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High computational cost and storage/memory requirements of fluid dynamics simu-10

lations constrain their usefulness as a predictive tool. Reduced-order models (ROMs)11

provide a viable solution to this challenge by extracting the key underlying dynamics12

of a complex system directly from data. We investigate the efficacy and robustness of13

an extended dynamic mode decomposition (xDMD) algorithm in constructing ROMs14

of three-dimensional cardiovascular computations. Focusing on the ROMs’ accuracy15

in representation and interpolation, we relate these metrics to the truncation rank16

of singular value decomposition, which underpins xDMD and other approaches to17

ROM construction. Our key innovation is to relate the truncation rank to the sin-18

gular values of the original flow problem. This result establishes a priori guidelines19

for the xDMD deployment and its likely success as a means of data compression and20

reconstruction of the system’s dynamics from dominant spatiotemporal structures21

present in the data.22

a)tartakovsky@stanford.edu
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I. INTRODUCTION23

High computational burden of fluid dynamics simulations has propelled the develop-24

ment of model reduction techniques for problems dealing with complex flow and transport25

processes in fields as diverse as geosciences and biomedicine1–5. A reduced-order model26

(ROM) is a computationally efficient and reasonably accurate representation of the underly-27

ing dynamics of a state variable or a quantity of interest, derived from observations and/or28

computer-generated data. The efficiency of a model reduction technique manifests itself in29

both the amount of data required for the ROM construction and the ROM approximation30

accuracy in the interpolation and extrapolation regimes6.31

Dynamic mode decomposition (DMD) is a data-driven technique that constructs ROMs of32

complex dynamical systems by employing the singular value decomposition (SVD)7,8. DMD33

aims to identify spatiotemporal structures that are dominant in the data and to reconstruct34

an optimal linear model from these structures. A DMD variant xDMD9 combines salient35

features of the residual learning10 and the generalized DMD with a bias term11. This DMD36

algorithm has the ability to handle dynamical systems described by inhomogeneous partial37

differential equations, which proved to be problematic for standard DMD. Numerical studies,38

dealing with problems as diverse as the Navier-Stokes equations9 and multiphase transport in39

porous media12, suggest that the xDMD is more accurate than the standard DMD algorithm40

(hereinafter, sDMD13). Since xDMD has more parameters than sDMD (the bias term), it is41

potentially more sensitive to noise than. However, the numerical experiments9 indicate that42

the correction effects from the bias term may dominate the effects of over-fitting the noise.43

These and other methods for ROM construction rely on the truncation rank of SVD44

to control the degree of order reduction and representation accuracy. The choice of how45

many singular values to keep depends on such factors as the quality and origin of the data46

and the dynamic importance of low-energy modes13. The rank selection is typically done47

via experimentation, rendering the method’s implementation subjective. A more principled48

approach is to balance order reduction and approximation accuracy by utilizing a general49

criteria12. The rank choice is also linked to xDMD’s data compression ability, which is given50

by the capability of the algorithm to preserve high accuracy for low values of the truncation51

rank12,13. By identifying dominant coherent structures from data, the method effectively52

reduces the dimensionality of high-dimensional datasets, thereby achieving compression-like53
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effects. That is relevant in fluid dynamics, where DMD operates by reducing the dimension-54

ality of the flow field data while preserving its essential characteristics. Another application55

is climate science, where DMD can be used to compress large-scale climate datasets into a56

reduced set of dominant modes, facilitating the analysis and visualization of long-term cli-57

mate trends and variability13. In yet another setting of multiphase flow in porous media12,58

xDMD demonstrated high prediction accuracy (relative interpolation error on the order of59

10−9) with a truncation rank of up to 35% of the dataset dimension. By way of a disclaimer,60

we note that, like other SVD-based techniques, DMD often struggles to honor translational61

and rotational invariances of low-rank objects embedded in the data13.62

Our study has three intertwined goals. The first is to analyze how the representation63

error of xDMD is affected by the truncation rank in SVD, which, in turn, is linked to64

singular values of the problem. The second is to test the xDMD-based ROM in terms65

of its interpolation error, for different truncation ranks. The third goal is to explore the66

effect of neglecting possible irrelevant/overfit-inducing information (noise) on the accuracy67

of the approximation. We pursue these goals in the context of three-dimensional (3D)68

cardiovascular simulations of blood flow in a complex geometry of a patient-specific aorta.69

The reference aorta geometry is selected from the Vascular Model Repository (www.70

vascularmodel.com), a library of patient-specific cardiovascular models developed on volu-71

metric image data sets and relevant physiologic data14. Fluid dynamics data are generated72

with SimVascular (http://simvascular.github.io/). The latter is an open-source software73

that provides a complete pipeline, from medical image data segmentation to patient-specific74

blood flow simulations based on the 3D incompressible Navier-Stokes equations15. We use75

a data set consisting of ≈ 2 · 103 time frames of the velocity distribution (on a mesh with76

∼ 105 elements) in a selected aorta.77

Our research provides practical guidelines for the selection of low-rank truncation options78

for optimal order-reduction (data compression). Our findings suggest that excluding low-79

energy modes, which do not contribute to the elucidation of system dynamics, is beneficial80

to ROM accuracy. We also found the ROM accuracy to be robust to both the size of time81

intervals between the snapshots and low-rank truncations. This conclusion requires a flow82

map of the system dynamics to be sufficiently smooth in space. An optimal rank selection83

needs to consider the ROM’s prediction reliability not only in reproducing the training data84

(representation error) but also in making predictions at space-time locations where the data85
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are not available (interpolation error). Once optimized, the ROM can be used to replicate86

cardiac function in a low-dimensional space, reducing the simulation cost and facilitating87

the optimization and design of patient-specific interventions. At the same time, the DMD-88

based modal decomposition allows for the identification of physically interpretable patterns89

in the temporal and spatial evolution of the observed cardiovascular phenomena16. Coherent90

structures and dominant flow features can be analyzed to discover the underlying physics91

and possibly employed to detect pathologies17–21.92

The paper is organized as follows: Section II is devoted to the formulation of the problem;93

in Section III the xDMD algorithm is described; while in Section IV its application to the94

test case is presented and discussed; a set of final remarks in Section V closes the paper.95

II. PROBLEM FORMULATION96

Once discretized on a numerical mesh, system states are arranged into a state vector97

u(𝑡) ∈ R𝑁 of length 𝑁. The temporal evolution of this discretized system is described by a98

system of 𝑁 (nonlinear, homogeneous) ordinary differential equations,99

du

d𝑡
= f (u, s), u(0) = u0, (1)100

where f (u, ·) decribes the nonlinear dynamics, s ∈ R𝑁 represents the source/sinks term and101

boundary conditions, and u0 ∈ R𝑁 denotes the discretized initial state of the system.102

Let ΦΔ𝑡 : R
𝑁 → R

𝑁 be a flow map, which relates the discretized system state u(𝑡) to103

u(𝑡 + Δ𝑡) at any time 𝑡 and time step Δ𝑡.104

Lemma 1 Assume f is Lipschitz continuous with Lipschitz constant 𝐿 on a set H ⊆ R𝑁 .105

Define HΔ𝑡 = {y ∈ H : ΦΔ𝑡 (y) ∈ H}. Then, the flow map ΦΔ𝑡 is Lipschitz continuous on106

HΔ𝑡. Specifically, for any y and ỹ ∈ HΔ𝑡,107

‖ ΦΔ𝑡 (y; s) − ΦΔ𝑡 (ỹ; s) ‖≤ 𝑒𝐿𝜏 ‖ y − ỹ ‖,∀𝜏 ∈ [𝑡, 𝑡 + Δ𝑡] .108

The proof follows from the classical result on the continuity of a dynamical system (p. 109109

in Ref. 22). The local Lipschitz continuity of the flow map ensures that nearby tra-110

jectories evolve smoothly and predictably, which is critical for the validity of the DMD111

approximation11. Moreover, if the flow map is locally Lipschitz continuous, the system’s112

behavior can be accurately represented by a finite number of modes that evolve smoothly113
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in time, thus aiding interpretation and forecasting. Various DMD studies23 indicate that a114

linear operator might not be a good approximation of the general flow map, particularly for115

highly nonlinear problems. In such cases, it might be necessary to map the state variables116

onto observables13.117

The DMD approach approximates the nonlinear dynamical system, i.e., f (u, ·), with118

a linear model constructed from 𝑀 temporal snapshots of the discretized state variable,119

x𝑘 = u(𝑡𝑘 ) with 𝑘 = 0, . . . , 𝑀 − 1. In general, numerical simulations involve discretizing120

continuous processes into time steps. The continuous nature of the flow map enables in-121

terpolation between simulation time steps or extrapolation beyond them, providing a more122

precise representation of the system’s behavior.123

Let L be a DMD-based ROM of the dynamical system (1). At time 𝑡𝑘 , the true solution124

induced by the flow map ΦΔ𝑡 and its DMD approximation are125

x𝑘 = ΦΔ𝑡 (x𝑘−1) and xL
𝑘
= L(xL

𝑘−1), (2)126

respectively. The error of a DMD model at time 𝑡𝑘 is127

𝛿L
𝑘
= ‖xL

𝑘
− x𝑘 ‖, (3)128

where ‖ · ‖ denotes vector 2-norm. The error bounds for xDMD and sDMD, reported in129

Appendix A, provide a general indicator9 for the growth of 𝛿L
𝑘
. The numerical experiments130

reported in Section IV serve to investigate this error in detail.131

III. THE XDMD ALGORITHM132

Consider a set of (𝑀+1) snapshots of the vector of state variables, x𝑘 with 𝑡𝑘+1 = 𝑡𝑘+Δ𝑡 and133

𝑘 = 0, . . . , 𝑀. Let X ∈ R𝑁×𝑀 denote a matrix whose columns are the vectors x0, . . . , x𝑀−1.134

Let X′ ∈ R𝑁×𝑀 denote a matrix whose columns are the vectors x1, . . . , x𝑀 . The sDMD135

algorithm describes the temporal evolution of u(𝑡) with a linear model136

x𝑘+1 ≈ Ax𝑘 , A = X′X† ∈ R𝑁×𝑁 . (4)137

In a typical application, 𝑀 ≪ 𝑁 so that the rank of A is at most 𝑀. Even though,138

computing A (or its spectral decomposition) is generally onerous. Instead, the truncated139

SVD of X = U𝚺V⊤, with rank 𝑟 < 𝑀, is used13:140

A ≈ X′V𝚺
−1U⊤, (5)141
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where U ∈ R𝑁×𝑟 , 𝚺 ∈ R𝑟×𝑟 , V ∈ R𝑀×𝑟 . If 𝑟 is smaller than the number of nonzero singular142

values (i.e., the rank of X), then the truncated SVD is a proxy of X.143

To allow for a problem’s inhomogeneity, the generalized DMD algorithm adds a bias term144

b𝑔 ∈ R𝑁 to the standard formulation,145

x𝑘+1 ≈ A𝑔x𝑘 + b𝑔 . (6)146

Here, [A𝑔 b𝑔] = X′X̃† ∈ R𝑁×𝑁+1, where X̃⊤
= [X 1] and X̃ ∈ R𝑁+1×𝑀 . The computational147

cost is reduced by obtaining the best-fit linear operator through the SVD of the matrix148

X̃ ≈ U𝑔𝚺𝑔V
⊤
𝑔 , such that149

[A𝑔 b𝑔] ≈ X′V𝑔𝚺
−1
𝑔 U⊤

𝑔 , (7)150

where U𝑔 ∈ R𝑁+1×𝑟 , 𝚺𝑔 ∈ R𝑟×𝑟 , and V𝑔 ∈ R𝑀×𝑟 . By construction, the error of this gDMD151

method is equal to or smaller than that of sDMD (Appendix A).152

The extended DMD (xDMD) approach9 endows gDMD with a residual-learning idea. It153

approximates the relationship between Y = X′ −X and X,154

y𝑘+1 = B𝑥x𝑘 + b𝑥 . (8)155

Here, [B𝑥 b𝑥] = YX̃† ∈ R𝑁×𝑁+1, and X̃⊤ ∈ R𝑁+1×𝑀 is defined as before. For computational156

saving, the best-fit linear operator is obtained through the SVD of the matrix X̃ as157

[B𝑥 b𝑥] ≈ YV𝑔𝚺
−1
𝑔 U⊤

𝑔 . (9)158

The error of xDMD equals to or is smaller than that of the residual DMD without bias159

(Appendix A). The impact of the bias term and residual learning on the accuracy of the160

DMD method is studied in Ref. 9. An efficient computational strategy to derive prediction161

in Eq. (8) is presented in Appendix B.162

DMD can be used as a ROM of a nonlinear PDE, whose solution is confined in H ⊆ R𝑁163

(to satisfy the assumptions in Lemma 1). We assess the performance of xDMD, both in164

representation and interpolation, in terms of the relative error9,12,13165

𝜀𝑘L =
‖xL

𝑘
− x𝑘 ‖

2

‖x𝑘 ‖2
, (10)166

where ‖ · ‖ denotes vector 2-norm.167

Several criteria can be used to select the truncation rank of a ROM1,12,13. One is to use168

the rank of the data matrix, 𝑟 = rank(X̃), i.e., to incorporate all the information contained169
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in the data, including the noise. Another criterion is based on the cumulative energy in the170

SVD of X̃; for example, one could set 𝑟 = 𝑟90, where171

𝑟90 = min(𝑛) :

∑𝑛
𝑘=0 𝜎𝑘∑𝑀−1
𝑘=0 𝜎𝑘

≥ 0.9 (11)172

is the number of diagonal elements of 𝚺 that accounts for 90% of the energy. Yet another173

criterion defines 𝑟 = 𝑟∗ as the number of diagonal elements of 𝚺 associated with the first174

singular value satisfying the inequality175

𝑟∗ = min(𝑛) : 𝜎𝑛 ≤ 10−5
𝑀−1∑︁

𝑘=0

𝜎𝑘 . (12)176

The latter two criteria allow one to ascertain the effect of truncation of low-energy modes,177

as we do below.178

IV. APPLICATION179

A. 3D Cardiovascular Model180

We deploy the SimVascular software15 to solve 3D incompressible Navier-Stokes equa-181

tions describing blood flow in a patient-specific aorta. A cardiovascular model and the182

flow-domain geometry are selected, at random, from the Vascular Model Repository14; the183

homogeneous Dirichlet boundary conditions imposed at the aorta walls imply no-slip veloc-184

ity at the rigid wall24. SimVascular relies on the 3D Delaunay triangulation to discretize185

the flow domain with a triangular mesh of 𝑁 = 343352 elements. (The flow-domain geometry186

and the corresponding mesh are available for download from the Vascular Model Reposi-187

tory.) A typical 3D finite-element simulations of the unsteady Navier–Stokes of two cardiac188

cycles for this type of geometry takes a few hours24. The quantity of interest, arranged in189

the vector u ∈ R𝑁 (see Section II), is the velocity magnitude of which 𝑀 = 1868 snapshots,190

u(𝑡𝑘 ), are collected over 7.7 s, which covers about 12 pulsations. Columns of matrices X and191

X′ are given by the snapshots of the velocity magnitude computed by SimVascular at a192

constant time interval (see Section III). We chose the number of snapshots to be sufficiently193

large to perform interpolation tests for different time steps.194

The SimVascular predictions are used to perform multiple tests, both in representation195

and interpolation regimes, with datasets of reduced (in space and/or time) size to verify the196
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generality of our results. In the representation regime, these tests start with an analysis197

of the representation error performed on the entire dataset of 𝑀 = 1868 snapshots, each198

consisting of 𝑁 = 343352 grid elements. Next, ROMs are trained on randomly selected199

data sets in which 𝑁 is reduced by a tenth and a hundredth. Finally, ROMs are trained200

on randomly selected data sets in which 𝑀 is reduced to 200 snapshots associated with201

different time intervals. In the interpolation-error analysis, we perform several tests for202

different interpolation rates. Results and analysis of these tests are presented in the following203

section.204

B. Results and Discussion205

1. Representation Error and Data Compression206

We use xDMD to construct ROMs from the entire collection of snapshots of the velocity207

magnitude and testing these ROMs’ ability to reproduce these training data. This exercise208

quantifies the representation error of xDMD. A sequence of ROMs differ from each other209

in the truncation rank applied to the SVD. We explore the xDMD accuracy at low-rank210

truncations, which are relied upon to identify dominant spatiotemporal structures in the211

computer-generated data. This analysis is also relevant for the exploration of xDMD’s212

effectiveness for data compression and storage.213

Figure 1a shows the ROMs’ representation error, computed with Eq. (10) for different214

truncation ranks 𝑟 and averaged over all the time steps. As expected, the representation215

error decreases with the truncation rank 𝑟. High accuracy is reached for relatively low 𝑟:216

when 𝑟 = rank(𝑋) = 1868, i.e., in the absence of truncation, the representation error is217

3.6 · 10−16; setting 𝑟 = 𝑟∗ = 357 or 𝑟 = 𝑟90 = 24 leads to errors of 2.8 · 10−5 or 1.5 · 10−1,218

respectively. By considering only 20% of the modes, with 𝑟 = 𝑟∗, the result is remarkably219

accurate. Additionally, the cumulative energy associated with 𝑟∗ is approximately equal to220

1 (Fig. 1c). That is linked to the rate at which the singular values decrease to 0 (Fig. 1b),221

indicating that the limited number of modes captured by 𝑟∗ are dominant in the dynamics.222

The remaining features (𝑛 > 357) are low-energy modes that do not affect the ROM accuracy;223

as such, they can be interpreted as noise and, for the purpose of data compression, can be224

neglected.225
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FIG. 1. (a) Representation error (averaged over the time instants) as function of the truncation

rank 𝑟 of the SVD of X̃ when all data (𝑁 = 343352, 𝑀 = 1868) are used to train the ROMs. (b)

Singular values and (c) cumulative energy associated with the SVD, both plotted as function of

the singular values number 𝑛. In all panels, the blue, green, and red dots correspond to 𝑟 = 𝑟90,

𝑟 = 𝑟∗, and 𝑟 = rank(X̃), respectively. In this example, 𝑟90 = 24, 𝑟∗ = 357, and rank(X̃) = 𝑀 = 1868

resulting in no truncation.

To elucidate further the effects of the truncation rank on the prediction accuracy of226

xDMD, we compare the original data with the corresponding reconstructed snapshots pro-227

vided by the ROMs truncated at 𝑟90 and 𝑟∗ (Fig. 2). Both ROMs reproduce the general228

velocity patterns, although the 𝑟90 truncation rank returns a slightly worse approximation.229

This comparison demonstrates the ROM ability to capture the salient features of the flow,230

which suggests that xDMD is suitable for the interpretation and reproduction of 3D car-231

diovascular simulations. Depending on the accuracy required by the application, one can232

select an appropriate truncation criteria and employ the xDMD-based ROM to replace the233

onerous numerical simulations with compressed reconstructions.234

To test the method’s robustness, we train ROMs on data sets with missing spatial data.235

Specifically, elements of the original mesh of size 𝑁 are randomly selected to obtain two236

reduced-size data sets of dimensions 𝑁/10 and 𝑁/100. Representation accuracy of the237

resulting ROMs, trained on all 𝑀 = 1868 temporal snapshots, is shown in Figure 3a, for the238

same values of 𝑟 = 𝑟90, 𝑟 = 𝑟∗, and 𝑟 = rank(X̃). When only the dominant spatiotemporal239

structures of the underlying flow are considered, the accuracy close to locations where the240

training data are sampled is not affected by the data loss. The error increases with 𝑟,241

9

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
7
9
5
7



FIG. 2. Magnitude of the flow velocity 𝑢 in the aorta, as predicted by (left column) direct numerical

simulations, (middle column) xDMD with truncation ranks 𝑟90, and (right column) xDMD with

𝑟∗. The velocity is plotted at times 𝑘 = 𝑀/3, 𝑘 = 2𝑀/3 and 𝑘 = 𝑀 in the first, second and third

rows, respectively.

reaching tens of orders of magnitude for 𝑟 = rank(X̃) when all the features contained in the242

data are accounted for. This finding suggests that when the data are not sufficiently rich243

to cover the solution space of interest, considering low-energy modes does not increase the244

ROM accuracy.245
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FIG. 3. Dependence of time-averaged representation error of ROMs on the SVD truncation rank

𝑟. In (a), the ROMs are alternatively trained on the data in all 𝑁 pixels and on the data at

randomly selected 𝑁/10 and 𝑁/100 pixels; in all three cases, using 𝑀 snapshots. In (b), the ROMs

are alternatively trained on the first 200 snapshots and on the 200 snapshots selected with time

intervals 4 or 8; in all three cases, using 𝑁/100 pixels. The blue, green and red dots correspond to

𝑟 = 𝑟90, 𝑟 = 𝑟∗ and 𝑟 = rank(X̃), respectively.

Another facet of xDMD’s robustness is its sensitivity to the number of temporal snapshots246

available for training. Figure 3b shows the representation error of the xDMD trained on247

𝑁/100 velocity measurements and 200 snapshots. (These snapshots are selected from the full248

data set (𝑀 = 1868) using either the first 200 images or every fourth or every eighth image.)249

This experiment reveals that the ROM’s accuracy is not affected by either the reduction of250

the number of snapshots or the time step between the snapshots. Hence, xDMD is robust251

and provides a good approximation of nonlinear flow phenomena.252

2. Interpolation Error253

ROMs are typically employed to make predictions at space-time points wherein the out-254

put of fluid dynamic simulations is not available. We test our ROMs’ performance in the255

interpolation regime for several values of the interpolation rate 𝜂. The data-matrix dimen-256

sions and truncation ranks for all the cases considered are reported in Table I.257

We start by constructing three ROMs associated with the truncation rank 𝑟 = rank(X̃),258

𝑟 = 𝑟∗ and 𝑟 = 𝑟90, and trained on half of the snapshots, i.e., 𝜂 = 0.5 (Case 1 in Table I).259
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TABLE I. Cases considered for interpolation tests.

Case 𝜂 Train set 𝑟 = 𝑟90 𝑟 = 𝑟∗ rank(X̃)

1 0.5 𝑘 = 1 : 2 : 𝑀 23 252 934

2 0.67 𝑘 = 1 : 3 : 𝑀 23 261 622

3 0.8 𝑘 = 1 : 5 : 𝑀 16 119 373

4 0.9 𝑘 = 1 : 10 : 𝑀 10 62 186

Interpolation errors of these ROMs are shown in Figure 4a; the errors are defined in Eq. (10)260

and predictions are carried out for the missing half of time steps. The ROM truncated at261

𝑟 = 𝑟∗ assures high accuracy and stability (the error varies between 10−5 and 10−4 at all262

times), while the truncation at 𝑟 = rank(X̃) results in the error that increases with time;263

if 𝑟 = 𝑟90 the error is stable in time but about three orders of magnitude higher than in264

the case of 𝑟 = 𝑟∗ (it varies between 10−2 and 10−0.5). Reducing the size of the training265

set, i.e., setting 𝜂 = 0.67 (Case 2 in Table I), yields the two different ROMs truncated at 𝑟∗266

and rank(X̃) with similar interpolation errors, while 𝑟 = 𝑟90 produces a significantly higher267

error (Figure 4b); for all 𝑟 considered, the respective ROMs’ error peaks are aligned and268

the periodicity is similar, with 𝑟 = 𝑟∗ providing a smaller error. In the cases of 𝜂 = 0.8 and269

𝜂 = 0.9 (Cases 3 and 4 in Table I, respectively) the interpolation errors of all the ROMs270

increase with time and the difference when truncating at 𝑟∗ and rank(X̃) relative to 𝑟 = 𝑟90271

decreases till about one order of magnitude in the case of 𝜂 = 0.9 (Figure 4c-d).272

To provide a local view on the ROMs’ accuracy, Figure 5 compares the reference and273

reconstructed velocity time series at two points in a cross-section of the aorta for Cases 3274

and 4 in Table I in panels (a) and (c) and (b) and (d), respectively. As expected, the ROM275

truncated at rank 𝑟 = 𝑟∗ (panels (c) and (d)) has high accuracy both in representation and276

interpolation for all the points considered; instead, the ROM truncated at 𝑟 = 𝑟90 (panels277

(a) and (b)) fails to adequately reproduce the overall system state and loses accuracy when278

𝜂 or 𝑡 increases. The ROM’s performance is not affected by the selection of the points near279

the wall or in the middle of the aorta.280

These results provide actionable indicators for the rank choice and the role played by the281

non-dominant modes. When all the modes are included in the training phase, 𝑟 = rank(X̃),282

12

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
7
9
5
7



FIG. 4. Interpolation errors for (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4 in Table I. In

each plot different lines correspond to the ROMs with different truncation ranks 𝑟 = 𝑟90, 𝑟 = 𝑟∗ and

𝑟 = rank(X̃).

the ROM suffers from noise overfitting and loses its interpolation accuracy, especially when283

the training set is larger (𝜂 = 0.5). The loss in accuracy is difficult to predict given the284

lack of a priori error estimators. Hence, the use of a low-rank truncation not only aligns285

with a ROM’s purpose (identification of the dominant modes and data compression) but286

also increases the ROM’s prediction reliability at space-time locations where data are not287

available.288

V. CONCLUSION289

We analyzed the performance of an extended dynamic mode decomposition (xDMD)9 on290

the task of ROM construction to approximate the fluid dynamics simulations of 3D blood291
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FIG. 5. Flow velocity 𝑢 at 𝑘th time step, provided by SimVascular (continuous line) and estimated

by the ROMs (dots) in the interpolation regime. The ROMs are trained for Case 3 in Table I in

panels (a) and (c), and for Case 4 in Table I in panels (b) and (d). The data are reported for two

points in one aorta’s cross-section, as shown on the left. Panels (a) and (b) refer to the ROMs

truncated at 𝑟 = 𝑟90, while (c) and (d) refer to the ROMs truncated at 𝑟 = 𝑟∗.

flow in a patient-specific aorta. Our results show that xDMD is able to identify dominant292

spatiotemporal structures in the simulated data set and to provide an accurate approxima-293

tion of numerical simulations. We explored relevant indicators of a ROM’s performance in294

both representation and interpolation. These indicators are related to the choice of the trun-295

cation rank and linked to the number of retained singular values corresponding to the most296

relevant spatiotemporal structures. We found that a low-rank truncation, which preserves297

almost all the cumulative energy in the data, avoids overfitting and yields high accuracy and298

error stability. The xDMD-based ROMs demonstrate a remarkable robustness to the num-299

ber of space-time training data. Finally, we verified the local accuracy of xDMD when used300

to predict time series at selected points in the flow domain. Overall, our study suggests that301

the use of xDMD is beneficial for time-dependent data compression and for computational302

saving when used in place of onerous numerical simulations.303

The use of DMD for order reduction offers other benefits as well. By identifying the dom-304

inant spatially correlated structures (modes) in a given dataset and analyzing their temporal305

evolution (time dynamics), we can gain insight into the main features of the physical pro-306

cess, facilitating both data interpretation and reconstruction. DMD not only enables data307
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compression, which is beneficial in many fields, but also allows us to reconstruct the sys-308

tem’s behavior where data is unavailable (in interpolation or extrapolation regimes) with a309

single linear model providing predictions everywhere in space at any given time. This linear310

model is readily interpretable and is cleansed of noise, which would otherwise impede the311

reconstruction.312

Our study demonstrates that the identification of an optimal DMD structure requires313

the selection of a low-rank approximation able to guarantee the ROM’s accuracy in both314

representation and interpolation. This instill trust in the ROM’s predictions, paving the way315

for their use in clinical practice. For example, DMD can be employed to predict blood flow316

beyond the available data to study variations in the flow waveform17, to provide reliable317

real-time forecasting of tumor ablation treatment25, and to facilitate spectral analysis in318

dynamic MRI acquisitions to advance the diagnostic potential20.319

Since DMD is formulated entirely in terms of (observational and/or simulated) data, it320

can be readily deployed in a wide range of applications, including in real-time simulation321

environments. In this context, newly available data can be absorbed in the training phase322

while updating the future state prediction.323
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Appendix A: Error bounds337

In addition to the assumptions in Lemma 1, we assume that ‖L −ΦΔ𝑡 ‖𝐿∞ (HΔ𝑡 ) < +∞ and338

that x𝑘 and xL
𝑘
∈ HΔ𝑡 for 𝑘 = 0, . . . , 𝑀 − 1. If L is sDMD, then the error 𝛿𝑀

L
at time 𝑡𝑀 ,339

defined in (3), satisfies the inequality340

𝛿𝑀L ≤ e𝑀𝐿Δ𝑡𝛿0L+ ‖ L − ΦΔ𝑡 ‖𝐿∞ (HΔ𝑡 )

𝑀−1∑︁

𝑘=0

e𝑘𝐿Δ𝑡 .341

The proof, based on the triangle inequality, follows that for Theorem 4.3 in Ref. 11. More-342

over, the gDMD is proven to have a tighter error bound than sDMD.9343

Similarly, if L is the xDMD, then the error 𝛿𝑀
L

at time 𝑡𝑀 satisfies the inequality344

𝛿𝑀L ≤ (1 + e𝐿Δ𝑡)𝑀𝛿0L+ ‖ L − ΦΔ𝑡 ‖𝐿∞ (HΔ𝑡 )

𝑀−1∑︁

𝑘=0

(1 + e𝐿Δ𝑡)𝑘 .345

The xDMD is proven to have a tighter error bound than rDMD.9 The error bounds provide346

a general guideline for the growth of errors.347

Appendix B: Strategy to increase the xDMD efficiency348

Direct evaluation of (9) requires the computation of [B𝑥 b𝑥] ∈ R
𝑁×𝑁+1. Since 𝑁 is large349

in any application of practical significance, this computation decreases the efficiency and350

accuracy of the algorithm. To avoid this bottleneck, we decompose the computation into351

two parts. First, we multiply only the first three terms of (9) thus leading to the matrix352

C𝑥 = YV𝑔𝚺
−1
𝑔 ∈ R𝑁×𝑟 . (B1)353

Second, we multiply the last term in (9) by x̃𝑘 , which gives a vector354

d𝑥 = U⊤
𝑔 x̃𝑘 ∈ R𝑟×1. (B2)355

This procedure leads to356

y𝑘+1 = C𝑥d𝑥 , (B3)357

which is equivalent to (8).358

An overall step-by-step implementation of xDMD with the efficient computational strat-359

egy described in this Section, is illustrated in Algorithm 1.360
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Algorithm 1: xDMD implementation based on the efficient computational

strategy.

1. Compute the residual matrix Y: Y = X′ −X, where Y ∈ R𝑁×𝑀

2. Introduce the matrix X̃: X̃⊤
= [X 1], where X̃† ∈ R𝑁×𝑁+1

3. Compute the truncated SVD of X̃: X̃ ≈ U𝑔𝚺𝑔V
⊤
𝑔 , where

U𝑔 ∈ R𝑁+1×𝑟 ,𝚺𝑔 ∈ R𝑟×𝑟 ,V𝑔 ∈ R𝑀×𝑟

4. Compute the matrix C𝑥: C𝑥 = YV𝑔𝚺
−1
𝑔 , where C𝑥 ∈ R𝑁×𝑟

5. Compute the vector d𝑥: d𝑥 = U⊤
𝑔 x̃𝑘 , where d𝑥 ∈ R𝑟×1

6. Compute the residual at 𝑘 + 1: y𝑘+1 = C𝑥d𝑥, where y𝑘+1 ∈ R𝑁×1

7. Compute the state at 𝑘 + 1: x𝑘+1 = y𝑘+1 + x𝑘 , where x𝑘+1 ∈ R𝑁×1
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