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Abstract: Rapid urbanization has resulted in increased environmental challenges, compounding wor-
ries about deteriorating air quality and rising temperatures. As cities become hubs of human activity,
understanding the complex interplay of numerous environmental elements is critical for developing
effective mitigation solutions. Recognizing this urgency, a framework to highlight the hotspots with
critical environmental issues emerges as a comprehensive approach that incorporates key criteria
such as the surface urban heat island intensity (SUHII), heat index (HI) and air quality index (AQI) to
assess and address the complex web of environmental stressors that grip urban landscapes. Employ-
ing the multicriteria decision analysis approach, the proposed framework, named the environmental
risk hotspot mapping framework (ERHMF), innovatively applies the analytic hierarchy process
at a sub-criteria level, considering long-term heat island trends with recent fluctuations in the HI
and AQI. Climate change impact has been symbolized through rising temperatures, as reflected
by surface urban heat island intensity trends over two decades. The robustness and correctness of
the weights have been assessed by computing the consistency ratio, which came out as 0.046, 0.065
and 0.044 for the sub-criteria of the SUHII, AQI and HI, respectively. Furthermore, the framework
delves into the nexus between environmental stressors and vegetation cover, elucidating the role
of green spaces in mitigating urban environmental risks. Augmented by spatial and demographic
data, the ERHMF adeptly discerns high-risk areas where environmental stress converges with urban
development, vulnerable population concentrations and critical vegetation status, thereby facilitating
targeted risk management interventions. The framework’s effectiveness has been demonstrated in
a regional case study in Italy, underscoring its ability to pinpoint risk hotspots and inform specific
policy interventions. The quantitative study undertaken at the sub-administrative level revealed
that approximately 6,000,000 m2 of land in Bologna are classified as being under high to extremely
high environmental stress, with over 4,000,000 m2 lying only within the extremely high stress group
(90–100). Similarly, 1,000,000 m2 of land in Piacenza and Modena have high levels of environmental
stress (80–90). In conclusion, the ERHMF presents a holistic methodology for delineating high-risk
urban hotspots, providing essential insights for policymakers, urban planners and stakeholders, with
the potential to enhance overall urban resilience and foster sustainable development efforts.

Keywords: remote sensing; urban heat island; environmental stress; risk framework; hotspot;
multicriteria analysis

1. Introduction

It has been projected that around two-thirds of the global population will reside in ur-
ban areas by 2050 (source: https://www.un.org/development/desa/en/news/population/
2018-revision-of-world-urbanization-prospects.html (accessed on 15 November 2023)).
Moreover, Europe is expected to have an urbanization rate of approximately 84% by the
same year. The migration to urban centers contributes to agricultural land abandonment,
which is expected to reach 4.2 million hectares by 2030 [1,2]. Based on an official report [3],
the expansion of built-up areas is expected in most EU countries by 2030, with Italy being
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on top in terms of an absolute increase (an additional 144 thousand hectares). In this line,
several studies have been performed analyzing the alterations in the landscape settings.
For example, ref. [4] have developed a methodology for the classification and analysis of
a unique urban–rural–natural gradient, i.e., a combination of the main landscape change
drivers’ specific interactive environmental gradients and natural components, based on
CORINE land cover. Another study [5] has resulted in a framework creating similar net-
works in different landscapes based on multiple drivers, leading to landscape adaptation
plans for climate change. Machine learning for a spatiotemporal analysis of the surface
temperature and land use indices to highlight inter-urban interactions between temperature
and land use parameters were utilized [6].

The rapid growth of the urban population has significantly altered urban land cover
and led to a substantial rise in energy consumption, leading to several environmental
issues. Moreover, extreme weather conditions related to temperature and humidity, along
with deteriorating air quality, are exerting a growing negative health impact on the global
population, typically in urban areas. Notably, surface thermal stress (surface urban heat
island (SUHI)), atmospheric thermal stress (heat index (HI)) and air pollution (air quality
index (AQI)) effects stand out as typical environmental concerns [7,8]. Higher temperatures
intensify the urban heat island (UHI) effect, which is typically referred to as increased
urban area temperature compared to rural or suburban surroundings.

Extreme heat events intensify the UHI effect, under the influence of urban surface
characteristics like limited vegetation cover, anthropogenic heat emission and alterations in
air flow patterns due to buildings and asphalt streets [9]. UHIs have detrimental effects on
human health and the environment, in terms of the increased demand of energy-intensive
cooling systems in buildings [10], leading to high greenhouse gas emissions and degraded
air quality [11–13]. This creates a feedback loop and exacerbates the negative impacts of
global warming. Therefore, increased temperature in collaboration with major air pollutants
leads to increased physiological strain and vulnerability, exposing people to higher risks,
certainly urban residents [7,14–16]. It has been demonstrated that the implementation
of sustainable urban planning practices and smart city design, comprising urban green
spaces, green roofs and cool pavements, holds significant potential in mitigating UHI
effects and reducing air pollution [17]. Moreover, it has been proposed that to deal with
environmental stress, green infrastructure should be rooted and designed based on the
specific geographical context considering multiple parameters [18]. Specifically, these
measures have shown promising results in decreasing the level of ozone, nitrogen dioxide
and particulate matter (PM10) in urban environments [9]. In addition, several attempts
have been made to analyze and compare green spaces and their impacts on the environment
and human health. For example, ref. [19] compare several green space types and their
relation with mental health. Subsequently, ref. [20] propose the demand and supply-
based model for identifying the locations to implant urban trees for the mitigation of
air pollution. Further, the efficacy of the worldview-3 data for carbon stock mapping
has been tested based on the available Light Detection and Ranging (LIDAR) datasets in
a specific urban area to find a more affordable and easy alternative to map the carbon
stocks in developing countries for the efficient green management planning [21]. However,
appropriate identification of the potential spots to implement the climatic stress mitigation
measures, along with considering the temporal impacts, is still lacking in the ongoing urban
research [22]. Therefore, a detailed framework based on multiple criteria covering major
thermal and air stress-based issues could be an asset in planning sustainable and healthy
cities, because if not dealt with appropriately, these stressors together can lead to a highly
unpleasant living environment with increased health issues, including cardiovascular and
respiratory issues [23].

Recently, there has been a growing research focus on addressing the combined ef-
fects of thermal stress and air pollution. Comprehensive reviews spanning the last three
decades highlight the importance of studying the synergistic effects of the UHI, HI and
air pollution as an integrated research direction [10]. This approach recognizes the re-
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lationship between thermal stress and air pollution, highlighting the need for a holistic
understanding to effectively mitigate their adverse consequences [24]. Moreover, in the
realm of intensity index calibration methodologies, multicriteria decision analysis (MCDA)
approaches have demonstrated notable effectiveness in incorporating both qualitative and
quantitative data for different analyses in varied domains [25]. Among these approaches,
the analytic hierarchy process (AHP) is widely used for understanding hazard and risk
phenomena [26]. Recent MCDA-based studies have used the AHP, interval-fuzzy AHP
(FAHP) and analytic network process with geographical information system (GIS) together
to study risk assessment [27]; highlighted the importance of GIS and MCDA methods for
flood risk models [28]; and compared the FAHP and G-DEMATEL-AHP approaches for
identifying the critical risk areas for floods [29]. Maximum MCDA models have focused
on single risk categories, like floods; therefore, considering the increasing heat stress and
air pollution, it is necessary to design an appropriate risk assessment framework for the
urban environment with adequate optimizations. The optimization procedures facilitate
the calibration of multiple indices and variables associated with thermal and environmental
factors, enabling their integration for risk assessment. Fine-tuning variables and indices
based on time-series observations helps enhance the effectiveness of MCDA methods [30].

The existing literature has typically investigated these parameters either individually or
by comparison, maintaining a single parameter under the spotlight, for example, either the
UHI or meteorological variables or anthropogenic heat or urban morphology, etc. [31–34]. In
addition, a more detailed understanding of the role of existing green spaces in the urban
environment by analyzing its relation with environmental stress parameters is also an
important aspect to be addressed [35]. Hence, this framework design has filled this research
gap by evaluating spatiotemporal information about the surface and air thermal stress based
on different indices and variables, along with analyzing the air quality components based
on their AQI concentrations, together in a single frame. These indicators have been also
individually analyzed on a spatiotemporal scale to study their impact. Hence, this study is
aligned toward designing a detailed and integrated risk evaluation framework to identify
and highlight areas requiring immediate attention for mitigating harmful consequences of
the increasing environmental stress. This study introduces and assesses an MCDA-based
environmental risk hotspot mapping framework (ERHMF). It aims to identify specific
areas, defined as hotspots, where thermal and air quality stress, and vegetation-based
criticality, intersect with exposure and vulnerability, leading to higher risk considering
climate change and urbanization. To evaluate the environmental stress, multiple risk
criteria have been analyzed during the summer months and integrated through the AHP.
These criteria include the less explored indices, derived based on environmental stress
criteria. The framework’s effectiveness is tested and evaluated in the Emilia-Romagna (ER)
region of Italy. It integrates environmental risk criteria, temporal aspects, demographics
data and vegetation status to analyze them both spatially and quantitatively to prioritize
environmental interventions effectively. Our contributions to this study are as follows:

1. We design an environmental stress framework to incorporate multiple environmental
stress criteria by computing rarely explored indices for each criterion and analyzing
their temporal trend;

2. We compute the preference weights using a decision-making framework that involves
breaking down a complex decision into a hierarchical structure of criteria;

3. We establish a correlation between environmental stress and vegetation and calculate
the hotspots of environmental risk by considering factors such as stress severity,
exposure, vulnerability and the criticality of vegetation status.

The remainder of this paper is organized as follows. Section 2.2 formally defines the
study area and materials. Section 3 presents the applied methods. Section 4 describes the
results and discussions. Finally, Section 5 draws the concluding remarks of our paper.
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2. Study Area and Dataset Used
2.1. Study Area

The ER region, located in northern Italy, encompasses the former territories of Emilia
and Romagna, where the Po Plain and northern Apennines converge. It is one of Italy’s
20 administrative regions, ranking sixth in terms of area. According to the National Institute
of Statistics (2018), with nine provinces spread over 22,446 km2, ER covers a significant
percentage of the country. Its landscape consists of plains (48%), mountains (25%) and hilly
areas (27%). The region is home to approximately 4.4 million people, with three-fourths
residing in the plains. Bologna, Parma, Modena, Reggio Emilia, Ravenna, Rimini, Ferrara,
Forli and Piacenza are the nine major cities, each having a population exceeding 100,000
and listed among the top fifty most populous cities in the country. Figure 1 illustrates the
geographical location and spatial arrangement of the province in the ER region, along with
the weather station locations used in this study.

Figure 1. Study area map highlighting Emilia-Romagna region with its provinces’ boundaries. In
addition, the colored dots represent the location of stations for air quality (blue) and meteorologi-
cal (red) data for estimation of environmental stress magnitude; key map on top right corner shows
regional distribution of Italy.

The landscape of the region has varied relief properties, influencing the distribution
of vegetation types. The mountains and hilly regions are majorly dominated by conifer-
ous and broad-leaved forests, whereas the plains and lowlands are rich with grasslands
and croplands. The coastal areas are characterized by Mediterranean pine and cypress.
The climate observed in Po Plain and the hilly areas is subcontinental; however, it has a
cool temperate type in the mountainous areas. According to the Koppen–Geiger climate
classification, a temperate climate type with completely hot and humid summers (Cfa)
is predominantly observed over the northeast side of the ER region, while fully humid
and warm summers (Cfb) are observed in the southwest part of the region [36,37]. As
the climate type is strongly influenced by the physical characteristics of the region, the
northern Apennines witness over 2000 mm of precipitation, whereas less than 800 mm
is observed in the eastern Po Plain. During the summer, the ER region experiences the
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highest temperatures and lowest rainfall in Northern Italy. Thunderstorms occur occa-
sionally but less frequently compared to the northern part of the Po Valley. The average
summer temperatures range from 24 to 24.5 ◦C along the coast (Cervia and Rimini) and
reach nearly 26 ◦C in the central area (Reggio-Emilia, Modena and Ferrara). The hottest
temperatures are typically observed in the central-western region, particularly around
Ferrara and the lower plain of the Modena and Bologna provinces, exceeding up to 40 ◦C
(source: hhttps://www.climatestotravel.com/climate/italy/emilia-romagna (accessed on
15 November 2023)).

2.2. Datasets Used

This study utilizes satellite datasets obtained through the Google Earth Engine (GEE),
a cloud computing platform. The GEE enables users to perform various geospatial analyses,
like the assessment, visualization, analysis and download of a wide range of global satellite
data [38–40]. It is a widely recognized and important tool in the geospatial field due to its
user-friendly application programming interface (API), facilitating easy analysis of large
and freely available satellite datasets [38]. The datasets acquired from the GEE are ensured
with the permissible cloud clover of satellite images, i.e., <20 (%).

This study examines environmental variables like the SUHI intensity (SUHII), air
quality and HI, derived from weather parameters acquired from AQICN (source: https:
//aqicn.org/data-platform/ (accessed on 15 November 2023)) and Dexter (source: https:
//simc.arpae.it/dext3r/ (accessed on 15 November 2023)). As the SUHII and HI refer to
surface and atmospheric thermal stress, respectively, the long-term SUHII trend analysis is
a holistic approach to examine the surface thermal properties and land use changes over
long time, whereas the HI helps to quantify the human-felt temperature. Therefore, this
is the reason for using both parameters. This study utilizes the land surface temperature
(LST) obtained from the MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua
satellite sensor (MODIS/061/MYD11A1) from 2002 to 2022 for the summer months to
assess the diurnal temporal variation in the land thermal parameters in urban areas. The
MODIS Aqua sensor provides global LST measurements twice a day. The sun-synchronous
orbits of the MODIS Aqua cross the equator at 13:30 and 01:30 (local solar time). The
CORINE (Coordination of Information on the Environment) Land Cover dataset offers
comprehensive data on land use and cover in Europe. It is crucial to monitor how land use
is changing over time and recognize the rural and urban extent over the years. In addition,
the air quality index datasets include the air quality index of particulate matters (PM2.5 and
PM10), nitrogen dioxide (NO2) and ozone (O3) from various monitoring stations. These
parameters are used to analyze the relation between the air quality and thermal stress.
Further human-felt meteorological parameters like the air temperature at 2 m and relative
humidity are extracted from Dexter. These measurements are utilized to calculate the
heat index and quantify the human-felt temperature and humidity effects. The built-up
settlement extents [41] provide information on the built-up areas and settlement extents,
which is crucial for understanding urbanization patterns. Further, the population density
and demographic data [42] are used to assess human exposure to thermal stress and air
quality issues. The inclusion of vegetation as a criterion will help in providing valuable
insights into the potential of vegetation-based solutions for mitigating the environmental
stressors’ impact. Therefore, the enhanced vegetation index (EVI) from 2002 to 2022 is used
for long-term spatiotemporal vegetation trend analysis and hotspot mapping, whereas a
local climate zone (LCZ) map [43] provides a detailed classification of the urban and natural
land cover types to assess the impact of different urban forms on the local climate and
thermal stress. In this study, it is used to quantify the vegetation ratio for sub-administrative
risk ranking. Table 1 has detailed information on the datasets used for this study.

hhttps://www.climatestotravel.com/climate/italy/emilia-romagna
https://aqicn.org/data-platform/
https://aqicn.org/data-platform/
https://simc.arpae.it/dext3r/
https://simc.arpae.it/dext3r/
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Table 1. Detailed information of dataset.

Dataset Used Spatial Resolution Time Period (Summer Months) Source/Data Code

MODIS Aqua LST and
Emissivity Daily Global 1 km 2002–2022 MODIS_061_MYD11A1

Copernicus CORINE
Land Cover 100 m 2000, 2006, 2012, 2018 CORINE

Air Quality Parameters Point station 2020–2022 AQICN
Meteorological Parameters

(T2 and RH) Point station 2020–2022 Dexter

Built Settlement Extents 100 m 2020 [41]
Population Demographics 100 m 2020 [42]
Aqua Vegetation Indices

16-Day 250 m 2002–2022 MODIS_061_MYD13Q1

LCZ 100 m 2018 [43]

3. Proposed Methodology

Figure 2 shows the proposed framework. In this study, a MCDA-based ERHMF is
proposed to identify the risk hotspots based on environmental stress focusing on thermal
conditions and air quality, the associated exposure and vulnerability and the existing
vegetation status. Vegetation plays a critical role in modulating various environmental
issues; therefore, vegetation-based criticality refers to the vegetation status and defines
vegetation-based hotspot severity in the imminent future. In this context, the EVI was
analyzed with each environmental criterion to enhance the understanding of the importance
of vegetation in fostering urban resilience and facilitating the formulation of nature-based
interventions. The risk assessment was carried out at a resolution of 1 km to maintain
compatibility with the satellite-derived surface temperature, as it is considered as one of
the major indicators of urbanization-led climate change. Further, a risk ranking approach
for sub-administrative divisions was proposed, which involves quantifying environmental
stressors and calculating the BGR (built-up green ratio: provides the vegetation status
relative to the built-up areas) for each province. The detailed workflow is explained in the
following subsections.

Figure 2. Workflow for ERHMF, where green dotted box consists of environmental stress magni-
tude criteria, pink dotted box with exposure parameter, light blue with vulnerability, brown with
vegetation–based criticality for risk hotspots/risk ranking and red with final outcome: environmental
risk hotspots.
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3.1. Quantification of Environmental Stress Severity

Three of the major environmental parameters associated with the surface and atmo-
sphere, which are the surface temperature, air quality and HI, are analyzed in this study.
Analyzing the long-term SUHII using satellite-derived LST products was purposeful, as we
aimed to perform a targeted assessment of the UHI phenomenon in response to evolving
land use patterns [40]. The SUHII is a robust metric offering insights into the thermal
properties of the surface, and the long-term focus on it allowed us to delve deeper into land
use change-related effects. Furthermore, in a meteorological context, it is crucial to acknowl-
edge the dynamic nature of variables like air temperature, relative humidity (RH) and air
pollutant concentrations, as due to their dynamic nature they exhibit daily variations and
possess a significant role in climatic studies over a broader context [44,45]. In addition, the
HI and AQI data were derived from public weather stations, which have non-consistent
and huge data gaps for historical records. Therefore, we considered a short-term analysis
for the HI and AQI. However, to deal with temporal differences, the data were compiled
based on the exponential weighted average (EWA) approach, prioritizing recent trends
for all the parameters. The following subsections include a detailed explanation of the
workflow for each environmental stress indicator.

3.1.1. Surface Thermal Trend

The surface thermal parameters associated with urban areas were analyzed by cal-
culating the SUHII during the summer season for the years ranging from 2002 to 2022
using the MODIS LST data, by following the estimation of the temperature differentials
between urban and rural areas following the approach described by [39,40]. The rural
extent (excluding urban areas, water bodies and tree cover) was determined using the
CORINE LULC (land use land cover) data for 2000, 2006, 2012 and 2018. For the estimation
of the SUHII, the delineation of the rural boundaries for the years 2002–2005 was performed
using the LULC of 2000; similarly for 2006–2011, the rural boundaries from the LULC of
2006 were used, and similarly, the rural boundaries from the 2012 and 2018 LULC were
considered for the subsequent years. The resulting rural extent was used for calculating
the average rural temperature, which was then subtracted from each pixel’s temperature
(Equation (1)). The procedure was repeated for the day and night LST data to obtain the
respective SUHII at day and night. Additionally, the SUHII diurnal temperature difference
was computed for each grid using the day and night SUHII values. Later, all the temporal
SUHII indices or sub-criteria were compiled using the EWA, prioritizing recent trends while
considering the time-series observations. Finally, these 21 years of data were combined into
the respective SUHII indexes and extracted in a gridded format for further aggregating to
identify the risk hotspot.

SUHIIi = LSTi − LSTruralarea (1)

where i is the pixel for which the SUHII is calculated.

3.1.2. Atmospheric Air Quality

The air quality was analyzed based on the AQIs representing four out of the other
major air pollution components, i.e., PM2.5, PM10, NO2 and O3 (listed in Table 2), during
the summer months from 2020 to 2022. Figure 1 shows the geographic location of the
weather stations with blue dots. The spatial distribution of the AQI of these components
was obtained by interpolating the weather station data using the IDW (inverse distance
weighting) interpolation technique. Because of the IDW’s adaptability in capturing local
fluctuations without presuming an underlying statistical model, its ease of implementation
and its efficacy with unequally distributed weather stations, we chose this interpolation
method. The proximity-based weighting feature of the IDW guarantees precise local data
representation, which is essential given the diverse geographic dispersion of our study.
Further, it was extracted on a 1 km grid scale and temporally averaged using the EWA.
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Table 2. The environmental parameters/indices used to compute the environmental stress magnitude,
where the SUHII is the surface urban heat island intensity; DTR stands for diurnal temperature range;
AQI stands for air quality index; HI is the heat index; and T2 is the air temperature at a height of 2 m.

Parameter/Index Description AHP Assigned Weights

Surface thermal parameters

SUHII_Day SUHII calculated using daytime LST 0.16

SUHII_Night SUHII calculated using night-time LST 0.25

SUHII_DTR Difference between SUHII_Day and SUHII_Night 0.59

Air quality parameters

AQI_PM2.5 AQI level of PM2.5 0.56

AQI_PM10 AQI level of PM10 0.11

AQI_NO2 AQI level of NO2 0.05

AQI_O3 AQI level of O3 0.28

HI indicators

HI_Avg Average HI 0.07

HI_Max Maximum HI in studied time period 0.06

Cum.HI_Intensity Total HI intensity above threshold (HI > 27 ◦C) 0.28

Cum.HI_Frequency Total days when HI was above threshold (≥27 ◦C) 0.46

Diff._T2 and HI Difference between air temperature and HI 0.13

3.1.3. Computing Heat Index

In addition to the surface temperature, it is important to analyze the human-felt temper-
ature in the environment. Therefore, the summer meteorological parameters retrieved from
2020 to 2022 include the air temperature at 2 m and the RH. Further, they were also interpo-
lated using the IDW technique to obtain the spatial distribution of the T2 and RH. Following
Equation (2) (source: https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
(accessed on 15 November 2023)), the HI was calculated and extracted on a 1 km grid scale,
which was further utilized to calculate the different indices (Table 2). Further, the T2, the
RH and all the indices computed based on the calculated HI were combined using the EWA
concerning the temporal aspect.

HIi = −42.379 + 2.04901523 × Ti + 10.14333127 × RHi

− 0.22475541 × Ti × RHi − 0.00683783 × Ti × Ti

− 0.05481717 × RHi × RHi

+ 0.00122874 × Ti × Ti × RHi

+ 0.00085282 × Ti × RHi × RHi

− 0.00000199 × Ti × Ti × RHi × RHi

(2)

where i is the pixel, HI is the heat index, T is the air temperature (◦F) and RH is the relative
humidity (%). Further, the averaged indices were normalized between 0 and 100 to attain
uniformity for further analysis and were integrated using the AHP.

3.1.4. Analytic Hierarchy Process and Consistency Check

Each environmental stress criterion (surface temperature; HI; and air quality) was
integrated by applying the analytic hierarchy process (AHP) at the sub-criteria level. For
the integration of the environmental stress sub-parameters into the main stress criteria, a
pairwise intensity importance matrix was created for each of them based on the ranking
scale proposed by [46]. The pairwise intensity scores were also further referred to and

https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
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approved by the literature and domain experts, respectively. Further, the final weights
were calculated based on the weighted average sum method. As the AHP is an additive
and compensatory method, it is necessary to evaluate the consistency and robustness of the
assigned weights. Therefore, to deal with the related uncertainties, the consistency ratio
(CR) was calculated for each environmental stress criterion based on Equations (3) and (4).
Following is an explanation of the calculation of the CR.

Let n be the number of criteria. After obtaining the pairwise comparison matrix A,
where Aij represents the score assigned for comparing criteria i with j, the consistency ratio
was calculated as follows:

1. The weight vector w as the principal eigenvector of A was computed;
2. The consistency index (CI) using the formula

CI =
λmax − n

n − 1
(3)

where λmax is the maximum eigenvalue of A was computed;
3. The Random Index (RI) value corresponding to n was taken from the predefined table

of RI values;
4. The consistency ratio (CR) as

CR =
CI
RI

(4)

where (RI) is the Random Index value corresponding to n was calculated.

The CR indicates how consistent the pairwise comparison judgments are. Typically, if
the CR is less than or equal to 0.1, the consistency is considered acceptable. Otherwise, the
pairwise comparisons may need reviewing. The approach used to perform the consistency
check for the calculated weights is the standard approach used while applying the AHP
and which has been also used in other studies [29,30].

Finally, the three environmental stress parameters illustrating the SUHII, air qual-
ity and HI were aggregated with equal importance to produce the environmental stress
magnitude map. They were given equal importance as each one of them can cause severe
health-related risks when reaching their extremities, as exposure and vulnerability to either
of them can be life-destructive. The spatial variability of the aggregated environmental
stress magnitude was divided into 10 equal interval ranges (from 0 to 100) and grouped
into 5 classes based on their stress intensity: none-to-negligible environmental stress (0–20),
negligible-to-low stress (20–40), low-to-moderate stress (40–60), moderate-to-high stress
(60–80) and high-to-extremely high stress (80–100).

3.2. Exposure and Vulnerability Analysis

The built-up settlement was used as an exposure indicator to risk and was retrieved at
a 100 m resolution for the year 2020 (recent available year) and further extracted to a 1 km
grid scale for the final hotspot mapping.

Vulnerability is related to fragility. Therefore, the population demographics describing
the age structure of inhabitants in 2020 were retrieved at a resolution of 100 m. People with
low immunity and less physical tolerance toward climate and weather extremes belong
to the most vulnerable section of society based on their age. For this framework, children
aged 5 years and below and elderly people aged 65 years and above were considered under
this category, based on the experts’ advice. Therefore, the total population count with this
age structure in each grid area was considered for hotspot mapping.

3.3. Vegetation-Based Criticality Analysis

To comprehensively understand the relationship between vegetation and environmen-
tal stress, a multivariate correlation analysis was conducted. The analysis involved plotting
a multivariate pairwise matrix, employing scatter plots and kernel density estimation (KDE)
to examine the quantitative and qualitative distribution of data points for variables, such
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as the EVI, SUHII, HI, AQI and CESM (Combined Environmental Stress Magnitude). The
correlation coefficient quantified the pairwise linear relationship between these variables.

The LCZ scheme provides a valuable addition to the existing LULC, with a particular
focus on urban and rural landscape types. The LCZ scheme comprises 17 distinct classes,
each of which can be used to describe a unique type of environment. Among these classes,
10 are dedicated to describing the built environment, whereas a set of 7 natural land cover
classes can be used as reference areas for a comparative analysis. Therefore, it offers a useful
tool to investigate the relationships between urbanization, land cover and atmospheric
conditions [43]. The LCZ map used in this study has a resolution of 100 m, offering detailed
information about different urban and non-urban areas. For uniformity and a consistent
hotspot analysis, we aggregated the LCZ types to a 1-kilometer grid size. This aggregation
ensures that the analysis of environmental stress hotspots aligns with the resolution of
other data layers used in our study. Here, the LCZ classification was used to calculate the
BGR, i.e., the ratio of the total built-up area to the total vegetation area, to quantify the
vegetation status for the risk ranking of sub-administrative divisions. It will also help to
spatially analyze the environmental stress, typically over 10 built-up types.

3.4. Identification of Critical Environment Risk Hotspot and Ranking of Province

In our framework, the magnitude, exposure, vulnerability and vegetation-criticality
were aggregated with equal importance to ensure a holistic assessment of environmental
risks. Magnitude reflects climatic extremes and is weighted based on the literature and
expert reviews, emphasizing the importance of climatic parameters. Exposure indicates
the potential impact on human populations or assets, highlighting the need for equitable
consideration in risk assessment. Vulnerability shows the susceptibility of communities,
necessitating focused attention irrespective of magnitude. Vegetation-criticality underscores
the role of green spaces in mitigating risks like urban heat islands and air pollution,
influencing overall resilience. By giving equal weight to these factors, our approach
ensures that all the critical dimensions of environmental stress are addressed, enabling
a comprehensive and balanced identification of hotspots. This promotes effective risk
mitigation and sustainable urban planning by integrating diverse aspects of environmental
risk. The grids with higher intensity levels are highlighted as hotspot areas. Furthermore,
to assign the environmental stress ranking, four criteria (i.e., the environmental stress
magnitude, exposure, vulnerability and BGR) were quantified for each province based
on the percentage area covered by each category score. As a larger built-up area over
vegetation contributes positively toward environmental stress, accordingly, a higher score
for risk ranking was given to the province with a higher built-up area with respect to
its green area. Therefore, provinces with larger areas under high magnitude (80–100),
large areas with built-up settlements, highly vulnerable populations and a high BGR were
allotted higher scores. The province with the same ratio/area for either of these criteria was
allotted the same score, and so on. Finally, the total score for each province was summed
up to obtain the final score, assigning rank one to the province with the highest score. For
the cases where provinces obtained the same total scores, the ranking was determined
by prioritizing the higher score of risk criteria in the following order: stress magnitude,
vulnerability, exposure and BGR.

4. Results and Discussions

This section focuses on the case study results obtained by applying the proposed
ERHMF framework, with relevant discussions.

4.1. Consistency Check: Assigned Weights

A consistency check is essential in the AHP to understand the robustness and consis-
tency of the decision-making outcomes concerning the deviation of the assigned weights
from being consistent. As in this study, the combining of multiple parameters depends on
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the spatial variability of the parameters as well as the weights assigned to them; it becomes
primarily important to assess the robustness of the assigned weights.

It helps decision-makers make more robust and informed choices when dealing with
complex decision problems by effectively evaluating how uncertainty in multiple input
variables impacts the final weights. The pairwise matrix for each environmental stress
criterion is explained in Figure 3, along with their computed CR, CI and RI values. The
computed consistency ratio indicates that the weights assigned to the parameters are robust
and consistent.

Figure 3. Pairwise matrix of each environmental stress parameter and their consistency check output.

4.2. Thermal and Air Quality-Based Environmental Stress Magnitude

The systematic and detailed analysis of the environmental stress parameters was
performed by categorizing them based on different criteria, primarily focusing on their
intensity and/or frequency in the course of the temporal investigation. Analyzing the
SUHII trend over a long period is necessary to accurately understand and assess changes
in surface thermal stress, as it is impacted by long-term land use changes and urbaniza-
tion processes [47]. The long-term trends of the SUHII also indicate the climate change
impacts, showing the persistent increase in surface temperatures due to global warming.
This sustained thermal stress in urban areas correlates with broader climatic shifts, un-
derscoring the essential impact of climate change on urban environments. Variations in
the concentration of different air components and weather patterns are a function of a
short-time period [44,45]. Therefore, in this study, the AQI and HI analyzed for recent
years (short-term period) provided an evaluation of the latest state of the air quality and
human-perceived thermal stress. This unique dual approach, the long-term analysis of the
SUHII and short-term analysis of the AQI and HI, allowed us to comprehensively capture
both enduring and immediate environmental stressors. By integrating these temporal
scales, our framework effectively delineated the impact of climate change on urban thermal
stress while also addressing more immediate atmospheric conditions and their effects on
urban livability.

4.2.1. Surface Urban Heat Island Intensity Analysis

The surface urban heat island intensity (SUHII) indicators are mapped in a blue-to-red
color ramp, indicating lower to higher levels of intensity (Figure 4). The spatial distribution
of the cumulative SUHIIday shows that water bodies remained cool, while built-up areas
exhibited higher temperatures compared to the surrounding vegetation (Figure 4a). The
SUHII during a summer day in 2002 was 4.87 ◦C, which increased to 6.19 ◦C in 2021 and
5.97 ◦C in 2022 as indicated in the yearly trend graph in Figure 4a. The SUHIInight is
a more appropriate indicator for distinguishing built-up areas, as it considers the heat
emission phenomenon of built-up areas at night. The SUHIInight decreased over the years,
quantitatively measuring 1.53 ◦C in 2002 and subsequently declining to 0.81 ◦C in 2021 and
0.75 ◦C in 2022 (Figure 4b). These changes have subsequently impacted the SUHIIdiurnal
variation over time, which increased from 3.09 ◦C in 2002 to 5.04 ◦C in 2021 and 4.82 ◦C in
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2022 (Figure 4c). The graphs in Figure 4 clearly explain the increasing trend observed over
the yearly time period for each SUHII indicator.

Figure 4. The SUHII indicators showing the cumulative spatial variability and yearly mean of the
(a) SUHIIDay, (b) SUHIINight, and (c) SUHIIDiurnalvariation for the summer months from 2002 to 2022
and (d) the cumulative SUHII indicators combining (a–c). The graph with each SUHII indicator map
represents the yearly mean trend between 2002 and 2022 for the respective indicator. The SUHII
legend with (c) represents the legend for (a–c).

Despite the agricultural dominance in the ER region [37], the long-term SUHII trend
(Figure 4) reveals higher thermal intensities during the daytime in urban and agricultural
areas due to climate change and urbanization. This is likely influenced by increasing
urbanization and agricultural land abandonment caused by rural-to-urban migrations.
Conversely, at night when the UHI effect is prominent, the SUHII is significantly higher in
built-up areas and urban sprawls (Figure 4b). Higher SUHII diurnal differences can pose
several risks to urban health with varied danger potentials due to the extreme fluctuation
in temperature differences during the day and night. The first one to list is (a) increased
heat-related health risks: a higher SUHII diurnal difference is the result of a significant
temperature contrast between urban and rural areas, which might result in heat exhaustion,
heatstroke and other heat-related illnesses being more prevalent among the vulnerable
populations [48,49]. Then, (b) increased energy demand/consumption: with the increased
SUHII diurnal difference, the UHI effect also intensifies leading to increased energy demand
for cooling, straining urban infrastructure like power grids, which contributes to increasing
the greenhouse gas emissions [9]. And finally, (c) reduced air quality: the formation of
pollutants worsening the air quality is being promoted by increased urban temperatures;
therefore, stagnant air conditions and increased energy consumption together may result
in increased ground-level ozone and other harmful pollutants, impacting the respiratory
health of people [44,50]. Combining these three indicators gives the overall distribution of
the surface thermal stress (Figure 4d). Based on the spatiotemporal trend, the northern and
northeastern regions witnessed higher stress, which declined toward the south–west of the
ER region.
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4.2.2. Air Quality Index (AQI) Assessment

The major air quality components studied include PM2.5, PM10, NO2, O3, SO2, CO,
etc. The current framework analyzed the AQI of the PM2.5, PM10, NO2 and O3 specifically
during the summer months of recent years (2020–2022). Each component of the AQI has
its range of values, while the color ramp used in Figure 5a–d ranges from green (lower
concentration levels) to red (higher concentration levels).

Figure 5. Cumulative spatial variability of (a) AQIPM2.5, (b) AQIPM10, (c) AQINO2 and (d) AQIO3

for summer months from year 2020 to 2022; (e) AQI spatial variability combining (a–d).

The spatial distribution of the temporal cumulative AQIPM2.5 (Figure 5a) indicates a
major part of Piacenza and Modena, while a smaller area of Ravenna is experiencing higher
concentrations of PM2.5. The distribution of the AQIPM10 (Figure 5b) shows higher concen-
trations in certain parts of Ravenna, whereas a high AQINO2 (Figure 5c) is observed over
the Modena province. In addition, the AQIO3 (Figure 5d) exhibits higher and moderate
concentration levels distributed across almost all provinces, covering a significant portion
of their respective area. This distribution varies according to the landscape settings, as
topography plays an important role in the air quality along with impacting temperature, as
healthy vegetation and hilly landforms contribute to the purification of the surrounding
atmosphere [51]. Therefore, Bologna, on average, witnesses cleaner air with a low cumu-
lative AQI ((Figure 5e), where the blue to red color ramp depicts the cleaner to polluted
air quality), over the studied temporal course, probably because of its higher elevation
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and proximity to the hilly areas. In addition, Forli’-Cesena, parts of Rimini, Ravenna, the
southern parts of Parma, the southernmost area of Reggio nell’Emilia and Modena also
show good air quality. Therefore, evaluating the cumulative AQI by combining the major
AQI components, weighted according to their relative environmental risk, offers significant
value to urban climate research. This approach, rather than assessing individual AQI
components separately, highlights areas with high concentrations of multiple air pollutants,
aiding in the planning and development of sustainable living environments.

The analysis of the SUHII and AQI distribution reveals an important finding. As
the SUHII and its diurnal difference increase (Figure 4), there is a corresponding rise in
the ozone concentration (Figure 5). This finding aligns with another recent study con-
ducted by [24], which established the synergy between air pollution and urban heat by
emphasizing a causal correlation between them through a detailed literature review and
experimental investigations.

4.2.3. Heat Index Analysis

The HI is a commonly used metric to quantify the thermal stress experienced by
the human body under specific temperature and RH conditions. In the ER region, the
average air temperature during the summer months in 2020, 2021 and 2022 was recorded as
21.98 ◦C, 22.70 ◦C and 23.71 ◦C, respectively. Concurrently, the average RH was measured
as 60.56%, 54.67% and 54.33%, respectively. Therefore, the calculated average HI was found
to be 24.13 ◦C, 24.36 ◦C and 24.77 ◦C, respectively.

Figure 6 depicts the spatial distribution of the variables utilized in the computation of
the HI and other derived indices. The spatial pattern of the air temperature (Figure 6a) re-
veals significant variations, with the highest values observed in Piacenza, Reggio nell’Emilia
and Bologna. Conversely, the RH (Figure 6b) exhibits elevated levels in substantial areas of
Ferrara, the southern region of Reggio nell’Emilia and Bologna.

The cumulative average HI (Figure 6c) for the ER region surpasses 20 ◦C, while a
large extent of Ferrara has a maximum HI (Figure 6d), followed by Bologna, Parma and
Piacenza. The Bologna province records the highest number of cumulative HI days (days
with the HI ≥ 27 ◦C; Figure 6e) and a greater cumulative intensity of heat stress (intensity
above 27 ◦C; Figure 6f). The majority of the area witnesses a range of 1–1.8 ◦C difference
between the air temperature and HI (Figure 6g). Moving from north to south, this difference
increases, indicating higher humidity levels. The city centers of the major cities exhibit
lower differences and RH levels.

It is noteworthy that regions in proximity to water bodies exhibit higher RH but
lower air temperature, resulting in lower average HI values. Conversely, land surfaces
distant from water sources exhibit lower RH and a higher temperature, placing them
within the caution level range of the HI (≥27 ◦C) according to the HI look-up table (source:
https://www.weather.gov/ffc/hichart (accessed on 15 November 2023)). The elevated
intensity and frequency of the caution-level HI values emphasize the associated risk of
heightened thermal stress, as prolonged exposure to elevated temperatures poses greater
danger as suggested by the heat index documentation (source: https://www.noaa.gov/
jetstream/global/heat-index (accessed on 15 November 2023)). Figure 6h illustrates the
spatial variability of the combined HI derivatives (Figure 6c–g), categorized into ten equal
intervals, highlighting the area with a higher HI (with red color gradient).

https://www.weather.gov/ffc/hichart
https://www.noaa.gov/jetstream/global/heat-index
https://www.noaa.gov/jetstream/global/heat-index
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Figure 6. Cumulative spatial variability of (a) air temperature at 2 m, (b) RH, (c) average HI,
(d) average of max HI, (e) cumulative heat stress days (with HI > 27 ◦C), (f) cumulative HI intensity
(HI > 27 ◦C) and (g) average difference between T2 and HI for the summer months from 2020 to 2022;
(h) cumulative HI indicators combining (c–g).

4.3. EVI and Its Correlation with Environment-Risk Magnitude Variables

The relationship between the cumulative EVI and magnitudes of environmental stress
was analyzed using a pairwise correlation analysis. Figure 7 represents the scatter plot
(depicting data points as dots on a plot, with one variable on the x-axis and the other on
the y-axis), correlation coefficient (ranging from −1 to +1) and trend line of the relation
between each pair of variables in its upper right triangle. The correlation coefficient range
indicates the direction and strength of the linear relationship between the variables, with
the p-value < 0.05. Moreover, the lower left triangle exhibits the KDE plots, a smoothed
distribution of the variable, which provide insights into its shape and pattern for each pair
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of variables. This color scheme of the KDE plots facilitates the visualization of areas with
high (yellow) and low (blue) data point concentrations within the variable’s distribution.

Figure 7. The multivariate pairwise distribution and scatter plot matrix of the environmental stress
magnitude parameters, where the upper right triangle consists of the scatter plot, correlation coeffi-
cient and trend line; the lower left triangle represents the KDE plot The color scheme of KDE plot
shows the higher (yellow color) to lower (blue color) data points’ concentration within the variable’s
distribution. The SUHII, AQI, HI and CESM are normalized between 0 and 100, whereas the EVI is
between −1 and 1. The plots are significant with a p-value < 0.05.

A strong negative correlation (r = −0.7) is observed between the cumulative SUHII
and EVI, indicating that the area with a higher SUHII has limited healthy vegetation,
negatively impacting the micro- and macroenvironment [52,53]. Urban expansions and
sprawls result in the inadequate maintenance of urban green spaces within built-up areas
and their surroundings, leading to increased exposure to heat-related risks, as evidenced by
the higher data point density observed in regions with a high SUHII and low EVI (Figure 7).
Additionally, rural-to-urban migration and the subsequent agricultural land abandonment
contribute to the rising temperature and other environmental stresses, further exacerbating
the situation. The AQI showed a weak negative correlation with the EVI (r = −0.26), with
a higher data density at moderately high AQI levels and low EVI values. This suggests that
urban areas need dense vegetation for the mitigation of environmental stress caused by a
high SUHII and AQI, and similar suggestions have been made in recent studies [54,55].

However, it is noteworthy that analyzing the KDE plots of separate indicators and
combined magnitude with the EVI leads to an interesting observation. At similar EVI data
density points, the HI is comparatively lower than the SUHII, AI and CESM, which indicates
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that even sparse vegetation can have a considerable impact in moderating the atmospheric
thermal stress, probably because of cooling procedures, like evapotranspiration. This
inference can also be analyzed and compared among other climatic conditions in future
studies to result in a more robust conclusion. The density distribution patterns, scatter
plots and correlation coefficients provided quantitative and qualitative insights, thus aiding
the independent analysis and assessment of various environmental stress parameters with
vegetation status and further enabling a deeper exploration of the relationships and the
formulation of more suitable solutions for environmental stress mitigation measures.

4.4. Cumulative Environmental Stress Magnitude, Settlement Exposure, Population Vulnerability
and Vegetation-Based Criticality

The integration of the SUHII, AQI and HI indicators has yielded a measure of the
magnitude of environmental stress. The read spatial distribution of this environmental
stress magnitude (Figure 8A(a)) reveals a significant area of Piacenza, Bologna and Reggio
nell’Emilia experiencing high-to-extremely high stress levels (80–100). Parts of Parma,
Modena and Ferrara fall within the moderate-to-high stress range (60–80). Ravenna and
Rimini have relatively smaller areas classified as moderate-to-high stress, while Forli’-
Cesena is predominantly characterized by low-to-moderate (40–60) and negligible-to-low
(20–40) stress levels. The quantitative distribution has been demonstrated in Figure 8B(a),
highlighting the relative percentage area covered by each stress magnitude range in the
respective province.

The assessment of risk exposure focuses on built-up settlements, as they constitute
primary habitation for most of the human population and contribute significantly to
the amplification of existing thermal and environmental stress factors [40]. Figure 8A(b)
shows the highest environmental stress exposure in Bologna, followed by Modena, Reggio
nell’Emilia, Ferrara, Ravenna, Parma, Forli-Cesena, Rimini and Piacenza. This hierarchy
reflects the extent and density of the built-up settlements in these areas. The vulnerability
mapping (Figure 8A(c)) identifies the population that is most sensitive to environmental
stress. The LCZ mapping (Figure 8A(d)) illustrates that the northern, central, northwestern,
northeastern and eastern parts of the region are predominantly covered by low plants, while
the southern, southwestern and southeastern areas have dense and scattered trees. This
spatial differentiation in vegetation cover is crucial for understanding regional variations
in microclimatic conditions. The urban areas across each province exhibit varied land use
classes. The built-up patterns observed in the major cities of the ER region indicate the
concentration of compact midrise and compact lowrise buildings in the center, surrounded
by open midrise and open lowrise structures. Large lowrise built-up areas are located
toward the outer periphery. Sparse industrial areas are mainly found in eastern Bologna,
southern Ravenna and the central and northern parts of Forli’-Cesena and Rimini. This
distribution pattern highlights the varied urban morphology and its implications for
environmental stress. The cumulative vegetation distribution (Figure 8A(e)) shows the area
with insufficient green coverage, as evidenced by the low values of the EVI. The presence of
water is signified by an EVI < 0, built-up and bare land < 2 and low plants and agricultural
land by an EVI < 4, while green and healthy vegetation is shown by an EVI < 4 [56].
This vegetation analysis is pivotal for identifying areas lacking adequate greenery and the
increasing proportion of impermeable surfaces, which exacerbate thermal stress and reduce
resilience to environmental changes. Figure 8B represents the quantitative distribution of
different legend classes of the respective parameters illustrated in Figure 8A(a–e), offering
a comprehensive overview of the spatial and quantitative variations in the environmental
stress factors, built-up areas, vegetation cover and land use classes across the ER region.
This detailed mapping and analysis facilitate a better understanding of the interplay
between urban morphology, vegetation distribution and environmental stress, thereby
aiding in the formulation of effective mitigation strategies.
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(A)

(B)
Figure 8. (A): (a) The environmental stress magnitude combining the cumulative SUHII, AQI and HI;
(b) the population density at 1 km showing the exposure levels; (c) the high vulnerable population
class at 1 km; the vegetation–based criticality in the form of (d) LCZ classes showing the spatial
distribution of the LULC for the risk ranking; and (e) the EVI showing the spatial vegetation status for
the hotspot mapping. (B): The graphs (a–e) correspond to each map (A) showing the province–wise
quantitative distribution of the legend classes of the respective maps.
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4.5. Risk Hotspot Mapping and Province Ranking

Figure 9a demonstrates the combination of the environmental stress magnitude,
exposure, vulnerability and EVI. Most grids with higher magnitudes (80–100 range)
are concentrated in the Bologna province, while Modena and Piacenza exhibit very
few grids within this range. The spatial distribution of these hotspots is discernible
in Figure 9a, while Figure 9c demonstrates the quantitative distribution of the relative
percent area of each province under different environmental stress levels. It shows that
a total of a 6,000,000 m2 area of Bologna is witnessing high-to-extremely high stress
(80–100) based on the recent environmental stress criteria. However, the areas under the
moderate-to-high stress range (60–80) for Bologna, Reggio nell’Emilia, Modena, Parma,
Piacenza, Ferrara and Rimini are 12,000,000 m2, 7,000,000 m2, 5,000,000 m2, 5,000,000 m2,
4,000,000 m2, 2,000,000 m2 and 1,000,000 m2, respectively.

Figure 9. (a) Spatial distribution of identified environmental risk hotspots; (b) risk ranking for sub
ER provinces; and (c) quantitative area distribution chart showing relative percentage area covered
by each environmental stress range in different provinces.

Table 3 contains the quantitative score for each province based on individual criteria,
explaining the provincial-level quantitative evaluation. It shows Piacenza exhibits a higher
relative percentage area under stress magnitude; on the contrary, Bologna has a greater
concentration of settlements with higher exposure and vulnerable populations compared to
other provinces. This underscores Bologna’s significant risk due to its dense population and
extensive urbanization. Furthermore, Rimini demonstrates the highest built-up-to-green
ratio, earning the highest score for the BGR. This high ratio signifies a critical lack of green
spaces relative to built-up areas, exacerbating the environmental stress due to limited
vegetation cover that can mitigate urban heat island effects and other stressors. Combining
the scores from all four assessed criteria for ranking (Figure 9b), Bologna emerges as the
province with the highest overall risk. This comprehensive ranking takes into account
factors, such as the stress magnitude, exposure, vulnerability and built-up-to-green ratio.
On the other hand, Parma ranks at the bottom, indicating the lowest overall risk among
the provinces studied. The remaining provinces fall in between, with the descending
order of risk and vulnerability as follows: Modena > Rimini > Reggio nell’Emilia >
Piacenza > Ravenna > Forli-Cesena > Ferrara. This gradient highlights the varying
degrees of environmental and thermal stress across the region, reflecting differences in
urbanization patterns, vegetation cover and population distribution. This comprehensive
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ranking assessment offers valuable insights for policymakers and urban planners. It ranks
critical areas at the sub-administrative level where interventions are needed to reduce
environmental stress and enhance resilience. By focusing on high-risk areas, targeted
strategies can be developed to increase green spaces, improve urban planning and reduce
exposure and vulnerability to environmental stressors.

Table 3. The risk ranking for the ER provinces based on the relative percentage area covered by
the high-risk magnitude range (80–100); settlement percentage area; total vulnerable people; and
built-up–green ratio depicted by the BGR.

Risk Parameters Bologna Parma Modena ReggioNellEmilia Ravenna Rimini Ferrara ForliCesena Piacenza

High Magnitude (80–100) 5 1 2 4 0 0 3 0 6
Settlement Exposure 7 2 6 4 4 5 2 3 1
Population Vulnerability 2 0 1 0 0 0 0 0 1
Vegetation_Criticality (BGR) 4 1 3 3 6 7 1 5 2

Total score 18 4 12 11 10 12 6 8 10

5. Conclusions

This study presents an ERHMF, based on multiple environmental stressors, focusing
on thermal and air quality parameters consisting of the SUHII, HI and AQI for highlighting
the risk hotspots. To evaluate these parameters from multiple aspects, several indices
have been designed and computed for each parameter, which were later combined using
the popularly known methodological aspect called MCDA in integration with GIS, at the
grid resolution of 1 km. It is important to note that this framework analyzes both short-
and long-term temporal data based on the efficacy of the used parameters. Moreover,
exponential weighted aggregation being capable of effectively capturing trends, handling
noise and outliers and adapting to changing dynamics provided more accurate outputs,
which helped in understanding the underlying patterns and making informed decisions
based on up-to-date information. The less explored approach of applying the AHP on
the sub-criteria level to obtain the main risk criteria has led to the results capturing a
more detailed spatial distribution and percentage area covered by the environmental stress
magnitude in each province. Because of this, the framework approach has succeeded in
accurately capturing the cumulative risk associated with each criterion. For example, for
the surface thermal stress, the cumulative risk layer represents the area with higher risk
considering the importance of all the used indices, that is, the surface thermal stress during
the day and during the night and the diurnal difference. Similarly, the human-felt thermal
stress and air quality-related stress have resulted in the compact and confined distribution
of the stress levels because of the consideration of the maximum possible indices and
variables covering multiple aspects.

The correlation analysis between the magnitude of environmental stress criteria and
vegetation has provided valuable insights into the pairwise relationships between the EVI,
SUHII, HI, AQI and CESM. The vegetation status analysis has emphasized its critical role
in determining environmental risk. Furthermore, including the LCZ classification-based
vegetation fraction has resulted in a more accurate ratio of built-up and vegetation areas,
as the LCZ is a detailed classification for natural as well as paved surfaces, typically urban
buildings. This would help in better understanding and the implementation of the green
mitigation measures for risk hotspots.

Therefore, this framework is capable of capturing the cumulative risks, considering
the sub-criteria level to avoid the chance of missing out on considering any kind of risk
probability. Hence, it will aid policymakers and planners in evaluating and identifying
major environmental risk-exposed areas. The proposed risk ranking system for adminis-
trative subdivisions will enable the listing based on risk hierarchy, facilitating mitigation
planning. The hotspot analysis identifies locations in need of vegetation coverage, allowing
for targeted interventions such as urban parks, green buildings, green roofs, etc., based on
LULC considerations.
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Future Work

This framework aids in identifying hotspots that require urgent mitigation measures
for the risk criteria. Based on findings at the regional scale, further developments can
allow for assessing neighborhood-level impacts at a microclimate scale: the proposed
ERHMF can be utilized to map environmental risk hotspots at the city scale based on the
availability of high-resolution data. Moreover, the correlation between vegetation and
environmental stress criteria has been examined within a specific climate type, warranting
further investigation on a global scale to understand this relationship across different
climate types.
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