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A B S T R A C T

The recent advent of deep learning (DL) has enabled data-driven models to pave the way for the full exploitation
of rich image datasets from which physics can be learnt. Here we propose a novel data-driven image mechanics
(D2IM) approach that learns from digital volume correlation (DVC) displacement fields of vertebrae, predicting
displacement and strain fields from undeformed X-ray computed tomography (XCT) images. D2IM successfully
predicted the displacements in all directions, particularly in the cranio-caudal direction of the vertebra, where
high correlation (R2=0.94) and generally minimal errors were obtained compared to the measured displace-
ments. The predicted axial strain field in the cranio-caudal direction of the vertebra was also consistent in dis-
tribution with the measured one, displaying generally reduced errors in the regions within the vertebral body.
The application of D2IM to lower resolution imaging in initial testing provides promising results indicating the
future viability of integrating this technology into a clinical setting. This is the first study using experimental full-
field measurements on bone structures from DVC to inform DL-based models such as D2IM, which represents a
major contribution in the prediction of displacement and strain fields based only on the greyscale content of
undeformed XCT images. In future, D2IM will incorporate a range of biological structures and loading scenarios
for accurate prediction of physical fields, aiming at clinical translation for improved diagnostics.
Data Availability: Code for preparing dataset, training D2IM model and visualising/analysing results has been
hosted on GitHub: https://github.com/PeterSoar/D2IM_Prototype
The dataset used for this study can be found on Figshare: https://doi.org/10.6084/m9.figshare.25404220.v1

1. Introduction

The intricate biomechanical properties of musculoskeletal tissues
and their response to mechanical loading are crucial for understanding
disease effects and optimising treatments. A prime example is bone
fracture risk linked to the tissue’s ability to withstand crack propagation,
which is closely associated with its distinctive deformation behaviour.
Experimental techniques such as digital volume correlation (DVC) are
currently considered state-of-the-art in the mechanical characterization
of bone, from organ to tissue level [1]. DVC allows for full-field
displacement and strain measurements in the material volume by
correlating grayscale features from three-dimensional images, typically

obtained via high-resolution X-ray computed tomography (XCT), before
and after the application of mechanical loading in a process known as in
situ XCT mechanics [2]. Traditional in situ XCT mechanics is performed
in a stepwise fashion (i.e. time-lapsed testing), with each loading phase
followed by a holding period of 15–30 min for full tomographic acqui-
sition to reduce the impact of moving artifacts due to stress relaxation,
which is crucial for biological tissues due to their viscoelastic behaviour
[3]. Thus, in situ experiments can be considerably time consuming as the
XCT imaging (i.e. higher resolution) and mechanical (i.e. increased
number of in situ steps) requirements are more demanding, with
experiment duration for one specimen that can vary from a few hours to
more than 24 h [4,5]. This can result in extended exposure to X-rays,
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which is proven to have a substantial impact on the structural and me-
chanical properties of musculoskeletal tissues both in high-flux syn-
chrotron [6] and laboratory XCT setups [4]. In addition, experimental
tests to characterise bone using in situ XCT mechanics and DVC are
typically conducted with a limited sample size of 2–3 specimens per
bone type due to tissue availability, particularly in cases of in vivo
treatment [7]. This makes the analysis more qualitative and valid on a
case-to-case basis but difficult to generalise within the same cohort, even
in the case of tissue samples of similar size, extracted from the same
anatomical site and tested using the same protocol. Whilst the above
aspects are characteristic of any XCT-based DVC analysis and may be
mitigated by appropriate strategies, there is a need to optimise quality
and number of experiments for a given bone type/structure making an
efficient use of acquired images and associated full-field measurements
to predict physical fields under selected loading conditions. But as DVC
algorithms rely solely on the visualised greyscale features in the input
images, for example bone trabeculae resolved in the acquired XCT im-
ages, they lack direct awareness of the object’s material properties. In
this context, experimental fields from DVC have been extensively used to
validate finite element (FE) models derived from XCT images, which can
then predict mechanical properties in bone, such as vertebral bodies,
both with [8] and without lesions [9]. Despite the popularity of vali-
dation and use of FE models based on DVC, this procedure is technically
challenging and based on some material property assumptions varying
in accordance with the specific loading regime to simulate (i.e. linear
elastic).

The emergence of machine learning (ML), particularly deep learning
(DL), has ushered in a new era for the swift resolution of intricate tasks
such as these. Different from traditional ML with feature extractors, DL
essentially belongs to a class of data-driven end-to-end models, which
has achieved great success in different bioengineering areas such as
medical image segmentation and classification [10]. Convolutional
neural networks (CNNs) are probably the most popular class of DL
models employed in imaging as they possess the ability to learn complex
features by extracting visual information automatically using combi-
nations of series of transformations in the model architecture. The
typical architecture of CNN has a multi-layer feed-forward network with
an input layer, hidden layers including convolutional layers projecting a
series of image filters onto the input image and fully connected dense
layers, with an output layer where the predictions will be extracted.
CNNs are generally robust with low complexity and easy to train, where
the network learns throughout the optimization process with a reduced
number of parameters [11]. CNNs, have already demonstrated prowess
in classifying stages of bone tissue deformation leading to fractures as
well as segmenting cracks, employing both high-resolution synchrotron
[12,13] and laboratory XCT [14] in situ mechanics. Recently, DL has
been integrated in two-dimensional digital image correlation (DIC)
[15–18] and DVC [10]. In both cases, DL has shown remarkable promise
by significantly reducing computational complexity, thereby enhancing
efficiency in analyses. Additionally, a synergistic approach has been
proposed, coupling DL with the traditional cross-correlation method
from particle image velocimetry (PIV), to optimize and refine a coarse
velocity field, yielding super-resolution calculations [19]. This area
holds immense potential for enhancing measurements and advancing
models for comprehending and predicting the mechanics of musculo-
skeletal tissues. Recent advances have seen physics-informed neural
networks leveraged to solve problems generally formulated as partial
differential equations by predicting full-field data for many processes,
notably including crack propagation [20,21] and mechanical fields such
as displacements, stress and strain within a structure [21–25]. In this
regard, DL models equipped with the capacity to predict physical fields,
such as stress or strain, directly from simple images encapsulating ge-
ometry and microstructure information that fully encodes material
composition and boundary conditions have emerged [26,27]. AI-based
frameworks have been developed to predict comprehensive strain and
stress fields using partial data, enabling the inverse translation from

mechanical fields to composite microstructures [28]. However, it is
important to note that both DL-based approaches, whether aimed at
improving the efficiency of DIC/DVC analysis or predicting physical
fields, have primarily been based on synthetic images or patterns and
relatively straightforward geometries and material distributions.
Consequently, there has been limited exploration of the potential of
these methods to directly operate on the grayscale content of XCT im-
aging for complex biological structures, such as bone, to predict full field
measurements.

This work utilises the published datasets of high-resolution in situ
XCT images of intact and artificially lesioned vertebral bone [29] pre-
viously used to measure full-field displacements and strains with DVC
[30] and validate FE models [8], simulating the mechanical perfor-
mance of metastatic vertebrae. A larger dataset was derived by aug-
menting two-dimensional cross-sections of a limited set of
three-dimensional XCT tomograms, proposing a new CNN-based
approach for data-driven image mechanics (D2IM) to predict displace-
ment and consequently calculate strain fields through a synergistic
integration of DVC-measured full-field displacements and deep learning.
Preliminary testing of how this framework can be generalised to make
predictions using lower-resolutions images was also performed, to
demonstrate the potential viability of implementing this technology in a
clinical setting where the imaging of patient tissues is acquired at
significantly lower visual fidelity than can be achieved using XCT im-
aging. The findings of this study introduce a major contribution in the
prediction of displacement and derived strain fields directly from the
grayscale content and texture of undeformed XCT images, setting the
scene for advanced image-based prediction of bone deformation and
fracture in healthy and pathological conditions.

2. Materials and methods

Porcine vertebrae undergoing in situ stepwise XCT compression were
used, and a binary mask was made of the unloaded tomography. These
were all used as an input for DVC using the python library SPAM to
generate full field displacement data. The 3D images of the unloaded
tomogram, mask and three displacement fields were all sliced into 2D
images, which could be used as an input and ground truth for D2IM.
D2IM is a feed-forward Convolutional Neural Network (CNN) that uses
four convolutional stacks with max pooling layers. After being flattened,
the model feeds into three dense layers which predict the three
displacement components. Strains can be calculated from both the
measured and predicted displacement fields for comparison. This entire
workflow has been summarised in Fig. 1.

2.1. Tomography Dataset

The data chosen to test this modelling framework are a set of XCT
images, with an isotropic voxel size of 39μm, acquired on five porcine
thoracic spine segments (two T8-T10, two T10-T12 and one T12-T14)
prepared and in situ mechanically tested by Palanca et al. [8,30] with
and without artificial lesions to create 10 image pairs overall, which
have been made available by the authors on Figshare [29]. This previous
work contains the full details of sample preparation, testing and imag-
ing. For each vertebra a tomography has been taken before and after
applying a compressive axial load of 6500 N. From the unloaded to-
mography a binary mask (zero outside the vertebral body and one in-
side) was created for each image using ImageJ [31], automatically
defining the binary threshold based on a slice in the centre of the
structure, applying a dilation of 8 voxels, and filling in any remaining
internal holes.

2.2. Digital Volume Correlation

Digital volume correlation (DVC) was performed with SPAM (Soft-
ware for Practical Analysis of Materials), an open-source Python
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correlation software operating on a local approach. SPAM being an
open-source Python package was one of the primary reasons for
choosing it over other DVC software, as this simplified the integration of
DVC into the rest of the data preparation process and allowed more
flexibility for integrating with the D2IM in the future. Further details of
the operating principles of SPAM have already been reported elsewhere
[32,33]. SPAM DVC approach follows a different correlation strategy (i.
e. local approach) than the one in Palanca et al. [30] (i.e. BoneDVC,
global approach). In brief, local approaches are based on the subdivision
of the image into smaller windows (aka sub-volumes) and the spatial
correlation of metrics computed in each of the windows of the unde-
formed and deformed image independently [34]. Global approaches
instead are based on the minimisation of the difference of the deformed
image and the registered undeformed image when a continuous
displacement field is applied [35]. SPAM was used to measure the
volumetric displacement fields in vertebrae before and after loading.
Using SPAM a non-rigid registration was performed between every
loaded and unloaded tomography with a binning of 2 and using the
binary mask to identify the region of interest.

The non-rigid registration, raw tomograms and the binary mask are
then used in SPAM to measure the full-field displacements in the x (left-
right), y (anterior-posterior) and z (cranio-caudal) directions; which will
henceforth be referred to as u, v and w, respectively. When performing
DVC, a window size of 50 voxels was selected, consistently with the
nodal spacing of 50 voxels used by Palanca et al. [8,30] for the same
images. The performance of SPAM (local approach) in measuring

displacements was investigated with a set of consistent benchmark im-
ages (voxel size of 39μm) and window/spacing (48 voxels) already used
to test BoneDVC for trabecular bone from vertebral bodies [36]. SPAM
registered random errors of 3.2μm in x, 2.9μm in y and 2.5μm in z, which
are comparable to values (1.73μm in x, 1.57μm in y and 1.36μm in z)
obtained by another local DVC software (DaVis-DC) also tested in [36].
The binary mask was again used to identify the region of interest to
measure these displacements, where the correlation window had to
contain more than 50 % unmasked voxels to be considered an active
correlation window by the DVC process. A SPAM filter function was also
used on the displacement fields to remove the points with poor DVC
convergence, with these points being replaced with a value interpolated
from the 27 nearest neighbours.

A comparison was made between the displacement magnitude/dis-
tribution measured using SPAM and those obtained by Palanca et al.
[30], taking a single intact vertebra case. In Fig. 2 there appears to be a
good qualitative match in the displacements registered by both methods
on the same vertebra, barring some edge discrepancies from the
different masks used. In Table 1 summary statistics for the distribution
of the displacement components is reported. According to a
Mann-Whitney U test at 95 % significance, the u displacements come
from the same distribution however the other components do have
significant differences. This is likely due to a combination of the
differing DVC methodology and the different masking strategy causing a
minor mismatch in the identified structure. Regardless, the same general
mechanical behaviour is seemingly still being captured, with less than

Fig. 1. Workflow for generating 2D sliced dataset and making displacement field predictions using Machine Learning Model D2IM. Strain fields are calculated from
the displacements.
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10 % variation between the mean measured displacements for both
other displacement components. While it is reassuring that SPAM is
providing sensible displacement measurements to use as a ground truth
for training D2IM, ultimately the proposed approach can be generalised
and applied to any DVC methodology.

2.3. Machine Learning Dataset Preparation

The proposed machine learning (ML) model requires two-
dimensional input to output images. The three-dimensional unloaded
tomography, binary mask and displacement components for all 10
vertebrae were sliced into sets of 2D images and used as input or target
data. The image slicing was performed both in the anterior-posterior and
right-left direction for each vertebra, as this would serve to both increase
numerosity of the dataset and showcase a wider variety of two-
dimensional cases.

To match the number of displacement components for the unloaded
scan and the binary mask, only slices corresponding to the central
measurement point of each DVC correlation window was kept.

All the images have slightly different dimensions and, as the ML
model requires consistent image input and output sizes, they had to be
resized. The unloaded image slices from each tomogram were resized to
be 256×256 pixels, this is roughly a quarter of the size of the unaltered
images which was found to be a good compromise allowing for faster
training while still maintaining sufficient resolution.

The binary mask and three displacement components were all
resized to be 20×20 image, providing a good approximation across the
different scans of average DVC output dimensions. The resizing of the
images was done using the zoom function in scipy by deforming the full
image slices to fit the new specified dimensions, using no interpolation

and the ‘nearest’ mode to maintain any displacement discontinuities and
minimise any blurring at the edges of the structures when resizing.

The binary mask used by the model is downsized to the output di-
mensions as it is used within D2IM to suppress any unneeded output
nodes in the predicted displacement fields. To provide consistent visu-
alisation of the results, an additional binary mask, altered by eroding the
downsized input mask by 2 pixels, was created to cut off the edge of both
strains and errors for visualisation purposes. This serves to exclude un-
realistic values of local prediction based on DVC measurement at the
borders, which are known to be affected by errors due to progressively
reduced amount of greyscale information in those regions [37].
Furthermore, it should mitigate any errors arising due to a mismatch
between the input mask and DVC output that may occur due to differ-
ences between the single mask slice used as a D2IM input and the 50
mask slices considered by the DVC correlation window when measuring
displacements.

To ensure the ML model is learning sensible relationships, sets of
image slices were removed from the data if they containedminimal bone
structures that did not span the cranio-caudal dimension of the slice
leaving a final dataset size of 251 image sets. Due to the relatively small
dataset, the judgement of which slices to remove was done manually
based on a visual inspection of the input slices. Finally, the greyscale
(pixel values 0–255) unloaded tomography images were normalised so
that their values range between 0 and 1.

2.4. Machine Learning Model D2IM structure, training and strain
prediction

The deep learning (DL) model D2IM is a feed-forward convolutional
neural network (CNN) that takes an unloaded tomography and a binary
mask as an input to predict the voxel displacement fields u, v, and w. The
displacement field slices obtained from DVC were used as the ground
truth for training and evaluating the accuracy of the model. It should be
noted that while all cases presented in this paper have used the binary
mask as an input to improve accuracy of the predictions, the framework
can be easily tuned to work without a mask input if required.

The architecture of D2IM as feed-forward CNN was loosely inspired
by VGG16 [38], containing multiple stacked convolutional blocks of
increasing depth separated by max pooling layers feeding into multiple
dense (fully connected) layers. The key difference comes in the output
layer, as rather than being used for the classification of images, D2IM is
used for regression, predicting the values for the three displacement
fields based on the image mappings learnt in the convolutional layers.

Fig. 2. Displacement field magnitude and distribution for in situ XCT of an intact vertebra from Palanca et al. [30] (left) and SPAM DVC used in this study on the
same vertebra (right).

Table 1
Statistics on the distribution of the displacement (μm) components for the DVC
results for a single vertebra presented in Fig. 2. Global DVC displacements
provided by Palanca et al. [30]. Local DVC displacements measured using SPAM.

DVC Method Global (BoneDVC) Local (SPAM)

Displacement (μm) u v w u v w
Mean 161.2 -94.7 -425.0 161.7 -85.9 -416.1
Median 161.0 -82.5 -431.6 161.0 -75.0 -407.5
Standard Deviation 114.6 51.8 110.4 101.9 39.9 85.7
IQR 91.8 56.3 121.0 50.1 37.3 105.7
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D2IM was created in Python using the machine learning platform Ten-
sorFlow [39] with a network architecture visually summarised in the
right-hand portion of Fig. 1 and with additional details in Table 2. Pairs
of convolutional layers are stacked using 3×3 convolutions with zero
padding and a stride of 1, followed by a max-pooling layer with a 2×2
pooling window with a stride of 2. Four convolutional stacks are used,
with the depth of the convolutional layers progressing from the first
stack with a kernel size of 32 with each progressive stack doubling in
size to achieve kernel size of 256 in stack 4. Once flattened, this is fol-
lowed by three dense layers of 512 channels, with the third dense layer
being fed into the three 20×20 output layers with a multiply function
applied to the binary mask that removes any values predicted outside
the region of interest. These three outputs predict individual displace-
ment windows that can be reconstructed into the 20×20 fields u, v, and
w corresponding to the image provided for the input scan experiencing a
6500 N axial load. This model has 36395282 trainable parameters in
total, uses ReLU activation functions for every layer (output layers have
no activation as this is a regression problem) and uses batch normal-
isation before every layer. The dense layers are regularised to minimise
overfitting using dropout layers, with a rate of 0.5 and L2 regularisation
using a factor (λ) of 0.001.

To train the model, the dataset was shuffled and split into three sets –
training (80 %), validation (10 %) and test (10 %), where the training
set was used to train the model parameters, the validation set to monitor
the model’s performance during training and the test dataset is reserved
for the final evaluation of the model’s accuracy. D2IM was trained for
500 epochs total with a batch size of 100 using the Adam optimiser to
minimise the combined Mean Squared Error (MSE) for predictions of the
three displacement components. A learning rate schedule was used, such
that the first 300 epochs used a learning rate of 0.001 and the remaining
200 used a learning rate of 0.0001; however, the MSE for the validation
dataset seemed to plateau shortly after the 400th epoch. The model
training took approximately 6 minutes using an NVIDIA RTX A6000
GPU.

Strain fields can be calculated by taking spatial derivatives of the
displacements from both the DVC-measured displacements and pre-
dicted using D2IM as an alternate way of assessing the performance of
the model’s predictions of mechanical behaviour. For this study we
focused on both quantitative and qualitative comparisons of the normal
strains in z (εzz), which is the axis of largest displacement due to the
experimental setup.

2.5. Adjustments for clinical imaging

To explore how well the trained D2IM model could be generalised to

making predictions from images acquired with a lower visual fidelity (i.
e. clinical), some adjustments were made to the processes outlined in
previous sections. Clinical tomography (AquilionOne, Toshiba, Japan)
using facilities at Northern General Hospital in Sheffield, UK, was per-
formed with the following scanning parameters: voltage: 120 kV, cur-
rent: 250 mA, convolution filter: FC30, achieving a voxel size of
190x190x500μm on the same vertebrae previously examined using
high-resolution XTC by Palanca et al. [8,30]. However, these clinical
images were only used to capture the vertebrae pre-compression and
before the artificial lesions were added, meaning that only intact cases
can be examined, and the ground truth DVC measurements obtained
from the high-resolution XCT images must be used to evaluate the pre-
dictions from the low-resolution input. Data for an additional test was
created to add an intermediate state of image fidelity, where a
high-resolution tomography was downscaled to match the resolution of
the clinical image, creating a case where more of the microstructure was
captured, albeit with less detail. The images from the two tomograms
(clinical CT and downscaled XCT) were then resized to be 256×256
voxels, as in Section 2.3, to provide a consistent input to D2IM.

Consequently, a new iteration of D2IM was trained with an aim of
increasing the ability of the model to generalise to lower resolution in-
puts. The details of the model architecture and training process are
identical to those outlined in Section 2.4 apart from the inclusion of a
data augmentation step within the data generator being used during
training. This augmentation takes the normalised images and adds a
random brightness adjustment (up to ±0.1), contrast shift (up to
0.95–1.05) and a blur (kernel window ranging 1–12 pixels). This serves
to make the model less sensitive to the small variations in image
brightness that can occur during imaging, with the blurring making the
model less sensitive to changes in the microstructure.

2.6. Error Metrics

Multiple indicators were computed to quantify the errors of pre-
dictions made using D2IM:

• The performance of the model predictions for each type of
displacement field could be individually measured using a Root
Mean Squared Error (RMSE):

RMSEu =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N

i=1
(ui − ui)2

√√√√

RMSEv =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N

i=1
(vi − vi)2

√√√√

RMSEw =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N

i=1
(wi − wi)2

√√√√

Where N is the number of windows where a displacement value is
being predicted; ui, vi and wi are the measured displacements in that
correlation window; and ui, vi and wi are the predicted displace-
ments.

• The overall performance of the model predictions is monitored and
evaluated using the sum of the Root Mean Squared Errors of all three
displacement fields:

TRMSE = RMSEu +RMSEv +RMSEw

• The performance of the model predictions of each type of displace-
ment and strain field were assessed using a relative error as a per-
centage of the measured value for each predicted window i, with

Table 2
D2IM network Architecture, where ‘maps’ gives the number of output feature
maps and ‘k’ provides the convolutional window size.

Input1 – Tomography (256×256 Image)
Convolutional Stack 1: 2D Convolution: maps=32, k=3×3

2D Convolution: maps=32, k=3×3
Max-pooling: 2×2

Convolutional Stack 2: 2D Convolution: maps=64, k=3×3
2D Convolution: maps=64, k=3×3

Max-pooling: 2×2
Convolutional Stack 3: 2D Convolution: maps=128, k=3×3

2D Convolution: maps=128, k=3×3
Max-pooling: 2×2

Convolutional Stack 4: 2D Convolution: maps=256, k=3×3
2D Convolution: maps=256, k=3×3

Max-pooling: 2×2
Dense Layer: 512
Dense Layer: 512
Dense Layer: 512
Multiply: Input2 – Mask (20×20 image)
Output 1 – u (20×20 image) Output 2 – v

(20×20 image)
Output 3 – w (20×20 image)

P. Soar et al.
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these error distributions being used to obtain and visualise the mean
and standard deviation of the prediction error. For visualisation of
the errors in the full fields this is capped at 100 % to prevent outliers
from dominating the plots.

REiu =
⃒⃒
⃒⃒ui − ui

ui

⃒⃒
⃒⃒, REiv =

⃒⃒
⃒⃒vi − vi

vi

⃒⃒
⃒⃒, REiw =

⃒⃒
⃒⃒wi − wi

wi

⃒⃒
⃒⃒

• A Mann Whitney U test with a significance level α = 0.05 was used
to compare the variation of the distributions of displacement fields
measured and predicted. A non-parametric test was chosen as there
was no indication that the samples being compared were normally
distributed. A two-sided version of the test was used to compare the
measured displacements using different DVC methods and for the
predicted vs measured displacements. A one-tailed test was used to
compare the relative error distributions for different displacement
components.

• The correlation coefficient (R2) between the measured and predicted
displacements were calculated for each displacement component as
an alternate means of assessing overall performance in predicting
each component.

3. Results and Discussion

While both the DVC measurements and D2IM predictions represent
the displacement in voxels, the results herein presented have been
converted to their true displacement values in μm, using the conversion
rate of 1 voxel= 39μmas achieved in the original experiment by Palanca
et al. [8,30].

The ability of D2IM to generalise across the three displacement
components was first examined by making a comparison of the RMSE
that has been summarised in Table 3. Here it can be observed how both
validation and test predictions do have a notably higher error than the
training data, but the training curves indicated that there was no sys-
tematic overfitting of the validation data, which only ever improved
before it plateaued. The most significant contribution to this increase in
overall RMSE comes from the v displacement predictions, with valida-
tion and test errors many times larger compared to the training results.
The validation and test RMSE for u displacement predictions were also
larger than those observed for the training set, but their contribution to
the overall error was comparatively minor. The w displacements
demonstrated the most consistent test prediction behaviour by this
metric as while the validation error was nearly double that of the
training data, the RMSE for the test dataset is just over one fifth of a
voxel larger that the validation set error, which is the smallest increase
in error between the validation and tests sets across the three displace-
ment components, being easily explainable by variation in the samples
and seeming to indicate that there is no systematic overfitting for this
displacement component.

However, the raw RMSE overlooks the fact that components with
measured values of a higher magnitude would be expected to have an
intrinsically higher RMSE regardless of the relative precision of the
predictions. Hence, summary statistics describing the distribution of
measured and predicted displacements in the test dataset (excluding
predictions of zero in regions outside of the mask) are summarised in
Table 4.

The measured and predicted displacements for all components were
found to be significantly different across the entire population of the test
dataset (p<0.05 using a Mann Whitney U test), as predictions failing to
reach the more extreme values observed in the measurements often led
to significant differences in the mean value and standard deviation
calculated, with the median generally providing a closer match (except
for v). Regardless, these statistics seem to demonstrate the fundamental
mechanical behaviour is being captured for all three displacement
components, with differences between the measured and predicted
mean/median values measured ranging 4–35μm (with a 5–22 % relative
error other than the 82 % relative error for the median of v). At the same
time, it does also reinforce the overall trends observed in the RMSE, with
the u displacement’s relatively small RMSE being partially explained
with the comparatively small mean value and tighter standard devia-
tion. The v displacements have by far the largest range in measured
values, which could explain why this component had the largest
observed RMSE even for the training predictions (Table 3). The poor
behaviour in the test predictions for v can also be observed with the
statistics having some of the biggest discrepancies between the
measured and predicted values, with a standard deviation over double
that of w, despite being broadly comparable in mean displacement.
Finally, the w displacements continued to show more consistent pre-
diction behaviour with the standard deviation being closest, in both
relative and absolute terms, to the corresponding measured value. Some
clear discrepancies can be seen between the predicted and measured
minimum and maximum values for w, which is consistent with a typical
trend of under-predicting high values and over-predicting low values
already reported in literature [26,40], which skews the mean prediction
leading to a 19 % error, but when mitigating the influence of these
outlier values by considering the median a more modest 5 % error is
found.

A correlation analysis (Fig. 3) was performed between all the
measured and predicted displacements to further explore the error in the
predictions. This again highlighted that the predictions were generally
accurate, with strong positive correlation coefficients for all three
displacement components. While there are clear outliers and scatterings
of poor predictions, they mostly make up a relatively minor proportion
of the 5797 non-masked displacement windows being predicted and
plotted. The u displacements had the lowest R2 value of 0.82, with the
most egregious scattering of poor predictions, especially for the more
extreme valued displacements. The prediction correlations for the other
displacement components are more comparable, with R2 value of 0.91
for v and 0.94 for w.

Inspecting the scatter charts, the w displacements seemed to produce
the most consistent behaviour overall, as while very tight in some places,
the v displacements displayed some clear clustering of poor predictions,
along with more significant outliers.

The points on this scatter chart have been coloured according to the
vertebra sample they originated from. It should be noted that, due to
random sampling, different numbers of slices from each case are present
in the test data with no example slices from the second intact specimen.
This serves to highlight that many of the notable regions of incorrect
predictions arise from the same samples, notably often from cases where
more extreme displacements were measured. The second anterior lesion
(orange) and first lateral lesion (grey) cases both have some of the
highest displacement magnitudes, but also a very large variation in
prediction accuracy compared to most other cases, likely due to the
lower number of lesioned examples in the data. The intact cases
generally register both smaller displacement and more accurate pre-
dictions except for intact case one (red), with large displacements and
scattering in u and w, but near zero displacements being accurately
predicted in v. This may be due to a different mechanical pattern
compared to the other cases where the load transfer was primarily in
compression, leading to some uncertainties in the model prediction as is
attempts to learn both this rare behaviour and the more dominant pat-
terns seen in the other intact cases.

Table 3
RMSE for D2IM voxel displacement predictions for the training, validation, and
test data after training for 500 epochs.

RMSE (voxels) Train Validation Test
u 0.5285 0.8514 1.4342
v 1.5176 3.7724 4.9117
w 1.0111 1.771 1.9947
Overall 3.0572 6.3948 8.3406
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The relative error of the predictions was also examined and reported
in Fig. 4, where the error of a predicted displacement is represented as a
percentage of the measured value.

These results reinforced previous findings as most predictions for all
three displacements were fairly accurate, with the distribution of rela-
tive displacement errors having median values clearly skewed towards
zero (31 % for u, 17 % for v and 15 % for w) and interquartile ranges of
63 % for u, 32 % for v and 26 % for w. Meaning that once again w
continued to show the most consistent behaviour and the tightest error

distribution, with the range of the recorded errors being significantly
smaller than those observed for the other two displacement components
(p<<0.05 using a Mann Whitney U test). While all displacement com-
ponents predicted by D2IM seemed to capture the overall relationships
with a reasonable degree of accuracy, these metrics consistently showed
the w displacements as the best performing component. This is both
encouraging and expected considering the nature of the problem, as the
framework implemented in D2IM for this study is examining cases of a
bone loaded in compression, where the largest displacements are

Table 4
Summary statistics for the measured and predicted displacement fields of the test dataset.

Measured u (μm) Predicted u (μm) Measured v (μm) Predicted v(μm) Measured w (μm) Predicted w (μm)

Mean 74.05 57.85 156.69 166.18 -184.82 -149.21
Median 39.91 35.11 -29.42 -5.00 -159.12 -142.61
St. Dev. 111.15 66.47 508.51 399.04 201.86 165.82
Min -284.65 -113.18 -999.18 -858.67 -801.79 -640.35
Max 509.95 331.35 1450.48 1262.42 555.21 458.08

Fig. 3. Correlation analysis between all measured and predicted displacements for the test dataset, performed across all three displacement components, including a
line of best fit and the calculated correlation coefficient R2. Points have been coloured according to the vertebra they belong to.
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expected in z and normal strain fields in that direction (εzz) are used in
describing the local mechanics [41,42].

Plots of all displacement components and their errors for all images
in the test dataset can be found in the supplementary material. However,
as an in-depth analysis of all components for the entire test dataset is
impractical within the scope of this paper, indicative results for four
different cases present in the dataset have been chosen and reported in
Figs. 5–8, where the ability of D2IM to predict full-field displacements
(w) and strains (εzz) is shown for intact and lesioned vertebral sections
sliced in both anterior-posterior and left-right directions.

The first image is of an intact anterior-posterior sliced vertebra as
shown in Fig. 5. D2IM is predicting very similar behaviour for both
displacement and strain fields to those measured using DVC. The dis-
placements both showed the largest magnitudes (~366μm for w and
~338μm for w) at the top endplate and a relatively consistent
displacement throughout most of the vertebral body, before rapidly
shrinking to nearly zero towards the bottom endplate. This was matched
by both strain profiles having a bar of similar high magnitude strain at
the top and bottom endplates (~48532με for εzz and ~33660με for εzz),
with comparatively small strain being registered throughout the rest of

Fig. 4. Box and whisker chart with relative error distribution as a percentage of the measured value across the three displacement components. Boxes show the
interquartile range and whiskers the maximum and minimum observed errors (excluding outliers).

Fig. 5. Results for an intact anterior-posterior sliced tomography. Top row left-right: Input tomography slice, measured displacements, predicted displacements and
relative error of displacement. Bottom row left-right: Input binary mask slice, measured strain, predicted strain and relative error of strain.
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the structure. This mechanical behaviour is likely due to the growth
plates made of softer tissues that can be found at the ends of the
vertebra. Displacement errors were generally small and without much
noticeable pattern within the vertebral body with a median error of
1.6 % (81 % for strain), except at the bottom of the structure where
there is a slight mismatch in the displacement and strain behaviour,
being more complicated than a single bar in the measured results. The
relative errors in the strain initially seemed large, but for most of the
structure this is noise as strains comparatively small, while in regions of
large strain around the two end plates the relative error is much less
significant. Some outliers were localised at the borders/corner of the
masked image and, despite the strategy of using an additional mask to

remove boundary errors, there may be instances in the visualisation
with errors still caused by either DVC boundary uncertainties in the
measurement or mismatch occurring between the masks.

The second case shown in Fig. 6 is on another anterior-posterior
sliced image from a vertebra with artificial lesion. D2IM captured the
underlying displacement and strain behaviour, with the lesioned side of
the structure experiencing negative displacements in z, while those on
the non-lesioned side were small, with some positive values. The strain
was quite small for both the measured and predicted output, barring a
line of high strain magnitude (~30661με for εzz and ~19932με for εzz) at
the top endplate and some outliers visibly caused in this case by a
masking mismatch. While a visual inspection of the fields indicates that

Fig. 6. Results for an anterior-posterior sliced tomography with lesion. Top row left-right: Input tomography slice, measured displacements, predicted displacements
and relative error of displacement. Bottom row left-right: Input binary mask slice, measured strain, predicted strain and relative error of strain.

Fig. 7. Results for a left-right sliced tomography with no lesion. Top row left-right: Input tomography slice, measured displacements, predicted displacements and
relative error of displacement. Bottom row left-right: Input binary mask slice, measured strain, predicted strain and relative error of strain.
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the underlying mechanical behaviour is being captured, there was more
of a systematic error when compared to the intact case in Fig. 5, with a
significantly higher median error of 70.4 % for displacement and 71.2 %
for strain, though it should be noted that the region of more than 100 %
relative error on the left side of the vertebra registered near zero dis-
placements, so the absolute error in this region is comparatively small.
This is believed primarily to be an issue of numerosity, as while both five
cases with and without lesions were used, the position of the lesion in
the vertebra differed between the lesioned cases. Specifically, three of
the lesions were in the anterior position of the vertebra and only two had
a lesion in a lateral position as is presented here. Consequently, due to
having three less directly applicable cases to learn from, when compared
to an intact case, it is unsurprising that D2IM found the lateral lesion
scenario to be more challenging to accurately predict.

In Fig. 7 an image of an intact vertebra sliced in the left-right di-
rection is presented. Similarly to the anterior-posterior case, there was a
very good agreement between prediction and measurement. Both
identified a band of large negative displacement at the top endplate of
the vertebra (maximum~802μm for w and ~640μm for w), with a point
of high displacement at the top-right. Most of the structure showed
relatively consistent smaller displacements, before reaching a band of
nearly zero displacements along the bottom endplate of the vertebra. It
must be noted that while D2IM identified the top right being the point of
highest displacement magnitude with a band of large displacements
going down the right edge, the predictions were smaller in magnitude
than were measured. This error was carried across into the strains,
where both the predicted and measured strain fields showed similar
bands of strain at the top and bottom endplate, but the predictions did
not capture the vertical band of strain going down the top-right edge of
the vertebra. Despite some larger errors in this region, with median
errors of 2.7 % for displacement and 33 % for strain (strain error again
somewhat misleading as it mostly originates from the region of near zero
strain), the fundamental mechanical behaviour is clearly being
captured.

The final case being presented (Fig. 8) is on the prediction results for
a vertebra with a lesion sliced in a left-right direction. The results
showed very good agreement in the general behaviour, with less of a
notable systematic error than in the other case presented with a lesion in
Fig. 6, likely due to the presence of an additional case with an anterior

lesion in the dataset. While the displacements were generally slightly
smaller in magnitude for the predictions, the underlying behaviour is
clearly being caught with negative displacements above the lesion and
positive displacements below, both increasing in magnitude as they
move towards the front of the vertebra. The displacement errors are
generally small and seemingly random, albeit larger overall when
compared to the intact cases (median error of 5.8 %), likely related to
the dataset including less cases with an anterior lesion than of intact
vertebra. The strains reported a similar good match between the pre-
dicted and measured values, with both cases showing a large negative
strain near the lesion in the centre of the vertebra (~143179με for εzz
and ~131089με for εzz), with some smaller, but still significant positive
strains near the top and bottom endplates. The strain relative error has a
median value of 38 %, however it again shows low errors in the regions
where high strains are measured and no noticeable error pattern
elsewhere.

While only presenting the εzz strain output, the local mechanics
predicted by D2IM is in line with that presented other studies using DVC
on intact vertebrae [30,43], where high compressive strain localised in
correspondence to endplates and reaching magnitudes up to 55000με. In
the presence of lesions. Palanca et al. reported high localised strains,
with magnitudes in the range 80000–200000με [8], which is consistent
with D2IM prediction. A further consideration is needed for predicted
strain fields. Given the strategy used to increase numerosity with 2D XCT
slices and the conscious choice of structuring D2IM to use the primary
DVC output, the normal strains in w are being derived directly by taking
spatial derivatives of the predicted displacement fields and are not
themselves ‘learned’, which similar DL studies have found to be a less
accurate way of predicting strain [17]. Thus, they carry across the
displacement errors, mainly resulting in some underestimation of higher
strain magnitudes and some overestimation of lower strain magnitudes.
Whilst the former generally remains representative of regions of tissue
already exceeding yielding (i.e. 10000με for bone in compression [44]),
the latter could indicate a prediction of yielded portions of the tissue that
weren’t measured as such. However, despite the presence of few areas
experiencing high percentage of relative error between measured and
predicted strain, the mechanical significance of unyielded bone tissue
was broadly met (Fig. 9, top row). Incongruences in strain predictions
exceeding the set threshold of 10000με, when compared to measured

Fig. 8. Results for a left-right sliced tomography with lesion. Top row left-right: Input tomography slice, measured displacements, predicted displacements and
relative error of displacement. Bottom row left-right: Input binary mask slice, measured strain, predicted strain and relative error of strain.
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values which did not, were mostly localised in border outliers and in
proximity of regions where bone was either yielded or pre-yielding
(Fig. 9, middle row). Much lower relative errors were found when
both measured and predicted strain exceeded 10000με (Fig. 9, bottom
row), which overall indicates the ability of D2IM predictions to suc-
cessfully represent the mechanical state of bone.

While the efficacy of D2IM for predicting displacement fields for the
high-resolution input images has been demonstrated, a further key
consideration is how well this framework can generalise to making
predictions for images acquired with a lower visual fidelity. This would
be a key concern for the future implementation of this technology in a
clinical setting where the acquisition of images of patient tissue with
such detail is currently unattainable.

Fig. 10 reports results for low resolution inputs corresponding to the
intact anterior-posterior sliced case, previously examined using high
resolution inputs in Fig. 5. While both the downscaled and clinical in-
puts clearly contain more error in their predictions, the displacements
still captured the underlying pattern of high negative displacements at
the top of the structure, smaller negative displacements throughout the
main body of the vertebra before reaching near zero displacement at the
base of the structure. Consequently, while the lack of detail in the inputs
has increased the noise in the prediction, it has clearly still been able to
capture the fundamental mechanical behaviour.

Fig. 11 shows results for low resolution inputs corresponding to the
intact left-right sliced case, previously examined using high resolution
inputs in Fig. 7. When comparing the displacement distribution with the
high-resolution results the model at first glance appears to have per-
formed well in capturing the displacement distribution within the
structure using both the clinical and downscaled input images, with both

having the highest displacements at the top right of the structure, a
corresponding high band of displacement across the rest of the top and
smaller, but still significant, displacements throughout the rest of the
body of the structure. However, when looking at the error there is
clearly a systematic underprediction of hundreds of microns throughout
the structure leading to errors of 40–70 % throughout the structure.

While there is still an obvious requirement of further development of
D2IM to be able to make accurate predictions from lower resolution
inputs, it is reassuring that with only a minor amendment of adding data
augmentation the model can predict a sensible displacement field that
captured the expected fundamental mechanics from significantly poorer
quality input data. This provides confidence that, after further experi-
mentation with hyperparameters and model architecture along with the
capability to work with full 3D images, D2IM will be capable of making
effective predictions from clinical inputs, making it a realistic prospect
that this technology could ultimately be deployed in this context.

The D2IM model presented in this paper is the outcome of an initial
investigation to ascertain the viability of this framework, and as such
limiting assumptions have been made to simplify some tasks.

The simplification producing the biggest impact was the decision to
use 2D slices as the inputs to the model. When taking a single slice there
are 49 other slices in that DVC correlation window that were used to
measure the displacement and not being used by D2IM, meaning a great
deal of greyscale information is not considered in the prediction. For
example, in this dataset half of the data was from vertebrae with an
artificial lesion, which predictably impacted on the observed structural
behaviour but, as evidence of this lesion is generally not found in all
slices, D2IM may be presented with two almost identical slices of which
one was from a lesioned vertebra and the other was not. While this could

Fig. 9. Relative error of strain predictions for the different cases reported in Figs. 5–8 (left-right). Images have been marked with windows highlighting regions of
interest regarding bone yielding behaviour. Top: marked in black is measured strain in DVC windows lower than 10000με and predicted strain also lower than
10000με. Middle: marked in white is measured strain in DVC windows lower than 10000με but predicted strain higher than 10000με. Bottom: marked in green is
measured strain in DVC windows higher than 10000με and predicted strain also higher than 10000με.
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Fig. 10. Results for an intact anterior-posterior sliced tomography. Top row: results for clinical tomography slice. Bottom row: results for downscaled high resolution
tomography slice. Left-right: Input tomography slice, predicted displacements and relative error of displacement.

Fig. 11. Results for a left-right sliced tomography with no lesion. Top row: results for clinical tomography slice. Bottom row: results for downscaled high resolution
tomography slice. Left-right: Input tomography slice, predicted displacements and relative error of displacement.
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represent a potential problem for all displacement components, the u
and v displacements were most affected. The w displacements experi-
enced this to a less significant degree as all images in the dataset
included the cranio-caudal (z) change in structure, whichever direction
slicing was performed. A clear example of this can be found in the low-
resolution results shown in Fig. 11, where training data include many
left-right slices that look superficially very similar to this case, but this
slice comes from the first intact case (red dots in Fig. 3), which registered
significantly higher displacements than all other intact cases in the
dataset. With the lack of image detail, D2IM made a more conservative
prediction of smaller displacements also reinforced by the mean squared
error loss function with an L2 norm, which trained the model to require
a higher level of confidence before predicting larger displacement
values. This slice simplification also added a limitation to the possible
strain analysis that could be performed. Due to the combination of
anterior-posterior and left-right slices being used in the dataset, εzz was
the only meaningful strain component to calculate and report in the
current setup.

Another limitation was the data splitting strategy utilised, as slices
from all scans were randomly shuffled into the training, validation and
test datasets; meaning that the test set was not truly independent with a
potential of some data leakage arising from image slices in all sets
coming from the same original scan. A more robust splitting strategy
would have been to hold back an entire set of slices for one or more
vertebrae to use as the test data, ensuring the test data to be fully in-
dependent. While it is hoped this strategy can be employed in future
studies with D2IM, it was deemed impractical for this proof-of-concept
work as the dataset used was already quite small. To fully test the
three different loading scenarios (intact, anterior lesion and lateral
lesion), a case of each would have to be reserved for the test dataset,
leaving only 7 (3 with lesions) cases remaining for training and vali-
dation, which was considered insufficient to train a model capable of
making sensible predictions for all cases.

The requirement of resizing the image to provide a uniform input and
output size for the data also presents a potential limitation, as this
resizing transformation will always cause some data loss in how voxels
are interpolated. This has been considered a separate issue to the central
questions being examined in this paper, and the error added by this
process when compared to the displacements registered in the original
dimensions has not been investigated, but it is acknowledged that a
process for returning displacements to the original dimensions with the
minimum error will be a key requirement for any practical imple-
mentation of this model.

An intrinsic limitation is that D2IM can only predict mechanical
behaviour it has been trained on. Consequently, while D2IM can make a
prediction using any greyscale input image in theory, due to training
data, it will currently try to interpret any greyscale image as vertebral
bone structure and will try to predict how it deforms under an axial load
of 6500 N. In future D2IM will be trained with more datasets containing
different materials and loading conditions that can be considered when
making a prediction. However, as practical experiments can often be
quite limited in the amount of data produced by the standards of deep
learning datasets, data generation via more traditional numerical
modelling such as the finite element method [45] has the potential to
supplement the data used by D2IM to both increasing numerosity for
experimentally measured cases and allowing for the inclusion of loading
scenarios that haven’t yet been experimentally tested.

4. Conclusion

In this study a novel data-driven image mechanics (D2IM) approach
was developed to predict displacement and strain fields directly from
undeformed XCT images. D2IM was trained using experimentally
measured displacement fields for vertebrae, with and without artificial
lesions, obtained via digital volume correlation (DVC). D2IM was able to
make generally sensible predictions for all displacement fields and

displayed an overall good performance capturing the mechanical state
of bone for both displacement and strain fields in the main loading di-
rection of the vertebra. Tests using lower resolution and clinical images
captured the fundamental mechanical behaviour and demonstrated the
potential use of this approach to leverage measurements made using
high quality data to make effective predictions on the low quality inputs
found in a clinical setting. The findings represent a breakthrough in the
prediction of physical fields by exploiting only the rich information
contained in undeformed XCT images. The future development of D2IM
will aim at learning a wider range of mechanical data from both hard
and soft tissue in healthy and pathological conditions for accurate pre-
diction of physical fields, avoiding long, repetitive and tissue-damaging
experimental campaigns but also to advance integration of data in more
sophisticated FE simulations. Ultimately, translating into clinical im-
aging to develop the next generation of diagnostic techniques.
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