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Abstract
Pollen collected by pollinators can be used as a marker of the foraging behavior as well as indicate the botanical species 
present in each environment. Pollen intake is essential for pollinators’ health and survival. During the foraging activity, some 
pollinators, such as honeybees, manipulate the collected pollen mixing it with salivary secretions and nectar (corbicular pol-
len) changing the pollen chemical profile. Different tools have been developed for the identification of the botanical origin 
of pollen, based on microscopy, spectrometry, or molecular markers. However, up to date, corbicular pollen has never been 
investigated. In our work, corbicular pollen from 5 regions with different climate conditions was collected during spring. 
Pollens were identified with microscopy-based techniques, and then analyzed in MALDI-MS. Four different chemical 
extraction solutions and two physical disruption methods were tested to achieve a MALDI-MS effective protocol. The best 
performance was obtained using a sonication disruption method after extraction with acetic acid or trifluoroacetic acid. 
Therefore, we propose a new rapid and reliable methodology for the identification of the botanical origin of the corbicular 
pollens using MALDI-MS. This new approach opens to a wide range of environmental studies spanning from plant biodi-
versity to ecosystem trophic interactions.

Keywords Mass spectrometry · Molecular mass fingerprint · Trifluoroacetic acid · Acetonitrile · Machine learning model · 
Plant biodiversity

Introduction

Identification of pollen is crucial in different disciplines 
ranging from plant taxonomy and their evolutionary rela-
tionships with pollinators, to allergies and paleobotany stud-
ies [1]. In particular, pollinators are strongly dependent on 
pollen for their survival, and they can collect from a wide 

range of pollen sources, also covering considerable areas [2]. 
Therefore, pollen can be exploited by researchers for differ-
ent purposes such as environmental pollution monitoring [3, 
4], and also as a tool for vegetation surveys [5]. One of the 
major concerns in the research on plant-pollinator networks 
is pollen composition and nutritional properties, which can 
greatly impact the whole ecosystem, especially pollinators. 
The pollen’s nutritional potential is a key factor for pollina-
tors’ survival and health [6], and is strictly related to each 
ecosystem flower species [7, 8] and to the space-temporal 
shifts during the season [9, 10]. Anthropogenic activities, 
climate changes, biodiversity decline, and the spread of inva-
sive species and diseases have shown a dramatic impact on 
plant physiological state and, consequently, on pollen avail-
ability and nutritional profile [11–14].

An unbalanced pollen diet not providing the right amount 
and quality of proteins, as well as vitamins and lipids [15, 
16], has a negative impact on the honeybee health and 
development [9, 17]. Indeed, the nutritional richness of pol-
len is crucial and has effects on (i) honeybee survival and 
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metabolism [18–21], (ii) immunity and stress resistance [6, 
22, 23], (iii) pathogen tolerance [24, 25], and (iv) sensitivity 
to agrochemicals [26–28]. Specifically, pollen consumption 
provides essential amino acids necessary for hypopharyngeal 
glands, ovaries, fat body development [29], and immune cell 
diversification [30, 31]. Considering that there is no plant 
species capable of providing all the amino acids [32], the 
importance of a varied and balanced diet cannot be under-
estimated. However, the impoverishment of resources wors-
ened by the spread of monocultures in intensive agriculture, 
making a nutrient and complete diet difficult to obtain [33].

Matrix-assisted laser desorption ionization–mass spec-
trometry (MALDI-MS) is recognized as a robust technique 
in the identification of microorganisms in clinical diagnos-
tics [34]. This technique is also known as MALDI Biotyp-
ing. In 2021, Houdelet and colleagues used MALDI Biotyp-
ing to identify the species and the geographical origin of 
Nosema spores [35]. To date, the use of MALDI-MS on pol-
len has been limited to the investigation of lipid and protein 
content involved in the development of allergies [36–38]. 
Despite this, in recent years, the efficiency of MALDI-MS 
in the identification of botanical species within collected 
environmental pollens has been demonstrated [13, 39–43]. 
MALDI-MS is a destructive technique that provides infor-
mation on the molecular mass of each ionized molecule 
detected and gives access to a semi-quantitative analysis of 
samples, differently from IR and RAMAN spectroscopy that 
identify functional groups only. Moreover, MALDI-MS is 
not affected by colored matrices, such as pollens. Therefore, 
from these considerations, we propose a methodology based 
on molecular mass fingerprint profiles (MFPs) of pollen’s 
proteins, with MALDI-MS.

In this work, the pollen collected by foraging honeybees 
from different plant species and geographical locations was 
used to develop a new rapid and reliable methodology for the 
identification of the botanical origin of the foraged pollens 
using MALDI-MS. The identification of the botanical origin 
of corbicular pollens is a preliminary step for the evaluation 
of pollen trophic effect on pollinators and, consequently, 
allows understanding of possible alterations in the pollina-
tor foraging behavior.

Materials and methods

Pollen collection and palynological analysis

Bee pollen balls were collected by five beekeeping farms 
located in five Italian regions characterized by different 
latitudes, climate conditions, and plant resources (Campa-
nia, Sardegna, Sicilia, Trentino-Alto Adige, and Toscana) 
using traditional pollen traps. The collected polyfloral pollen 
was divided into monofloral pollen samples through visual 

morphological analyses (e.g., color). Moreover, palyno-
logical analysis was carried out for each monofloral pollen 
(PianaRicerca Srl, Castel San Pietro Terme, Bologna, Italy) 
on five different balls belonging to the same subset, to con-
firm the botanical origin (Table S1). The obtained optical 
microscope images were classified according to the period of 
collection, the region, and the climate, and were compared to 
those present in the international database PalDat—Palyno-
logical Database [44].

MALDI‑MS methods for analysis on pollen

Pollen preparation

Monofloral pollen samples previously stored at − 20 °C were 
dried prior solvent extraction and analysis by MALDI-MS. 
A first set of one bee pollen ball (approx. 0.012 g) was 
directly extracted with 1 µL formic acid on MTP 384 steel 
plate and matrix solution (see below) directly added to the 
steel plate. Moreover, single-pollen balls were processed 
with four different extraction solutions using different sol-
vents dissolved, when necessary, in ultrapure water (MilliQ 
water, Millipore, Billerica, USA). The four tested solvent 
solutions were as follows: (1) 2 M pure acetic acid (AA) 
added with 50% acetonitrile (ACN); (2) 2 M pure AA; (3) a 
mixture of 2% ACN and 0.1% trifluoroacetic acid (TFA); (4) 
1% TFA. A total volume of 50 µL of each solvent solution 
was added to a single-pollen ball.

For each pollen extracted with solvents, two different dis-
ruption methods were tested: a sonication cycle of 15 min at 
60 Hz and a shaken approach at 800 rpm for 1 h at 4 °C. The 
obtained extracts were diluted 10, 100, and 1000 times in 2% 
ACN in 0.1% TFA. Dilutions were spotted on a MTP 384 
MALDI polished target plate (Bruker Daltonics, Germany) 
following a dry droplet sample preparation. Briefly, 1 µL of 
each dilution and 1 µL of alpha-cyano-4-hydroxycinnamic 
acid matrix (4-CHCA) solution (15 mg/mL) prepared in 70% 
ACN with 2.5% TFA in ultrapure water (v:v) were spotted 
and dried at room temperature under a soft vacuum. The 
molecules extracted from pollen for each condition were 
analyzed in MALDI-MS in triplicate.

Data acquisition

MALDI molecular mass fingerprints (MFPs) were acquired 
in a positive ion linear mode using an AutoFlex III—Smart-
beam® mass spectrometer (Bruker Daltonics, Germany) [45, 
46]. An external mass spectrometer calibration was achieved 
using the PepMix and ProtMix (Bruker Daltonics) stand-
ard calibration kits covering the dynamic range of 700 and 
8560 Da. Spectra were acquired between the dynamic range 
of 600–18,000 Da using FlexControl v4.0 Software (Bruker 
Daltonics, Germany). A global attenuator offset of 60% and 
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attenuator range of 5% with 200 Hz laser frequency, 70% of 
laser power, and 1000 accumulated laser shots/pollen spec-
trum were set. A potential difference of 1.5 kV and linear 
analog offset of 50.0 mV were set up and a suppression gate 
up to m/z 600 to prevent detector saturation. Sensitivity was 
set up at 100 mV.

Data post‑processing, machine learning model, 
and statistical analysis

MALDI-MS data were visualized with FlexAnalysis v3.4 
Software (Bruker Daltonics, Germany) and post-processed 
and analyzed (PCA and modeling) using ClinProTools™v2.2 
Software (Bruker Daltonics, Germany) [47]. Spectral 
smoothing and baseline subtraction were performed, fol-
lowed by the calculation of the total averaged spectra 
based on area calculations and a signal-to-noise ratio (S/N) 
of 5 for peak picking. Principal component analysis and 
machine learning mode were performed on the five major 
representative botanical families (Asteraceae, Boraginaceae, 
Fagaceae, Leguminosae, and Rosaceae). Specifically, a 
supervised neural network (SNN) algorithm was used for 
model development, with the following parameters: resolu-
tion 800, minimal baseline width 10%, and number of pro-
totypes 5. For more information, refer to the specific section 
in supplementary materials “Appendix 1.”

Results

The solvent-extracted pollen molecules used for the calibra-
tion test of the presented methodology derive from Quercus 
spp., since this pollen is widely distributed in all the regions 
considered in our study.

A rapid, reliable, and economic methodology 
for MALDI‑MS analysis on bee pollen

The most reliable results in terms of reproducibility, spec-
tral intensity, and complexity were obtained at the 100-fold 
dilution for each tested method (tested from 10 to 1000-fold 
dilution factors). At first glance, the different extracting con-
ditions tested (four solutions, two mechanical methods “par-
agraph 2.1”), have revealed interesting outputs (Fig. 1a–d 
and Fig. S1a–S1h). However, it was possible to identify 
two preferable protocols in terms of peak abundance and 
intensity. Specifically, the 100-fold dilutions after 15 min of 
sonication in 2 M AA and 2% ACN and 0.1% trifluoroacetic 
acid (0.1% TFA) (Fig. 1b and d) result in the highest level of 
output. A detection of 185 and 205 ions at m/z was recorded 
using 2 M AA and 2% ACN and 0.1% TFA, respectively.

Palynological analysis and pollen classification

A total of 23 plant genera were identified, belonging to 
16 botanical family: Cistaceae (Cistus sp., Helianthemum 

Fig. 1  Mass spectra obtained from the best extraction conditions and 
according to the dilution factor of the crude extracts 1:100. Spectra 
were cut between range m/z 600–7000 to highlight peaks of interest. a 
Spectra of pollen extracted in AA 2 M and stirred (1 h, 4 °C). b Spec-

tra of pollen extracted in AA 2 M and sonicated; c spectra of pollen 
extracted in ACN 2%/TFA 0.1% and stirred (1 h, 4 °C). d Spectra of 
pollen extracted in ACN 2%/TFA 0.1% and sonicated. [a.u.] stands 
for arbitrary unit
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sp.), Boraginaceae (Echium sp., Borago sp.), Legumi-
nosae (Hedysarum sp., Trifolium sp.), Asteraceae (Com-
positae group), Fagaceae (Quercus sp., Castanea sp.), 
Rosaceae (Rubus sp., Crataegus sp., Amygdaloideae 
group), Cornaceae (Cornus sp.), Salicaceae (Salix sp.), 
Ericaceae (Erica sp.), Anacardiaceae (Pistacia sp.), 
Brassicaceae (Sinapis sp.), Dipsacaceae (Knautia sp.), 
Sapindaceae (Aesculus sp.), Papaveraceae, (Papaver 
sp.), Arecaceae (Trachycarpus sp.), and Asparagaceae 
(Asparagus sp.). Moreover, eight pollen were discrimi-
nated at the species level, in particular Cistus incanus, C. 
salvifolius, Hedysarum coronarium, Trifolium repens, T. 
hibridum, T. incarnatum, Cornus sanguinea, and Aspara-
gus officinalis. The pollen ball classification and mor-
phological characteristics from palynological analysis are 
reported in Table 1 and Table S2, respectively.

MFPs recorded by MALDI‑MS well discriminate bee 
pollen from different botanical families

A total of  40 different bee-collected pollens were 
extracted using an ultrasound system and AA 2 M as sol-
vent (previously described), in order to validate a fast 
and accessible methodology. A total of 132 spectra were 
recorded and manually sorted at the family level to allow 
a first robust comparison using PCA. Asteraceae (n = 4), 
Boraginaceae (n = 4), Fagaceae (n = 6), Leguminosae 
(n =4), and Rosaceae (n = 7) were the most recurrent 
families with the highest number of pollen samples and 
then used for the analysis. Cistaceae (n = 3), Cornaceae 
(n = 2), Ericaceae (n = 1), Salicaceae (n = 1), Anacardi-
aceae (n = 1), Brassicaceae (n = 1), Arecaceae (n = 1), 
Dipsacaceae (n = 1), Papaveraceae (n = 1), and Sapin-
daceae (n = 1) were in an inconsistent number to allow 
robust analysis and were excluded from the PCA. The 
total number of ions was between 97 and 204 with an 
average intensity of 93.01. The highest peak intensity was 

Table 1  Report on the pollens used and their relative botanical classification by family and genus (species where provided) derived from palyno-
logical analysis and the relative quantity and origin

Family Botanic group/genus/specie No. of pollen 
samples

Campania Sardinia Sicily Tuscany Trentino

Cistaceaae Cistus incanus 2 X
Cistus salvifolius 1 X
Helianthemum sp. 1 X

Boraginaceae Echium 3 X
Borago 1 X

Leguminosae Hedysarum coronarium 1 X
Trifolium repens 1 X
Trifolium hibridum 1 X
Trifolium incarnatum 1 X

Asteraceae Compositae T (liguliflore) 2 X X
Compositae S (thistle) 2 X X

Fagaceae Quercus 5 X X X X
Castanea 1 X

Rosaceae Rubus 4 X X X
Crataegus 1 X
Amygdaloideae 2 X X

Cornaceae Cornus sanguinea 2 X
Salicaceae Salix 1 X
Ericaceae Erica 1 X
Anacardiaceae Pistacia 1 X
Brassicaceae Sinapis 1 X
Dipsacaceae Knautia 1 X
Sapindaceae Aesculus 1 X
Papaceraceae Papaver 1 X
Arecaceae Trachycarpus 1 X
Asparagaceae Asparagus officinalis 1 X
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recorded between molecular ions at m/z between 700 and 
2000 and m/z 3000 and 5000. The first visual analysis 
using flexAnalysis tools showed typical and homogene-
ous spectra for each family considered. Variations among 
pollen from the same family examples are reported in 
Fig. S2a and S2b.

Principal component analysis (PCA) was applied to 
compare the classification of pollen species and con-
firmed an evident family clustering, especially for Aster-
aceae and Boraginaceae for PC1 vs PC2 and PC1 vs PC3, 
but also for Rosaceae and Fagaceae. Leguminosae did 
not show any family clustering, but they spread along the 
y axis in particular in the output PC1 vs PC2 and PC1 vs 
PC3. Among 100 peaks manually selected, Kruskal–Wal-
lis test was considered for 91 non-normal distributed 
peaks individuated by PCA analysis in m/z range of 757 
and 6925. Component comparison resulted highly signifi-
cative for 56 peaks (p < 0.001) and widely significative 
for 24 peaks (p < 0.05).

Classes were discriminated by a minimum of 11 peaks 
of each extracted pollen molecule. Mass average, stand-
ard deviation, and p-value for each considered peak 
are reported in Table S3. Deviations between the same 
groups are visualized in the generated graph (Fig. 2a–b) 
and might indicate different origins, genuses, or species, 
as well as occurred for spectra. Moreover, to support the 
botanical family discrimination, we have detected recur-
rent peaks among those considered in PCA analysis that 
are significantly related to each of the botanical family 
analyzed. Specifically, 24 peaks are unique for the botani-
cal family analyzed: 5 for Asteraceae, 6 for Boraginaceae, 
7 for Fagaceae, 3 for Leguminosae, and 3 for Rosaceae 
(Table 2).

A machine learning model for easy bee pollen 
classification

A novel SNN algorithm model was generated considering 
all the single spectra intensity from the same five family 
classes (class 1, Asteraceae; class 2, Boraginaceae; class 
3, Fagaceae; class 4, Leguminosae; and class 5, Rosaceae). 
The irrelevant spectra that did not pass the required intensity 
and signal resolution were excluded, and then a manual peak 
curation was performed on reliable peaks. A cluster of 25 
automatically selected peaks by machine learning was used, 
after manual check, with a cycle upper limit of 2000 and five 
prototypes (Fig. S1). A total of 22 peaks were significatively 
discriminated as possible indicators of pollen origin with 
an overall cross-validation of 80.81% and cross-capability 
of 90.97%. Detected discriminant molecular double-charged 
ions were considered (m/z 830.4 vs 1659.96 and 3403.29 vs 
6802.88, respectively) and no sodium or potassium adducts 
were individuated in highlighted peaks. Cross-validation and 
recognition capability values for each class and classified 
peaks’ mass average, start, and end mass are reported in 
Tables 2 and 3.

Discussion

Considering the nutritional problems that pollinators are fac-
ing, triggered by climate change and anthropic activities, the 
development of a method that allows rapid identification of 
pollens harvested by bees is pioneering for environmental-
based studies. This work aims at developing a safe, repro-
ducible, sensitive, and fast protocol to analyze and identify 
the botanical origin of pollen balls collected by honeybees 

Fig. 2  Principal component analysis (PCA) output: three-dimensional 
plot considering principal components 1, 2, 3 (a) and bidimensional 
plot considering each principal component comparisons (b). Dots 
represent different families as follows: (red) Asteraceae; (green) 

Boraginaceae; (blue) Fagaceae; (yellow) Leguminosae; (purple) 
Rosaceae. The overall variation is 39% for the 3 axes (18% for axe 
1 (PC1), 11% for axe 2 (PC2), 10% for axe 3 (PC3))
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during their foraging activities based on the analyses of 
pollen-extracted molecules, using MALDI-MS.

We firstly tested pollen balls extracted with pure formic 
acid, as a direct solution; however, this method did not allow 
the collection of peaks. This is reminiscent of the recent 
research works [42], Lauer et al. [40], Lauer et al. [41] that 

demonstrated how a direct spotting of a single or few pollen 
grains (pollen dust) on a MALDI plate can result in the tax-
onomy differentiation and identification of pollens [40] with 
or without any chemical extraction such as the use of formic 
acid [42]. It is worth noting that in our experimental condi-
tions, this methodology did not provide robust signal outputs 
for the different samples analyzed (data not reported). The 
negative results obtained when applying the methodolo-
gies described by Seifert et al. [42] and Laurel et al. [40] 
may be ascribed to the use of samples of pollen dust col-
lected directly from plants, whereas we used pollen balls 
produced by pollinators. Some pollinators, especially honey-
bees, when collecting pollen, mix it with nectar and salivary 
secretions, to easily manipulate and shape it in balls, easily 
transportable in their corbiculae (pollen baskets) to the nest-
ing site (for review, see [48]. These modifications induce 
molecular and structural changes in the pollen grains (high 
compactness) that make them improper for direct MALDI-
MS analysis. Moreover, layer thickness and inhomogeneity 

Table 2  Table shows SNN 
algorithm classified peaks’ 
average, start, and end mass. 
Class discriminations and 
the relative PCA p-value are 
reported. Double-charged 
ions are indicated with * and 
°. p-value; ** p > 0.05; *** 
p > 0.001
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787,62 784.14 793.34 ***

804.85 803.14 806.79 ***

825.72 823.28 829.26 ***

830.60 * 829.26 836.51 ***

976.97 972.38 982.82 ***

1069.38 1067.05 1072.82 **

1167.86 1166.62 1170.42 ***

1206.35 1204.75 1208.92 X ***

1215.62 1213.13 1219.18 ***

1659.96 * 1656.46 1665.07

2232.06 2230.42 2236.71 ***

2903.64 2902.38 2906.73 **

3261.26 3259.91 3266.64 ***

3403.29 ° 3398.22 3407.87 ***

3431.87 3428.27 3433.94 ***

3436.72 3434.42 3438.03 ***

3972.55 3968.4 3978.48 **

4302.13 4296.84 4305.35 ***

4546.62 4541.43 4549.57 **

5856.77 5856.46 5865.07 **

6594.83 6589.86 6599.5 X ***

6704.78 6700.51 6708.48 ***

6766.67 6755.31 6778.75 ***

6802.88 ° 6792.13 6813.36 ***

Table 3  The table shows cross-validation and recognition capability 
percentage values for each class analyzed and overall

Class Family Cross-validation 
(%)

Recognition 
capability (%)

Class 1 Asteraceae 92.00 100.00
Class 2 Boraginaceae 89.47 84.62
Class 3 Fagaceae 79.41 83.33
Class 4 Leguminosae 50.00 91.67
Class 5 Rosaceae 93.18 95.24
Overall 80.81 90.97
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of the MALDI sample preparation might negatively impact 
laser ionization efficiency [49–51]. Interestingly, Krause 
et al. [39] demonstrated that on Ambrosia trifiga pollen, 
MALDI-MS is applicable on a few pollen grains (~ 20–30, 
estimated to correspond to 10 µg of commercially available 
lyophilized pollen). However, this parameter might not be 
controlled easily, especially on pollen ball samples because 
of their sticky structure. This evidence suggests that to pro-
cess bee pollen balls, a solvent extraction may improve the 
availability of molecular ions detectable by MALDI-MS. 
Therefore, for the first time, we propose a protocol to analyze 
by MALDI-MS the extracted pollen balls.

The different extraction procedures we tested were dem-
onstrated effective in giving readable outputs with a high 
reproducibility between the different extraction methods. 
The recorded spectra were homogeneous and similar, con-
firming the validity of any proposed extraction methods. 
The best performances were obtained using a sonication 
disruption method (one cycle of 15 min at 60 Hz). Ultra-
sound-assisted solvent extraction is an already-known useful 
method to break the pollen wall in different kinds of analy-
ses, e.g., in flame atomic absorption spectroscopy [52–54]. 
When applied to the different pollen ball samples investi-
gated, MFPs obtained by MALDI-MS support the hypoth-
esis that MALDI-MS represents a robust approach for bee 
pollen ball classification. In addition, extraction conditions 
using acetic acid at the concentration of 2 M proved to be 
as efficient as conventional solution of trifluoroacetic acids 
(TFA) without the disadvantages of TFA, a highly volatile 
and toxic acid.

The protocols proposed in this work showed robust results 
in terms of specificity and pollen botanical source clustering, 
confirming that MALDI-MS technology is applicable also to 
bee pollen balls. Our work showed typical spectra for each 
botanical essence (Asteraceae, Boraginaceae, Fagaceae, 
Leguminosae, and Rosaceae) collected from different geo-
graphical regions, whose clusters were deeply confirmed 
by PCA analysis. Taxonomic relationship reconstruction, 
classification, and identification in archaeobotanical appli-
cations [13, 39, 42, 43], as well as in human allergenic com-
pound isolation and analysis in palynology [38, 55–57], have 
already been performed by MALDI-MS technology. Despite 
that, comparisons with previous works were not easily con-
ducted due to unavailability of the databases, and/or lack of 
pollens of relevance for pollinators. The only exception was 
represented by the comparison between Quercus sp. pollen 
directly collected from plants [42] and Quercus sp. spectra 
obtained in our research, which showed a reliable spectrum 
overlapping that confirms the validity and reproducibility 
of our method.

It is worth highlighting that also differences in the MFPs 
acquired among pollens of the same botanical families were 
detected. Our hypothesis would be that such differences may 

be attributed to (i) genus and species variations within each 
family, (ii) different geographical origins, and (iii) different 
nutritional parameters (especially in lipid and protein con-
tent). The high intensity detected especially for low molecu-
lar ions between 700 and 900 m/z might highlight variations 
that can be attributed to non-peptidic components of the pol-
len such as lipids and/or sugars (reviewed by Zemski Berry 
et al. [58] and Leopold et al. [59]. This work did not focus on 
the specific type of molecules extracted, but it is a molecular 
mass fingerprinting strategy that targets the molecular ion 
fingerprint maps of pollen extracts. However, we hypotheti-
cally expected to detect lipids and phospholipids from 600 
to 930 m/z according to Liang et al. [60] and Schiller et al. 
[61] phenolic extracts from 600 to 930 m/z according to 
Khadhri et al. [62], and small and medium-size proteins all 
over the range (600 to 18,000 m/z). Vitamins that range from 
100 to 500 m/z [63], terpenes from 400 to 600 m/z [64], 
and alkaloids ranging from 100 to 500 m/z [65, 66] were 
out of range of detection. Similarly, it cannot be excluded 
that specific and sporadic ions might be linked to pollut-
ants, such as agrochemicals or fertilizers. It is known that 
foraged contaminated pollen is one of the pesticide exposure 
routes affecting pollinators [67–71]. However, pesticide and 
agrochemical residues possess very low molecular masses 
(~ m/z 80–300) out of range in our tests [72–74]; therefore, 
this hypothesis cannot be confirmed.

Conclusions

In this work, an efficient and reliable methodology for 
the identification of the botanical origin of bee pollen balls 
with MALDI-MS was described. Concerns about the safety 
of the solvent employed and time efficiency were positively 
addressed. We also demonstrated that the generation of spe-
cific models based on pollen diversity is possible avoiding 
time-consuming chromatographic techniques. Further inves-
tigations are required to expand the analysis on a wider set 
of pollen balls deriving from different botanical families, 
geographical origins, and exposed to different environmen-
tal factors, and use all these information to create a robust 
database for pollen analysis. Finally, this research wants to 
lay the basis for an innovative and holistic methodology able 
to determine, in addition to the botanical origin, the bee pol-
len balls’ nutritional value (e.g., sugar, lipids, and protein 
content) with MALDI-MS.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00216- 024- 05368-9.
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