the Köppen–Geiger climate classification [31]. This classification outlines five
macro-climatic classes, then subdivides those into 30 sub-classes. For our analysis, we
assumed that the first-order classification represented a satisfactory trade-off for the level
of details we wanted to achieve. The macro-climatic regions here considered were tropical
(A), arid (B), temperate (C), cold (D), and polar (E).

3. Results and Discussion
3.1. GRDC-Based FDCs Compliant with SWOT Mission Features

One initial accomplishment of this study was the creation and publication of a global
dataset of period-of-record FDCs (referred to hereafter as FDCs for simplicity), constructed
using freely accessible river flow records. From the combination of GDRC river flow data
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and the global river bankfull width database [29], we considered in total 1200 river gauge
sections, which complied with our methodological requirements [30]. A bias toward a
larger number of river gauge stations in North America and Europe was evident, mainly
due to a lower availability of data from GRDC in the remaining continents. The considered
river gauge stations showed a rather heterogeneous spatial distribution across different
macro-climatic classes, as shown in Figure 2 and Table 2. More than 44% of stations were
located in cold climates, followed by temperate (28%), tropical (18%), arid (9%), and polar
(1%) zones. Despite the low representativeness of polar areas, we still considered river
gauge stations located in this region in order to make the presented procedure as general
and reproducible as possible. The temporal availability of observed river flow time series
from GRDC presented some variability (Table 2), with the average series lengths ranging
from approximately 36 years across tropical climates to 81 years in polar regions. Similarly,
the magnitude of river flows was well-assorted (see average values of median and mean
river flows for climate-grouped gauge stations in Table 2), thus allowing us to explore the
potential performance of SWOT-like data in reproducing FDCs, spanning from lower to
higher river flows.
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Figure 2. Assessment of SWOT-like river flow data performance in reproducing long-term FDCs,
expressed in terms of the Nash–Sutcliffe efficiency (NSE). The geographic location and the climatic
characterization of the considered 1200 GRDC river gauge stations are also shown. (a) Values for
the NSE computed from SWOT-like data derived from GRDC river flow observations without any
bias or random error and sampled every 3 days (i.e., QSWOT,0,0,3). (b) Difference between NSE values
computed from SWOT-like data derived from GRDC river flow observations without any bias or
random error and sampled every 3 and 10 days (i.e., QSWOT,0,0,3 and QSWOT,0,0,10, respectively).
Additional maps showing NSE values for the remaining SWOT-like river flow datasets are available
in Appendix A.
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Table 2. Main characteristics of SWOT-like river flow series for different climatic macro-regions.

Climatic
Classification

Number of
River Gauge

Stations

Series Length 1

(Years)
Median River
Flow 1 (m3/s)

Mean Annual
River 1 Flow

(m3/s)

Tropical (A) 211 35.59 3654.97 4124.62
Arid (B) 109 63.28 160.05 251.02

Temperate (C) 336 66.12 405.44 554.11
Cold (D) 533 68.61 361.93 437.65
Polar (E) 11 81 63.32 85.09

1 Average value among the river gauge stations in each climatic macro-region.

3.2. Creation of SWOT-like FDCs and Performance Analysis

As mentioned in the Methods, we defined 6 × 4 = 24 alternative SWOT-like river
flow datasets, where 6 identifies the number of perturbation scenarios (i.e., whether river
flows are not perturbed or if they are altered by minor or major biases triggering both over-
and underestimations and random errors in the detected magnitude), and 4 represents the
number of the considered sampling recurrences (i.e., k).

We evaluated the performance of SWOT-like data in reproducing FDCs compared
to the observed daily river flows (Figures 2 and A1, Figures A2–A6). As expected, our
analysis revealed a marked heterogeneity of the performance of SWOT-based FDCs, which
depends on the perturbation scenario, the satellite sampling recurrence, and the main
climatic conditions.

In the case where we assumed that data from the ongoing SWOT mission were
not affected by any bias or random perturbation and were sampled every 3 days (i.e.,
QSWOT,0,0,3, being the best-case scenario), the NSE values computed from the comparison
against FDCs from the observed daily river flows presented some variability, with NSE > 0.8
for the majority of river gauge stations (Figure 2a). In the case the sampling recurrence was
increased up to k = 10 days (i.e., QSWOT,0,0,10), a progressive decrease in NSE performances
was found, as reported in Figure 2b, where we showed the difference in NSE values between
k = 10 days and k = 3 days. Therein, 75% of river gauge stations presented ∆NSE values
included in a ±0.1 range, with the majority of them (98%) showing underestimations. For
the remaining 25% of stations, a larger NSE underestimation for QSWOT,0,0,10 was found
compared to NSE values associated to QSWOT,0,0,3. It is evident that the NSE values dropped
as the sampling recurrence k moved toward coarser sampling schemes, regardless of the
macro-climatic conditions.

We grouped the NSE values according to the Köppen–Geiger macro-climates (Figure 3
and Table 3). Regardless of the sampling recurrence, the best reproduction (in terms of
median values) of the observed FDCs as derived from the SWOT-like data without any
perturbation (i.e., QSWOT,0,0,k) was observed in tropical climates, immediately followed by
cold, polar, and temperate climates. As expected, arid climates showed significantly lower
performances as they remarkably suffered from a reduction in the sampling recurrence,
with median values of NSE lower than 0.75. Although river gauge locations belonging
to the polar climate seemed to show rather high performances, the statistical significance
of such a macro-climatic area could be misrepresented due to the low number of stations
belonging to it. These stations are either mountainous catchments, likely located at high
elevations, or at extreme latitudes. Nevertheless, our goal was to make the presented
procedure as general and reproducible as possible, therefore we decided not to remove
these sites from the analyses, which indeed would have introduced a further subjective rule.
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Figure 3. Average site-specific NSE values, computed from SWOT-like data derived from GRDC river
flow observations without any bias or random error (i.e., QSWOT,0,0,k) and grouped by macro-climate
and sampling scenario. Additional boxplots showing NSE values for the remaining SWOT-like river
flow datasets are available in Appendix A.

Table 3. Median values of NSE, computed from SWOT-like data derived from GRDC river flow
observations and grouped by macro-climate, perturbation, and sampling scenarios.

SWOT-like River Flow Reconstruction
NSE

Tropical (A) Arid (B) Temperate (C) Cold (D) Polar (E)

No perturbation

QSWOT,0,0,3 0.93 0.67 0.85 0.90 0.93
QSWOT,0,0,5 0.93 0.65 0.82 0.89 0.92
QSWOT,0,0,7 0.92 0.61 0.80 0.87 0.91
QSWOT,0,0,10 0.91 0.56 0.78 0.85 0.90

No perturbation
and random error

QSWOT,0,20,3 0.92 0.67 0.84 0.89 0.92
QSWOT,0,20,5 0.91 0.64 0.80 0.87 0.91
QSWOT,0,20,7 0.90 0.59 0.78 0.85 0.89
QSWOT,0,20,10 0.88 0.57 0.75 0.82 0.88

Minor estimation and
random error

QSWOT,−15,20,3 0.89 0.70 0.84 0.88 0.90
QSWOT,−15,20,5 0.88 0.68 0.82 0.87 0.89
QSWOT,−15,20,7 0.88 0.67 0.80 0.85 0.87
QSWOT,−15,20,10 0.87 0.64 0.78 0.83 0.88

Minor overestimation
and random error

QSWOT,15,20,3 0.81 0.52 0.71 0.77 0.82
QSWOT,15,20,5 0.80 0.47 0.67 0.73 0.80
QSWOT,15,20,7 0.79 0.44 0.62 0.70 0.78
QSWOT,15,20,10 0.76 0.38 0.58 0.66 0.76

Major underestimation
and random error

QSWOT,−30,20,3 0.75 0.66 0.76 0.78 0.75
QSWOT,−30,20,5 0.75 0.66 0.75 0.77 0.73
QSWOT,−30,20,7 0.74 0.63 0.73 0.76 0.73
QSWOT,−30,20,10 0.73 0.63 0.71 0.75 0.72

Major overestimation
and random error

QSWOT,30,20,3 0.59 0.23 0.49 0.55 0.58
QSWOT,30,20,5 0.56 0.17 0.41 0.50 0.56
QSWOT,30,20,7 0.53 0.13 0.33 0.45 0.52
QSWOT,30,20,10 0.50 0.06 0.22 0.37 0.52

When looking at the variability of NSE values within each macro-climate, we found
that tropical, temperate, and cold climates presented comparable interquartile ranges
(IQR), significantly smaller than the IQR for arid climates. This once again suggests a
possible poorer performance of SWOT data across arid regions. With increasing sampling
time, we observed that temperate climates revealed a 63% increase in the IQR moving
from k = 3 to k = 10 days sampling recurrence. Conversely, tropical and cold climates
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showed an overall lower variability, with little variations in the IQR (i.e., 41% and 47% IQR
increase from k = 3 days to k = 10 days, respectively). Our results clearly highlight the large
dependency of the performance of SWOT-based flow–duration curves on the particular
climatic and regional area where river flow records are collected. For instance, in Japan,
where two macro-climatic conditions exist within the same country (i.e., temperate in the
south and cold in the north), we observed a rather amplified performance decline, mainly
located in the southern part (Figures A1–A6). For river gauge stations located in mostly
arid climates (e.g., in Australia, South Africa, or some limited parts of south-central United
States), the variability in the SWOT-like data performance was higher than every other
climatic condition, which may potentially suggest a lower reliability of SWOT-based FDCs
across these regions.

In the case the SWOT data were characterized by random errors without any bias (i.e.,
QSWOT,0,20,k), and also in the case of negative biases (i.e., QSWOT,−15,20,k, QSWOT,−30,20,k), our
analysis revealed that NSE performances (median values) tended to slightly worsen (Table 3
and Figure A7), showing lower median values, but comparable IQRs. Conversely, in the
case positive biases were considered (i.e., QSWOT,15,20,k, QSWOT,30,20,k), the performance of
SWOT-based FDCs decreased remarkably, with median NSE values ranging between 0.4
and 0.6 approximately. A detailed representation of NSE values for all the considered
SWOT-like river flow datasets is reported in Figures A1–A7, where both the geographical
and the climatic analyses are shown.

Despite NSE being a well-known metric that assesses the performance of modeled
data compared to observations, it did not allow us to differentiate the performance analysis
by distinguishing among different flow conditions (e.g., high and low flows). To this aim,
we computed and analyzed the MRE values for relative durations equal to 0.027, 0.5, and
0.973 as representative of high, median, and low flow conditions, respectively.

We observed a general tendency of unperturbed SWOT-based FDCs (QSWOT,0,0,k) to
satisfactorily mimic high and median flows, as shown by MRE values close to 0 and low
IQRs (Figure 4a and Table 4). Indeed, in most rivers, lower baseflows tend to dominate the
hydrograph (and thus the median) compared to flood flows because runoff peaks are fewer
in number than baseflows between peaks. As a consequence, the average river flow would
be biased low, while the median flow would be better represented. In particular, high flows
revealed a slightly decreasing performance with increasing k values, characterized by higher
MRE values and larger IQR with increasing k. This result was expected and highlights the
importance of sampling river flows during floods with the highest sampling frequency as
possible. Median flows looked less sensitive to varying sampling recurrences, as revealed
by the overall uniform pattern across k values, and thus seem to be the most observable river
flow regime for SWOT (Table 4). For median flows, the procedure delivered the narrowest
IQRs in terms of MRE for all macro-climatic areas and sampling recurrence. When looking
at low flows, SWOT-based FDCs tended to overestimate the observed FDCs, mainly due to
less recurrent sampling. When comparing macro-climates, tropical areas revealed a better
performance in terms of MRE, especially during low flows. As previously highlighted,
arid climates presented the largest variability of median and low flows compared to all
other climates.

In the case a random error characterized the SWOT-like data (i.e., QSWOT,0,20,k), our
results showed a slight overestimation of high flows, with a pattern from k = 3 days to
k = 10 days, similar to the one observed for unperturbed data (Figure 4b). Regarding low
flows, a slight underestimation was detected, with larger IQRs, probably due to a smaller
size of the river flow dataset (i.e., QSWOT < 0 is neglected). No remarkable changes were
found for median flows.

Whether a negative (positive) bias will characterize the river flow estimates from
SWOT, the MRE values tended to consistently increase (decrease), as shown in Table 4 and
Figure A8. Despite this, our results proved that regardless of the potential bias of SWOT
in estimating river flows, the distribution of MRE was not significantly affected. SWOT
river flow estimations are expected to preserve the intrinsic variability of river flows even
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though a shift in the actual values may emerge, which needs to be properly assessed in
order to provide reliable river flow estimates.
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Figure 4. Average site-specific mean relative error (MRE) values, computed from SWOT-like data
derived from GRDC river flow observations (a) without any bias or random error (i.e., QSWOT,0,0,k),
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Table 4. Median values of MRE for median flows, computed from SWOT-like data derived from
GRDC river flow observations and grouped by macro-climate, perturbation, and sampling scenarios.

SWOT-like River Flow Reconstruction
MRE (d = 0.50; Median Flow)

Tropical (A) Arid (B) Temperate (C) Cold (D) Polar (E)

No perturbation

QSWOT,0,0,3 −0.01 −0.03 −0.02 −0.01 0.01
QSWOT,0,0,5 −0.01 −0.03 −0.02 −0.01 0.01
QSWOT,0,0,7 −0.01 −0.03 −0.02 −0.01 0.01
QSWOT,0,0,10 −0.01 −0.03 −0.02 −0.01 0.01

No perturbation and
random error

QSWOT,0,20,3 0.01 −0.03 −0.01 0.00 0.03
QSWOT,0,20,5 0.01 −0.04 −0.01 0.00 0.03
QSWOT,0,20,7 0.00 −0.03 −0.01 0.00 0.03
QSWOT,0,20,10 0.00 −0.03 −0.01 0.00 0.03

Minor underestimation
and random error

QSWOT,−15,20,3 0.16 0.12 0.15 0.16 0.18
QSWOT,−15,20,5 0.16 0.12 0.15 0.16 0.18
QSWOT,−15,20,7 0.16 0.12 0.15 0.16 0.18
QSWOT,−15,20,10 0.16 0.12 0.15 0.16 0.18



Remote Sens. 2024, 16, 2607 12 of 22

Table 4. Cont.

SWOT-like River Flow Reconstruction
MRE (d = 0.50; Median Flow)

Tropical (A) Arid (B) Temperate (C) Cold (D) Polar (E)

Minor overestimation
and random error

QSWOT,15,20,3 −0.15 −0.19 −0.16 −0.15 −0.12
QSWOT,15,20,5 −0.15 −0.19 −0.16 −0.15 −0.12
QSWOT,15,20,7 −0.15 −0.19 −0.16 −0.15 −0.12
QSWOT,15,20,10 −0.15 −0.19 −0.16 −0.15 −0.12

Major underestimation
and random error

QSWOT,−30,20,3 0.31 0.28 0.30 0.31 0.33
QSWOT,−30,20,5 0.31 0.28 0.30 0.31 0.33
QSWOT,−30,20,7 0.31 0.28 0.30 0.31 0.33
QSWOT,−30,20,10 0.31 0.28 0.30 0.31 0.33

Major overestimation
and random error

QSWOT,30,20,3 −0.30 −0.34 −0.32 −0.30 −0.27
QSWOT,30,20,5 −0.30 −0.34 −0.32 −0.30 −0.28
QSWOT,30,20,7 −0.30 −0.34 −0.32 −0.30 −0.27
QSWOT,30,20,10 −0.30 −0.34 −0.32 −0.31 −0.28

4. Conclusions

In anticipation of the upcoming release of SWOT products, this study investigated the
mission potential to estimate flow–duration curves (FDCs) of remotely-sensed river flows.
We examined the influence of sampling recurrences, biases, and random errors on river
flow estimation, considering the most significant hydrological signatures of rivers (low,
high, and median flows) and their climatic features.

In doing so, we also provide the first global collection of FDCs at traditionally mon-
itored river sections (1200 gauging stations) using GRDC data with suitable consistency
(i.e., length of records).

Our results show that the performance of SWOT-based FDCs heavily depends on the
climatic and regional context of the rivers: the best median reproduction derived from
unperturbed SWOT-like data occurred in tropical climates, closely followed by cold, polar,
and temperate climates. Poor performance is expected in arid regions.

The sampling recurrence is also a significant factor, especially for high flows, where
more frequent observations (i.e., k = 3) ensure a higher possibility to sample floods along
the rivers. Among the considered flows, the median river flows result was less sensitive to
varying sampling frequencies, as indicated by the overall uniform pattern across k values,
making them the most reliably observable river flow regime for SWOT, regardless of the
macro-climate conditions.

The presence of random errors or biases of SWOT data may significantly impact the
errors on reproducing the river hydrological regime. Despite this, our results showed that
the distribution of MRE remained largely unaffected by the presence of biases: SWOT is
expected to maintain the intrinsic variability of river flows, although actual value shifts
may occur. These results further highlight the relevance of the calibration/validation phase
currently undertaken by the science mission teams, which should constrain the risk of
random and unexpected biases.

This preliminary investigation paves the way for further studies. The promising per-
formance of SWOT-based FDCs in depicting median flows offers potential for applications
such as FDC regionalization (see, e.g., [9]), water management, habitat suitability, and other
areas that rely on understanding river hydrological regimes and river flow variability.
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Figure A1. Assessment of SWOT-like river flow data performance in reproducing long-term FDCs,
expressed in terms of the Nash–Sutcliffe efficiency (NSE). The geographic location and the climatic
characterization of the considered 1200 GRDC river gauge stations are also shown. Values for NSE
computed from SWOT-like data derived from GRDC river flow observations without any bias or
random error (i.e., Qswot,0,0,k) and sampled every (a) 3 days, (b) 5 days, (c) 7 days, and (d) 10 days.
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Figure A2. Assessment of SWOT-like river flow data performance in reproducing long-term FDCs,
expressed in terms of the Nash–Sutcliffe efficiency (NSE). The geographic location and the climatic
characterization of the considered 1200 GRDC river gauge stations are also shown. Values for NSE
computed from SWOT-like data derived from GRDC river flow observations considering a 20%
random error (i.e., Qswot,0,20,k) and sampled every (a) 3 days, (b) 5 days, (c) 7 days, and (d) 10 days.
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characterization of the considered 1200 GRDC river gauge stations are also shown. Values for NSE 
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Figure A3. Assessment of SWOT-like river flow data performance in reproducing long-term FDCs,
expressed in terms of the Nash–Sutcliffe efficiency (NSE). The geographic location and the climatic
characterization of the considered 1200 GRDC river gauge stations are also shown. Values for NSE
computed from SWOT-like data derived from GRDC river flow observations considering a 15%
negative bias and a 20% random error (i.e., Qswot,−15,20,k) and sampled every (a) 3 days, (b) 5 days,
(c) 7 days, and (d) 10 days.
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Figure A4. Assessment of SWOT-like river flow data performance in reproducing long-term FDCs,
expressed in terms of the Nash–Sutcliffe efficiency (NSE). The geographic location and the climatic
characterization of the considered 1200 GRDC river gauge stations are also shown. Values for NSE
computed from SWOT-like data derived from GRDC river flow observations considering a 15%
positive bias and a 20% random error (i.e., Qswot,15,20,k) and sampled every (a) 3 days, (b) 5 days,
(c) 7 days, and (d) 10 days.
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Figure A5. Assessment of SWOT-like river flow data performance in reproducing long-term FDCs,
expressed in terms of the Nash–Sutcliffe efficiency (NSE). The geographic location and the climatic
characterization of the considered 1200 GRDC river gauge stations are also shown. Values for NSE
computed from SWOT-like data derived from GRDC river flow observations considering a 30%
negative bias and a 20% random error (i.e., Qswot,−30,20,k) and sampled every (a) 3 days, (b) 5 days,
(c) 7 days, and (d) 10 days.
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Figure A6. Assessment of SWOT-like river flow data performance in reproducing long-term FDCs,
expressed in terms of the Nash–Sutcliffe efficiency (NSE). The geographic location and the climatic
characterization of the considered 1200 GRDC river gauge stations are also shown. Values for NSE
computed from SWOT-like data derived from GRDC river flow observations considering a 30%
positive bias and a 20% random error (i.e., Qswot,30,20,k) and sampled every (a) 3 days, (b) 5 days,
(c) 7 days, and (d) 10 days.
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Figure A8. Average site-specific mean relative error (MRE) values, computed from SWOT-like data
derived from GRDC river flow observations and grouped by macro-climate and sampling scenario for
(a) 15% negative bias and 20% random error (Qswot,−15,20,k), (b) 15% positive bias and 20% random
error (Qswot,15,20,k), (c) 30% negative bias and 20% random error (Qswot,−30,20,k), and (d) 30% positive
bias and 20% random error (Qswot,30,20,k).
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