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Abstract
In this paper we continue the analysis of an Alt–Caffarelli–Friedman (ACF) monotonicity
formula in Carnot groups of step s > 1 confirming the existence of counterexamples to the
monotone increasing behavior. In particular, we provide a sufficient condition that implies the
existence of some counterexamples to the monotone increasing behavior of the ACF formula
inCarnot groups. Themain tool is based on the lack of orthogonality of harmonic polynomials
in Carnot groups. This paper generalizes the results proved in Ferrari and Forcillo (Atti Accad
Naz Lincei Rend Lincei Mat Appl 34(2):295–306, 2023).
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F. Ferrari, D. Giovagnoli

1 Introduction

The regularity of the solutions of two-phase free boundary problem finds crucial the use
of monotonicity formulas, such as the one introduced in [2]. In this note, we continue to
investigate this subject in the noncommutative setting of Carnot groups, improving the results
already obtained in [14–17]. In fact, this paper follows the main stream of the research
started in [15] and its aim is to extend some nonexistence results obtained first in [16], in the
framework of the first Heisenberg group H1, to a larger class of Carnot groups.

More precisely, in Theorem 3.1, we state a sufficient condition under which

�(r) = 1

r2

∫
BG
r (0)

|∇Gu(M)|2 �G(M) dM (1.1)

satisfies a monotone decreasing behavior in a right neighborhood of 0, for a fixed nice G-
harmonic function u such that u(0) = 0, where �G denotes the fundamental solution of the
subLaplacian �G in a Carnot group G and ∇Gu the horizontal intrinsic gradient of u.

The results have been obtained exploiting the non-commutative features of the Carnot
groups and they exhibit a direct method to construct counterexamples to the simplest Alt–
Caffarelli–Friedman formula (1.1) in all the Carnot groups.

In order to get a better overview about the relevance of this result, we recall the role of
such monotonicity formulas in two-phase free boundary problems.

To our knowledge, the first formalization of the monotonicity formula applied to a two-
phase free boundary problem appeared in [2], considering functions that are minimizers of
the energy functional

J (u) =
∫

�

|∇u|2 + λ+χ{u>0} + λ−χ{u≤0} dx, (1.2)

where � ⊂ R
n is an open set endowed with locally Lipschitz boundary and λ± > 0 some

given positive numbers.
Minima of J belong to some suitable subsets of the Sobolev space H1(�), determined

assuming particular conditions on u, see [2], on which we don’t wish to enter here.
Nevertheless, in this framework, a special role is played by the set F(u) := ∂�+(u) ∩ �,

traditionally named as the free boundary of the problem.
Assuming some further hypotheses, see [2] one more time, the condition that minima

satisfy on F(u) may be understood as
∣∣∇u+∣∣2 − ∣∣∇u−∣∣2 = λ+ − λ−.

In addition, minima of J , in the sense of the domain variation, [33], satisfy the following
system studied in [6],

⎧⎨
⎩

�u = 0 in �+(u) := {x ∈ � : u > 0},
�u = 0 in �−(u) := {x ∈ � : u ≤ 0}o,∣∣∇u+∣∣2 − ∣∣∇u−∣∣2 = λ+ − λ− onF(u),

(1.3)

with viscosity tools, see also [12] for a gentle introduction about the domain variation
approach.

Problem (1.3) may be read as entailing the Euler–Lagrange equations associate with the
minima of the functional (1.2).

In this setting, supposing that 0 ∈ F(u), the monotonicity result, proved in [2], states that
for every solution u ∈ H1(�) of (1.3), denoting u+ := sup{u, 0} and u− := sup{−u, 0} the
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positive and negative part of u respectively, the function

Ju(r) = 1

r4

∫
Br (0)

∣∣∇u+∣∣2
|x |n−2 dx

∫
Br (0)

∣∣∇u−∣∣2
|x |n−2 dx (1.4)

is monotone increasing for all r ∈ (0, R), for a suitable R > 0.
Function (1.4), and its monotonicity properties, has been widely studied in the Euclidean

setting and, usually, it is called the Alt–Caffarelli–Friedman monotonicity formula (ACF
formula or, simply, monotonicity formula for future references) since, in this framework, it
is monotone increasing in a right neighborhood of 0.

In addition, in the same paper [2], it has been shown how (1.4) basically provides bounds
to the product of the gradients of u+ and u− at the points of the free boundary. Thus, this
monotonicity formula allows to deduce the Lipschitz continuity of the global solution u of
the problem (1.3).

ACF formula has several applications in many different framework, see for instance [1,
9, 11, 23, 27, 30] and it has had several generalizations like in [5–8, 10, 13, 24, 28, 29, 31].

Hence, the same questions posed in the Euclidean setting, concerning the regularity of
functions satisfying companion systems like (1.3), arise when the problem is stated in Carnot
groups, where, as it is well known, it is possibile to study the parallel problem of (1.3) that
appears to have the following form, see [12],

⎧⎨
⎩

�Gu = 0 in �+(u),

�Gu = 0 in �−(u),

|∇Gu+|2 − |∇Gu−|2 = 1 on F(u).

(1.5)

In particular, here, �G and ∇G denote respectively the sub-Laplacian and the horizontal
gradient on G, we refer to Sect. 2 for precise definitions.

As a consequence, to investigate the existence of an intrinsic companion ACF formula of
(1.4), in the noncommutative framework, appears, in a sense, natural and useful as well.

The Free Boundary Problem (1.5) suggests that the ACF formula candidate to this two-
phase scenario has to be the following one:

JGu (r) = 1

r4

∫
BG
r (0)

|∇Gu
+(M)|2�G(M) dM ·

∫
BG
r (0)

|∇Gu
−(M)|2�G(M) dM, (1.6)

where �G denotes the fundamental solution of �G, with pole at the origin, and BG
r (0) is the

right superlevel set of �G.
It is worth to warn here the reader about some delicate points. Instead of considering, in

the integrals of (1.1) and (1.6), the fundamental solution of the sub-Laplacian, some powers
of different homogeneous norms might be considered. For instance, instead of the so called
L−gauge norm associated with the fundamental solution, it is possible to deal with d2−Q

CC ,
where dCC denotes the Carnot-Charathéodory distance in the Carnot group and Q is the
homogeneous dimension. In addition, instead of considering the horizontal gradient ∇G it
is possible to work with the right horizontal gradient ∇̃G. This approach is developed in
[22] and it allows to obtain an analogue of the Euclidean result for the one-phase functional
associated with right invariants vector fields [22, Theorem 1.1] exploiting the subharmonicity
of |∇̃G f |2 through Bochner formulas.

Anyhow, in view of the problem (1.5) and recalling some of the applications associated
with the regularity of its solutions as well, we are interested in the properties of the functions
defined in (1.1) and (1.6).

123



F. Ferrari, D. Giovagnoli

In this direction some results have been already obtained: in [14, 15] the authors discuss
about the form of (1.6) and retrace a part of the fundamental tools in parallel with the
Euclidean proofs for the Heisenberg group H

n . Following an idea recalled in [26], about
classical harmonic functions, through the use of harmonic homogeneous polynomials, in [16]
it has been proved an explicit counterexample in H1 to the monotone increasing behavior of
the ACF functionals (1.1) and (1.6).

More recently, in [17], a sufficient condition involving a mean value formula of the norm
of the gradient has been established and used to provide another family of counterexamples
in H

1. We point out as well that, in [22], the author relates the failure of the monotone
increasing behavior of (1.1) with the non-subharmonicity of |∇G f |2 and provide a similar
counterexample in H1 [22, Proposition 1.3].

Our focus in this work is to analyze the peculiar noncommutative phenomenon of the
loss of orthogonality of harmonic homogeneous polynomial and exploit it to generalize the
behavior of the ACF functionals (1.1) and (1.6) on a Carnot group.

The main result we obtain in this paper is the following one.

Theorem 1.1 For any Carnot groupG of step s, with s > 1, there exists an intrinsic harmonic
function u such that (1.1) fails to be monotone increasing in a right neighborhood of 0.

Indeed, in Theorem1.1,we prove that in everyCarnot group an intrinsic harmonic function
exists such that (1.1) is monotone decreasing.

On the other hand, since (1.1) appears also to be a factor of (1.6), this fact may be exploited
to prove, as well as in [16] in the Heisenberg group only, that Theorem 5.1, holds.

More precisely, we can generalize the result of the nonexistence of an ACF formula as
(1.6) to all Carnot groups of step two. In fact the following result holds.

Theorem 1.2 For any Carnot groupG of step 2, there exists a continuous function u such that
u is harmonic in {u > 0} as well as u is harmonic in {u ≤ 0}o and JGu fails to be increasing
in a right neighborhood of 0.

We proved this result in such generality only in two step Carnot groups since we can
exploit both a symmetry property with respect to the variables associated to the first stratum
of the function in the counterexample built starting from Theorem 1.1, and the symmetry
property of the fundamental solution with respect the first stratum variables, as it can be
recognized in the representation formula due to Beals, Gaveau and Greiner [3].

Carnot group of step s > 2, in general, to our knowledge don’t have a so explicit rep-
resentation of the fundamental solution, even if, it is well known that �G(P) = �G(P−1),

see for instance [20], where �G denotes the fundamental solution, with pole in 0, of the
sub-Laplacian �G in the Carnot group G.

Hence, Theorem 5.1 applies only whenever it is possible to build a counterexample with
an intrinsic odd property, namely u(P) = −u(P−1), see Sect. 6.

We point out that Theorem1.1 is a consequence of Theorem3.1, wherewe state a sufficient
condition that implies the decreasing behavior of (1.1) in all the Carnot groups. Section2
provides a self contained notation used in this paper, Sect. 3 describes the main tools that
we exploit to obtain the counterexamples, in particular the proof of Theorem 3.1. Section4
is devoted to the proof of the main result. Section5 gives some sufficient conditions for the
nonincreasing behavior of (1.6) and contains the proof of Theorem 1.2. Eventually, Sect. 6
focuses on an explicit counterexample to the monotone increasing behavior of (1.1) in the
three step Engel group.
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2 Carnot group settings

In this section we introduce the main definitions and notations used in the framework of
Carnot groups. For the notations we follow [18] and we refer to [4], and [32] for a broader
exposition of Carnot groups.

A Lie group G is a manifold endowed with a structure of differential group, i.e. a group
where the maps

(x, y) �→ xy ∈ G, x �→ x−1 ∈ G areC∞for anyx, y ∈ G.

A vector space g is said to be a Lie algebra if there exists a bilinear and anti-symmetric map
[·, ·] : g × g �→ g which satisfies the Jacobi’s identity, i.e.,

[X , [Y , Z ]] + [Y , [Z , X ]] + [Z , [X , Y ]] = 0 for all X , Y , Z ∈ g.

Given two subalgebras a, b of aLie algebra gwewill denotewith [a, b] the vector subspace
generated by the elements of {[X , Y ] : X ∈ a, Y ∈ b}. We denote g1 := g and by induction
gl+1 := [g, gl ].

We will say that g is nilpotent of step s if gs 
= {0} and gs+1 = {0}.
A connected and simply connected stratified nilpotent Lie group G is said to be a Carnot

group of step s if its associated Lie algebra g admits a stratification of step s, if g1, . . . , gs
linear subspaces exist such that, g can be written as the direct sum of the gi and the (i +1)-th
subspace is generated by commutating the elements of g1 and gi , i.e.

g = g1 ⊕ · · · ⊕ gp, [g1, gi ] = gi+1, gs 
= {0}, gi = {0} for i > s.

The first layer g1, often called horizontal layer, has a key role since can generate the whole
space g by commutation.

The homogeneous dimension Q of G is,

Q :=
p∑

i=1

i dim(gi ).

Let us denote with e the unit element onG. We recall that the map X �→ X(e), that associates
with a left-invariant vector field X its value at e, is an isomorphism from g to the tangent
space TGe, identified with R

n .
Let mi = dim(gi ) and hi = m1 + · · · +mi for i = 1, . . . , p. Hence it holds h p = n. We

choose the basis e1, . . . , en of Rn adapted to the stratification of g, in the sense of having

eh j−1+1, . . . , eh j as the basis of g j for each j = 1, . . . , p.

Moreover, let {X1, . . . , Xn} be the family of left invariant vector fields such that Xi (e) = ei ,
i = 1, . . . , n.The subbundle of the tangent bundle TG spanned by the vector fields associated
to the horizontal layer X1, . . . , Xm1 is called the horizontal bundle HG.

For every x ∈ G, each fiber HGx = span{X1(x), . . . , Xm1(x)} is endowed by a scalar
product 〈·, ·〉 such that {X1(x), . . . , Xm1(x)} becomes an orthonormal basis.

We identify the Carnot group G, through exponential coordinates, with the Euclidean
space (Rn, ·), where n is the dimension of g, endowed with a suitable group operation.

For any x ∈ G, the left translation τx : G �→ G is defined as

z �→ τx z := x · z.
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For any λ > 0, the dilations δλ : G �→ G, is defined as

δλ(x1, . . . , xn) = (λd1x1, . . . , λ
dn xn),

where di ∈ N is called homogeneity of the variable xi ∈ G (see [21] Chapter 1) and is defined
as

d j = i whenever hi−1 + 1 ≤ j ≤ hi ,

hence, 1 = d1 = · · · = dm1 < 2 = dm1+1 ≤ · · · ≤ dn = p.
We follow the notation of [4], Chapter 20, so that β denotes a multi-index with n entries,

β = (β1, . . . , βn) ∈ N
n . Let

xβ = xβ1
1 · · · xβn

n ,

|β| = β1 + · · · + βn, |β|G = d1β1 + · · · + dnβn .

We introduce the G-polynomial as the polynomial P with respect to the coordinate system
(x1, . . . , xn) ∈ G and we define the G-degree of a G-polynomial as follows,

degG(P) := max

⎧⎨
⎩|β|G : P(x) =

∑
β∈Nn

cβx
β withcβ 
= 0for everyβ

⎫⎬
⎭ . (2.1)

Fromnowon, for simplicity, aG-polynomial and theG-degree of aG-polynomial are denoted
omitting the letter G.

We exploit the Haar measure of G which is the Lebesgue measure in Rn to have a notion
of an integral in G. Once the basis X1, . . . , Xm1 of the horizontal layer is fixed, we define
for any function f : G �→ R, for which X j f exists, the horizontal gradient of f , denoted
by ∇G f , as the horizontal section

∇G f =
m1∑
i=1

(Xi f )Xi ,

whose coordinates are (X1 f , . . . , Xm1 f ). In the same way it is possible to extend to higher
order this rappresentation. Moreover, if φ = (φ1 . . . , φm1) is a horizontal section such that
X jφ j ∈ L1

loc(G) for j = 1, . . . ,m1, we define divG φ as the real valued function

divG(φ) :=
m1∑
j=1

X jφ j .

We denote by �G the sub-Laplacian on G the operator

�G =
m1∑
j=1

X2
j .

Aswell as to theEuclidean case,we are interested in fundamental solution of�G. For a deeper
overview on the existence, the properties and the global estimates of fundamental solutions
of sub-Laplacians we refer, for instance, to [4, 21]. In particular, a function �G(·, P) :
G \ {P} �→ R is the fundamental solution of �G with pole in P ∈ G if:

(i) �G(·, P) ∈ C∞(G \ {P});
(ii) �G(·, P) ∈ L1

loc(G) and �G(M, P) → 0 when M tends to infinity;
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(iii) �G�G(·, P) = δP , being δP the Dirac measure supported at P . More explicitly,
∫
G

�G(M, P)�Gϕ(M)dM = −ϕ(P) for any ϕ ∈ C∞
0 (G).

We further introduce, as well, theG-ball centered at P with radius r , BG
r (P), as the superlevel

set of the fundamental solution �G(·, P), [4],

BG
r (P) = {M ∈ G : �G(M, P) ≥ r−(Q−2)}.

3 A characterization via harmonic homogeneous polynomials

In this framework, each of two factors of the ACF Formula in Carnot groups has the form,

�(r) = 1

r2

∫
BG
r (P)

|∇Gu(M)|2 �G(M, P) dM . (3.1)

A key role in establishing an ACF Monotonicity Formula relies on the properties of the
fundamental solution.

However, an explicit formula of the fundamental solution can be given only for a small
class of Carnot groups. For instance, apart the Euclidean case, it can be done explicitly dealing
with H−type groups that include Heisenberg groups, see [19].

In general the fundamental solution of a sub-Laplacian in a Carnot group is not
known explicitly. Nevertheless, see [4], a homogeneous norm exists d(·) := |·| such that
�G(M, P) = CQd2−Q(M−1 ◦ P). Then it is possible to exploit the scale invariant properties
of the fundamental solutions as well as those of the intrinsic harmonic functions to get a
useful representation of (1.1).

For any λ ∈ R, let uλ(P) := u(δλP). Then, the following properties hold:

(G1) ∇Guλ(P) = λ(∇Gu)(δλP);
(G2) If u satisfies �Gu = 0 then �Guλ = 0;
(G3) For any M ∈ G, �G(δλM, P) = λ2−Q�G(M, P).

The main result of this section is the following one.

Theorem 3.1 LetG be aCarnot group. IfP1 andP3 are homogeneous harmonic polynomials
of degree 1 and 3 respectively, such that

a2 :=
∫
BG
1 (0)

〈∇GP1(P),∇GP3(P)〉 �G(P) dP is positive. (3.2)

Then, the function u := P1 − P3 enjoys �Gu = 0 and (1.1) is monotone decreasing in a
right neighborhood of 0.

Proof Let

�(r) = 1

r2

∫
BG
r (0)

|∇Gu(M)|2 �G(M) dM

= 1

r2

∫
BG
1 (0)

|∇Gu(δr P)|2 �G(δr P)r Q dP
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where M ∈ BG
r (0) is seen as δr P , with P ∈ BG

1 (0),

=︸︷︷︸
(G1)

1

r2

∫
BG
1 (0)

∣∣∇G(u(δr P))r−1
∣∣2 �G(δr P)r Q dP

=︸︷︷︸
(G3)

1

r2

∫
BG
1 (0)

∣∣∇G(u(δr P))r−1
∣∣2 r2−Q�G(P)r Q dP

=
∫
BG
1 (0)

∣∣∇G(u(δr P))r−1
∣∣2 �G(P) dP.

Suppose now that u is the sum of two homogeneous harmonic polynomials. Let Pm and
Ph be two homogeneous harmonic polynomials of degree m and h respectively, i.e.

�G(αPm + βPh) = 0, α, β ∈ R,

by homogeneity one also have that Pm(δr P) = λmPm(P) so,

λ[∇GPm](δλP) =︸︷︷︸
(G1)

∇G(Pm(δλP)) = λm[∇GPm](P),

therefore it holds

[∇GPm](δλP) = λm−1[∇GPm](P),

and an analogous result hold for Ph as well.
Hence, |∇G(Pm + Ph)(δλP)| = ∣∣λm−1∇GPm(P) + λh−1∇GPh(P)

∣∣.
Let us select a polynomial of degree 1 and one of degree 3, both intrinsically harmonic.

Denote

u(P) := P1(P) − P3(P),

where the lower index denotes the homogeneity of the polynomial. As a consequence we get,

�(r) =
∫
BG
1 (0)

∣∣∣∣∇G

(P1(δr P)

r

)
−∇G

(P3(δr P)

r

)∣∣∣∣
2

�G(P) dP

=
∫
BG
1 (0)

(∣∣∣∣∇G

(P1(δr P)

r

)∣∣∣∣
2

+
∣∣∣∣∇G

(P3(δr P)

r

)∣∣∣∣
2 )

�G(P) dP+

− 2
∫
BG
1 (0)

〈
∇G

(P1(δr P)

r

)
,∇G

(P3(δr P)

r

)〉
�G(P) dP,

by homogeneity of P1,P3,

=
∫
BG
1 (0)

(|∇GP1(P)|2 + r4 |∇GP3(P)|2)�G(P) dP+

− 2
∫
BG
1 (0)

〈∇GP1(P),∇GP3(P)〉 r2�G(P) dP,
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so that we obtain,

= a0 − 2r2a2 + a4r
4,

where: a0 =
∫
BG
1 (0)

|∇GP1(P)|2 �G(P) dP;

a2 =
∫
BG
1 (0)

〈∇GP1(P),∇GP3(P)〉�G(P) dP;

a4 =
∫
BG
1 (0)

|∇GP3(P)|2 �G(P) dP.

The proof is complete, since �′(r) = −4a2 r + 4a4 r3 is negative in a neighborhood of 0.

For instance if r ≤
√

a2
a4
. ��

Remark 3.2 Theorem 3.1 cannot be applied to the trivial case of the Euclidean R
n since the

Euclidean harmonic polynomial are orthogonal in the following sense. For every Pk,Ph

harmonic homogeneous polynomials of degree h and k respectively

∫
B1(0)

〈∇Ph(x),∇Pk(x)〉 |x |2−n dx = 0, h 
= k. (3.3)

We recall here the short proof, see e.g. [25]. From coarea formula we obtain

∫
B1(0)

〈∇Ph(x),∇Pk(x)〉 |x |2−n dx =
∫ 1

0
ρ2−n

∫
∂Bρ(0)

〈∇Ph(x),∇Pk(x)〉 dσ(x) dρ.

(3.4)
Each component of the gradient of Ph and Pk are still homogeneous polynomials so we
obtain the thesis if ∫

∂Bρ(0)
Ph(x)Pk(x) dσ(x) = 0. (3.5)

The Eq. (3.5) is a consequence of the divergence theorem. Indeed, being x
ρ
the outward

normal to ∂Bρ(0),

0 =
∫
Bρ(0)

(Ph�Pk − Pk�Ph) dx =
∫
Bρ(0)

div(Ph∇Pk − Pk∇Ph) dx

=
∫

∂Bρ(0)

〈
Ph∇Pk − Pk∇Ph,

x

ρ

〉
dσ(x)

=
∫

∂Bρ(0)
(Ph 〈∇Pk, ν〉 − Pk 〈∇Ph, ν〉) dσ(x),

(3.6)

where ν := x
ρ
. Let β ∈ N

n and

Pk(x) =
∑

β,|β|=k

bβx
β,
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then

∇Pk(x) =
∑

β,|β|=k

bβ(β1x
β1−1
1 xβ2

2 . . . xβn
n , . . . , βnx

β1
1 . . . xβn−1

n ). (3.7)

〈∇Pk , ν〉 = 1

ρ

∑
β,|β|=k

bβ(β1x
β1
1 xβ2

2 . . . xβn
n + · · · + βnx

β1
1 . . . xβn

n )

= 1

ρ

∑
β,|β|=k

bβ(β1 + · · · + βn)x
β1
1 xβ2

2 . . . xβn
n = 1

ρ

∑
β,|β|=k

bβ |β| xβ = kPk

ρ
.

(3.8)

Applying (3.8) to (3.6), we get

0 = 1

ρ

∫
∂Bρ(0)

(Ph 〈∇Pk, x〉 − Pk 〈∇Ph, x〉) dσ(x) = 1

ρ

∫
∂Bρ(0)

(PhkPk − PkhPh) dσ(x),

that gives for h 
= k ∫
∂Bρ(0)

PhPk dσ = 0.

4 The general case

In this section we investigate the condition on the positivity of a2 in order to apply the same
argument to all Carnot groups. We reduce the problem to Carnot groups with step two and
three. Afterwards, we consider directly such groups and provide a method to build an explicit
counterexample.

First of all we recall a result about the representation of the vector fields belonging to the
horizontal layer, which which is crucial to the reduction of the problem.

Proposition 4.1 (in [21] is Proposition 1.26) If j = 1, . . . ,m1, the vector fields X j have
polynomial coefficients and have the form

X j (x) = ∂x j +
∑

k≥1;dk>1

p j,k(x) ∂xk (4.1)

where the p j,k are G-homogeneous polynomials of degree dk − 1 for dk > 1.

As a consequence, we are in position to prove the main result, Theorem 1.1

Proof (of Theorem 1.1) Let us note that, by definition of a2,

〈∇GP1(P),∇GP3(P)〉 > 0 a.e. in BG

1 (0)

implies that

a2 :=
∫
BG
1 (0)

〈∇GP1(P),∇GP3(P)〉�G(P) dP > 0.

Recalling the notation of Sect. 2 being P ∈ G as P ≡ (x1, . . . , xn) ∈ R
n , a first degree

homogeneous polynomial has to be a linear combination of the first m1 component,

P1(x) =
m1∑
k=1

bkxk .
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Hence, from Proposition 4.1, ∇GP1(x) = (b1, . . . , bm1) is constant.
Note also that (4.1) can be explicitly written as:

X j = ∂x j +
∑

k≥1;dk=2

p1j,k ∂xk +
∑

k≥1;dk=3

p2j,k ∂xk + Tj (4.2)

with

Tj =
∑

k≥1;dk>3

pdk−1
j,k ∂xk .

A homogeneous harmonic polynomial of degree three, according to the definition of (2.1),
is

P3(x) =
∑
β∈Nn

|β|G=3

cβx
β .

In particular, it cannot contain variables with homogeneity dk > 3. Thus, if we apply X j to
P3, the vector field Tj doesn’t produce any contribution. Arguing in this way, we handle the
general case.

We start reducing ourselves to a simpler case, by considering a basic 2-step Carnot group
and exhibiting an explicit counterexample that may be generalized to groups with greater
step.

Thus, we have G whose Lie algebra is g = g1 ⊕ g2 with g1 generated by X1, . . . , Xm1 ,
g2 by Y1, Y2, . . . , Yn−m1 and, via Proposition 4.1, the horizontal vector fields are:

Xi = ∂xi +
n−m1∑
j=1

(
m1∑
k=1

αi
k j xk

)
∂y j i = 1, . . . ,m1. (4.3)

We notice that some vector fields might commute, but beingG a Carnot group of step two, it
holds that for some ĩ, s̃ ∈ {1, . . . ,m1} we have [Xĩ , Xs̃] 
= 0 that together with (4.3) means

that exists at least a j̃ ∈ {1, . . . , n − m1} for which α ĩ
s̃ j̃


= αs̃
ĩ j̃
, in fact

[Xi , Xs] =
(

∂xi +
n−m1∑
j=1

(
m1∑
k=1

αi
k j xk

)
∂y j

)(
∂xs +

n−m1∑
j=1

(
m1∑
k=1

αs
k j xk

)
∂y j

)

−
(

∂xs +
n−m1∑
j=1

(
m1∑
k=1

αs
k j xk

)
∂y j

)(
∂xi +

n−m1∑
j=1

(
m1∑
k=1

αi
k j xk

)
∂y j

)

=
n−m1∑
j=1

(αs
i j − αi

s j )∂y j .

Let us simplify the notation considering ĩ = 1, s̃ = 2 and y j̃ = y with the corresponding

vector fields X1, X2 and Y = ∂y . Moreover denote with (αi
k)i,k=1,...,m1 the coefficients with

respect to ∂y via (4.3), so we have

[Xĩ , Xs̃] = [X1, X2] = (α2
1 − α1

2)∂y +
n−m1∑
j=2

(α2
1 j − α1

2 j )∂y j 
= 0 and α2
1 − α1

2 
= 0. (4.4)
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Now, consider the polynomials

P1 = bx2,

P3 = c1x
3
1 + c2x

2
1 x2 + c3x1x

2
2 + c4x

3
2 + c5x1y − c5x1

[
m1∑
i=3

(
1

2
α1
i x1xi + α2

i x2xi

)]
,

(4.5)
with b, c1, c2, c3, c4, c5 ∈ R to be determined. For P1 we have

∇GP1 = (0, b, 0, . . . , 0), �GP1 = 0;

For P3, computing the derivatives, we get

X1P3 = (3c1 + α1
1c5)x

2
1 + (2c2 + α1

2c5)x1x2 + c3x
2
2 + c5y

+ c5x1

(
m1∑
i=3

α1
i xi

)
− c5x1

(
m1∑
i=3

α1
i xi

)
− c5

(
m1∑
i=3

α1
i xi x2

)
;

X2P3 = (c2 + α2
1c5)x

2
1 + (2c3 + α2

2c5)x1x2 + 3c4x
2
2 + c5x1

(
m1∑
i=3

α2
i xi

)

− c5

(
m1∑
i=3

α2
i xi x1

)
;

�GP3 = [6c1 + 2c3 + (α2
2 + 3α1

1)c5]x1 + [2c2 + 6c4 + 2α1
2c5]x2;

〈∇GP1,∇GP3〉 = b(c2 + α2
1c5)x

2
1 + b(2c3 + α2

2c5)x1x2 + 3bc4x
2
2 .

Now, we impose the G-harmonicity of P1 − P3, furthermore we require the cancellation of
the mixed term of 〈∇GP1,∇GP3〉 and we add two conditions to fix the positive sign. In this
manner we obtain the following system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

6c1 + 2c3 + (α2
2 + 3α1

1)c5 = 0
2c2 + 6c4 + 2α2

2c5 = 0
2bc3 + bα2

2c5 = 0
bc2 + bα2

1c5 = p
3bc4 = q,

(4.6)

assuming the condition (p, q) ∈ D, with D := {(x, y) ∈ R
2 \ {(0, 0)}, x ≥ 0, y ≥ 0}.

Fixed b ∈ R
∗ = R \ {0}, (4.6) is a 5 × 5 linear system of the form Ab�c = �v, where

�c = (c1, c2, c3, c4, c5), �v = (0, 0, 0, p, q) and

Ab =

⎛
⎜⎜⎜⎜⎝

6 0 2 0 α2
2 + 3α1

1
0 2 0 6 2α1

2
0 0 2b 0 α2

2b
0 b 0 0 α2

1b
0 0 0 3b 0

⎞
⎟⎟⎟⎟⎠ (4.7)
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For every (α1
1, α

1
2, α

2
1, α

2
2) ∈ R

4∗ and α1
2 
= α2

1 the system (4.6) has a unique solution, since
it is equivalent to the one associated with the followingmatrix obtained by the Gauss method:

Ãb|ṽ =

⎛
⎜⎜⎜⎜⎝

6 0 2 0 α2
2 + 3α1

1
0 2b 0 6b 2α1

2b
0 0 2b 0 α2

2b
0 0 0 −6b 2α2

1b − 2α1
2b

0 0 0 0 2α2
1b − 2α1

2b

⎞
⎟⎟⎟⎟⎠ |

⎛
⎜⎜⎜⎜⎝

0
0
0
p

p + q

⎞
⎟⎟⎟⎟⎠ . (4.8)

and since the determinant of Ãb is,

det Ãb = −72b4(α2
1 − α1

2).

Computing explicitly the resolving coefficients ci for i = 1, . . . , 5 we have

c1 = α1
1(p + q)

2b(α1
2 − α2

1)
,

c2 = α2
1q + α1

2 p

b(α1
2 − α2

1)
,

c3 = α2
2(p + q)

2b(α1
2 − α2

1)
,

c4 = q

3b
,

c5 = p + q

b(α2
1 − α1

2)
.

(4.9)

Hence, it is possible with this method to produce an explicit counterexample for a general
Carnot group of step two.

The same procedure, with just technical complications, can berepeated considering a
3-step Carnot group. Here, we suppose Rn as

R
n = R

m1 × R
m2 × R

n−m1−m2

x ∈ R
n, x = (x1, x2, . . . , xm1 , y1, . . . , ym2 , t1, . . . , tn−m1−m2).

Analogously to the previous argument, the corresponding basis of g, can be represented
in such a way that X1, X2, . . . , Xm1 is a basis of g1, Y1, . . . , Ym2 is a basis of g2, and
T1, . . . , Tn−m1−m2 as a basis of g3. Without loss of generality, like in the previous case, we
assume that X1, X2 are such that [X1, X2] 
= 0,where:

X1 = ∂x1 +
m2∑
j=1

(
m1∑
i=1

γ 1
i j xi

)
∂y j +

n−m1−m2∑
j=1

⎛
⎝ m1∑

k,i=1

δ1ki j xi xk +
m2∑
i=1

θ1i j yi

⎞
⎠ ∂t j

= ∂x1 +
m2∑
j=1

(
m1∑
i=1

γ 1
i j xi

)
∂y j +

n−m1−m2∑
j=1

p21, j∂t j

X2 = ∂x2 +
m2∑
j=1

(
m1∑
i=1

γ 2
i j xi

)
∂y j +

n−m1−m2∑
j=1

⎛
⎝ m1∑

k,i=1

δ2ki j xi xk +
m2∑
i=1

θ2i j yi

⎞
⎠ ∂t j

= ∂x2 +
m2∑
j=1

(
m1∑
i=1

γ 2
i j xi

)
∂y j +

n−m1−m2∑
j=1

p22, j∂t j

(4.10)

123



F. Ferrari, D. Giovagnoli

The step two case allows to consider in (4.10) the polynomials p21, j and p22, j to be nonzero.
Being

[X1, X2] =
m2∑
j=1

(γ 2
1 j − γ 1

2 j )∂y j +
n−m1−m2∑

j=1

p̃1 j∂t j ,

where p̃1 j are homogeneous polynomials of degree 1, but since the vector field has to belong
to the second stratum, p̃1 j doesn’t appear.

In order to have a step three stratified Lie group, if X1, X2 are defined as (4.10), then we
have to require:

[X1, X2] = (γ 2
1 − γ 1

2 )∂y +
m2∑
j=2

(γ 2
1 j − γ 1

2 j )∂y j 
= 0,

[X1, Y ] = k1∂t1 +
n−m1−m2∑

j=2

k j∂t j 
= 0.

(4.11)

with, for instance, γ 2
1 − γ 1

2 
= 0 and k1 ∈ R
∗. From the hypothesis made in (4.11) it is

possible to consider the same choice of polynomials P1 and P3 in (4.5) as well as we made
in the step two case. This is due to the fact that P3 does not contain variables with degree of
homogeneity greater than two. Hence when we apply, for instance X1, on P3 we get

⎡
⎣n−m1−m2∑

j=1

⎛
⎝ m1∑

k,i=1

δ1ki j xi xk +
m2∑
i=1

θ1i j yi

⎞
⎠ ∂t j

⎤
⎦P3 = 0. (4.12)

Moreover, with the same method we are able to treat the general case of a Carnot group
of step s. In this case, the associated Lie algebra is

g =
s⊕

i=1

gi = g1 ⊕ g2 ⊕ g3 ⊕
s⊕

i=4

gi . (4.13)

Since we have discussed the problem for a three step Carnot group, from (4.2), we see that the
term Tj does not affect the derivatives of P3 related to the first layer g1. Hence it is possible
to apply the same procedure even for a general Carnot group. ��

Remark 4.2 In the proof of Theorem 1.1 is not only provided a function that realizes the thesis
but a family indeed, depending on the parameters b, p, q . The explicit family of functions
is, assuming to consider, for instance, the variables x1, x2, . . . , xm1 associated with the first
stratum and y is one variable associated with the second stratum:

ub,p,q (x1, x2, . . . , xm1 , y) = bx2 + α1
1(p + q)

2b(α2
1 − α1

2)
x31 + α1

2 p + α2
1q

b(α2
1 − α1

2)
x21 x2 + α2

2(p + q)

2b(α2
1 − α1

2)
x1x

2
2

− q

3b
x32 − p + q

b(α2
1 − α1

2)
x1

(
y −

m1∑
i=3

(
α1
i x1
2

− α2
i x2

)
xi

)

(4.14)
with b ∈ R

∗, (p, q) ∈ D.
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5 Nonexistence of an ACF formula in some Carnot groups

Given the method of building explicit counterexamples for the functional � shown in the
proof of Theorem 1.1, the goal of this section is to apply these results to prove the failure of
the increasing monotonicity of an Alt–Caffarelli–Friedman monotonicity type formula like
(1.6) for nontrivial Carnot groups.

Theorem 5.1 For any Carnot group G of step s, with s > 1, if the fundamental solution
�G associated with �G with pole at the origin is symmetric with respect all the variables
associated with the first stratum, then there exists a continuous function u such that u is
harmonic in {u > 0} as well as u is harmonic in {u ≤ 0}o such that JGu fails to be increasing
in a neighborhood of 0.

Proof Let us denote, for brevity,

IGu+(r) := 1

r2

∫
BG
r

|∇Gu
+(M)|2�G(M) dM =

∫
BG
r ∩{u>0}

|∇Gu(M)|2�G(M) dM,

IGu−(r) := 1

r2

∫
BG
r

|∇Gu
−(M)|2�G(M) dM =

∫
BG
r ∩{u<0}

|∇Gu(M)|2�G(M) dM,

for which we have that JGu (r) = IGu+(r) · IGu−(r).
The goal is to show the monotone decreasing behavior of JGu :

d

dr
JGu (r) =

(
d

dr
IGu+(r)

)
IGu−(r) + IGu+(r)

(
d

dr
IGu−(r)

)
. (5.1)

Apparently, the proof we need has to depend on the special functionwe have determined only.
In fact, the harmonic polynomials we selected in Carnot groups, have a special behavior, in
comparison with the companion Euclidean harmonic polynomials.

Since IGu+ and IGu− are nonnegative, we reach the desired result if we prove that they are
bothmonotone decreasing or there exists a relationshipwith the polynomials whose existence
we proved in the previous section.

Indeed, fixing u := ub,p,q provided by Theorem 1.1, we have that u is a difference of
two homogeneous polynomials of degree one and three respectively and both intrinsicly
harmonic.

Moreover, recalling (4.14), we point out that

ub,p,q(−x1,−x2, . . . ,−xm1 , y) = −ub,p,q(x1, x2, . . . , xm1 , y).

Hence, S({ub,p,q > 0}) = {ub,p,q < 0}, where S denotes the change of variables that
moves xi in −xi for i = 1, . . . ,m1 and leaves unchanged the other variables. Moreover, the
hypothesis on the symmetry of �G assure also that �G(M) = �G(S(M)) for every M ∈ G.

Thus from the construction of ub,p,q , as a consequence of the previous remark, recalling
the change of variables S, we obtain that

IG
u+
b,p,q

(r) =
∫
BG
r ∩{u>0}

|∇Gub,p,q(M)|2�G(M) dM

=
∫
S(BG

r ∩{u>0})
|∇Gub,p,q(S(M))|2�G(S(M)) dM

=
∫
BG
r ∩{u<0}

|∇Gub,p,q(M)|2�G(M) dM = IG
u−
b,p,q

(r)
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Therefore

JGub,p,q (r) = IG
u+
b,p,q

(r) · IG
u−
b,p,q

(r) = 1

4
(IGub,p,q )

2.

As a consequence, by the positivity of IGub,p,q , the decreasing monotonic behavior of JGub,p,q
descends from the decreasing monotonic behavior of IGub,p,q , as we proved in Theorem 3.1.

��
We are now in position to obtain the proof of Theorem 1.2 as a corollary of Theorem 5.1.

Proof (of Theorem 1.2) The special case of a Carnot group of step two allows us to apply The-
orem 5.1. In fact, in the step two case we can prove directly the symmetry of the fundamental
solution with respect to variables of the first layer. This property derives from the integral
representation formula of the fundamental solution found in [3] (Theorem 5.12.1 in [4] in
Carnot group settings). Moreover, there exists a isomorphism between every Carnot group
of step two with one endowed with inner law governed by skew symmetric matrices (see
for instance Proposition 3.5.1 in [4]). This explicit isomorphism fixes the first m1 variables
and thus the symmetry of the fundamental solution descends. In this way we can conclude
applying Theorem 5.1. ��
ConcerningCarnot groups of step s > 2, to our knowledge, neither an explicit representation
formula of the fundamental solution is known, in general, nor much is known about the
symmetry with respect to the variables of the first stratum. Nevertheless it is possible to
provide another sufficient condition for the decreasing behavior of JGu exploiting the well
known G-symmetry of �G with respect to the origin, precisely �G(P) = �G(P−1), see for
instance [20]. Then, in order to state the result described in the following remark, we need to
introduce the definition of an intrinsic odd function, precisely a function is said to be intrinsic
odd if u(P) = −u(P−1) for every P ∈ G.

Remark 5.2 For any Carnot group G of step s, with s > 1, if it were possible to build a
harmonic function u = P1 − P3 such that

〈∇GP1(P),∇GP3(P)〉 > 0 a.e. in BG
1 (0)

which is intrinsic odd as well, then u would be harmonic in {u > 0} as well as u is harmonic
in {u ≤ 0}o and JGu would fail to be increasing in a neighborhood of 0. This can be seen as
another sufficient condition to obtain a counterexample and its proof descends straightfor-
wardly from the proof of Theorem 5.1 considering, instead of S, the change of variables that
maps P into P−1.

6 Final remarks

In this last part, we provide an explicit application of the procedure showed in the case in the
first Engel group E, which is a three step Carnot group.

The first Engel group can be introduced as R4 endowed with the inner law that for every
P, M ∈ E associate P ◦ M in the following way

P ◦ M = (x1, x2, y, t) ◦ (x ′
1, x

′
2, y

′, t ′)

= (x1 + x ′
1, x2 + x ′

2, y + y′ + x1x
′
2, t + t ′ + x1y

′ + 1

2
x21 x

′
2).
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A basis of left invariant vector fields is given by

X1 = ∂x1 , X2 = ∂x2 + x1∂y + 1

2
x21∂t , Y = ∂y + x1∂t , T = ∂t .

The fields X1 and X2 generate the horizontal layer g1 of E. The commutator between the
vector fields is

[X1, X2] = Y , [X1, Y ] = T ,

otherwise is 0. Thus we have
g = g1 ⊕ g2 ⊕ g3,

where
g1 = span{X1, X2}, g2 = span{Y }, g3 = span{T }.

The sub-Laplacian on E is defined as

�E = (X2
1 + X2

2) = (
∂2x1x1 + (∂x2 + x1∂y + x21

2
∂t )

2)

= (
∂2x1x1 + ∂2x2x2 + x21∂

2
yy + x41

4
∂2t t + 2x1∂

2
x2 y + x21∂

2
x2t + x31∂

2
yt

)
.

Now, applying the procedure of Sect. 4 with p = 0, q = 1
2 , b = 1 by (4.9) we obtain

u = P1 − P3 = x2 −
(

−1

2
x21 x2 + 1

6
x32 + 1

2
x1y

)
,

for which

〈∇EP1,∇EP3〉 =
〈
(0, 1), (

1

2
y − x1x2,

1

2
x22 )

〉
= 1

2
x22 , �Eu = 0.

Hence, invoking Theorem 1.1 we can conclude that u provides a counterexample for the
increasing monotone behavior of (1.1).

The structure of the fundamental solution of the sublaplacian to �E in the Engel group,
to our knowledge, is not explicit. Hence we cannot conclude applying the Theorem 5.1. In
fact, only if �E enjoyed the symmetry requested by Theorem 5.1, we would be in position
to produce a counterexample even to the increasing monotonicity of JEu .

Remark 6.1 One could also try to look for harmonic functions being intrinsic odd hoping to
apply Remark 5.2. For a general Carnot group is not so simple because the expression of
P−1 depends on the inner law of the group that could be very complicated.

In the first Engel group E, for instance, the expression of the inverse of (x1, x2, y, t) is given
by (−x1,−x2,−y − x1x2,−t + x1y + 3

2 x
2
1 x2) and it is not possible to build a intrinsic odd

polynomial of degree three. However, if we consider polynomials of degree five it is possible
to do so considering

P5 = x1y
2 − 2yx21 x2 + 2t x1x2 + x31 x

2
2

2
+ x21 x

3
2

then u = P1 − P5 with P1 = x2 is intrinsic odd and 〈∇EP1,∇EP5〉 = 3x22 x
2
1 > 0 almost

everywhere in BE

1 (0) but is not harmonic.
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