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Abstract: This study provides an in-depth analysis of the frequency of extreme streamflow in Italy,
adopting the innovative perspective of the theory of records, and focusing on record-breaking floods.
(i.e., annual maximum series, AMS) observed in Italy between 1911 and 2020. Our research employs
an extensive dataset of 522 annual maximum series (AMS) of streamflow observed across Italy
between 1911 and 2020. We consider three time intervals (1911–2020, 1911–1970, and 1971–2020),
and we define pooling-groups of AMSs based on (a) hydrological (e.g., catchment size, mean annual
precipitation, etc.) and (b) spatial proximities of the gauged sites. First, within each group and for each
time period, we compute the regional average number of record-breaking events (NRbins). Second,
with a series of resampling experiments that preserve the spatial correlation among the AMSs, we test
the hypothesis that NRbins result from a group of stationary sequences. Our results show spatially
coherent patterns of an increasing number of record-breaking floods in central and in northeastern
Italy over the last 50 years. In the same time interval, significant deviations in the regional number
of record-breaking events from what would be expected for stationary flood sequences seem to be
more common in drier climates or at higher altitudes, while the catchment size does not seem to be a
meaningful descriptor.

Keywords: floods; record-breaking; climate change; bootstrap sampling

1. Introduction

The economic losses and social consequences caused by floods have been steadily
increasing over the last five decades worldwide [1,2]. Detecting changes in flood frequency
is a topical research issue, and the scientific community calls for a common effort to better
understand recent flood dynamics and their spatiotemporal evolution.

An increasing number of studies investigate the presence of non-stationarities in the
frequency and magnitude of observed and projected peak flows at both the global [3,4]
and continental scale [5–7]. With specific reference to Europe, recent studies show a
complex system of changes in frequency and magnitude of observed floods over the last six
decades [8–10]. In particular, Ref. [11] observes that in the last five decades, floods dynamics
have changed dramatically across Europe. Regional patterns are particularly evident in
some areas, e.g., Southern Europe, yet sub-regional patterns (e.g., specific areas of specific
regions) may be masked by the filtering criteria (e.g., minimum sample length) adopted
in these studies. Several studies investigate the presence of non-stationary patterns at a
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smaller scale (i.e., national [12–14] or regional [15,16]), considering local morpho-climatic
effects and uncertainty due to data scarcity, inaccuracy, or fragmentation ([17,18]).

A considerable number of publications adopt a non-stationary framework for model-
ing flood statistics [19,20]. Some of these focus on particular elements of flood dynamics in
single river catchments [21], while others compare different models for frequency analysis
of annual maxima in small-to-medium regions [22].

Generally, the theoretical frameworks adopted for this type of analysis are the extreme
value [23] and time series analysis [24] theories. These aim to define the best-fit probability
distribution that describes the occurrence of extreme values (e.g., streamflow and precipita-
tion [19,25]) and to provide non-parametric tests to detect non-stationarity in the mean or
other statistics of the variables of interest (e.g., the Mann–Kendall test, see [26]). However,
the extreme value theory is very sensitive to the length of the time series and the possible
presence of outliers, which may negatively affect the reliability of the fitted probability
distribution [27,28].

The theory of records, or of record-breaking events, is still underutilized in this
research area, despite its relevance and potential [29]. This theory investigates the statistical
properties of the occurrence and magnitude of those events that exceed (upper records) or
are exceeded (lower records) by any other formerly observed events (herein referred to
as +records and −records, respectively). This theory offers a framework for analyzing the
frequency of extreme events which is nearly independent of the probability distribution of
the original variable—in our case, annual maximum discharge [30,31]—and which does not
require the probability distribution to be fit to the observed data, thus being less sensitive
to the length of the time series than standard flood frequency analyses. For these reasons,
it has been widely and successfully applied for assessing the possible presence of non-
stationarity in time sequences of several variables, such as temperature [32], monthly and
daily precipitation [33,34], and earthquake magnitudes [35], and in a variety of research
fields (e.g., sports [36], biology [37], etc., see e.g., [38]). It is worth mentioning that the
analysis of non-stationarity in the extremes, based on record-breaking events, recently
inspired a software tool for statistical testing [39]. Thus, the application of the theory of
records to annual maximum flood sequences can be very useful to improve our knowledge
about flood frequency for events of high and very high magnitude [40].

Our study contributes to this research field with an in-depth analysis of the frequency
regime of record-breaking floods in Italy. In particular, we focus on an extensive dataset
of flood sequences (i.e., annual maximum series, AMS) observed at 522 stream gauges
in Italy between 1911 and 2020 and we consider the entire observation period, as well as
two consecutive time intervals: 1911–1970 and 1971–2020. We look at two different kinds
of record-breaking events in a time series, that is the events with the maximum (+record)
or minimum (−record) intensity up to that year, and we focus on the average number
of record-breaking events in a region (i.e., in a pooling-group of AMSs), and in the three
time-intervals of interest. By performing a series of resampling experiments that preserve
the spatial correlation among the AMSs of the pooling group, we test the hypothesis that
the observed regional average number of record-breaking events results from a group of
stationary sequences. We identify the pooling group of sites by referring to (a) hydrological
and (b) spatial proximity. In the first case, we group catchments that are similar in terms
of size, mean annual precipitation, mean annual snow depth, elevation, or latitude; in the
second case, we use a moving square pooling window of 90 × 90 km2.

Our research questions are as follows: (1) Does the number of record-breaking floods in
Italy deviate from what is expected under the iid hypothesis? If so, (2) are recent deviations
larger or more frequent than those in the past? (3) Are larger deviations associated with
specific sub-regions, or morphological and climatic characteristics?

The main aim of the study is to assess and understand the presence of non-stationarities
in the frequency of occurrence of record-breaking events in Italy. Our study is comple-
mentary (for the Italian territory) to the work carried out in Ref. [8], as it uses a different
perspective and theoretical framework (i.e., analysis of the frequency of record-breaking
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events instead of the analysis of the magnitude of extreme values) and a much finer spatial
resolution (i.e., more sequences of annual maximum floods). These latter features are
elements of novelty relative to those employed in previously published studies, combined
with the original and general framework adopted for the analyses, which we present in the
following paragraph.

2. Data and Methods
2.1. Study Area

Our analysis focuses on 522 annual maximum series (AMS) of flood flows collected
across Italy [41] between 1911 and 2020. Beside the total time period (i.e., 1911–2020),
the 1911–1970 and 1971–2020 sub-intervals are also considered and studied in the present
research. These have been selected based on the findings of Refs. [11,42], who clearly
demonstrate that the dynamics of flood events have experienced a dramatic change across
Europe over the last five decades. Table 1 illustrates the variability of the AMS record
length over the three different time intervals considered in the study. Figure 1a depicts
the geographical distribution of the study stream gauges, their drainage areas, and the
availability of the observed annual maxima in the three time intervals considered.

Table 1. Record length statistics for the annual maximum series (AMS) of the study for the flood
flows in the three different time intervals considered the analyses.

1971–2020 1911–1970 1911–2020 Time Interval

263 464 522 AMS

19.4 21.5 28.9 Average record length (years)

18 19 23 Median record length (years)

49 53 59 Maximum record length (years)
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A number of catchment descriptors are retrieved. These include the basin’s size (A),
mean annual precipitation (MAP), mean annual snow water equivalent (SWE), minimum
elevation (ME), and latitude of catchment centroid (LC). All morphological descriptors (i.e.,
A, ME, LC) were computed from the 90 m Multi Error Removed Improved Terrain Data
Elevation Model (MERIT DEM, [43,44]), while catchment scale climatic indices (i.e., MAP
and SWE) were computed from the 1 km gridded datasets available from the BIGBANG
project (Italian GIS-based national water balance, see [45]). These static (i.e., time-invariant)
catchment descriptors are selected based on the methods of previous relevant studies [46–48].

Figure 2 reports the elevation, mean annual precipitation, and mean annual snow
water equivalent for the Italian territory for a better characterization of the study area.
The main mountain chains are the Alps in the north, with the highest elevation, and the
Apennines, which cross all the peninsula (Figure 2a). The MAP decreases from north
to south, and generally increases where the elevation is higher (Figure 2b). The SWE is
basically different from zero only in mountain areas and in the north (Figure 2c).
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2.2. Number of Record-Breaking Events in Independent and Identically Distributed (iid) Series

A record-breaking event, or record event, is defined as an event whose magnitude
either exceeds (+record) or is exceeded (−record) by all previously observed events [29,49];
the first observation in a sequence is generally counted as a (trivial) record. Let us consider
a sequence of independent and identically distributed (iid) random variables of length
n; then, the number of records in the series R is a random variable, whose probability
distribution is totally independent of the probability distribution of the original variable
(e.g., annual maximum floods in a given cross-section) with mean, µR, and variance, σ2

R,
defined as:

µR =
n

∑
i=1

1/i (1)

σ2
R =

n

∑
i=1

1/i −
n

∑
i=1

1/i2 (2)

Figure 3 illustrates the progression of µR (black line) with n, together with the 2.5th
and 97.5th percentiles of R. It is interesting to note the rather limited expected number of
records for an iid sequence with a length of 100 elements. This characteristic renders the
number of record-breaking events an interesting variable for detecting possible changes
in the frequency distribution of the variable of interest (e.g., annual maximum flooding).
Indeed, significant deviations in the number of record-breaking events in an observed time
series relative to what is expected under the iid hypothesis indicate non-stationary time
series [30].
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2.3. Testing the Statistical Significance of the Deviation in the Average Number of Records in
Pooling-Groups of AMS of Flood Flows Relative to What Is Expected under the iid Hypothesis

In this study, we focus on the average number of record-breaking events of pooling-
groups of AMS of flood flows. We refer to three different historical time periods, namely
1911–2020, 1911–1970, and 1971–2020. We pool together the annual sequences of maximum
floods according to two criteria, i.e., hydrological similarity and spatial proximity of the
catchments. Both criteria will be better described in Section 2.4.

The main objective of the study is to assess whether the number of record-breaking
events observed in a given pooling-group of AMS is compatible with the iid hypothesis
(i.e., the AMS of flood flows in the pooling-group may be regarded as a stationary series
relative to the frequency of record-breaking events).

First, we compute the number of record-breaking events (for both +record and −record
events) in each AMS of the pooling-group. Suppose we have a total of m series in the
group; it is worth noting here that each AMS i, with i = 1, 2, . . ., m, has its own number of
records ni. Then, we compute the mean number of records in the pooling-group. Finally, we
assess the deviation of this mean value from what would be expected for the same group
of AMS (i.e., the group counts m AMS in total) under the iid hypothesis (i.e., each AMS
consists of ni realizations of independent and identically distributed random variables, with
i = 1, 2, . . ., m). This is achieved by comparing the average number of records observed
in the pooling-group with the distribution of the average number of records in synthetic
pooling-groups of iid series having the same sample length of the original series, which
we obtained through a bootstrap resampling experiment [50]. In particular, we design
the resampling experiments to preserve the existing spatial correlation between annual
maximum floods observed in the same year at different stream-gauges, which cannot be
neglected when testing the statistical significance of a null hypothesis at a regional scale (on
the possible impact of spatial correlation of time series on statistical testing at regional scale
see also [30,51,52]). We randomly shuffle 10,000 times the group of AMS year-wise, so that
the sequence of data in each time series differs from the original series, yet the distribution
of observations among the various AMS in any given year is preserved, together with the
AMS length ni, with i = 1, 2, . . ., m. For each synthetic (i.e., reshuffled) dataset, we compute
the regional average number of records as described above for the original pooling-group
of AMS. Then, we compare the empirical regional average number of record events with the
distribution of 10,000 synthetic regional means obtained through the bootstrap resampling
experiments, to test the statistical significance of the observed deviations.
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2.4. Criteria for Pooling-Groups Definition

First, we analyzed hydrologically homogeneous pooling-groups of catchments, group-
ing the dataset according to the five catchment descriptors mentioned in Section 2.1: size
(A), mean annual precipitation (MAP), mean annual snow water equivalent (SWE), mini-
mum catchment elevation (ME), and latitude of the catchment centroid (LC). The objective
of these experiments is to group hydrologically similar catchments and to verify whether
the frequency of record-breaking events at the national scale shows non-stationarity; if so,
the non-stationary behavior depends on the catchment descriptors.

We grouped the study catchments into a total of 36 classes by combining the size of
the catchments (three classes) with one of the four remaining catchment descriptors (three
classes each). For each of the 36 classes, we calculated the regional mean number of record
events (+records and −records) by referring to the three time periods, namely 1911–2020,
1911–1970, and 1971–2020. The regional mean number of records (NRbin) was then com-
pared with 10,000 synthetic mean regional records obtained from the bootstrap experiment
described above, and the deviation of the empirical value from what is expected under
the iid hypothesis assessed at a 10% significance level. The 36 classes of this assessment
are presented in Figure 4 for the four combinations (i.e., A-MAP, A-SWE, A-ME, A-LC)
and the three different time intervals considered in our study (i.e., 1911–2020, 1911–1970,
1971–2020).
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Figure 4. Size (y axis) and other descriptors (x axis) of the study area: mean annual precipitation (a),
mean annual snow precipitation (b), outlet elevation (c), latitude of catchment centroid (d). Colors of
the dots follows the legend of Figure 1.

The second part of the study aims to detect the spatial pattern of changes in the fre-
quency of record-breaking events. This is performed by grouping catchments based on spa-
tial proximity. We consider a discretization of Italy into square grid cells of 30 km × 30 km
in size, and we pool AMS observed at stream gauges located in any given cell, as well as in
the eight surrounding ones (i.e., overall size of the pooling-group: 90 km × 90 km). This
spatial subdivision can be visualized in Figure 1c. Specifically, only 90 km × 90 km tiles
containing at least five stream gauges are considered when plotting the results so that the
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outcomes for any tile are never associated with at-site, or local, conditions and are therefore,
more robust.

Analogously to what has been described for the hydrological grouping criterion,
for each pooling-group of AMS, we compute the regional average number of records
(both for +record and −record events) and compare it with the empirical values with
the 10,000 synthetic bootstrap regional number of records, focusing on the previously
mentioned three time periods.

In summary, in the present study, the possible presence of non-stationarity in annual
maximum flood sequences is assessed through the theory of records, and statistical hy-
pothesis testing is performed on pooling-groups of the catchments. Thus, the proposed
framework assesses the statistical significance of the results at a regional level, instead of
locally, by looking at single time series. According to several recent studies [17,18,53,54],
most statistical approaches used for detecting trends or non-stationarity would require very
protracted observed time series to perform optimally; these are seldom available, and are
very sparse in regards to space. Moreover, time series are often affected by measurement
errors and fragmentation. The aggregation of time series into pooling-groups (i.e., regional
analysis) helps in reducing the uncertainty and increasing the robustness of these types
of analyses.

3. Results
3.1. Pooling-Groups of Hydrologically Similar Catchments

For each single pooling-group, the distribution of NRbin is computed using a bootstrap
method, as described in Section 2.3. This distribution essentially reproduces the natural
variability of the NRbin in the iid sequences, and is represented via boxplots in Figures 5–8.
The NRbin computed using the original time series is represented as a red circle for each
pooling-group and each time interval. In cases where NRbin falls outside the confidence
interval for iid sequences, a red triangle is adopted.
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Figure 5. Average number of +(panels (a–i)) and −(panels (j–l,p–u)) records for hydrologically similar
catchments. The pooling descriptors include catchment area (y axis) and mean annual precipitation
(MAP, x axis). Values for the boxplots are obtained through bootstrap experiments; a red circle
represents the average number of records for each pooling-group. Average numbers of records falling
outside the confidence interval are marked with red triangles.
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Figure 6. Average number of +(panels (a–i)) and −(panels (j–l,p–u)) records for hydrologically similar
catchments. The pooling descriptors include catchment area (y axis) and mean annual snow water
equivalent (SWE, x axis). Values for the boxplots are obtained through bootstrap experiments; red
circles represent the average number of records for each pooling-group. Average numbers of records
falling outside the confidence interval are marked with red triangles. Also see the legend in Figure 5.
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Figure 7. Average number of +(panels (a–i)) and −(panels (j–l,p–u)) records for hydrologically similar
catchments. The pooling descriptors include catchment area (y axis) and minimum elevation (ME,
or outlet elevation, x axis). Values for the boxplots are obtained through bootstrap experiments; red
circles represent the average number of records for each pooling-group. Average numbers of records
falling outside the confidence interval are marked with red triangles. Also see the legend in Figure 5.
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Figure 8. Average number of +(panels (a–i)) and −(panels (j–l,p–u)) records for hydrologically similar
catchments. The pooling descriptors include catchment area (y axis) and latitude of the catchment’s
centroid (LC, x axis). Values for the boxplots are obtained through bootstrap experiments; red dots
represent the average number of records for each pooling-group. Average numbers of records falling
outside the confidence interval are marked with red triangles. Also see the legend in Figure 5.

The number of records is significantly different from that in the iid hypothesis (i.e., red
dots outside the confidence interval of 5–95% of the boxplot) in several cases. Regarding
the first hydrological criterion (i.e., catchment area and mean annual precipitation), six
cases are evident. The number of higher records shows an increase during the 1971–2020
time interval for intermediate- and large-sized catchments with low (Figure 5d,g) and inter-
mediate MAP (Figure 5e,h). The lower records show an increase for the whole 1911–2020
time interval in drier intermediate catchments (Figure 5p), and a decrease for the 1971–2020
time interval in smaller catchments with intermediate MAP (Figure 5k).

Regarding the second criterion (i.e., catchment area and mean annual snow precipita-
tion), three cases of significant non-stationarity are observed. The higher records exhibit an
increase during the 1971–2020 time interval for intermediate-sized catchments with average
snow precipitation (Figure 6e) and larger-sized catchments with higher SWE (Figure 6i). In
the same time interval, larger-sized catchments with higher SWE also show a significant
decrease in the occurrence of lower records (Figure 6u).

Regarding the third hydrological criterion (i.e., catchment area and outlet elevation),
four cases of significant non-stationarity are observed. The +records show an increase
during the 1971–2020 time interval in intermediate sized catchments with lower (Figure 7d)
and higher (Figure 7f) ME, as well as in large catchments with average ME (Figure 7h).

Regarding the fourth hydrological criterion (i.e., catchment area and centroid’s lati-
tude), higher records exhibit an increase in non-stationary occurrence for all catchments
with central latitude (Figure 8b,e,h).

3.2. Pooling-Groups of Spatially Close Catchments

Figures 9 and 10 show the average number of records and the statistical significance
of the deviation from what would be expected under the iid hypothesis for +records
and -records, respectively, with a 90 × 90 km spatial discretization of the study area
(see Section 2.3). They refer to the empirical p-value, i.e., empirical non-exceedance prob-
ability of the average number of record events in each tile relative to the distribution of
the synthetic average number of records resulting from the 10,000 bootstrap realizations.
Specifically, only tiles containing at least five stations are showed. Figures 9 and 10 refer to
the last 50 years, while the results we obtained relative to the time periods 1911–2020 and
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1911–1970 (not shown here for the sake of brevity) show statistically significant deviations
from the iid hypothesis regarding the regional number of +record or −record events only
in small areas and isolated pixels, if any.
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Figure 9. Spatial analysis of the average number of +record events and its statistical significance
(10% significance level) relative to pooling-groups of iid series having the same length and spatial
correlation as the original sample: (a) average number of +records (see color scale); (b) tiles for
which the average number of record events is associated with p-values > 0.95 or <0.05 under the iid
hypothesis.

Atmosphere 2024, 15, x FOR PEER REVIEW 10 of 15 
 

 

years, while the results we obtained relative to the time periods 1911–2020 and 1911–1970 

(not shown here for the sake of brevity) show statistically significant deviations from the 

iid hypothesis regarding the regional number of +record or −record events only in small 

areas and isolated pixels, if any. 

 

Figure 9. Spatial analysis of the average number of +record events and its statistical significance 

(10% significance level) relative to pooling-groups of iid series having the same length and spatial 

correlation as the original sample: (a) average number of +records (see color scale); (b) tiles for which 

the average number of record events is associated with p-values > 0.95 or <0.05 under the iid hypoth-

esis. 

 

Figure 10. Spatial analysis of the regional average number of −record events and its statistical sig-

nificance (10% significance level) relative to pooling-groups of iid series having the same length and 

spatial correlation as the original sample: (a) average number of −records (see color scale); (b) tiles 

for which the average number of record events is associated with p-values > 0.95 or <0.05 under the 

iid hypothesis. 

Clear and spatially coherent geographical patterns are visible. For example, we detect 

an intensification in the frequency of record-breaking flood events in central and north-

eastern (i.e., Triveneto) Italy (Figure 9). In these areas, +record events are significantly 

more frequent than what is expected under the iid hypothesis, while −records are less fre-

quent than expected for iid sequences (Figure 10). Also, -record events show a higher fre-

quency than for iid sequences in southern Italy, particularly for stream basins with river 

mouths originating in the Adriatic Sea. 

Figure 10. Spatial analysis of the regional average number of −record events and its statistical
significance (10% significance level) relative to pooling-groups of iid series having the same length
and spatial correlation as the original sample: (a) average number of −records (see color scale);
(b) tiles for which the average number of record events is associated with p-values > 0.95 or <0.05
under the iid hypothesis.

Clear and spatially coherent geographical patterns are visible. For example, we detect
an intensification in the frequency of record-breaking flood events in central and north-
eastern (i.e., Triveneto) Italy (Figure 9). In these areas, +record events are significantly more
frequent than what is expected under the iid hypothesis, while −records are less frequent
than expected for iid sequences (Figure 10). Also, -record events show a higher frequency
than for iid sequences in southern Italy, particularly for stream basins with river mouths
originating in the Adriatic Sea.
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4. Discussion

The presented results show that if we consider the entire available period (1911–2020)
or the period of 1911–1970, the empirical average numbers of record events (both +record
and −record) do not show significant deviations from the iid hypothesis, with a few ex-
ceptions. In particular, regional numbers of −record events present few, but consistent,
significant deviations in the time period of 1911–2020 in smaller and intermediate catch-
ments (Figures 5p, 7k and 8j), which may be linked to a decrease in the magnitude of flood
events over time.

Differently, in the last 50 years, statistically significant deviations from what would
be expected under the iid hypothesis have been found for pooling-groups of catchments.
Specifically, when considering pooling-groups that are identified based on hydrological sim-
ilarity, +records show a larger number of deviations (Figures 5d,e,g,h, 6e,i, 7d,f,h and 8b,e,h)
relative to those of the −records (Figures 5k and 6u). It is interesting to note that the behav-
ior observed for +record events is in agreement with that of -record events (e.g., an increase
in time of the frequency of +record events is coupled with a decrease in the frequency of
-record events; the overall magnitude of annual maximum floods is increasing in time) in
two cases. This happens for larger catchments with high SWE (see Figure 6i,u, for +records
and −records, respectively) and for pooling-groups of sites (i.e., tiles) in northeastern Italy
(see Figures 9b and 10b).

Regarding the hydrological subdivision of the available catchments, the alterations
we detected vary among homogeneous groups, as in some classes, we observe an increase
in the number of record-breaking floods, while a statistically significant decrease can be
observed in others.

Interestingly, the catchment area does not show a direct and interpretable link with the
alterations. Other descriptors appear to have a more structured influence on the number
of records. As an example, during the last 50 years, catchments with lower MAP (mostly
located in the central southern Italy, see Figure 2b) tend to show more statistically significant
deviations in the frequency of record-breaking events relative to what would be expected
for a stationary annual maximum series (Figure 5). This may be due to the fact that basins
with higher MAP, located in the north and at high elevations in the central Italy, can exhibit
opposite non-stationarities (see Figures 9 and 10); thus, aggregating by means of MAP only
can hide local signals. Differently, larger catchments with high SWE, which could describe
the northeast basins, exhibit significant non-stationarity (Figures 6, 9 and 10).

Notably, these observations are in line with the work of Ref. [9]; this study detected a
flood-rich period in northern Italy over the last decades. Positive trends of flood quantiles
showed in Ref. [55] are in agreement with the increase in +record occurrence in the northeast
(Figure 10b). The increase in −records in the south (Figure 10b) seems to be related to the
negative trends observed over all of southern Europe [8,11,55]. However, the findings in
Figures 9 and 10 suggest that, when considering regional/national scales, more complex
non-stationary patterns may arise with respect to continental scale studies that ignore
smaller basins or shorter series. An interesting example is the non-stationarity signals in
central Italy. This area was not marked as a flood change hot-spot in recent continental scale
studies, most likely because of the lack of relevant information in such studies. Instead, the
analysis framework we propose allows us to consider short time series, therefore increasing
the spatial resolution of data coverage in the study area. Also, still concerning differences
between our outcomes and those of existing studies, it is very important to underline
once more the specific and novel perspective of our study, referring to the frequency of
record-breaking events, which is markedly different from the approaches of most of the
existing literature. Anomalies in the frequency of +records/−records are related to changes
in very large/very small floods rather than to changes in the mean of flood frequency
curves, which is usually considered with regression-based trend analyses.

It should be mentioned that a limitation of the present approach consists in the
quality and quantity of the input data adopted within the study. In fact, the length
and completeness of the time series employed for these analyses can strongly affect the
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recognition of spatial patterns and non-stationarity [53]. This is evident when looking at
the availability of flood measurements for the 1971–2020 time interval in our study area
(Figures 1a, 9a and 10a), which is concentrated in specific areas, mostly in central and north-
ern Italy. A possible solution to this problem could be time series reconstruction [54,56,57].
However, the statistical properties of a synthetic time series would introduce strong and
unreliable assumptions.

Nevertheless, studying the behavior of the number of records within the pooling-groups
of catchments allows us to simultaneously consider a higher number of measured time series
with a variable length, which increases the robustness of the results [17]. It is positive that
significant alterations from the stationary case are not present wherever observations for
1971–2020 time interval are available, but only in specific areas (e.g., compare Figure 9a with
Figures 9b and 10a with Figure 10b). In fact, while all of northern and part of central Italy
express a rather uniform data coverage over the last 50 years, statistically significant deviations
are detected only for some sub-regions. Indeed, where data for the 1971–2020 time interval
are sparse, the absence of statistically significant non-stationarity signals could be an artifact
of data scarcity (see southern Italy, Figures 9 and 10).

Generally, our findings are consistent across different pooling strategies (see the
discussion above), and their agreement with those of previous studies can be taken as proof
of their reliability. Future studies could investigate the drivers of floods and their temporal
evolution, such as the presence of non-stationary behaviors in time sequences of extreme
rainfall and frequencies of record-breaking rainstorms.

5. Conclusions

A large number of studies investigate the presence of non-stationary behaviors in the
frequency and magnitude of peak flows at global [3,4] and continental scale [5–7]. Usually,
the theory of extreme values and trend analysis is adopted. Differently, our work relates to
the theory of records [29], and in particular, to the frequency of record-breaking events, which
is a complementary perspective that might be very useful to improve our understanding
regarding the frequency of extraordinarily intense events [30,40]. In particular, our study aims
to assess the temporal and spatial evolution of the frequency of record-breaking flood events
observed in Italy over the last century.

In our study, we define record-breaking events as the annual maximum floods that
exceed, or are exceeded, by all other maxima that were previously observed for the same
river cross-section. Our analysis considers 522 annual maximum series (AMS) of flood
flows and based on the outcomes of some recent continental analysis of flood changes,
refers to three distinct time intervals: 1911–2020, 1911–1971, and 1971–2020. For these three
time periods, we compute the mean value of the number of record-breaking events in
the pooling-groups of AMS identify based on hydrological affinity (expressed in terms of
geomorphological and climatic descriptors) or geographical proximity of the corresponding
catchments. Then, we compare the empirical values of the regional mean number of records
with the average number of record events expected for groupings of iid AMS exhibiting the
same characteristics, in terms of the number of available observations.

Our results show evident and statistically significant deviations in the frequency of
record-breaking floods relative to what is expected under iid hypothesis. Stronger signals
are associated with the last 50 years of observations, as observed in Ref. [11]. In particular,
dryer catchments show an intensification in the magnitude of annual maximum floods
in the last five decades, and hot spots of such an intensification can be found in Central
and northeastern Italy. These outcomes are partially in agreement with the findings in
recent studies at larger scales [8,9,11], but they also highlight the presence of previously
unobserved patterns and hotspots of non-stationarity in flood frequency due to the finer
scale and higher data coverage of our analyses. We believe that these concerning outcomes
call for further investigations, particularly under the most sensitive climatic conditions and
in the geographical areas identified in the study, as well as under similar morphological
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and climatic conditions found in the Alps, as well as in the Mediterranean Basin, to better
assess the degree and extent of flood hazard intensification.
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