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A B S T R A C T

Thanks to their low computational cost, reduced-order models (ROMs) are indispensable in ensemble-based
simulations used, e.g., for uncertainty quantification, inverse modeling, and optimization. Since data used to
train a ROM are typically obtained by running a high-fidelity model (HFM) multiple times, a ROM’s efficiency
rests on the computational cost associated with the data generation and training phase. One such ROM, a
polynomial chaos expansion (PCE), often provides a robust description of an HFM’s response surface in the
space of model parameters. To reduce the data-generation cost, we propose to train a PCE on multi-fidelity
data, part of which come from the dynamic HFM and the remainder from dynamic mode decomposition (DMD);
the latter is used to interpolate the HFM data in time. Our numerical experiments demonstrate the accuracy
of the proposed method and provide guidelines for the optimal use of DMD for interpolation purposes.
1. Introduction

Rapid advances in software and hardware development have led
to the proliferation of high-fidelity models (HFMs), which provide
invaluable insights into hydrological processes. The growth in model
complexity roughly matches that in computational power, so that
one’s ability to perform multiple runs of HFMs remains practically
unchanged. That creates a computational bottleneck because most
applications of subsurface flow and transport require predictions of a
system’s temporal evolution for different values of the system parame-
ters. This requirement places particular premium on reducing the (often
prohibitive) cost of HFMs (e.g., Ciriello et al., 2013, 2017).

Reduced-order models (ROMs) provide computationally-efficient
representations of key features of the underlying dynamics of a complex
system directly from (observational or HFM-simulated) data (e.g.,
Oladyshkin et al., 2012; Ciriello et al., 2019; Tartakovsky et al., 2020;
He and Tartakovsky, 2021; Kang et al., 2022; Zhan et al., 2022).
The amount of data required to train a ROM is a measure of its
efficiency. ROMs yield a simple mathematical relationship between
the relevant input parameters (or features) and the model response
(output or target). In doing so, ROMs enable one to perform a large
number of simulations, for multiple points in the parameter space,
while preserving the interpretation provided by a HFM (e.g., Ciriello
et al., 2013; Oladyshkin et al., 2012; Focaccia et al., 2021; Marzadri
et al., 2024).

∗ Corresponding author.
E-mail address: v.ciriello@unibo.it (V. Ciriello).

Polynomial chaos expansions (PCEs) are a representative class of
ROMs, which approximates the input–output relation encoded in the
HFM via orthogonal polynomials (Xiu and Karniadakis, 2002; Sudret,
2008). The probabilistic collocation method (PCM) (Webster et al.,
1996; Sudret, 2008) provides a non-intrusive approach for the compu-
tation of the PCE coefficients. Unlike its intrusive counterparts, which
require one to derive and solve a set of differential equations for the
PCE coefficients, the PCM amounts to a regression between points
on the model response surface computed as solutions of the HFM for
optimally selected combinations of the model inputs (collocation points
in the parameter space). A PCE-based ROM can dramatically accelerate
ensemble-based computations, such as uncertainty quantification for
flow and transport problems (Lin et al., 2010; Oladyshkin et al., 2012;
Mohammadi et al., 2018; Ciriello and de Barros, 2020; Meles et al.,
2022), the task that could be computationally prohibitive if performed
via Monte Carlo simulations of the HFM.

Several factors compromise the efficiency of PCEs, occasionally
causing the computational cost of a PCE to exceed that of standard
Monte Carlo. They scale poorly with the number of random inputs,
a phenomenon referred to as the curse of dimensionality (Barajas-
Solano and Tartakovsky, 2016). The PCM performance depends on
the regularity of the response surface, which decreases with both the
variance of the model parameters (Barajas-Solano and Tartakovsky,
2016) and the degree of the model nonlinearity (Meles et al., 2023).
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For time-dependent problems, the cost of the training-data genera-
tion often dwarfs the cost of the PCE construction. A common strategy
for the reduction of the computational burden of solving the HFM is
to use as large a time step as the accuracy and stability constraints
of a numerical scheme would allow. This time step might be too big
for an optimal PCE approximation. The main idea of our approach is
to use dynamic mode decomposition (DMD) to interpolate between
these times in order to derive a virtually continuous in time PCE
approximation of the HFM response surface.

DMD is a data-driven approach based on a factorization and di-
mensionality reduction technique for data sequences associated with
complex dynamic systems (e.g., Schmid, 2010). Grounded in singular
value decomposition, DMD yields a best-fit linear operator to approx-
imate the relationship between time-shifted snapshots of the state
variable for assigned values of the parameters. It also identifies spa-
tiotemporal structures that are dominant in the data and reconstructs
the underlying processes from these structures. In the present analysis,
we use the standard DMD (sDMD) algorithm (Tu et al., 2014; Kutz
et al., 2016) and xDMD (Lu and Tartakovsky, 2021), a DMD variant
that enables one to handle inhomogeneous partial differential equations
and inhomogeneous boundary conditions.

We posit that a fusion of PCE and DMD yields a robust model-
reduction framework for dynamic models. This approach takes advan-
tage of the ability of PCE to provide an approximation of the response
in the parameter space (thus enabling to perform stochastic analysis
and scenario development) and the ability of DMD to interpolate high-
fidelity data in time. DMD is also usable for temporal extrapolation,
with a general loss in accuracy (Lu and Tartakovsky, 2020), and
provides a means for data compression and memory-storage reduction.
Our DMD-enhanced PCE (in the following, DMD-PCE) uses DMD to
replace a HFM during the PCE training, such that the PCE is trained
on multi-fidelity data. We test the accuracy of our approach on two-
dimensional multiphase (nonlinear) flow in heterogeneous media (Song
and Tartakovsky, 2021).

The paper is organized as follows. Section 2 is devoted to a presen-
tation of the proposed methodological framework. Section 3 describes
the selected case study and the implementation of the methodological
framework to this problem. In Section 4, the results are presented and
analyzed, while Section 5 provides final remarks.

2. Materials and methods

2.1. Polynomial chaos expansion

Let 𝜔 denote an output response provided by a HFM, 𝑓 (𝐩), where
𝐩 is the vector of system parameters (inputs). Their variability and
uncertainty are captured by modeling them as independent random
variables. The assumption of independence also holds for (i) cross-
correlated parameters, for which singular-value decomposition tech-
niques, such as a truncated Karhunen-Loève transformation, can be
used to approximate 𝐩 with a set of mutually uncorrelated identically
distributed random variables; and (ii) correlated random variables, for
which the Rosenblatt transform can be applied (e.g. Um et al., 2019)
to map 𝐩 onto a set of independent and identically distributed random
variables.

Once the probabilistic behavior of the parameters 𝐩 is characterized,
and provided the response surface has finite variance 𝜎2𝜔, PCE produces
an approximation of the response surface, �̂�, in the random input space
in terms of a polynomial series (e.g., Xiu and Karniadakis, 2002),

𝜔 = 𝑓 (𝐩) → �̂� =
𝑃−1
∑

𝑗=0
𝑎𝑗Ψ𝑗 (𝐩), 𝑃 =

(𝑁par + 𝑞)!
𝑁par !𝑞!

. (1)

Here, 𝑁par = dim(𝐩), Ψ𝑗 are multivariate polynomials of degree not
exceeding 𝑞 that constitute an orthonormal basis with respect to the
joint probability density function (PDF) of 𝐩, 𝑞 is the maximum degree
of the expansion and coefficients 𝑎 are the deterministic coordinates of
2

𝑗 [
the spectral decomposition. For Gaussian parameters, the Hermite poly-
nomials serve as a basis; different types of polynomials are required for
optimal convergence rate in the case of non-Gaussian parameters (Xiu
and Karniadakis, 2002). The 𝑃 -term truncation of an infinite-term PCE
introduces an approximation error. This error has been the subject of
many theoretical and numerical investigations (Ghanem and Spanos,
1991; Shi and Tartakovsky, 2022).

To compute the PCE coefficients, a non-intrusive regression-based
approach is used. It comprises the minimization of the variance of
the residual 𝜀 = |�̂� − 𝜔| with respect to the PCE coefficients 𝐚 =
(

𝑎0,… , 𝑎𝑃−1
)

(Sudret, 2008),

𝐚 = argmin 1
𝑁rp

𝑁rp
∑

𝑖=1

{

𝜔 −
𝑃−1
∑

𝑗=0
𝑎𝑗Ψ𝑗 (𝐩)

}2
, (2)

where 𝑁rp is the number of regression points. This is done on a dataset
generated by the HFM for values of 𝐩 provided by PCM (Webster et al.,
1996). These values are termed collocation points (𝑁rp = 𝑁cp is their
number) and they are selected based on the same arguments adopted
for integral estimation through Gaussian quadrature. Specifically, PCM
employs the roots of the polynomial of one order higher than 𝑞 to assure
proper sampling of the region associated with the largest probability in
the distributions of the input parameters (Webster et al., 1996). The
fewer the number of collocation points, the more effective PCE is. Note
that 𝑁cp ≥ 𝑃 , i.e., it increases with 𝑁par and 𝑞 (Ciriello et al., 2013).

If the HFM describes the behavior of a spatially-distributed time-
variant response, i.e., 𝑓 (𝐱, 𝑡,𝐩), the space–time dependence of the re-
sponse 𝜔 is embedded in the PCE coefficients 𝐚:

�̂� (𝐱, 𝑡) =
𝑃−1
∑

𝑗=0
𝑎𝑗 (𝐱, 𝑡) Ψ𝑗 (𝐩). (3)

This means that to obtain the PCE approximation at each (𝐱, 𝑡) of
interest, 𝜔 has to be computed at the same space–time locations for
each value of 𝐩 required by the PCM to solve (2). If the HFM is solved
numerically on a grid of 𝑁 elements for 𝑀 time points, then we need
to compute 𝜔 at 𝑁 ⋅𝑀 locations 𝑁cp times (e.g., Ciriello and de Barros,
020).

.2. Dynamic mode decomposition

Consider a set of (𝑀+1) snapshots of the output response 𝝎, namely
𝑘 with 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡 and 𝑘 = 0,… ,𝑀 . Let 𝐗,𝐗′ ∈ R𝑁×𝑀 denote
couple of matrices whose columns are the vectors 𝝎0,… ,𝝎𝑀−1 and
1,… ,𝝎𝑀 , respectively. In the standard DMD (sDMD) formulation, the

temporal evolution of 𝝎(𝑡) is approximated by a linear model

𝝎𝑘+1 ≈ 𝐀𝝎𝑘, 𝐀 = 𝐗′𝐗† ∈ R𝑁×𝑁 . (4)

In a typical application, 𝑀 ≪ 𝑁 so that the rank of 𝐀 is at most 𝑀 .
ven though, computing 𝐀 (or its spectral decomposition) is generally
nerous. Instead, the truncated SVD of 𝐗 = 𝐔𝚺𝐕⊤, with rank 𝑟 < 𝑀 , is
sed:

≈ 𝐗′𝐕𝚺−1𝐔⊤, (5)

here 𝐔 ∈ R𝑁×𝑟, 𝚺 ∈ R𝑟×𝑟, 𝐕 ∈ R𝑀×𝑟. If 𝑟 is smaller than the number
f nonzero singular values (i.e., the rank of 𝐗), then the truncated SVD
s a proxy of 𝐗.

In case of problem’s inhomogeneity, the generalized DMD algorithm
dds a bias term 𝐛𝑔 ∈ R𝑁 to the preceding formulation,

𝑘+1 ≈ 𝐀𝑔𝝎𝑘 + 𝐛𝑔 . (6)

ere, [𝐀𝑔 𝐛𝑔] = 𝐗′�̃�† ∈ R𝑁×𝑁+1, where �̃�⊤ = [𝐗 𝟏] and �̃� ∈
𝑁+1×𝑀 . The computational cost is reduced by obtaining the best-fit

inear operator through the SVD of the matrix �̃� ≈ 𝐔𝑔𝚺𝑔𝐕⊤
𝑔 , such that

′ −1 ⊤
𝐀𝑔 𝐛𝑔] ≈ 𝐗 𝐕𝑔𝚺𝑔 𝐔𝑔 , (7)
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where 𝐔𝑔 ∈ R𝑁+1×𝑟,𝚺𝑔 ∈ R𝑟×𝑟,𝐕𝑔 ∈ R𝑀×𝑟. By construction, the error of
his gDMD method is equal to or smaller than the standard DMD’s (Lu
nd Tartakovsky, 2021).

The xDMD algorithm introduced by Lu and Tartakovsky (2021)
ndows gDMD with a residual-learning idea by approximating the
elationship between 𝐘 = 𝐗′ − 𝐗 and 𝐗,

𝑘+1 = 𝐁𝑥𝝎𝑘 + 𝐛𝑥. (8)

ere, [𝐁𝑥 𝐛𝑥] = 𝐘�̃�† ∈ R𝑁×𝑁+1, and �̃� is defined as before. For
omputational saving, the best-fit linear operator is obtained through
he SVD of the matrix �̃� as

𝐁𝑥 𝐛𝑥] ≈ 𝐘𝐕𝑔𝚺−1
𝑔 𝐔⊤

𝑔 . (9)

he error of xDMD equals to or is smaller than that of the residual DMD
ithout bias (Lu and Tartakovsky, 2021).

Since 𝑛 is large in any application of practical significance, an effi-
ient computational strategy to derive prediction in (8) is as
ollows

𝑘+1 = 𝐂𝑥𝐝𝑥, (10)

here 𝐂𝑥 = 𝐘𝐕𝑔𝚺−1
𝑔 ∈ R𝑁×𝑟, and 𝐝𝑥 = 𝐔⊤

𝑔 �̃�𝑘 ∈ R𝑟×1. A similar com-
utational approach can be conveniently adopted to derive prediction
n (6).

DMD algorithms can be used for nonlinear PDEs, whose solution is
onfined in  ⊆ R𝑁 (to satisfy the assumptions in Lemma 2.1 in Lu
nd Tartakovsky, 2021). Let 𝝎

𝑘 be the DMD approximation of 𝝎𝑘. We
ssess the performance of either sDMD or xDMD in terms of the relative
rror

𝑘
 =

‖𝝎
𝑘 − 𝝎𝑘‖

2

‖𝝎𝑘‖
2

. (11)

As a truncation rank of sDMD and xDMD, we use either 𝑟 = 𝑟90—
the number of diagonal elements of 𝛴 accounting for 90% of the
cumulative energy in the SVD of �̃�—or 𝑟 = 𝑟∗ with

𝑟∗ = min(𝑖) ∶ 𝜎𝑖 ≤ 10−5
𝑀−1
∑

𝑘=0
𝜎𝑘. (12)

2.3. Integrated model reduction framework

The regression given by (2) has to be solved at each space–time loca-
tion where we want to compute �̂�. Suppose the space–time locations are
defined by indices 𝑖 = 1,… , 𝑁 , and 𝑘 = 1,… ,𝑀 . High-fidelity simula-
tions need to be run at each (𝑖, 𝑘), 𝑁cp times. This traditional approach
is indicated here as HF-PCE. The computational cost associated with
this step is the only relevant cost of the PCE framework. Let 𝜂 denote a
fraction of temporal snapshots estimated via DMD, 𝝎

𝑘†
, for the use in

PCE training. We perform the regression on high-fidelity data at (1−𝜂)%
of the time points 𝑡𝑘𝜂 , i.e., on data 𝝎𝑘𝜂 = 𝝎(𝑡𝑘𝜂 ). Here, 𝑘𝜂 = 1,… ,𝑀
with time step 1∕(1 − 𝜂) forms a subset 𝜂 of the total number of
snapshots, 𝑀 , and 𝑘† ≠ 𝑘𝜂 belongs to its complement †

𝜂 , such that
‖𝜂‖ + ‖†

𝜂‖ = 𝑀 . This approach is indicated in the following as
DMD-PCE. The HF-PCE approach corresponds to 𝜂 = 0, in which case
the PCE coefficients are computed in all the space–time locations based
on high-fidelity data.

We indicate the PCE coefficients computed at a generic (𝑖, 𝑘) based
on high-fidelity data with 𝐚HF, and those computed at a generic (𝑖, 𝑘)
based on DMD interpolated data with 𝐚DMD. A first assessment of the
accuracy of the method is performed through comparison at a given
𝑡𝑘† between 𝐚DMD, as computed through (2) for a given 𝜂, and 𝐚HF as
computed through the same equation in case of 𝜂 = 0. The metric used
for each coefficient is

𝜀𝑘
†

𝑎𝑗
=

‖𝐚DMD
𝑗,𝑘†

− 𝐚HF
𝑗,𝑘†

‖

2

‖𝐚HF
‖

2
, (13)
3

𝑗,𝑘†
s

where 𝑗 = 0,… , 𝑃 − 1 indicates the PCE coefficient, while 𝐚DMD
𝑗,𝑘†

and
𝐚HF
𝑗,𝑘†

are the vectors of values for the (𝑗 + 1)th coefficient at all the
pace locations, i.e. for all 𝑖 and for a specific 𝑘†, computed with the
MD-interpolated data and high-fidelity data, respectively.

Next, we directly compare at each space location and 𝑡𝑘† the PCE
approximations of the response provided by the DMD-PCE approach
for a given 𝜂, i.e. �̂�DMD

𝑖,𝑘†
, and by the HF-PCE approach (case of 𝜂 = 0),

.e. �̂�HF
𝑖,𝑘†

. In both cases, the quality of the proposed approach reflects
he accuracy of DMD interpolation.

. Application

.1. Physics-based HFM

Models of multiphase flow play a notable role in many phenom-
na, ranging from contaminant migration and carbon sequestration to
eothermal energy. The need to solve strongly nonlinear governing
DEs results in a high, often prohibitive, computational cost, which lim-
ts uncertainty quantification and any detailed study requiring a large
umber of simulations in the parameter space (Song and Tartakovsky,
021).

We test our methodology by considering a two-dimensional flow
f two incompressible and immiscible fluids, with viscosities 𝜇1 and
2, in a heterogeneous porous medium. The latter is incompressible,
sotropic, and characterized by porosity 𝜙 and intrinsic permeability
(𝐱) (Taverniers et al., 2020; Song and Tartakovsky, 2021). The prop-
gation of each phase (𝑙 = 1, 2) is described by the combination of a
ass conservation equation
𝜕𝑆𝑙
𝜕𝑡

+ ∇ ⋅ 𝐯𝑙 + 𝑞𝑙 = 0, 𝐱 ≡ (𝑥; 𝑦)⊤ ∈ 𝐷, 𝑡 ∈ [0; 𝑇 ] (14)

nd the generalized Darcy’s law

𝑙 = −𝑘
𝑘𝑟𝑙
𝜇𝑙

∇𝑃𝑙 . (15)

Here, 𝑆𝑙(𝐱; 𝑡) is the saturation of the 𝑙th phase, constrained by 𝑆1+𝑆2 =
; and 𝑞𝑙 is the source/sink term. The macroscopic flow velocity 𝐯𝑙(𝐱; 𝑡)
n (15) depends on the relative permeability of the 𝑙th phase, 𝑘𝑟𝑙 =
𝑟𝑙(𝑆𝑙), which varies with the corresponding saturation in accordance
ith the Brooks-Corey constitutive model (Corey, 1954). The pressure

s assumed to be equal within the two phases 𝑃 = 𝑃1 = 𝑃2 ≡ 𝑃 (𝐱, 𝑡),
ence the capillarity forces are ignored (Taverniers et al., 2020).

Similarly to Taverniers et al. (2020), the flow is studied on a square
imulation domain 𝐷 of size 150 m × 150 m, with impermeable bottom
𝛤𝑏) and top 𝛤𝑡 boundaries, and Dirichlet conditions imposed along the
eft 𝛤𝑙 and right 𝛤𝑟 boundaries:

𝜕𝑃
𝜕𝑦

= 0, 𝐱 ∈ 𝛤𝑏 ∪ 𝛤𝑡; 𝑃 = 10 +Δ𝑝 ∧ 𝑆1 = 1.0, 𝐱 ∈ 𝛤𝑙; 𝑃 = 10, 𝐱 ∈ 𝛤𝑟.

(16)

ressure 𝑃 is expressed in MPa. Initial conditions are

(𝐱, 0) = 10.1, 𝑆1(𝐱, 0) = 0, 𝐱 ∈ 𝐷. (17)

To account for heterogeneity, two different intrinsic permeability
cenarios (SC1, SC2) are considered. Two permeability maps are gen-
rated as a second-order stationary random field, such that 𝑌 (𝐱) =
ln 𝑘(𝐱) is multivariate Gaussian with an exponential covariance function
𝐶𝑌 (𝐱, 𝐲) = 𝜎2𝑌 exp(−|𝐱 − 𝐲|∕𝜆𝑌 ). We consider two sets of values for the

ean 𝜇𝑌 , variance 𝜎2𝑌 , and correlation length 𝜆𝑌 (in m): {𝜇𝑌 , 𝜎2𝑌 , 𝜆𝑌 } =
0, 2, 19} and {0, 3, 10}. A truncated Karhunen–Loève expansion, count-
ng 31 terms, chosen to capture 95% of the energy of the field 𝑌 ,
s employed to approximate 𝑌 (𝐱) (Taverniers et al., 2020). These KL
oefficients do not serve as PCE inputs, i.e., the two randomly generated
ields are considered as deterministic scenarios.

Eqs. (14) and (15) are discretized using a finite volume scheme in
pace and an implicit Euler scheme in time, yielding a highly non-linear
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Fig. 1. (a) and (d) show the two scenarios (SC1 and SC2) of log-permeability fields 𝑌 (𝐱) = ln 𝑘(𝐱) (with 𝑘(𝐱) is expressed in mDarcy); for each scenario (b)–(c) and (e)–(f) show
the saturation maps at 𝑡𝑀∕2 and 𝑡𝑀 respectively.
system of equations, which is solved iteratively at each time step using
the Newton–Raphson method, with modified Appleyard saturation up-
date damping (Appleyard et al., 1981) to improve convergence. Three
criteria are specified to ensure convergence of both flow and transport
solutions: normalized residual norm, maximum saturation update, and
maximum relative pressure update. Their respective tolerances are set
to 𝜀1 = 10−6, 𝜀2 = 10−2, and 𝜀3 = 10−3 (Taverniers et al., 2020; Song
and Tartakovsky, 2021).

3.2. Experimental design

Among the input parameters (Taverniers et al., 2020), we focus
on uncertainty related to the porosity 𝜙 and the external pressure
difference Δ𝑝, i.e., 𝑁par = 2. Following the PCE approach, we model the
two inputs as independent random variables. Specifically, we assume
two normal distributions 𝜙 ≃  (𝑚𝜙 = 0.25; 𝜎𝜙 = 0.05), Δ𝑝 ≃  (𝑚Δ𝑝 =
0.20 MPa; 𝜎Δ𝑝 = 0.04 MPa) and, consequently, employ the Hermite
polynomials in (1) (Xiu and Karniadakis, 2002). We use a second-order
PCE approximation, i.e., 𝑞 = 2, so that 𝑃 = 6 and

�̂�𝟏 (𝐱, 𝑡) = 𝑎0 + 𝑎1𝜙𝑛 + 𝑎2Δ𝑝𝑛 + 𝑎3(𝜙2
𝑛 − 1) + 𝑎4𝜙𝑛 ⋅Δ𝑝𝑛 + 𝑎5(Δ𝑝2𝑛 − 1), (18)

where the PCE coefficients 𝑎𝑖 = 𝑎𝑖 (𝐱, 𝑡) vary in space and time, and
𝜙𝑛 and Δ𝑝𝑛 are standard normal random variables obtained using an
isoprobabilistic transform, i.e. the normal random variables 𝜙 and Δ𝑝
are turned into standard ones to make the polynomial basis orthogonal
with respect to the joint PDF of the parameters (Sudret, 2008). (After
rescaling, (18) can also be written in terms of orthonormal polynomial
basis (e.g., Oladyshkin and Nowak, 2018) that is useful to employ
the analytical properties of PCE as in the case of global sensitivity
analysis (Ciriello et al., 2013).) Under these conditions, PCM returns
𝑁cp = 𝑃 = 6 optimal collocation points in the random parameter space
(Table 1), i.e., six combinations of values for the two uncertain inputs,
4

Table 1
Collocation points in the random parameter
space, with 𝑗 = 1,… , 𝑁cp = 𝑃 = 6.

𝑗 𝜙 (-) Δ𝑝 (MPa)

1 2.50E−01 2.00E−01
2 3.37E−01 2.00E−01
3 2.50E−01 2.69E−01
4 1.63E−01 2.00E−01
5 2.50E−01 1.31E−01
6 3.37E−01 2.69E−01

𝜙 and Δ𝑝, to determine the coefficients 𝑎𝑖 by solving the regression
expressed by (2) at each (𝐱, 𝑡).

For each collocation point in Table 1, high-fidelity simulations are
performed for the permeability scenarios SC1 and SC2. Each high-
fidelity simulation involves the computation of the response, which is
𝑆1, on a 64 × 64 grid (𝑁 = 4096), and for 𝑀 = 1820 (𝑘 = 1,… , 1820)
time instants in the range 𝑡 = 8,… , 1827 days with Δ𝑡 = 1 day. Fig. 1
shows the two permeability fields that determine SC1 and SC2 and,
for each, two snapshots of the response (saturation map) for 𝑘 = 𝑀∕2
(𝑡𝑀∕2 = 910 days) and 𝑘 = 𝑀 (𝑡𝑀 = 1820 days).

Once the entire set of high-fidelity simulations is available (i.e., for
all the collocation points), the PCE (2) can be computed at all the
space–time locations of interest considering 𝜂 = 0 (HF-PCE). Instead,
we use a limited number of high-fidelity data to calibrate the DMD
approximation of the response in time and then use DMD to interpolate
and fill the missing high-fidelity data, i.e., to use a mix of high-fidelity
and DMD interpolated data to compute the PCE (2) for a given 𝜂.
The DMD-PCE is then compared to the HF-PCE in terms of accuracy.
Fig. 2 illustrates the DMD-PCE framework and its application to the
case study; the DMD and PCE algorithms are used sequentially, with
DMD deployed to generate training data, which then inform the PCE.
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Fig. 2. Methodological framework of the DMD-PCE approach.
Table 2
Cases analyzed for the two scenarios of the permeability field (SC1, SC2).

Case 1: 𝜂 = 0.5 Case 2: 𝜂 = 0.75 Case 3: 𝜂 = 0.9

representation 𝑘𝜂 = 1, 3,… ,𝑀 − 1 𝑘𝜂 = 1, 5,… ,𝑀 − 3 𝑘𝜂 = 1, 11,… ,𝑀 − 9
interpolation 𝑘† = 2, 4,… ,𝑀 𝑘† = 2, 3, 4, 6, 7, 8,… ,𝑀 𝑘† = 2 ÷ 10, 12 ÷ 20,… ,𝑀
SC1: rank(X) 890–909 454 181
SC1: 𝑟∗ 75–129 75–129 74-128
SC1: 𝑟90 11–16 10–16 10-16
SC2: rank(X) 765–908 454 181
SC2: 𝑟∗ 61–105 61–104 60-104
SC2: 𝑟90 8–13 8–13 8-13
We consider 𝜂 = 0.5, 0.75, 0.9. For each value of 𝜂, a different DMD
approximation is computed with both the sDMD and xDMD algorithms
and different truncation ranks 𝑟 =

(

rank(X), 𝑟∗, 𝑟90
)

. The summary of
the cases analyzed in this study is reported in Table 2.

4. Results and discussion

4.1. DMD representation error

As mentioned in Section 3.2, both sDMD and xDMD are trained
based on high-fidelity data provided by the numerical model described
in Section 3.1. The performance in reproducing the same data used
for training (representation error) is compared between the two DMD
algorithms, and evaluated for different dimensions of the training set.
Specifically, for each permeability scenario (SC1/SC2, see Section 3.1)
and collocation point (Table 1), three different subsets counting 50%
5

(case 1, 𝜂 = 0.5), 25% (case 2, 𝜂 = 0.75), and 10% (case 3, 𝜂 = 0.90)
of high-fidelity data are used for training (see Table 2). Based on these
subsets, we derive the DMD for different truncation ranks (𝑟 = rank(X),
𝑟∗, 𝑟90, see Section 2.2) to explore the accuracy of the two algorithms,
sDMD and xDMD.

Figs. 3 and 4 show the results for permeability scenarios SC1 and
SC2, respectively. In both figures, columns correspond to cases 1-3 in
Table 2 (i.e., different dimensions of the training set). The first row of
both the Figures depicts the singular values associated with the SVD
of 𝐗 for the three cases; while the second and third rows report the
representation error (computed with Eq. (11) and averaged over all the
time instants), 𝜀, of the sDMD and xDMD, respectively, as function
of the truncation rank 𝑟 of the SVD. In all the plots, different lines
correspond to high-fidelity simulations produced for the six collocation
points (different values of the random model parameters, 𝜙 and Δ𝑝 col-
lected in Table 1), while the ranks corresponding to different truncation
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Fig. 3. For the first scenario of the permeability field (SC1): (a)–(c) represent the singular values associated with the SVD of X for cases 1-3 in Table 2, respectively. For the
ame cases (d)–(f) and (g)–(h) show the representation error (averaged over the time instants) of the sDMD and xDMD respectively as function of the truncation rank 𝑟 of the
VD. Different lines in each panel correspond to the different dataset produced with the HFM for each collocation point. In each panel dots correspond to rank(X) (in red), 𝑟∗ (in
reen), 𝑟90 (in blue) (the numerical values are in Table 2).
riteria are also reported: pointed in red is 𝑟 = rank(𝐗), in green 𝑟 = 𝑟∗,
nd blue 𝑟 = 𝑟90.

Figs. 3 and 4(a)–(c) show that, for both SC1 and SC2, values of
90 are similar for the three cases, and the same holds for 𝑟∗ (see also
able 2 for the exact values). On the other hand, rank(𝐗) changes from
ase to case, being equal (cases 2-3) or very close (case 1) to the number
f training snapshots. In addition, most of the information is carried by
limited number of singular values which is captured by 𝑟∗, and that

oes not change increasing the dimension of the training set. As shown
n Figs. 3 and 4(d)–(i), this is reflected in the representation error, 𝜀
averaged over all the time instants), which becomes unstable after
∗ for some of the high-fidelity simulations associated with different
ollocation points (in particular for SC2), suggesting all the exceeding
eatures (correspondent to 𝑟 > 𝑟∗) can be interpreted as noise or
egligible details. For this reason, in the subsequent analyses, related
o the use of DMD in interpolation, we truncate the DMD models at
= 𝑟∗.

Table 3 collects the values of the (time-averaged) representation
rror for both the algorithms, sDMD and xDMD, in case of SC1/SC2
nd 𝑟 = 𝑟∗, 𝑟90, averaged for the six collocation points. These values
omplement what observed in Figs. 3 and 4(d)–(i). In particular, the
erformance of sDMD and xDMD is comparable in the case of 𝑟 = 𝑟90,
ith xDMD returning a slightly lower error in both SC1 and SC2. On the

ontrary, in the case of 𝑟 = 𝑟∗, if for the sDMD the accuracy improves
6

Table 3
Representation error, 𝜀, of the DMD algorithms truncated at 𝑟∗ (green dots in Figs. 3–
4 (d)–(i)) and 𝑟90 (blue dots in Figs. 3–4 (d)–(i)), for the different scenarios of the
permeability field (SC1, SC2), averaged for the six collocation points.

DMD Case1: 𝜂 = 0.5 Case2: 𝜂 = 0.75 Case3: 𝜂 = 0.9

SC1, sDMD, 𝑟∗ 1.32 E−02 1.55 E−02 1.61 E−02
SC1, sDMD, 𝑟90 6.16 E−01 6.24 E−01 6.36 E−01
SC1, xDMD, 𝑟∗ 3.15 E−08 2.78 E−08 7.94 E−09
SC1, xDMD, 𝑟90 5.32 E−01 5.37 E−01 5.50 E−01
SC2, sDMD, 𝑟∗ 4.29 E−03 5.13 E−03 3.28 E−03
SC2, sDMD, 𝑟90 6.64 E−01 6.67 E−01 6.76 E−01
SC2, xDMD, 𝑟∗ 2.08 E−08 1.76 E−08 7.75 E−09
SC2, xDMD, 𝑟90 5.63 E−01 5.67 E−01 5.78 E−01

by about one order of magnitude, for the xDMD the error decreases by
seven orders with respect to the value associated with 𝑟 = 𝑟90 (i.e. the
representation error decreases rapidly from 𝑟90 to 𝑟∗ for the xDMD, see
also Figs. 3 and 4(g)–(i)). We also note that the error increases slowly
with 𝜂, except in the case of the xDMD truncated at 𝑟 = 𝑟∗. Furthermore,
the variation is small passing from SC1 to SC2, denoting the robustness
of the DMD approach under different conditions and dimensions of the
training set.
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Fig. 4. For the second scenario of the permeability field (SC2): (a)–(c) represent the singular values associated with the SVD of X for cases 1-3 in Table 2, respectively. For the
same cases (d)–(f) and (g)–(h) show the representation error (averaged over the time instants) of the sDMD and xDMD respectively as function of the truncation rank 𝑟 of the
VD. Different lines in each panel correspond to the different dataset produced with the HFM for each collocation point. In each panel dots correspond to rank(X) (in red), 𝑟∗ (in
reen), 𝑟90 (in blue) (the numerical values are in Table 2).
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.2. DMD interpolation error

Once calibrated on high-fidelity data, sDMD and xDMD are em-
loyed to interpolate the model response. We consider the DMD models
rained in the previous Section, i.e., on 50%, 25%, and 10% of the
verall set of high-fidelity data, and truncated at 𝑟 = 𝑟∗, to reconstruct
aturation maps for the missing time steps, i.e. thus corresponding to
= 0.5, 0.75, 0.9, respectively (see Table 2 cases 1-3).

Figs. 5 and 6(a)–(f) show the interpolation error in time, 𝜀𝑘, for
ermeability scenarios SC1 and SC2, respectively. In both the Figures,
olumns correspond to cases 1-3 (Table 2). Specifically, the perfor-
ance of the sDMD is represented in panels (a)–(c), while the xDMD is

n panels (d)–(f). Also in this case, the interpolation error is computed
or each collocation point (Table 1) through Eq. (11). The logarithm
f the error of the sDMD is in the range (−6,−1) for all the cases,
howing an increasing variability for all the collocation points when
he dimension of the training set decreases. Conversely, for the xDMD
he range is sensibly lower within (−9,−3), and the variability of the
rror is less remarkable; also the error generally decreases rapidly with
ime for the different cases and collocation points, denoting a more
table behavior of this algorithm. This holds for both SC1 and SC2.
e can also observe that the sDMD algorithm is more sensitive than

he xDMD to the HFM parametric variability: the interpolation error
isplays different trends and values for the different collocation points
7

i.e. values of 𝜙 and Δ𝑝) and permeability fields (SC1/SC2).
Given the higher accuracy of the xDMD, the difference between the
igh-fidelity saturation map and the corresponding map obtained by
DMD interpolation at 𝑘 = 𝑀 − 1 is represented in Figs. 5 and 6(g)–
i), for cases 1-3 and for SC1 and SC2, respectively. The difference is
aximum for case 3 though in the range (−5 ⋅ 10−5, 5 ⋅ 10−5). These

nterpolation errors propagate in the DMD-PCE approach inducing the
pproximation discussed below.

.3. Assessment of DMD-PCE accuracy

We represent the error of the proposed DMD-enhanced PCE ap-
roach (DMD-PCE) relative to the PCE obtained only with high-fidelity
ata (HF-PCE). As shown in Fig. 2, according to the DMD-PCE method,
he snapshots produced by interpolation with either the sDMD or xDMD
Section 4.2) are mixed with the high-fidelity snapshots employed for
he DMD training (Section 4.1) with a 50∕50% (𝜂 = 0.5, case 1),
5∕25% (𝜂 = 0.75, case 2), 90∕10% (𝜂 = 0.9, case 3), as summarized in
able 2. These three mixed datasets are associated with a decreasing
omputational cost for their generation. The PCE is described by (18)
nd the PCE coefficients are computed with (2) at all the space–time
ocations of interest (see Section 3.2) based on each one of these mixed
atasets as well as only on high-fidelity data for comparison.

To assess the DMD-PCE accuracy, we first analyze the error in the
stimate of the PCE coefficients. Specifically we compute the logarithm
f 𝜀𝑘† (see Eq. (13)) for the selected 𝜂 = 0.5, 0.75, 0.9. For SC1, Fig. 7
𝑎𝑗
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Fig. 5. For the first scenario of the permeability field (SC1): (a)–(c) represent the interpolation error in time for the sDMD for cases 1-3 in Table 2 (different lines in each panel
correspond to the different collocation point); (d)–(f) show the same results for the xDMD; (g)–(h) show the difference between high-fidelity data and the predictions produced by
the xDMD in interpolation at 𝑘 = 𝑀 − 1 for cases 1-3.
represents in each panel the box plot of this error (at the different
space–time locations) associated with each coefficient 𝑎𝑗 , with 𝑗 =
0,… , 5, in the first row for the sDMD and in the second row for the
xDMD. Fig. 8 shows the same for SC2. We may observe that the error
generally increases with 𝜂, and that the xDMD returns a sensibly more
accurate approximation than the sDMD. In the case of 𝜂 = 0.9 the error
increases more significantly but still the approximation is acceptable for
the xDMD thus denoting the robustness of this interpolation algorithm
for the selected case study despite the nonlinearity of the phenomena
and the different scenarios of heterogeneity.

The accuracy of the approach is finally assessed by comparing the
prediction of the response at each space location and 𝑡𝑘† provided
by the DMD-PCE for either 𝜂 = 0.5, 0.75 or 0.9, i.e. �̂�DMD

𝑖,𝑘†
, with

the prediction at the same space–time locations provided by the HF-
PCE (𝜂 = 0), i.e. �̂�HF

𝑖,𝑘†
(see Section 2.3). Figs. 9 and 10 represent

the regression plot to compare these predictions for SC1 and SC2,
respectively. In these Figures the performance of the sDMD and xDMD
are shown on the first and second row, respectively; while the three
columns correspond to cases 1-3 for 𝜂 = 0.5, 0.75 or 0.9. We observe
that for SC1 and 𝜂 = 0.5 (Fig. 9(a),(d)) the PCE informed by both
the DMD algorithms returns a prediction sensibly equal to the one of
the HF-PCE; while moving to SC2 (Fig. 10(a),(d)), a decrease in the
accuracy of the PCE informed by the sDMD is already detectable. The
remarkable accuracy of the PCE based on the xDMD interpolation holds
for increasing 𝜂 in both SC1 (Fig. 9(e)–(f)) and SC2 (Fig. 10(e)–(f)).
Conversely, the accuracy of the PCE fed by the sDMD rapidly decreases
for increasing 𝜂 in the two scenarios (Figs. 9 and 10(b)–(c)).
8

5. Conclusion

The proposed DMD-PCE is robust and accurate for multiphase flow
in heterogeneous media selected to exemplify and assess the method.
In particular, the PCE informed by interpolated snapshots produced
with the xDMD algorithm shows remarkable accuracy and a negligible
sensitivity towards the parametric variability, mimicking different flow
conditions. This is observed for 𝜂 = 0.5, 0.75. However, even if for
𝜂 = 0.9 the interpolation error of the xDMD becomes more sensitive
to the model parameters, the accuracy of the resulting DMD-PCE is
sensibly the same, thus unraveling huge potential of the proposed
method to drastically reduce the computational cost associated with
the calculation of the model response at each space–time location
of interest multiple times equal to the number of collocation points.
The maintenance of high accuracy in the DMD-PCE prediction for
increasing interpolation rate is understandable looking at the error
in the estimate of the PCE coefficients that increases by about two
orders of magnitude in the case of 90% but still below 10−4 for all
the coefficients with the xDMD. The same does not hold when the
PCE is informed by the sDMD. In that case, only for a 𝜂 = 0.5 the
accuracy is comparable to the HF-PCE. In conclusion, our results on the
proposed DMD-PCE method, based on the xDMD algorithm introduced
by Lu and Tartakovsky (2021), suggest it may have critical implications
in model reduction of hydrological models with time-variant response
allowing, among others, for uncertainty quantification and scenarios
development at an even lower computational cost with respect to the
traditional PCE method relying only on high-fidelity simulations.
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Fig. 6. For the second scenario of the permeability field (SC2): (a)–(c) represent the interpolation error in time for the sDMD for cases 1-3 in Table 2 (different lines in each panel
correspond to the different collocation point); (d)–(f) show the same results for the xDMD; (g)–(h) show the difference between high-fidelity data and the predictions produced by
the xDMD in interpolation at 𝑘 = 𝑀 − 1 for cases 1-3.

Fig. 7. For the first scenario of the permeability field (SC1): error in the estimate of PCE coefficients when using DMD interpolated data in place of the high-fidelity data for
𝜂 = 0.5, 0.75, 0.9. The first row shows results for the sDMD and the second one for the xDMD.
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Fig. 8. For the second scenario of the permeability field (SC2): error in the estimate of PCE coefficients when using DMD interpolated data in place of the high-fidelity data for
𝜂 = 0.5, 0.75, 0.9. The first row shows results for the sDMD and the second one for the xDMD.
Fig. 9. For the first scenario of the permeability field (SC1): (a)–(c) show, for the sDMD, the DMD-PCE predictions associated with 𝜂 = 0.5, 0.75, 0.9 respectively vs the HF-PCE
predictions (obtained for 𝜂 = 0); (d)–(f) show the same results for the xDMD.
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