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A B S T R A C T

A better understanding of the emergent computation and problem-solving capabilities of recent large language
models is of paramount importance to further improve them and broaden their applicability. This work
investigates how a language model, trained to predict the next token, can perform arithmetic computations
generalizing beyond training data. Binary addition and multiplication constitute a good testbed for this purpose,
since they require a very small vocabulary and exhibit relevant input/output discontinuities making smooth
input interpolation ineffective for novel data. We successfully trained a light language model to learn these
tasks and ran a number of experiments to investigate the extrapolation capabilities and internal information
processing. Our findings support the hypothesis that the language model works as an Encoding–Regression–
Decoding machine where the computation takes place in the value space once the input token representation
is mapped to an appropriate internal representation.
1. Introduction

Large Language Models (LLMs) based on Transformer architec-
ture (Vaswani et al., 2017) have recently demonstrated surprising
problem-solving capabilities that require logic reasoning, advanced
information processing and common sense (Bubeck et al., 2023; Wei
et al., 2022, 2022). Their huge storage capacity combined with a
massive training on terabytes of heterogeneous data could suggest that
the memorization of an enormous amount of knowledge is enough
to perform well on similar test data. However, validations on care-
fully selected Out-of-Distribution (OoD) data proved their reasoning
capabilities on novel examples requiring non-trivial generalizations.
Unfortunately, the depth and width of such models is so high that
decoding and understanding the internal information processing is very
challenging.

Focusing on arithmetic calculations, some studies (Yuan et al.,
2023) demonstrate that recent LLMs (such as GPT-4) can perform
additions and multiplications with long-digit operands, for which the
number of variants is so high to exclude the exhaustive memorization
of the training set. Nevertheless, the computational approach put in
place by LLMs, as well as the interpolation/extrapolation capabilities
remain unexplained.

In this work we design some controlled experiments, consisting of
simple computation tasks such as binary addition and multiplication,
and solve them with two Language Models (LMs) based on Transformer
architecture: (i) the original encoder–decoder architecture by Vaswani
et al. (2017) and (ii) a more recent decoder-only architecture denoted
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as nanoGPT (Karpathy, 2022). In spite of their simplicity, these tasks
cannot be solved by pure memorization or smooth interpolation and
investigating how an LM learn them can improve our understanding
of the underlying mechanisms. In particular, using a tiny vocabulary
of just 5 tokens and a small training set allows to operate with a light
(non-pretrained) LM and use interpretability techniques to investigate
internal information processing.

Other studies addressed the ability of LLMs to perform arithmetic
computation and train small LMs to learn these tasks from scratch (see
related works in Section 2). However, our aim is different: we are not
interested in finding the best LM architecture and setup to maximize
accuracy on arithmetic operations, but we look for a simple architecture
and setup that allow to effectively solve the task in order to be able to
investigate the underlying computational approach. The main novelty
and contribution of this work are the formalization of the hypothesis
that our LM works as an Encoding–Regression–Decoding machine and
the design of a number of experiments to support and validate this
hypothesis (see Table 1).

After presentation of related works in Section 2, in Section 3 we
introduce the experimental testbed and the architecture of the LM used.
Section 4 presents the results achieved and introduces control exper-
iments and elaborations to shed light on the computation approach
used to solve the tasks. In Section 5 an ablation study is presented
and, finally, in Section 6 we include a final discussion and draw some
conclusions.
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Table 1
The main contributions of this work.

Step Aim Where

Training an LM on addition and multiplication Demonstrating these arithmetic problems can be solved with a simple LM
trained form scratch

Section 4.1

Manipulating training set by excluding specific regions of the
input space

Evaluating interpolation/extrapolation capabilities and making hypothesis on
internal regression

Section 4.4

Correlation analysis of internal values (embeddings) Support hypothesis that LM works as an ERD machine Section 4.5

Amnesic probing Prove that the ‘‘value’’ information is crucial to properly compute the output Appendix D
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2. Related works

2.1. LM and LLM capabilities on arithmetic tasks

In Yuan et al. (2023) recent LLMs have been benchmarked in
arithmetic tasks, including long-digits sum and multiplication, showing
that LLMs such as ChatGPT and GPT-4 can perform reasonably well
on these tasks even with no specific tuning. On the other hand, the
accuracy of smaller models is markedly lower, and in general they are
not able to work with long operands and generalize to OoD data.

Goat (Liu & Low, 2023) a LLaMA model specifically fine-tuned on
arithmetic tasks performed even better than GPT-4 on large-number
additions and subtractions, probably due to the consistent (digit level)
tokenization of numbers in LLaMA models. However, it was able to
perform multi-digits multiplication and division only forcing a Chain of
Thought (CoT) (Wei et al., 2022) decomposition of such tasks during
instruction tuning.

Nogueira et al. (2021) tuned a T5-based pre-trained LM on additions
and subtractions, and argued that tokenization and input representation
are critical to achieve good accuracy. In particular, in their experiments
character-based tokenization works better than sub-word tokenization,
and making explicit the digit position in the input string (i.e., inserting
after each digit a marker to denote its position in the sequence) gener-
ally leads to better accuracy. They also trained a vanilla non-pretrained
LM on smaller numbers and found that classical sinusoidal-based posi-
tional embedding does not perform well, so they proposed a tailored
position-wise masked embedding. Their paper contains other interest-
ing findings such as the impact of the digit order (plain or reverse) and
the size of the training set.

Muffo et al. (2023) tuned pre-trained GPT-2 models on 5-digit addi-
tions and 2-digit multiplications. They also found that making explicit
the digit position in the input sequence helps to improve accuracy.
While good accuracy is reported for addition, the tuned models struggle
to learn multiplication even on two-digit operands.

Lee et al. (2023) trained small LMs to learn arithmetic tasks, mainly
focusing on addition, but also experimenting with subtraction, multi-
plication, sine and square root. The authors carefully ablated different
aspects of the training data to isolate the factors that contribute to the
appearance of arithmetic capabilities. In particular, they studied the
impact of the input order (plain or reverse) and the utility of providing
intermediate information about the decomposition of the task in steps
to promote CoT reasoning. Some results and findings included in Lee
et al. (2023) will be further discussed throughout this paper.

All the above works provide useful contributions to understand
the capabilities and limitations of large and small LMs to deal with
arithmetic tasks, but none of them focus on the computational approach
used to solve them, which is the main purpose of the present work (see
Table 1).

2.2. Interpretability techniques

A large number of techniques can be used to investigate the internal
working mode of deep neural networks, including Transformers and
2

f

LMs: see Räuker et al. (2023) for a recent survey. Weights, single neu-
rons, subnetworks/circuits, and activations can be the target of intrin-
ic approaches (implemented during training) or post-hoc approaches
implemented after training).

Probing is a common technique used to investigate the represen-
ations learned by pre-trained LMs: it typically involves training a
imple model (denoted as probe) on top of the LM embeddings to
redict a given property (Belinkov, 2022). Moreover, structural probing
an be used to check whether internal representations encode dis-
rete structures such as syntax trees (Hewitt & Manning, 2019; White
t al., 2021). However, a certain criticism emerged on probing analyses
hich is believed to disconnect the probing task from the original one
nd/or to reveal correlations instead of causations. Therefore, instead
f focusing on the presence of information on internal encoding, some
esearchers proposed to check whether the removal of some knowledge
rom embeddings (e.g., amnesic probing Elazar et al., 2021) negatively
nfluences the model ability to perform a task (Elazar et al., 2021;
asri et al., 2022). Other interesting approaches to interpretability are
echanistic interpretability (Elhage et al., 2021) and causal abstrac-

ion (Geiger et al., 2021): the former is aimed at reverse engineering
he algorithm that a model uses to solve a task and to map it to neural
ircuits; the latter constructs an interpretable causal model and aligns
t with neural representations.

In this work we use a mix of intrinsic and post-hoc interpretabil-
ty techniques: in particular through the experiments we manipulate
he training set, change the input representation and the architecture
omponents, perform correlation analyses of embeddings and apply
mnesic probing.

.3. Interpretability of arithmetic reasoning with LMs

Stolfo et al. (2023) introduced a causal mediation analysis to point
ut the LM components (e.g., attention heads, Multi-Layer Perceptrons

MLPs) involved in the information processing of simple arithmetic
perations, focusing on the flow of numerical information throughout
he model layers/columns. The main outcomes of this study are that the
odel: (i) processes the representation of numbers and operators with

he first layers; (ii) information is then conveyed (by attention heads)
o the last part of the sequence (i.e., output column), where (iii) it is
umerically processed by late MLPs.

Nanda et al. (2023) carefully studied the algorithmic approach put
n place by a small Transformer to implement modular addition of small
umbers. They discovered that the internal algorithmic implementation
s based on discrete Fourier transforms and trigonometric identities to
onvert addition to rotation on a circle. While the outcomes are some-
hat surprising, here the term algorithm must be taken with care: even

f the experiments prove that internal processing well approximates
iven equations, the approach is a numerical approximation (based on
eight encoded values) that does not generalize to different moduli (as
symbolic implementation of the equations could do).

Both these studies adopted a simplified setting where numbers are
resented as single token, and the output is expected at the last position
f the sequence. So the models are not operated in autoregressive
anner and the multi-token encoding/decoding stages are simplified.

n Section 6 we discuss how the above findings are compatible with our

indings.
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3. Experiment design

3.1. The tasks

We focused on two simple computation tasks: binary addition and
binary multiplication. Using binary encoding allows keeping the vo-
cabulary very compact, since we need to encode only the symbols
‘0’, ‘1’ and a few other tokens. The selected tasks have other nice
properties such as computing input similarities by Hamming distance
and easily generating all combinations. Of course, a classical artificial
neural network can be trained to learn to sum and multiply two integers
or floating-point numbers, but adding/multiplying strings of tokens
with an LM is trickier.

More formally, given two integers 𝐴, 𝐵 (both in the range [0, 127])
our input sequence (or prompt) is a 15-token string taking the form:

𝑎0𝑎1𝑎2𝑎3𝑎4𝑎5𝑎6⟨𝑜𝑝⟩𝑏0𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6

where 𝑎𝑖, 𝑏𝑖 ∈ {‘0’, ‘1’} are the symbols corresponding to bits in the 𝑖th
position in the binary representation of 𝐴 and 𝐵 respectively, and ⟨𝑜𝑝⟩
can be either ‘+’ or ‘×’.

The expected output string (or input completion) is:

𝑅 = 𝑟0𝑟1...𝑟𝑚−1

where 𝑟𝑖 is the 𝑖th bit in the binary representation of 𝐴⟨𝑜𝑝⟩𝐵, and 𝑚
is the number of bits of the expected output string 𝑅 (8 and 14 for
addition and multiplication, respectively).

It is worth noting that:

• we are using a fixed-length input/output representation (with
zero padding for unused most significant bits) to make the digit
positions more explicit.

• in both the input and output the Least Significant Bits (LSBs) are
provided before the Most Significant Bits (MSBs) (a.k.a., reverse
or little-endian order) since this was supposed to simplify the
model learning.1 As discussed in Appendix C this assumption
leads to a much faster training.

If we consider the sequence-to-sequence mapping underlying the
roposed tasks we note that even in a simple binary addition a slight
hange in the input (i.e., a single bit) can produce a relevant change in
he output because of the carries propagation. In the example below a
ingle bit modification in the input produces an 8 bit modification in
he output:

000000 + 0111111 → 11111110

1000000 + 1111111 → 00000001

Such input–output discontinuity is made more explicit for addition
in Appendix A.

3.2. The architecture

A non-pretrained encoder–decoder Transformer based on the orig-
inal architecture introduced in Vaswani et al. (2017) was used as
primary LM. Table 2 reports the model setup and parametrization. The
small vocabulary used allows us to keep the model small (just 701 K
learnable parameters) and trainable from scratch with a limited number
of examples.

The LM was trained to learn separately the addition/multiplication
tasks. For both problems, we exhaustively generated all the 214 =
16384 input/output combinations, which were then randomly split into
training (3∕4 → 12288) and validation (1∕4 → 4096) sets. In our

1 In binary arithmetic the addition/multiplication algorithms start process-
ng the LSBs in order to correctly propagate the intermediate carries.
3

o

Table 2
Details of the LM model used in our experiments. The total number of learnable
parameters is just 701K, which is several orders of magnitudes smaller than recent
billion-parameters LLMs.

vocabulary size 5
vocabulary 0: unused, 1: <start>, 2: ‘+’ or ‘×’, 3: ‘0’, 4: ‘1’

token embedding learned
positional encoding fixed (sinusoidal)

𝑑𝑚𝑜𝑑𝑒𝑙 64
𝑑𝑓𝑓 𝑑𝑚𝑜𝑑𝑒𝑙 × 4

num_heads h 8
encoder layers 6
decoder layers 6

dropout 0.1
learnable parameters 701K

experiments we do not need a separate dataset to tune hyperparameters
so our validation set coincides with the test set.

An additional control experiment was run where the input se-
quences were the same of the addition experiment but the output
completion was randomly generated (with the same length as the
addition, i.e., 8 tokens). In this case, the lack of any dependencies
between input and output makes it impossible to learn an algorithmic
approach (or smooth mapping) to solve the problem and the only
strategy to learn the training set is memorizing all the sequences.

When the trained LM is used in inference mode, we always pick the
most probable token from the logit outputs (i.e., greedy decoding). Two
metrics can be used to denote the LM accuracy: token accuracy refers to
the probability of generating the next token correctly, while sequence
accuracy refers to the probability of generating the whole output string
correctly in autoregressive mode (i.e., generating one token at a time
and appending it to the current prompt).

Most of the experiments have been repeated with a second LM
(nanoGPT by Karpathy, 2022) which is a good representative of the
decoder-only family. Details are reported in Appendix E.

All the experiments included in this paper can be easily reproduced
by running the code available on Github.

4. Results

4.1. Learning addition and multiplication

Fig. 1 shows that our simple LM is able to learn addition in less
than 50 epochs, and multiplication in about 250 epochs.2 As expected
multiplication is more complex and requires more training: this is due
to the high non-linearity of this operation (more on this later) and to
the higher length of the output (14 vs 8 tokens). The accuracy on the
validation set is very close to the training set, denoting almost perfect
generalization on numbers never seen before. This is a somewhat
surprising result, especially considering the limited size of the training
data. No grokking3 was observed (Nanda et al., 2023). Similar results
were obtained with nanoGPT (see Fig. E.7 in Appendix E.)

Unlike Nogueira et al. (2021) (see their Appendix B for a similar
setup), we were able to learn addition with the native sinusoidal
positional encoding. Moreover, in Lee et al. (2023) additions can be
effectively learnt by a simple LM, but to reach 100% accuracy the
training set had to be balanced in terms of the operand magnitude
(i.e., number of digits) and carry propagation. The effectiveness of our
training procedure is probably due to the lower complexity determined

2 We used the standard CrossEntropy loss, the Adam optimizer with the
earning rate of 0.0001 and betas = 0.9 and 0.98, and a minibatch size of
28.

3 Grooking refers to the case where validation accuracy, much smaller than
raining accuracy at initial stages, suddenly increases after a certain number

f epochs.

https://github.com/MatteoFerrara/Arithmetic-with-Language-Models-from-Memorization-to-Computation.git
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Fig. 1. Sequence accuracy. From the left: addition and multiplication. Results are averaged over five runs. Note that, training and validation curves are almost overlapped. At the
end of training the Mean Absolute Error (MAE) on the validation set, between the real and generated operation results, is 0 and 1.3 for addition and multiplication, respectively.
Fig. 2. Sequence accuracy using random output in the training set. Results are averaged
over five runs.

by a small vocabulary and fixed-length representation. As to multi-
plication, Muffo et al. (2023) were not able to effectively learn two
(decimal) digits multiplication, while Lee et al. (2023) and Liu and Low
(2023) had to provide extra intermediate steps in the prompt (denoted
as detailed scratchpad) or during instruction tuning, respectively. On the
contrary our model effectively learnt multiplication of 7 binary digit
operands: again the simplified setup may have been the key.

On the workstation used (with a single Titan RTX GPU) training
can be completed in just 8 and 46 min for addition and multiplication,
respectively. An estimation of the training complexity 𝐶 of an LLM
in term of floating point operations is 6 × 𝑁 × 𝑇 (Kaplan et al.,
2020), where 𝑁 is the number of model parameters (about 701 K
as reported in Table 2) and 𝑇 the number of training tokens. 𝑇 can
be obtained as the product of the training set size (12288 in our
experiments — see Section 3.2), the sequence length in tokens (23 and
29 for addition and multiplication, respectively — see Section 3.1) and
the number of epochs (50 and 250 for addition and multiplication,
respectively). Hence, for addition 𝑇 is 14M (12288 × 23 × 50) and
therefore 𝐶 is about 59 × 1012 operations while for multiplication 𝑇 is
89M (12288 × 29 × 250) and 𝐶 is about 374 × 1012 operations.

4.2. Control experiment: random output

If the output is randomly generated and therefore there is no
relation with the input, the only possibility of learning the training set is
by memorizing the whole data. Fig. 2 shows the training results: a much
larger number of epochs (i.e., 1000) were necessary to reach a sequence
accuracy of 87.8%, and, as expected, the validation accuracy did not
increase over the epochs. The difficulty of memorizing the training set
(many more epochs) is due to the high discontinuity of the input–output
mapping. In fact, because of the random output generation, very similar
input sequences can be associated to completely different outputs.

Therefore, even if we only consider the accuracy on the training set,
this result shows that an exhaustive memorization of the input is much
more complex for the LM than solving the addition and multiplication
4

tasks. This leads us to assume that, to efficiently solve the above
computation tasks, the LM has found a computational approach (or
algorithm) to simplify the output prediction. Now the question is: what
is the approach?

4.3. The computational approach

Let us consider two alternative approaches:
Symbolic Manipulation (SM): a first idea is that the LM could

learn the binary integer addition/multiplication algorithms used by an
ALU inside a CPU (see Appendix B for a short reminder). Indeed, the
addition algorithm is not complex and can be solved by using a 3-bit
truth table (to sum each pair of corresponding bits with the carry-
in) and iterative carry-out propagations. However, multiplication (by
iterative additions) is much more complex and trickier to learn by using
a symbolic manipulation approach. Furthermore, as shown in Lee et al.
(2023), a simple LM can also learn complex operations such as the
sine function or the square root, whose mathematical (and algorithmic)
decomposition is very complex since they require Taylor expansion and
Newton method, respectively.

Encoding–Regression–Decoding (ERD): if we consider the model
architecture (Transformer) used for the LM and the underlying word
embedding by vector representations, it is more likely that the LM
solves the problem by decomposing it in the following three phases:

1. Encoding (token to value): maps the input sequence (i.e.,
𝑎0𝑎1𝑎2𝑎3𝑎4𝑎5𝑎6 ⟨𝑜𝑝⟩ 𝑏0𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6) to a suitable vector repre-
sentation. In principle, two vectors 𝐯𝐴 and 𝐯𝐵 representing the
values (or magnitudes) of 𝐴 and 𝐵 are enough.

2. Regression: learns the computation as a supervised regression
problem in the vector space: 𝐯𝑅 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠(𝐯𝐴, 𝐯𝐵). Actually
this regression formulation is an oversimplification of the prob-
lem since in the next-token-prediction training the LM works
incrementally. In Appendix C this discussion will be expanded.

3. Decoding (value to token): maps the value vector 𝐯𝑅 back to
token representation (i.e., 𝑟0𝑟1...𝑟𝑚).

It is worth noting that the above Encoding and Decoding phases
do not need to be mapped onto the Transformer encoder and decoder
(more on this later). The experiments reported in Sections 4.4 and
4.5 support the ERD assumption. The capability of capturing number
magnitudes by pretrained embedders was also investigated by Wallace
et al. (2019) who successfully trained a simple external regressor to
compute the sum of two numbers starting from their embeddings.
Other interesting studies on capturing numeracy with embedding were
carried out by Naik et al. (2019) and Sundararaman et al. (2020).

4.4. Interpolation vs extrapolation

The random training/validation split performed for the experiments
reported in Section 4.1 constitutes a somewhat simplified testbed to
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Fig. 3. Sequence accuracy on Random, 𝑉 𝑆𝑡, and 𝑉 𝑆𝑣 validation subsets for addition (left) and multiplication (right). Results are averaged over five runs. 𝑉 𝑆𝑡 reaches 100%
accuracy on additions (the same of Random split) and 97.5% accuracy on multiplication (just 1.4% less than random split); 𝑉 𝑆𝑣 reaches 93.7% on addition and 94.3% on
multiplication (6.3% and 4.6% less than Random split, respectively).
learn the two tasks. In fact, random split leads to a complete (even if
sparse) coverage of the input space by both the training and validation
sets, where each example in the validation set has high chance to be
close to a training set example, and interpolation is enough to fill the
gaps.

Hereafter, we exploit the well-known difficulty of a numerical re-
gressor to work in the extrapolation regime to get insights about the
computational approach of the LM. In particular, we considered two
different criteria to isolate specific portion of the input space for the
validation set, in order to better investigate extrapolation capabilities:

• 𝑉 𝑆𝑡 = {(𝐴,𝐵)|(𝐴,𝐵) ∈ 𝑁𝑁4096((𝐴∗, 𝐵∗))}
where 𝑁𝑁4096((𝐴∗, 𝐵∗)) is the set of 4096 pairs (𝐴,𝐵) which are
the nearest neighbors to a centroid (𝐴∗, 𝐵∗) according to the
Hamming distance between the corresponding token representa-
tions (i.e., number of different tokens at corresponding positions).
As centroid (𝐴∗, 𝐵∗) in the token space we used: 1010101 ⟨𝑜𝑝⟩
0101010.

• 𝑉 𝑆𝑣 = {(𝐴,𝐵)|32 ≤ 𝐴 < 96 and 32 ≤ 𝐵 < 96}
here the centroid is located in the middle of the value space (64,
64), so 𝑉 𝑆𝑣 is a squared region (of side 64) centered in the value
space.

Both 𝑉 𝑆𝑡 and 𝑉 𝑆𝑣 isolate a contiguous data region of 4096 samples
to be included in the validation set, but in the former the samples
are close in the token representation space, while in latter are close
in the value space. Being such contiguous portions of space excluded
from the training set, we can expect a worse generalization. From the
results (see Fig. 3) we note that 𝑉 𝑆𝑡 is very marginally affecting LM
training and generalization while 𝑉 𝑆𝑣 has a major impact: in fact, in
the second case, for both addition and multiplication the final sequence
accuracy is from 4% to 6% points lower. This result strengthens the
ERD hypothesis, since: (i) using 𝑉 𝑆𝑣 leads to the exclusion of a specific
contiguous portion of value space during phase 2 and does not allow to
properly train the regressor in this region; (ii) the encoding performed
during phase 1 makes irrelevant the selection performed according to
𝑉 𝑆𝑡 because, after encoding, the corresponding data point remains
scattered in the value space and the regressor can easily interpolate
among them. Similar results were obtained with nanoGPT (see Fig. E.8
in Appendix E.)

4.5. Looking at internal representations

Understanding the internal representation (embeddings in the vec-
tor space) in a trained Transformer is not an easy task. However,
in the specific setting considered we can gain some hints by looking
at the distances between the embedding of different data points (at
different layers) and correlating them with the corresponding distances
at input/output levels.
5

Given an LM trained on addition (or multiplication) we consider the
dataset S including the 128 input pairs where the two operands have
identical values4:

𝑆 = {(𝐴,𝐴)|0 ≤ 𝐴 < 128}

At the input level (in) we can compute two ordered sets of 8128
(128 × 127/2) distances each:

𝑑𝑖𝑛,𝑡 = {ℎ𝑑𝑖𝑠𝑡(𝑋, 𝑌 )|(𝑋,𝑋), (𝑌 , 𝑌 ) ∈ 𝑆,𝑋 < 𝑌 }

𝑑𝑖𝑛,𝑣 = {|𝑋 − 𝑌 | |(𝑋,𝑋), (𝑌 , 𝑌 ) ∈ 𝑆,𝑋 < 𝑌 }

where ℎ𝑑𝑖𝑠𝑡(𝑋, 𝑌 ) is the Hamming distance between the token repre-
sentation of 𝑋 and 𝑌 , and the subscript letters 𝑡 and 𝑣 denote token
and value levels, respectively.

At the output level (out) we can compute the two corresponding
sets of distances as:

𝑑𝑜𝑢𝑡,𝑡 = {ℎ𝑑𝑖𝑠𝑡(𝑃 ,𝑄)|(𝑋,𝑋), (𝑌 , 𝑌 ) ∈ 𝑆,𝑋 < 𝑌 }

𝑑𝑜𝑢𝑡,𝑣 = {|𝑃 −𝑄| |(𝑋,𝑋), (𝑌 , 𝑌 ) ∈ 𝑆,𝑋 < 𝑌 }

where (𝑃 = 𝑋 + 𝑋 and 𝑄 = 𝑌 + 𝑌 ) for addition, and (𝑃 = 𝑋 × 𝑋 and
𝑄 = 𝑌 × 𝑌 ) for multiplication.

Finally, for each intermediate level of the Transformer encoder (enc)
or decoder (dec) we can compute the Euclidean distances among the
corresponding embedding vectors.

𝑑𝑒𝑛𝑐𝑖 = {‖𝑒𝑛𝑐𝑖(𝑋,𝑋) − 𝑒𝑛𝑐𝑖(𝑌 , 𝑌 )‖ |(𝑋,𝑋), (𝑌 , 𝑌 ) ∈ 𝑆,𝑋 < 𝑌 }

𝑑𝑑𝑒𝑐𝑖 = {‖𝑑𝑒𝑐𝑖(𝑋,𝑋) − 𝑑𝑒𝑐𝑖(𝑌 , 𝑌 )‖ |(𝑋,𝑋), (𝑌 , 𝑌 ) ∈ 𝑆,𝑋 < 𝑌 }

where 𝑒𝑛𝑐𝑖 and 𝑑𝑒𝑐𝑖 are the output vectors obtained by concatenating all
the token embeddings (each of dimensionality 64) after the 𝑖th encoder
and decoder layer, respectively. For example 𝑒𝑛𝑐𝑖 has dimensionality
960 = 64 × 15 where 15 is the number of tokens in the encoder.

Even if the distances in the different sets have different ranges,
we can use correlation to find out similarities. If two sets of dis-
tances are correlated we can expect that the corresponding represen-
tations/embeddings are correlated as well. Since both Pearson and
Spearman correlations (Schober et al., 2018) provided similar outputs,
for simplicity in Fig. 4 we report only Pearson correlations.

The yellow cells in the tables of Fig. 4 confirm the low correlation
between the token and value representation at both input and output
level. The blue cells show that correlation remains quite similar across
the encoder layers as if the encoder was not performing any significant
computation (this is confirmed in Section 5 where we achieve similar
results by totally removing all intermediate attention and MLP layers
in the encoder). More interesting is the trend of correlations across the
decoder layers (green cells). In particular, for the addition the token

4 Since the input prompt contains two operands, we select only the cases
with identical values (𝐴 = 𝐵) in order to easily determine the ‘‘magnitude’’ of
the input, and thereafter compute meaningful distances.
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Fig. 4. Pearson correlation between ordered sets of distances for addition (a) and multiplication (b). Each cell denotes the correlation between the two ordered set of distances
specified in the corresponding row and column. Note that since for addition in this experiment the output value is always twice the input, the correlation values (blue and green
cells) are the same for 𝑑𝑖𝑛,_ and 𝑑𝑜𝑢𝑡,_ block of values. Graphs (c) and (d) show the correlations of output distances 𝑑𝑜𝑢𝑡,𝑡 (at token level — blue curves) and 𝑑𝑜𝑢𝑡,𝑣 (at value level —
orange curves) with the embedding distances 𝑑𝑑𝑒𝑐𝑖 across the 6 decoder layers for addition and multiplication, respectively.
representation has high correlation with the first and last layers and
low with central layers, while the value representation has an opposite
trend (see also Fig. 4.c). These results support the ERD hypothesis and
in particular that the initial and final layers in the decoder transform
from token to value representation (and vice versa) while the central
layers perform regression in the value space. In particular, at layer 3,
the correlation at token level is minimum while the correlation at value
level is maximum.

For multiplication the low-high-low trend at value level is less
evident (Fig. 4.d orange curve), probably because the quadratic depen-
dence of the output from the input (at value level) does not allow to
learn a simple regressor smoothly working in the whole vector space,
and the mapping is performed by piecewise linear approximation in dif-
ferent space regions, which introduces discontinuities that make global
distances in the vector space unsuitable to quantify the representation
similarity.

As discussed in Section 2.2, correlation analyses might be insuf-
ficient to prove that the presence of a certain information in the
embeddings is really necessary to compute the output (direct causa-
tion). So to further strengthen our hypothesis we applied an amnesic
probing technique (Elazar et al., 2021) and proved that, upon removal
of value information from the embeddings, the LM is no longer ca-
pable of performing the right computation. Details are reported in
Appendix D.

5. Ablation study

This section presents the results of an ablation study where the
LM architecture was simplified, to understand which components are
necessary to learn the addition/multiplication computation. Squeezing
the encoder (i.e., removing all intermediate attention and MLP layers)
6

Table 3
Epochs necessary to reach 95% accuracy on the validation set. A dash is used when
95% accuracy is not achieved in 1K epochs: in such case the accuracy reached is
reported within brackets.

Configuration Addition Multiplication

Full (see Table 2) 39 137
Squeezing the encoder (see main text) 60 426

num_heads h=1 25 225
Reduced dimensionality (𝑑𝑚𝑜𝑑𝑒𝑙 = 32) 66 309

No positional embedding — (2.4%) — (1.8%)
No attention layers — (0.9%) — (1.7%)

No fully connected layers 56 398

does not have a relevant impact; this is consistent with other works
claiming that a decoder only architecture (Liu et al., 2018) can achieve
similar results with respect to an encoder–decoder Transformer, and
further confirmed by the nanoGPT results presented in Appendix E. A
simplification of the architecture in terms of (i) reduction of dimension-
ality; (ii) reduction of number of heads; (iii) removal of fully connected
layers is well tolerated, while positional embedding and attention layers
are mandatory for the LM in order to properly perform token to value
transformation (and vice versa). Table 3 summarizes the results.

6. Discussion and conclusions

In this paper we introduced a simplified setup to allow a light LM
to learn binary addition and multiplication. Both the LM architectures
considered easily learn the two tasks and generalizes well on unseen
data, proving that memorization of the training data is neither neces-
sary nor efficient. The experiments on the interpolation/extrapolation
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capabilities and correlation of input–output representations with inter-
nal embedding suggest that the model solves the computational task
as a supervised regression problem in the value space after an initial
encoding from token to values, and a final decoding from output value
to tokens. Under this hypothesis: (i) any task that can be solved by
a neural network regressor can be solved by an LM as well, with the
extra burden of end-to-end learning decoding/encoding steps; (ii) when
looking at interpolation/extrapolation capabilities of an LM applied to a
mathematical task, we should not concentrate on the input token repre-
sentation but on the internal representation after encoding, keeping in
mind the difficulties of a numerical regressor to work on region spaces
not covered by the training set; (iii) on a more speculative side, we
could guess that modern LLMs learn the number encoding/decoding
once and reuse it across different numerical tasks whereas a specific
regressor is learned for each task.

Our ERD hypothesis could be questioned considering some recent
findings from Lee et al. (2023) where providing in the prompt interme-
diate information (scratchpad) about the decomposition of arithmetic
tasks improves the training efficiency and requires fewer examples.
This could suggest that a symbolic manipulation approach is adopted
to learn imitating step by step the proposed decomposition. However,
in most of the cases their model was able to learn the same task
(even if slowly) without scratchpad and/or with wrong scratchpads.
As argued by the authors the higher efficiency is actually in terms of
examples and not in terms of tokens since each scratchpad requires a
large number of extra tokens, and we guess these could be used as
extra features by the underlying regressor. Furthermore, scratchpad
contribution is negligible for more complex operations such as sine
and square root, but, unexpectedly, learning such complex operations
was simpler than multiplication. This is not strange under the ERD
hypothesis where a unary smooth operator like the sine can be learned
by a supervised regressor independently of the mathematical method
used for its computation.

The algorithmic interpretation that (Nanda et al., 2023) provided
for modular addition, could also suggest that their LM discovered and
efficient symbolic manipulation approach; however, as discussed in
Section 2.3, it is more likely that a regressor was learned to numerically
approximate an efficient sparse Fourier decomposition, under regu-
larization constraints favoring sparsity. Finally, the information flow
described in Stolfo et al. (2023), points out that MLPs in the last layers
are responsible for the numerical computation of the solution, which is
compatible with the hypothesis of a multi-layer regressor.

Of course we are not claiming that all the capabilities of modern
LLMs can be explained by regression, but regression is likely to be one
of the internal tools that LLMs uses to predict the next token when
numbers come into play.

As to future research we plan to: (i) further investigate the gen-
eralization capabilities of LMs in arithmetic tasks with respect to the
composition of the training and test sets (Feng et al., 2023; Keskar et al.,
2017), (ii) design simplified experiments/setups for tasks that cannot be
easily mapped to regression problems such as chain of reasoning and
logic deductions.
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Fig. B.5. Example of 4-digit binary multiplication. The sum can be performed
incrementally with a two-operand adder.
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Appendix A. Addition input–output discontinuities

Given an input/output pair we consider the (214) variants obtained
by perturbing (i.e., 0–1 swap) the input bits and counting the resulting
changes in the output. These values, averaged over all possible in-
put/output pairs (again 214) and normalized by row are inserted in the
cells of Table A.4. So, for example the value in cell (row=2, column=3)
means that in the 27.9% of the cases a perturbation of 2 (over 14) bits
in the input leads to a change of 3 (over 8) bits in the output.

Input–output discontinuities, which are further amplified in case of
multiplications, make it very unlikely to solve these tasks by smooth
interpolation of the input representation.

Appendix B. Binary addition and multiplication

Binary addition can be executed by summing pairs of corresponding
bits 𝑎𝑖 and 𝑏𝑖, starting from the LSBs (𝑎0 and 𝑏0) and propagating carries.
Let 𝑐𝑖−1 be the pending carry used to sum current bits,5 then a two-
output 3-bit truth table (Table B.5) can be used to generate the output
bit 𝑜𝑖 and carry 𝑐𝑖 used when summing the next pair of bits:

A simple approach to execute binary multiplication is through iter-
ative binary sums. Each bit 𝑏𝑖 of the second operand is multiplied by
the whole first operand, but this inner multiplication is straightforward
since it results either in a sequence of 0 (if 𝑏𝑖 = 0) or a copy of the
first operand (if 𝑏𝑖 = 1). This intermediate result is then shifted left
and summed to the current output. An example is reported in Fig. B.5
below.

Appendix C. Learning a regressor under predict-next-token train-
ing

In Section 4.3 we argued that an arithmetic computation task can be
decomposed into three steps whose central one is learning a regressor in
the value space: 𝐯𝑅 = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠(𝐯𝐴, 𝐯𝐵). If we consider the autoregressive
working mode of a Transformer and its predict-next-token training,
the regressor must be able to work incrementally given the output
produced so far. In particular, we can formulate the problem as: 𝐯𝑟𝑖 =
𝑟𝑒𝑔𝑟𝑒𝑠𝑠(𝐯𝐴, 𝐯𝐵 , 𝑖, 𝐜𝑅𝑖−1

) where:

5 When summing the LSBs (𝑖 = 0), there is no pending carry, so 𝑐 = 0.
−1

https://github.com/MatteoFerrara/Arithmetic-with-Language-Models-from-Memorization-to-Computation.git
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Table A.4
Addition input–output discontinuities.
Table B.5
Two-output 3-bit truth table for binary addition.

Inputs Outputs

𝑎𝑖 𝑏𝑖 𝑐𝑖−1 𝑜𝑖 𝑐𝑖
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

• 𝐯𝐴 = [𝐯𝑎0𝐯𝑎1 ...𝐯𝑎6 ] and 𝐯𝐵 = [𝐯𝑏0𝐯𝑏1 ...𝐯𝑏6 ] are the value vectors
of the two input operands, obtained as the concatenation of the
value vectors of single tokens. Both are always fully available to
the decoder. Note that, 𝐯𝑎𝑖 and 𝐯𝑏𝑖 are not the bits of the inputs,
but correspond to their value vectors including also positional
information.

• 𝑖 is the position of the token to be predicted (we can assume it is
available through positional encoding).

• 𝐜𝑅𝑖−1
= [𝐜𝑟0𝐜𝑟1 ...𝐜𝑟𝑖−1 ] is a value vector encoding the current

context determined by the result produced so far (entering in the
decoder from the bottom).

• 𝐯𝑟𝑖 is the value vector of the 𝑖th token.

In principle, the regressor could predict each 𝐯𝑟𝑖 based on 𝐯𝐴 and
𝐯𝐵 alone, but we argue that the exploitation of the result produced
so far 𝐜𝑅𝑖−1

can lead to higher training efficiency. To this purpose is
interesting to evaluate the impact of the output ordering (plain or
reverse). In both the addition and multiplication the 𝑖th token of the
result only depends on the tokens of the inputs at positions ≤ 𝑖 (see
Appendix B). Therefore, if reverse order is adopted, as we assumed until
now, 𝐯𝐴𝑖

= [𝐯𝑎0𝐯𝑎1 ...𝐯𝑎𝑖 ], 𝐯𝐵𝑖
= [𝐯𝑏0𝐯𝑏1 ...𝐯𝑏𝑖 ] and 𝐜𝑅𝑖−1

are sufficient to
predict 𝐯𝑟𝑖 . Vice versa, if the output computation starts with the MSBs
the regressor cannot leverage the above iterative decomposition and
needs to learn the task as a global operation using whole vectors 𝐯𝐴
and 𝐯𝐵 with almost no support from the result produced so far.

In Fig. C.6 we note that with plain order both addition and mul-
tiplication require a much longer number of epochs to converge and
the learning curve is less stable. Further experiments proved that,
as expected, the order of the inputs (also reverse by default in this
study) is irrelevant, since the LM can always access the whole input
representations 𝐯𝐴 and 𝐯𝐵 . The advantages of using the reverse order
are pointed out in other recent studies (Lee et al., 2023; Nogueira
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et al., 2021). In particular, Lee et al. (2023) reported a significant
improvement with respect to plain order.

Appendix D. Amnesic probing results

The outcome of correlation analyses performed in Section 4.3 sug-
gests that the embeddings in the central layers of the decoder contain
information related to the value representation of the output (see
Fig. 4). However correlation does not mean causation, and here we
investigate deeper. Amnesic probing was proposed in Elazar et al.
(2021) building on the approach (Ravfogel et al., 2020) to check to
what extent a model output is affected by the removal of specific
features or attributes in an intermediate level embeddings. Here we
focus on addition and we try to remove some features from the decoder
layer 3 embeddings (𝑑𝑒𝑐3(𝑋, 𝑌 )). To this purpose a linear probe (a
linear regressor in our case) was trained to predict the output value
(𝑋 + 𝑌 ) starting from the 𝑑𝑒𝑐3(𝑋, 𝑌 ) embeddings and its nullspace is
used to project the embeddings in a new space lacking output value
information. According to Ravfogel et al. (2020), due to the simplicity
of the linear regressor used, the procedure is repeated twice to remove
more information. Our results show that:

1. A simple linear regressor trained on 𝑑𝑒𝑐3(𝑋, 𝑌 ) embeddings can
reach high accuracy in predicting 𝑋 + 𝑌 (rmse = 0.28).

2. If the projected embeddings are overwritten in the LM decoder
at level 3, and a partial forward pass is performed thereafter, the
addition sequence accuracy severely drops from 100% to 0.13%.

3. As indicated in Elazar et al. (2021) since any information re-
moval could hamper the model accuracy, a control test was
performed by removing the same amount of information (but
on random directions instead of the nullspace directions) and in
this case the LM final sequence accuracy remained 100%.

This experiment provides further support to the hypothesis that the
value information is not only present in the inspected embeddings but
is also crucial for the output computation.

On the computational side, we argue that amnesic probing complex-
ity is low because it relies on simple steps as linear regression and null
space computation, with the former being the most demanding step.
Linear regression complexity is 𝑂(𝑛𝑑2 + 𝑑3) where 𝑛 is the number of
training examples and 𝑑 the dimensionality of the embeddings.

Appendix E. NanoGPT - a decoder-only LM

To demonstrate that our findings generalize beyond the encoder–
decoder architecture of the original Transformer used in this work, the
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Fig. C.6. Sequence accuracy on validation set for reverse (default in this work) and plain order of the input and output representations. From left to right: addition and
multiplication.
Fig. E.7. Sequence accuracy of the nanoGPT model (refer to Section 4.1 for more details). From the left: addition and multiplication. Results are averaged over five runs. Note
that, training and validation curves are almost overlapped.
Fig. E.8. Sequence accuracy of the nanoGPT model on Random, 𝑉 𝑆𝑡, and 𝑉 𝑆𝑣 validation subsets for addition (left) and multiplication (right). Results are averaged over five runs.
Table E.6
Details of the nanoGPT model..

token embedding learned
positional encoding learned

𝑑𝑚𝑜𝑑𝑒𝑙 64
𝑑𝑓𝑓 𝑑𝑚𝑜𝑑𝑒𝑙 × 4

num_heads h 8
decoder layers 6

dropout 0.1
learnable parameters 298K

main experiments have been repeated using a second LM, that is the
nanoGPT (Karpathy, 2022) decoder-only model. Table E.6 reports the
details of the nanoGPT model adopted.

Fig. E.7 shows that the nanoGPT model was able to learn addition
and multiplication still more efficiently than the original Transformer
(compare Fig. 1 with Fig. E.7). For the training, we used a minibatch
size of 128, a standard CrossEntropy loss, the AdamW optimizer with a
learning rate of 0.001 and betas = 0.9 and 0.98, and a gradient clipping
to 1.0.

Fig. E.8 shows the sequence accuracy of the nanoGPT model on Ran-
dom, 𝑉 𝑆 , and 𝑉 𝑆 validation subsets for addition and multiplication
9

𝑡 𝑣
(see Section 4.4 for more details). Using the 𝑉 𝑆𝑡 subset, it reaches 100%
and 99.9% accuracy on addition and multiplication, respectively (the
same of Random split) while, using the 𝑉 𝑆𝑣 subset, it reaches 82.0%
on addition and 80.6% on multiplication (18.0% and 19.4% less than
Random split, respectively). Results are inline with those obtained in
Section 4.4 but here the difference between 𝑉 𝑆𝑡, and 𝑉 𝑆𝑣 is still more
significant.
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