
EPTCS 404

Proceedings of the

Workshop on

Logical Frameworks and

Meta-Languages: Theory and Practice

Tallinn, Estonia, 8th July 2024

Edited by: Florian Rabe and Claudio Sacerdoti Coen

Published: 8th July 2024

DOI: 10.4204/EPTCS.404

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . iii

A Beluga Formalization of the Harmony Lemma in the π-Calculus . 1

Gabriele Cecilia and Alberto Momigliano

Binding Contexts as Partitionable Multisets in Abella . 19

Terrance Gray and Gopalan Nadathur

Kuroda’s Translation for the λΠ-Calculus Modulo Theory and Dedukti . 35

Thomas Traversié

Proofs for Free in the λΠ-Calculus Modulo Theory. 49

Thomas Traversié

Rabe, Sacerdoti Coen (Eds): LFMTP 2024

EPTCS 404, 2024, pp. iii–iii, doi:10.4204/EPTCS.404.0

© F. Rabe, C. Sacerdoti Coen

This work is licensed under the

Creative Commons Attribution License.

Preface

Logical frameworks and meta-languages form a common substrate for representing, implementing

and reasoning about a wide variety of deductive systems of interest in logic and computer science. Their

design, implementation and their use in reasoning tasks, ranging from the correctness of software to the

properties of formal systems, have been the focus of considerable research over the last three decades.

The LFMTP workshop brought together designers, implementors and practitioners to discuss var-

ious aspects impinging on the structure and utility of logical frameworks, including the treatment of

variable binding, inductive and co-inductive reasoning techniques and the expressiveness and lucidity of

the reasoning process.

The 2024 instance of LFMTP was organized by Florian Rabe and Claudio Sacerdoti Coen in Tallinn,

Estonia, the 8th July, as a satellite event of the FSCD conference. We are very grateful to the conference

organizers for providing the infrastructure and local coordination for the workshop as well as to EPTCS

for providing the logistics of publishing these proceedings.

The member of the programme committee were:

• Mauricio Ayala-Rincón (University of Brasilia)

• Mario Carneiro (Carnegie Mellon University)

• Kaustuv Chaudhuri (Inria Saclay)

• Cyril Cohen (Inria Sophia Antipolis)

• Alberto Momigliano (University of Milan, Italy)

• Florian Rabe (University of Erlangen-Nuremberg), co-chair

• Colin Rothgang (IMDEA, Madrid)

• Claudio Sacerdoti Coen (University of Bologna, Italy), co-chair

• Sophie Tourret (Inria Nancy & Loria)

• Theo Winterhalter (Inria Saclay)

Additionally, Alessio Coltellacci and Chuta Sano provided external reviews. The editors are very grateful

for their thorough analysis of all submissions.

The workshop received 8 submissions, of which 6 were presented at the workshop. Of these, 2 were

work-in-progress presentations, and 4 were accepted for these formal proceedings. Additionally, Carsten

Schürmann of IT University of Copenhagen gave an invited talk on Nominal State Separating Proofs.

July 03, 2024 Florian Rabe and Claudio Sacerdoti Coen

PC chairs of LFMTP 2024

http://dx.doi.org/10.4204/EPTCS.404.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Rabe, Sacerdoti Coen (Eds): LFMTP 2024

EPTCS 404, 2024, pp. 1–17, doi:10.4204/EPTCS.404.1

© Cecilia & Momigliano

This work is licensed under the

Creative Commons Attribution License.

A Beluga Formalization of the

Harmony Lemma in the π-Calculus

Gabriele Cecilia

Dipartimento di Matematica,
Università degli Studi di Milano, Italy

Alberto Momigliano

Dipartimento di Informatica,
Università degli Studi di Milano, Italy

The “Harmony Lemma”, as formulated by Sangiorgi & Walker, establishes the equivalence between

the labelled transition semantics and the reduction semantics in the π-calculus. Despite being a

widely known and accepted result for the standard π-calculus, this assertion has never been rigor-

ously proven, formally or informally. Hence, its validity may not be immediately apparent when

considering extensions of the π-calculus. Contributing to the second challenge of the Concurrent

Calculi Formalization Benchmark — a set of challenges tackling the main issues related to the mech-

anization of concurrent systems — we present a formalization of this result for the fragment of the

π-calculus examined in the Benchmark. Our formalization is implemented in Beluga and draws

inspiration from the HOAS formalization of the LTS semantics popularized by Honsell et al. In pass-

ing, we introduce a couple of useful encoding techniques for handling telescopes and lexicographic

induction.

1 Introduction

At page 51 of their “bible” on the π-calculus [19], Sangiorgi & Walker state the Harmony Lemma,

regarding the relationship between the reduction semantics and the transitional one (LTS). The sketch of

the proof starts as follows:

Rather than giving the whole (long) proof, we explain the strategy and invite the reader to

check some of the details [. . .]

While this informal style of proof, akin to the infamous “proof on a napkin” championed by de Millo

and colleagues1 , may be suitable for a (long) textbook, it might not be applicable to emerging calculi

with more unconventional operational semantics. Although the theorem is undisputed within the well-

established framework of the π-calculus, this assurance may not extend to these developing calculi.

In such instances, a more rigorous approach, potentially in the form of a machine-checked proof, is

advisable.

These considerations are of course not novel: they have been prominently argued for in the POPL-

Mark challenge [2] and subsequent follow-ups [1, 7]. The recent Concurrent Calculi Formalization

Benchmark [4] (CCFB in brief) introduces a new collection of benchmarks addressing challenges en-

countered during the mechanization of models of concurrent and distributed programming languages,

with an emphasis on process calculi. As with POPLMark, the idea is to explore the state of the art in the

formalization in this subarea, finding the best practices to address their typical issues and improving the

tools for their mechanization.

CCFB considers in isolation three aspects that may be problematic when mechanizing concurrency

theory: linearity, scope extrusion, and coinductive reasoning. Scope extrusion is, of course, the method

by which a process can transfer restricted names to another process, as long as the restriction can be

1“Social Processes and Proofs of Theorems and Programs”, CACM 22-5, 1979.

http://dx.doi.org/10.4204/EPTCS.404.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Formalizing the Harmony Lemma in Beluga

safely expanded to include the receiving process. This phenomenon has been captured in two different,

yet equivalent ways of formulating the operational semantics of the π-calculus:

1. a reduction system, which avoids explicit reasoning about scope extrusion by using structural

congruence;

2. a labelled transition system, which introduces a new kind of action to handle extrusion directly: in

doing so, it breaks shared conventions such as α-equivalence.2

The second challenge in the Concurrent Calculi Formalization Benchmark (CCFB.2) consists in mecha-

nizing these two operational semantics and relating them via the aforementioned Harmony Lemma.

Obviously, we are not the first to address the mechanization of the π-calculus (although we seem to

be the first to tackle the Harmony result): given the challenges that it poses (various kind of binders with

somewhat unusual properties compared to the λ -calculus), there is a long tradition starting with [11] and

mostly developed with encodings based on first-order syntax such as de Brujin indexes — see [4] for a

short review of the literature w.r.t. scope extrusion. As often remarked, concrete encodings will get you

there, but not effortlessly: an estimation of 75% of the development being devoted to the infrastructure

of names handling is not uncommon [8]:

“Technical work, however, still represents the biggest part of our implementation, mainly

due to the managing of De Bruijn indexes [. . .] Of our 800 proved lemmas, about 600 are

concerned with operators on free names.”

It is not surprising that specifications based on higher-order abstract syntax (HOAS) soon emerged,

first only as animations, see [12] in λProlog and [9] in LF. Moving to meta-reasoning, we can roughly

distinguish two main approaches:

1. “squeezing” HOAS into a general proof assistant: there is a plethora of approaches, but w.r.t the

π-calculus this has been investigated by Despeyroux [6] and then systematically by Honsell and

his colleagues, starting with [10] and then addressing other calculi;

2. the Pfenning-Miller “two-level approach” of separating the specification from the reasoning logic,

whose culmination, as far as the π-calculus is concerned, is the most elegant version presented

in [21] and later implemented in Abella.

We fall in the second camp and we offer a Beluga [18] mechanization of CCFB.2 together with a

detailed informal proof, filling all the gaps left by the quoted sketch. Along the way, we introduce (or

simply rediscover) a couple of Beluga tricks to encode telescopes (i.e. n-ary sequences of binders) and to

simulate lexicographic induction. We also prove another folk result, namely the equivalence between the

early and late LTS, as well as what is sometimes called “internal adequacy” [10], that is the equivalence

between the LTS encoding from the Honsell paper with the one in [21].

Informal and formal proofs in all their glory can be found here [5]. In the text, the statements of

informal lemmas and theorems are hyperlinked to their formalization in the repository. For reasons of

space, we will assume familiarity with the basic notions of the π-calculus as in [15], as well as a working

knowledge of Beluga, both of its syntax and more importantly of its approach to proof checking.

2 The π-Calculus and its Operational Semantics

In this section, we quickly recall the main notions involved, so as to make the paper self-contained. For

more details see [19].

2There are also intermediate approaches that save α-equivalence, such as Parrow’s LTS with structural congruence [15] or

Milner’s notion of abstraction and concretion as formalized for example in [3].

Cecilia & Momigliano 3

2.1 Syntax

We assume the existence of a countably infinite set of names, ranged over by x,y, . . . We make no other

assumption about names, since the syntax of processes in CCFB.2 does not consider (mis)match. In fact,

to concentrate in isolation on scope extrusion, sums and replications are ignored as well:

P,Q ::= 0 | x(y).P | x̄y.P | (P | Q) | (νx)P

The input prefix x(y).P and the restriction (νy)P both bind the name y in P. Any other occurrence of

names in a process is free. The sets of free and bound names occurring in a process (fn(P) and bn(P)
respectively) are defined as usual.

In the mathematical presentation of the operational semantics, we adopt the following slightly weaker

variable convention3 : 1) given a process, it is possible to α-rename the bound occurrences of variables

within it; 2) the bound names of any processes or actions under consideration can be chosen different

from the names occurring free in any other entities under consideration.

2.2 Reduction Semantics

We define structural congruence (≡) and reduction (→) as the smallest binary relations over processes,

respectively satisfying the axioms in Fig. 1. The notation Q{y/z} represents capture-avoiding substi-

tution of y for z in the process Q. Note that we have chosen to present congruence as the compatible

refinement of the six basic axioms, rather than using process contexts as in [19], since the latter tend to

be problematic w.r.t. a HOAS formalization.

2.3 Labelled Transition System Semantics

The syntax of actions is the following:

α := x(y) | x̄y | x̄(y) | τ

In the input action x(y) and in the bound output action x̄(y), the name x is free and y is bound; in the free

output action x̄y, both x and y are free. The sets of free names, bound names and names occurring in an

action (bn(α), fn(α) and n(α) respectively) are defined accordingly. The transition relation ·
·
−→ · is the

smallest relation which satisfies the rules in Fig. 2.

Unlike the reduction semantics, the transitional semantics directly addresses scope extrusion via the

two S-CLOSE rules in interaction with S-OPEN: recall how the former rules are not closed under α-

conversion, since the bound name z must occur free in the other premise.

The LTS introduced here is the late semantics, as opposed to the early one adopted by the Benchmark.

However, as remarked in [15], “it is a matter of taste which semantics to adopt”. We indeed prove this

equivalence in Appendix A.

2.4 The Harmony Lemma

In [19], the Harmony Lemma reads as:

i. P ≡
α
−→ Q implies P

α
−→≡ Q.

3Variable conventions are used in a rather loose way in the literature, e.g. Parrow and Sangiorgi & Walker adopt the same

convention, but end up with different provisos in the operational semantics rules.

4 Formalizing the Harmony Lemma in Beluga

PAR-ASSOC

P | (Q | R) ≡ (P | Q) | R

PAR-UNIT

P | 0 ≡ P

PAR-COMM

P | Q ≡ Q | P

SC-EXT-ZERO

(νx)0 ≡ 0

SC-EXT-PAR

x /∈ fn(Q)

(νx)P | Q ≡ (νx)(P | Q)

SC-EXT-RES

(νx)(νy)P ≡ (νy)(νx)P

- -

C-IN

P ≡ Q

x(y).P ≡ x(y).Q

C-OUT

P ≡ Q

x̄y.P ≡ x̄y.Q

C-PAR

P ≡ P′

P | Q ≡ P′ | Q

C-RES

P ≡ Q

(νx)P ≡ (νx)Q

- -

C-REF

P ≡ P

C-SYM

P ≡ Q

Q ≡ P

C-TRANS

P ≡ Q Q ≡ R

P ≡ R

———

R-COM

x̄y.P | x(z).Q → P | Q{y/z}

R-PAR

P → Q

P | R → Q | R

R-RES

P → Q

(νx)P → (νx)Q

R-STRUCT

P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q

Figure 1: Congruence and reduction rules.

ii. P
τ
−→≡ Q iff P → Q.

The juxtaposition of symbols denotes relational composition (e.g. P ≡
α
−→ Q denotes P ≡ R and R

α
−→ Q

for some R). The first assertion is a direct consequence of Lemma 2.6, as detailed at page 6, which is

instrumental to prove the right-to-left direction of the equivalence result. The latter breaks down into the

following theorems:

1. Every transition through a τ action corresponds to a reduction;

2. Given a reduction of P to Q, P is able to make a τ-transition to some Q′ congruent to Q.

In the interest of setting the stage for anybody who wishes to give a solution to CCFB.2, we start by stat-

ing a few technical lemmas about substitutions that are used in both directions of the Harmony Lemma,

while being often left unsaid.

Lemma S1 Q{x/x} = Q.

Lemma S2 If x /∈ fn(Q), then Q{y/x} = Q.

These two lemmas are proved by induction on the structure of the process Q. A consequence of the latter

is the following: if x /∈ fn(Q), then P{y/x} | Q = (P | Q){y/x}.

Finally, we state a stability result for structural congruence under substitutions, only used in the

second direction of Harmony:

Lemma S3 If P ≡ Q, then P{y/x} ≡ Q{y/x}.

This lemma is proved by induction on the structure of the given derivation.

Cecilia & Momigliano 5

S-IN

x(z).P
x(z)
−−→ P

S-OUT

x̄y.P
x̄y
−→ P

S-PAR-L

P
α
−→ P′

bn(α) ∩ fn(Q) = /0

P | Q
α
−→ P′ | Q

S-PAR-R

Q
α
−→ Q′

bn(α) ∩ fn(P) = /0

P | Q
α
−→ P | Q′

S-COM-L

P
x̄y
−→ P′ Q

x(z)
−−→ Q′

P | Q
τ
−→ P′ | Q′{y/z}

S-COM-R

P
x(z)
−−→ P′ Q

x̄y
−→ Q′

P | Q
τ
−→ P′{y/z} | Q′

S-RES

P
α
−→ P′ z /∈ n(α)

(νz)P
α
−→ (νz)P′

S-OPEN

P
x̄z
−→ P′ z 6= x

(νz)P
x̄(z)
−−→ P′

S-CLOSE-L

P
x̄(z)
−−→ P′ Q

x(z)
−−→ Q′

P | Q
τ
−→ (νz)(P′ | Q′)

S-CLOSE-R

P
x(z)
−−→ P′ Q

x̄(z)
−−→ Q′

P | Q
τ
−→ (νz)(P′ | Q′)

Figure 2: Transition rules.

2.4.1 Theorem 1: τ-Transition Implies Reduction

The proof of the first direction relies on three key lemmas which describe rewriting (up to structural

congruence) of processes involved in input and output transitions.

Lemma 1.1 If Q
x(y)
−−→ Q′ then there exist a finite (possibly empty) set of names w1, . . . ,wn (with

x,y 6= wi ∀i = 1, . . . ,n) and two processes R,S such that Q ≡ (νw1) . . . (νwn)(x(y).R | S) and

Q′ ≡ (νw1) . . . (νwn)(R | S).

Lemma 1.2 If Q
x̄y
−→ Q′ then there exist a finite (possibly empty) set of names w1, . . . ,wn (with

x,y 6= wi ∀i = 1, . . . ,n) and two processes R,S such that Q ≡ (νw1) . . . (νwn)(x̄y.R | S) and

Q′ ≡ (νw1) . . . (νwn)(R | S).

Lemma 1.3 If Q
x̄(z)
−−→ Q′ then there exist a finite (possibly empty) set of names w1, . . . ,wn

(with x /∈ {z,w1, . . . ,wn}) and two processes R,S such that Q ≡ (νz)(νw1) . . . (νwn)(x̄z.R | S) and

Q′ ≡ (νw1) . . . (νwn)(R | S).

These three lemmas are proved by induction over the structure of the given transition. We observe

that the presence of a sequence of binders is not an issue in the informal presentation; on the other hand,

from the mechanization point of view, these sequences are challenging to encode in a framework where

the meta-level binder is unary.

Theorem 1 P
τ
−→ Q implies P → Q.

https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/2_input_rewriting.bel
https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/3_free_output_rewriting.bel
https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/4_bound_output_rewriting.bel
https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/5_theorem1.bel

6 Formalizing the Harmony Lemma in Beluga

The theorem is proved by induction on the structure of the given transition. If the latter consists

of an explicit interaction of processes in a parallel composition, we apply the aforementioned lemmas

to rewrite processes involved in specific transitions up to congruence; we then construct the desired

reduction through a chain of congruence and reduction rules.

Corollary 1.1 P
τ
−→≡ Q entails P → Q.

2.4.2 Theorem 2: Reduction Implies τ-Transition

The other direction starts with five technical lemmas regarding free and bound names in specific tran-

sitions. They are instrumental, together with the variable convention, to the firing of the appropriate

transitions.

Lemma 2.1 If P
x̄y
−→ P′, then x,y ∈ fn(P).

Lemma 2.2 If P
x(y)
−−→ P′, then x ∈ fn(P).

Lemma 2.3 If P
x̄(z)
−−→ P′, then x ∈ fn(P) and z ∈ bn(P).

Lemma 2.4 If P
α
−→ P′, x /∈ n(α) and x /∈ fn(P), then x /∈ fn(P′).

Lemma 2.5 If P ≡ P′, then x ∈ fn(P) ⇔ x ∈ fn(P′).

The first four lemmas follow by induction over the structure of the given transition. The last by

induction on the congruence judgment.

The next key ingredient is establishing that structural congruence is a strong late bisimulation.

Lemma 2.6 Let P ≡ Q.

1. If P
α
−→ P′, then there exists a process Q′ such that Q

α
−→ Q′ and P′ ≡ Q′.

2. If Q
α
−→ Q′, then there exists a process P′ such that P

α
−→ P′ and P′ ≡ Q′.

The two statements need to be proven at the same time by mutual induction over the derivation of the

congruence judgment and case analysis on the given transition.

Finally, a rewriting lemma for reduction, again proven by induction on the structure of the given

reduction judgment:

Lemma 2.7 If P → Q then there exist three names x,y and z, a finite (possibly empty) set of names

w1, . . . ,wn and three processes R1,R2 and S such that P ≡ (νw1) . . . (νwn)((x̄y.R1 | x(z).R2) | S) and

Q ≡ (νw1) . . . (νwn)((R1 | R2{y/z}) | S).

Theorem 2 P → Q implies the existence of a Q′ such that P
τ
−→ Q′ and Q ≡ Q′.

The proof follows immediately from the application of Lemmas 2.6 and 2.7.

3 Beluga Formalization

This section provides an overview of the formalization of the definitions and proofs introduced in the

previous section with the proof assistant Beluga. The complete formalization is accessible at [5].

https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/6_stepcong_lemma.bel
https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/7_reduction_rewriting.bel
https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/8_theorem2.bel

Cecilia & Momigliano 7

3.1 Syntax

Fig. 3 displays the syntax of names and processes. Since names are just an infinite set, we encode them

with an LF type nameswithout any constructor, which will be extended with new inhabitants dynamically

in the operational semantics. This is made possible by the declaration

schema ctx = names;

indicating that all relevant judgments involving open terms (processes) are formulated in contexts cate-

gorized by the above schema.

Processes are encoded using (weak) HOAS, as well trodden in the literature: input and restrictions

abstract over names, in particular the input process x(y).P is encoded by the term p_in X \y.(P y),

where the bound name y in P is represented by the implicit argument of the LF function \y.(P y).

As usual, α-renaming and capture-avoiding substitutions are automatically implemented by the meta-

language. From now on, semicolons and infix constructor declarations will be omitted from code snippets

for brevity.

LF names: type =

;

LF proc: type =

| p_zero: proc

| p_in: names → (names → proc) → proc

| p_out: names → names → proc → proc

| p_par: proc → proc → proc –-infix p_par 11 left.

| p_res: (names → proc) → proc

;

Figure 3: Encoding of names and processes.

Recall that LF types are not inductive. While the LF type names has no constructor, the contextual

type [g ⊢ proc], for g ∈ ctx, denotes the set of open processes built out of LF variables ranging over

names.

3.2 Reduction Semantics

Congruence and reduction are encoded by the type families cong and red respectively, as presented in

Fig. 4. As usual, we use universal quantification {x:names} to descend into binders, e.g. in the compati-

bility rule for restriction. Scope extension is realized in rule sc_ext_par by simply not having Q depend

on the restricted channel, hence meeting the side condition x /∈ fn(Q) in the SC-EXT-PAR automatically.

In the same vein, substitution in rule R-COM is encoded by meta-level β -reduction.

3.3 Labelled Transition System Semantics

We follow Honsell et al. [10] for the encoding of the late LTS semantics. We declare two different

relations for transitions via free and bound actions. The result of a free transition is a process, while the

result of a bound transition is a process abstraction: instead of explicitly stating the bound name involved

in the transition, that name is the argument of the aforementioned function. This is reflected by the

encoding of free and bound actions, which only mention the free names involved. Fig. 5 shows the types

8 Formalizing the Harmony Lemma in Beluga

% Structural Congruence

LF cong: proc → proc → type =

% Abelian Monoid Laws for Parallel Composition

| par_assoc: cong (P p_par (Q p_par R)) ((P p_par Q) p_par R)

| par_unit: cong (P p_par p_zero) P

| par_comm: cong (P p_par Q) (Q p_par P)

% Scope Extension Laws

| sc_ext_zero: cong (p_res (\x.p_zero)) p_zero

| sc_ext_par: cong ((p_res P) p_par Q) (p_res (\x.((P x) p_par Q)))

| sc_ext_res: cong (p_res \x.(p_res \y.(P x y))) (p_res \y.(p_res \x.(P x y)))

% Compatibility Laws

| c_in: ({y:names} cong (P y) (Q y)) → cong (p_in X P) (p_in X Q)

| c_out: cong P Q → cong (p_out X Y P) (p_out X Y Q)

| c_par: cong P P’ → cong (P p_par Q) (P’ p_par Q)

| c_res: ({x:names} cong (P x) (Q x)) → cong (p_res P) (p_res Q)

% Equivalence Relation Laws

| c_ref: cong P P

| c_sym: cong P Q → cong Q P

| c_trans: cong P Q → cong Q R → cong P R

% Reduction

LF red: proc → proc → type =

| r_com: red ((p_out X Y P) p_par (p_in X Q)) (P p_par (Q Y))

| r_par: red P Q → red (P p_par R) (Q p_par R)

| r_res: ({x:names} red (P x) (Q x)) → red (p_res P) (p_res Q)

| r_str: P cong P’ → red P’ Q’ → Q’ cong Q → red P Q

Figure 4: Encoding of congruence and reduction.

f_act and b_act encoding free and bound actions and the two mutually defined type families fstep

and bstep which encode free and bound transitions respectively4 . Note that none of the side conditions

of the transition rules need to be explicitly stated, nor do we need the axioms and additional freshness

predicates as in [10].

HOAS encodings customarily come with an (informal) adequacy proof, ensuring that there is a com-

positional bijection between the mathematical model and its encoding (in canonical form). While this is

fairly obvious for processes, congruence and reduction, it is less so w.r.t. the LTS semantics. Luckily,

this has been carefully proven both in [10] and in [21] for a related version. We refer to those papers for

further details and to the repository for a Beluga proof of the “internal” adequacy of those two encodings.

3.4 The Harmony Lemma

One of the expected yet very much appreciated payoffs of a HOAS encoding is that most (in fact all but

Lemma 2.4) boilerplate lemmas about names, occurrences and substitution vanish. We are referring to

the substitution Lemmas S1—S3, as well as the free/bound names Lemmas 2.1, 2.2, 2.3 and 2.5.

4Interestingly, a similar approach is pursued by Cheney in his nominal encoding in αProlog, see

https://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/examples/picalc.apl.

https://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/examples/picalc.apl

Cecilia & Momigliano 9

% Free Actions % Bound Actions

LF f_act: type = LF b_act: type =

| f_tau: f_act | b_in: names → b_act

| f_out: names → names → f_act | b_out: names → b_act

% Transition Relation

LF fstep: proc → f_act → proc → type =

| fs_out: fstep (p_out X Y P) (f_out X Y) P

| fs_par1: fstep P A P’ → fstep (P p_par Q) A (P’ p_par Q)

| fs_par2: fstep Q A Q’ → fstep (P p_par Q) A (P p_par Q’)

| fs_com1: fstep P (f_out X Y) P’ → bstep Q (b_in X) Q’

→ fstep (P p_par Q) f_tau (P’ p_par (Q’ Y))

| fs_com2: bstep P (b_in X) P’ → fstep Q (f_out X Y) Q’

→ fstep (P p_par Q) f_tau ((P’ Y) p_par Q’)

| fs_res: ({z:names} fstep (P z) A (P’ z)) → fstep (p_res P) A (p_res P’)

| fs_close1: bstep P (b_out X) P’ → bstep Q (b_in X) Q’

→ fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))

| fs_close2: bstep P (b_in X) P’ → bstep Q (b_out X) Q’

→ fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))

and bstep: proc → b_act → (names → proc) → type =

| bs_in: bstep (p_in X P) (b_in X) P

| bs_par1: bstep P A P’ → bstep (P p_par Q) A \x.((P’ x) p_par Q)

| bs_par2: bstep Q A Q’ → bstep (P p_par Q) A \x.(P p_par (Q’ x))

| bs_res: ({z:names} bstep (P z) A (P’ z))

→ bstep (p_res P) A \x.(p_res \z.(P’ z x))

| bs_open: ({z:names} fstep (P z) (f_out X z) (P’ z)) → bstep (p_res P)(b_out X) P’

Figure 5: Encoding of actions and transition.

3.4.1 Theorem 1: τ-Transition Implies Reduction

We start with the encoding of Lemmas 1.1, 1.2 and 1.3. There are two issues, one standard, the other

slightly more challenging. For one, the conclusion of these lemmas includes an existential quantification,

and Beluga lacks such a construct; the usual workaround consists of defining a new type family which

encodes the existential quantification. Secondly, and more seriously, the statements refer to sequences

of binders (here restrictions), sometimes referred to as telescopes. We can give a combined solution to

these items by encoding them inductively, where the base case describes when the existential holds for

the empty sequence and the inductive one adds one more binder. More specifically for Lemma 1.1, we

say that the congruences (⋆) (Q ≡ (νw1) . . . (νwn)(x(y).R | S) and Q′ ≡ (νw1) . . . (νwn)(R | S)) hold for

two processes Q and Q′ iff one of the following holds:

i. Q ≡ x(y).R | S and Q′ ≡ R | S;

ii. Q ≡ (νw)P, Q′ ≡ (νw)P′ and the congruences (⋆) hold for P and P′.

We list the definition of the type family ex_inp_rew that encodes the above judgment; the types

ex_fout_rew and ex_bout_rew are defined analogously.

LF ex_inp_rew: proc → names → (names → proc) → type =

| inp_base: Q cong ((p_in X R) p_par S) → ({y:names} (Q’ y) cong ((R y) p_par S))

→ ex_inp_rew Q X Q’

10 Formalizing the Harmony Lemma in Beluga

rec bs_in_rew: (g:ctx) [g ⊢ bstep Q (b_in X) \y.Q’[..,y]]

→ [g ⊢ ex_inp_rew Q X \y.Q’[..,y]] =

/ total b (bs_in_rew _ _ _ _ b) /

fn b ⇒ case b of

| [g ⊢ bs_in] ⇒ [g ⊢ inp_base (c_sym par_unit) \y.(c_sym par_unit)]

| [g ⊢ bs_par1 B1]:[g ⊢ bstep (P p_par R) (b_in X) (\y.(P’ p_par (R[..])))] ⇒
let [g ⊢ D1] = bs_in_rew [g ⊢ B1] in

let [g ⊢ D2] = bs_in_rew_par1 [g ⊢ R] [g ⊢ D1] in [g ⊢ D2]

| [g ⊢ bs_par2 B2]:[g ⊢ bstep (R p_par P) (b_in X) (\y.((R[..]) p_par P’))] ⇒
let [g ⊢ D1] = bs_in_rew [g ⊢ B2] in

let [g ⊢ D2] = bs_in_rew_par2 [g ⊢ R] [g ⊢ D1] in [g ⊢ D2]

| [g ⊢ bs_res \y.B[..,y]] ⇒
let [g,y:names ⊢ D1[..,y]] = bs_in_rew [g,y:names ⊢ B[..,y]] in

let [g ⊢ D2] = bs_in_rew_res [g,y:names ⊢ D1[..,y]] in [g ⊢ D2]

Figure 6: Proof of Lemma 1.1.

| inp_ind: Q cong (p_res P) → ({y:names} (Q’ y) cong (p_res (P’ y)))

→ ({w:names} ex_inp_rew (P w) X \y.(P’ y w)) → ex_inp_rew Q X Q’

We prove each lemma by defining a total recursive function which receives a contextual deriva-

tion of an input/free output/bound output transition respectively and returns a contextual object of the

corresponding existential type. We provide the proof term of the bs_in_rew function, which proves

Lemma 1.1, in Fig. 6; the functions encoding Lemmas 1.2 and 1.3 are omitted.

The proof proceeds by induction on the structure of the given assumption. If it has been obtained

through the S-IN rule, we are in the base case of the existential with no binders: hence, we conclude

immediately modulo symmetry of congruence. In case the input transition has been obtained through the

S-PAR-L rule, it can be rewritten as P | R
x(y)
−−→ P′ | R, with the transition B1: P

x(y)
−−→ P′ as hypothesis. In

such situation we can apply a recursive call of the bs_in_rew function to B1, obtaining an object D1 of type

ex_inp_rew encoding the rewriting for P and P′; to conclude, we appeal to the lemma bs_in_rew_par1

in order to unfold D1 and build the required existential object encoding the rewriting for P | R and P′ | R.

Here is the signature of the above lemma:

rec bs_in_rew_par1: (g:ctx) {R:[g ⊢ proc]} [g ⊢ ex_inp_rew Q X \y.Q’[..,y]]

→ [g ⊢ ex_inp_rew (Q p_par R) X \y.(Q’[..,y] p_par R[..])] = ...

The other two cases of the main proof follow the same pattern and require similar auxiliary lemmas.

We are now ready to discuss the proof of the main result of this section, namely that P
τ
−→ Q implies

P → Q (Theorem 1):

rec fstep_impl_red: (g:ctx) [g ⊢ fstep P f_tau Q] → [g ⊢ P red Q] = ...

The proof proceeds by induction on the derivation of [g ⊢ fstep P f_tau Q]. Mirroring the in-

formal proof, in certain subcases it is enough to apply a recursive call of the function on a structurally

smaller τ-transition and return the desired object of type [g ⊢ P red Q]. In the other subcases, we apply

the functions bs_in_rew, fs_out_rew and bs_out_rew on the given input/output/bound output transi-

tions, obtaining the corresponding objects of existential type, viz. the cited ex_inp_rew and its “siblings”

ex_fout_rew and ex_bout_rew. Then, we would like to conclude by applying some auxiliary functions

which unfold these objects and build the desired reduction. Here, we face a major hurdle, not so much

in writing down the proof terms, but in having them checked for termination, which is, after all, what

Cecilia & Momigliano 11

guarantees that the inductive structure of the proof is correct. Let us see one of such lemmas, which

emerges in the subcase where a S-COM-L rule is applied:

rec fs_com1_impl_red: (g:ctx) [g ⊢ ex_fout_rew P1 X Y Q1]

→ [g ⊢ ex_inp_rew P2 X \x.Q2[..,x]]

→ [g ⊢ (P1 p_par P2) red (Q1 p_par Q2[..,Y])] = ...

The proof needs to consider both hypotheses, in order to unfold the two existential types – recall that the

telescopes force upon us an inductive encoding of those existentials. In other terms, verification of the

fact that this function is decreasing would need to appeal to a form of lexicographic induction.

Termination checkers are of course incomplete and adopt strict syntactic criteria to enforce it; in

particular, Beluga’s checker currently does not support lexicographic induction. One way out is to define

the fs_com1_impl_red function so that it is decreasing on the first argument only, and relies on an

auxiliary function addressing its base case that is decreasing on the second argument. The signature of

such a function is:

rec fs_com1_impl_red_base: (g:ctx) [g ⊢ P2 cong ((p_in X \x.R[..,x]) p_par S)]

→ [g,w:names ⊢ Q2[..,w] cong (R[..,w] p_par S[..])]

→ [g ⊢ ex_fout_rew P1 X Y Q1]

→ [g ⊢ (P1 p_par P2) red (Q1 p_par Q2[..,Y])] = ...

Once these lemmas are in place, the proof of the first direction of the Harmony Lemma follows

without any further drama.

3.4.2 Theorem 2: Reduction Implies τ-Transition

In the other direction, having HOAS disposed of most of the technical lemmas about names and sub-

stitutions, the workhorses are the reduction rewriting Lemma 2.7 and the congruence-as-bisimilarity

Lemma 2.6. Since the former does not introduce new ideas, we discuss it first.

Given its similarity to Lemmas 1.1–1.3, Lemma 2.7 is implemented with the same strategy: we

define an existential type ex_red_rew that inductively encodes the existence of the telescopes and the

two congruences stated in the conclusion of the lemma.

LF ex_red_rew: proc → proc → type =

| red_base: P cong (((p_out X Y R1) p_par (p_in X R2)) p_par S)

→ Q cong ((R1 p_par (R2 Y)) p_par S) → ex_red_rew P Q

| red_ind: P cong (p_res P’) → Q cong (p_res Q’)

→ ({w:names} ex_red_rew (P’ w) (Q’ w)) → ex_red_rew P Q

We then implement some auxiliary functions to unfold objects of the existential type ex_red_rew in

specific subcases, for example:

rec red_impl_red_rew_par: (g:ctx) {R:[g ⊢ proc]} [g ⊢ ex_red_rew P Q]

→ [g ⊢ ex_red_rew (P p_par R) (Q p_par R)] = ...

Having established those, it is straightforward to prove

rec red_impl_red_rew: (g:ctx) [g ⊢ P red Q] → [g ⊢ ex_red_rew P Q] = ...

by induction on the structure of the given reduction judgment.

Moving on to the proof of Lemma 2.6, there is a new technicality to address. We have seen how

in a HOAS setting provisos such as “x /∈ fn(P)” are realized by P being in the scope of a meta level

abstraction that binds x, but not actually depending on x. Sometimes (see [20] for other instances),

we have to convince our proof environment of this non-dependency, which is basically the content of

12 Formalizing the Harmony Lemma in Beluga

Lemma 2.4, in words: “given a transition P
α
−→ Q where x does not occur free in P, then x does not occur

free in α and Q”. Since in Beluga judgments over open terms are encapsulated in the context where they

make sense, removing these spurious dependencies amounts to “strengthening” such a context, akin to

strengthening lemmas in type theory. The lemma more formally reads as:

If Γ,x : names ⊢ P
αx−→ Qx, then there are α ′,Q′ such that αx = α ′, Qx = Q′ and Γ ⊢ P

α ′

−→ Q′ (1)

Not only Beluga does not have existentials (nor conjunctions), but LF also has no built-in equal-

ity notion. However, this is easy to simulate via pattern unification over canonical forms, by defining

three type families encoding equality of processes, free actions and bound actions respectively. Process

equality is defined as:

LF eqp: proc → proc → type =

| prefl: eqp P P

Since we are now dealing with a property about a LF contextual object (the initial transition), the

statement in (1) has to be encoded at the computation level as an inductive type [17]. We list this

encoding, omitting the definition of its counterpart for bound transitions ex_str_bstep.

inductive ex_str_fstep: (g:ctx) [g,x:names ⊢ fstep P[..] A Q] → ctype =

| ex_fstep: {F:[g,x:names ⊢ fstep P[..] A Q]} [g ⊢ fstep P A’ Q’]

→ [g,x:names ⊢ eqf A A’[..]] → [g,x:names ⊢ eqp Q Q’[..]]

→ ex_str_fstep [g,x:names ⊢ F]

Note how non-occurrence is realized using weakening substitutions, i.e. P[..] signals that the process P

depends only on the variables mentioned in g, excluding x.

The strengthening lemma is implemented through the two following mutually recursive functions:

rec strengthen_fstep: (g:ctx) {F:[g,x:names ⊢ fstep P[..] A Q]}

→ ex_str_fstep [g,x:names ⊢ F] = ...

and rec strengthen_bstep: (g:ctx) {B:[g,x:names ⊢ bstep P[..] A \z.Q[..,x,z]]}

→ ex_str_bstep [g,x:names ⊢ B] = ...

The proof follows by a long but straightforward induction on the structure of the given transition.

To state Lemma 2.6, we again need to code the existential in its conclusion; however, since the

statement involves transitions through a generic action α , we actually require two new type families: one

for free transitions and one for bound transitions.

LF ex_fstepcong: proc → proc → f_act → proc → type =

| fsc: fstep Q A Q’ → P’ cong Q’ → ex_fstepcong P Q A P’

LF ex_bstepcong: proc → proc → b_act → (names → proc) → type =

| bsc: bstep Q A Q’ → ({x:names} (P’ x) cong (Q’ x)) → ex_bstepcong P Q A P’

The reader may wonder why the process P is mentioned in the fsc and bsc constructors, as it does not

play any role: indeed, it is a trick to please Beluga’s coverage checker when this definition is unfolded in

the rest of the development.

Lemma 2.6 is encoded through the definition of four mutually recursive functions: as the statement

involves transitions via a generic action α , the first two prove the result for free transitions, while the

last two demonstrate the result for bound transitions; moreover, since the proof is carried out by con-

currently establishing two symmetrical assertions, the odd functions prove the left-to-right statement,

while the even ones demonstrate the right-to-left statement. We present the signature of the first function

cong_fstepleft_impl_stepright, which proves the left-to-right assertion for free transitions:

Cecilia & Momigliano 13

rec cong_fstepleft_impl_fstepright: (g:ctx) [g ⊢ P cong Q] → [g ⊢ fstep P A P’]

→ [g ⊢ ex_fstepcong P Q A P’] = ...

Mirroring the informal proof, this lemma is proved by a long induction on the structure of the given

congruence; in most of the subcases, case analysis of the given transition is performed as well.

A final ingredient for the proof of Theorem 2 is the auxiliary lemma:

rec red_rew_impl_fstepcong: (g:ctx) [g ⊢ ex_red_rew P Q]

→ [g ⊢ ex_fstepcong P P f_tau Q] = ...

The proof proceeds by induction on the structure of the given object of type [g ⊢ ex_red_rew P Q];

in both the base case and the inductive case, a key factor consists in the application of the function

cong_fstepright_impl_fstepleft.

We are ready to prove Theorem 2:

rec red_impl_fstepcong: (g:ctx) [g ⊢ P red Q] → [g ⊢ ex_fstepcong P P f_tau Q] =

/ total r (red_impl_fstepcong _ _ _ r) /

fn r ⇒ let [g ⊢ D1] = red_impl_red_rew r in

let [g ⊢ D2] = red_rew_impl_fstepcong [g ⊢ D1] in [g ⊢ D2]

Given r representing the reduction P → Q, we apply the function red_impl_red_rew to it

returning an object D1 of type [g ⊢ ex_red_rew P Q] that encodes the following congruences:

P ≡ (νw1) · · · (νwn)((x̄y.R1 | x(z).R2) | S) and Q ≡ (νw1) · · · (νwn)((R1 | R2{y/z}) | S), for some R1, R2,

S and w1, . . . ,wn. Finally, we invoke the auxiliary function red_rew_impl_fstepcong, which unfolds the

argument D1 and returns the desired object of type [g ⊢ ex_fstepcong P P f_tau Q].

4 Evaluation and Conclusions

The reader may wonder “Is that it?” We sympathize with the feeling: what is remarkable in this for-

malization is how (mostly) uneventful it has been. Once we had settled on using (weak) HOAS and a

specialized proof environment such as Beluga — which, given our lineage, was not much of a stretch —

the Honsell/Miller encoding of the labelled transition system removed all issues related to scope extru-

sion and Beluga’s remarkable conciseness did the rest, turning 30 pages of LATEX proofs, which still skip

many steps, into some 700 lines of proof terms.

Remarkably, the structure of the formal proof closely mirrors the informal one: having eliminated

the 7 technical lemmas thanks to the HOAS encoding, both proofs share the same 6 lemmas, proved in

the same fashion. Some parts of the formal proof are covered by 22 additional lemmas which deal with

the unfolding of the existential types,5 while another 4 lemmas result from the mutual recursion induced

by the encoding.

In our biased opinion, this uneventfulness does not trivialize the accomplishment: we have provided

a compact and elegant solution of a benchmark problem, which, after all, is supposed to be challenging:

the fact that this has not been a heroic feat is a testament to the merits of the HOAS encoding and to

the long line of research that has made meta-level reasoning over HOAS specifications possible. It also

suggests that, once we put on the HOAS “spectacles”, the binders of the π-calculus are not that different

from those of the λ -calculus, in the sense that the meta-level binder will gladly model scope extrusion,

under the right encoding.

5Given how widespread existential (and conjunctive) statements are in this development, it would be helpful if Beluga could

provide some syntactic sugar, similarly to Agda, and a way to unfold those definitions automatically.

14 Formalizing the Harmony Lemma in Beluga

Beluga has shown to be a reliable system: we did stress the termination checker, with a heavy use

of mutually defined recursive functions. We managed to get around the current lack of support for

lexicographic induction; our technique could have broader applicability, for instance in verifying totality

results such as the admissibility of cut elimination that rely on nested induction for their termination

proofs [16]. We also established coverage, again getting around the minor glitch that we have mentioned

above in the proof of the right-to-left direction of the Harmony Lemma.

Since the benchmark is amenable to a weak HOAS encoding, this begs the question of why not

pursue its solution in a general proof assistant such as Coq. While weak HOAS is indeed consistent with

monotonic inductive types, it is well known that the full dependent function space of a theory such as the

Calculus of Constructions is incompatible with the intensional quantification featured by LF-like type

theories. Workarounds exist: the most successful one is the “Theory of Contexts” [10], where additional

predicates concerning freshness and non-occurrence of names are added to specifications such as of the

LTS. Further, ToC assumes some axioms regulating the properties of names and abstraction over names

(i.e. “contexts”) in order to reify what LF-like frameworks provide natively. To be fair, it is unclear to us

which role ToC would play in a Coq solution of CCFB.2, but for the rest of the Concurrent Benchmark,

the outcome is not pretty (believe us, we tried). Of course, there is no obstacle in abandoning HOAS for

concrete encodings and we are looking forward to comparing such solutions to ours.

Although CCFB.2 does not ask for it, we conjecture that it would be easy, albeit tedious, to extend our

solution to account for other features of the π-calculus, namely sums, replication and match. Mismatch,

which is handled in [10], is rather problematic in HOAS, since the systems that support it have no native

notion of negation.

The adoption of Beluga as a proof environment for this formalization is motivated by our endeavor

(together with Pientka’s group) to give an overall HOAS solution to all the challenges listed in CCFB,

which include type safety for (linear) session types and turning strong barbed bisimilarity into a congru-

ence. For this, Beluga is a strong candidate: in fact the type safety challenge is already in the bag, thanks

to the techniques developed in [20]. The coinduction part is more challenging, but we have a good track

record in a similar benchmark [14]. Solving the rest of CCFB in Beluga may also shed some light on the

role of the ∇ quantifier [13] as a meta-reasoning tool, compared to Beluga’s use of contextual LF as a

specification language.

References

[1] Andreas Abel, Guillaume Allais, Aliya Hameer, Brigitte Pientka, Alberto Momigliano, Steven Schäfer &

Kathrin Stark (2019): POPLMark Reloaded: Mechanizing Proofs by Logical Relations. J. Funct. Program.

29:19, doi:10.1017/S0956796819000170.

[2] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce, Peter

Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich & Steve Zdancewic (2005): Mecha-

nized Metatheory for the Masses: The POPLMark Challenge. In Joe Hurd & Tom Melham, editors: Theorem

Proving in Higher Order Logics, Springer, Berlin & Heidelberg, pp. 50–65, doi:10.1007/11541868_4.

[3] Jesper Bengtson & Joachim Parrow (2009): Formalising the π-Calculus using Nominal Logic. Log. Methods

Comput. Sci. 5, doi:10.2168/LMCS-5(2:16)2009.

[4] Marco Carbone, David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, Frederik Krogsdal Jacobsen, Al-

berto Momigliano, Luca Padovani, Alceste Scalas, Dawit Tirore, Martin Vassor, Nobuko Yoshida & Daniel

Zackon (2024): The Concurrent Calculi Formalisation Benchmark. In Ilaria Castellani & Francesco Tiezzi,

editors: Coordination Models and Languages, Springer Nature Switzerland, Cham, pp. 149–158, doi:10.

1007/978-3-031-62697-5_9.

https://doi.org/10.1017/S0956796819000170
https://doi.org/10.1007/11541868_4
https://doi.org/10.2168/LMCS-5(2:16)2009
https://doi.org/10.1007/978-3-031-62697-5_9
https://doi.org/10.1007/978-3-031-62697-5_9

Cecilia & Momigliano 15

[5] Gabriele Cecilia (2024): Formalizing the Operational Semantics of the π-Calculus. Master’s the-

sis, Università degli Studi di Milano. Available at https://github.com/GabrieleCecilia/

concurrent-benchmark-solution.

[6] Joëlle Despeyroux (2000): A Higher-Order Specification of the π-Calculus. In Jan van Leeuwen, Osamu

Watanabe, Masami Hagiya, Peter D. Mosses & Takayasu Ito, editors: Theoretical Computer Science, Ex-

ploring New Frontiers of Theoretical Informatics, International Conference IFIP TCS 2000, Sendai, Japan,

August 17-19, 2000, Proceedings, Lecture Notes in Computer Science 1872, Springer, pp. 425–439, doi:10.

1007/3-540-44929-9_30.

[7] Amy P. Felty, Alberto Momigliano & Brigitte Pientka (2018): Benchmarks for Reasoning with Syntax Trees

Containing Binders and Contexts of Assumptions. Math. Struct. Comput. Sci. 28(9), pp. 1507–1540, doi:10.

1017/S0960129517000093.

[8] Daniel Hirschkoff (1997): A Full Formalisation of π-Calculus Theory in the Calculus of Constructions. In

Elsa L. Gunter & Amy P. Felty, editors: Theorem Proving in Higher Order Logics, 10th International Con-

ference, TPHOLs’97, Murray Hill, NJ, USA, August 19-22, 1997, Proceedings, Lecture Notes in Computer

Science 1275, Springer, pp. 153–169, doi:10.1007/BFB0028392.

[9] Furio Honsell, Marina Lenisa, Ugo Montanari & Marco Pistore (1998): Final Semantics for the π-Calculus.

In David Gries & Willem P. de Roever, editors: Programming Concepts and Methods, IFIP TC2/WG2.2,2.3

International Conference on Programming Concepts and Methods (PROCOMET ’98) 8-12 June 1998, Shel-

ter Island, New York, USA, IFIP Conference Proceedings 125, Chapman & Hall, pp. 225–243, doi:10.1007/

978-0-387-35358-6_17.

[10] Furio Honsell, Marino Miculan & Ivan Scagnetto (2001): π-Calculus in (Co)Inductive Type Theory. Theor.

Comput. Sci. 253(2), pp. 239–285, doi:10.1016/S0304-3975(00)00095-5.

[11] T. F. Melham (1994): A Mechanized Theory of the π-Calculus in HOL. Nordic J. of Computing 1(1), p.

50–76, doi:10.48456/tr-244.

[12] Dale Miller (1994): Specification of the π-Calculus. Available at http://www.lix.polytechnique.fr/

Labo/Dale.Miller/lProlog/examples/pi-calculus/toc.html.

[13] Dale Miller & Alwen Tiu (2005): A Proof Theory for Generic Judgments. ACM Trans. Comput. Log. 6(4),

pp. 749–783, doi:10.1145/1094622.1094628.

[14] Alberto Momigliano, Brigitte Pientka & David Thibodeau (2019): A Case-Study in Programming Coin-

ductive Proofs: Howe’s Method. Math. Struct. Comput. Sci. 29(8), pp. 1309–1343, doi:10.1017/

S0960129518000415.

[15] Joachim Parrow (2001): An Introduction to the π-Calculus. In Jan A. Bergstra, Alban Ponse & Scott A.

Smolka, editors: Handbook of Process Algebra, North-Holland / Elsevier, pp. 479–543, doi:10.1016/

B978-044482830-9/50026-6.

[16] Frank Pfenning (2000): Structural Cut Elimination: I. Intuitionistic and Classical Logic. Inf. Comput.

157(1-2), pp. 84–141, doi:10.1006/INCO.1999.2832.

[17] Brigitte Pientka & Andrew Cave (2015): Inductive Beluga: Programming Proofs. In Amy P. Felty &

Aart Middeldorp, editors: Automated Deduction - CADE-25 - 25th International Conference on Automated

Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, Lecture Notes in Computer Science 9195,

Springer, pp. 272–281, doi:10.1007/978-3-319-21401-6_18.

[18] Brigitte Pientka & Jana Dunfield (2010): Beluga: A Framework for Programming and Reasoning with De-

ductive Systems (System Description). In Jürgen Giesl & Reiner Hähnle, editors: Automated Reasoning, 5th

International Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Proceedings, Lecture Notes

in Computer Science 6173, Springer, pp. 15–21, doi:10.1007/978-3-642-14203-1_2.

[19] Davide Sangiorgi & David Walker (2001): The π-Calculus - a Theory of Mobile Processes. Cambridge

University Press, doi:10.2178/bsl/1182353926.

https://github.com/GabrieleCecilia/concurrent-benchmark-solution
https://github.com/GabrieleCecilia/concurrent-benchmark-solution
https://doi.org/10.1007/3-540-44929-9_30
https://doi.org/10.1007/3-540-44929-9_30
https://doi.org/10.1017/S0960129517000093
https://doi.org/10.1017/S0960129517000093
https://doi.org/10.1007/BFB0028392
https://doi.org/10.1007/978-0-387-35358-6_17
https://doi.org/10.1007/978-0-387-35358-6_17
https://doi.org/10.1016/S0304-3975(00)00095-5
https://doi.org/10.48456/tr-244
http://www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog/examples/pi-calculus/toc.html
http://www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog/examples/pi-calculus/toc.html
https://doi.org/10.1145/1094622.1094628
https://doi.org/10.1017/S0960129518000415
https://doi.org/10.1017/S0960129518000415
https://doi.org/10.1016/B978-044482830-9/50026-6
https://doi.org/10.1016/B978-044482830-9/50026-6
https://doi.org/10.1006/INCO.1999.2832
https://doi.org/10.1007/978-3-319-21401-6_18
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.2178/bsl/1182353926

16 Formalizing the Harmony Lemma in Beluga

[20] Chuta Sano, Ryan Kavanagh & Brigitte Pientka (2023): Mechanizing Session-Types Using a Structural

View: Enforcing Linearity without Linearity. Proc. ACM Program. Lang. 7(OOPSLA), pp. 235:374–235:399,

doi:10.1145/3622810.

[21] Alwen Tiu & Dale Miller (2010): Proof Search Specifications of Bisimulation and Modal Logics for the

π-Calculus. ACM Trans. Comput. Log. 11(2), pp. 13:1–13:35, doi:10.1145/1656242.1656248.

A Appendix: Late vs Early Transitions

An alternative to the late semantics presented in the paper is the early semantics. As its name suggests,

it is characterized by the fact that substitutions of names received in interaction are performed as soon

as possible, namely during the execution of the S-IN rule. The syntax of actions is the same as in the

late semantics; however, the name y occurring in an input action x(y) is considered to be free. As for

transitions, now denoted as
(−)
−−⇁, the rules S-IN, the two S-COM rules and the two S-CLOSE are replaced

by those in Fig. 7 (“right” rules are omitted for brevity). Note how the S-IN rule now exhibits the

substitution of the input name; conversely, in the S-COM rules, both of the names x and y occurring in

the actions of the given transitions must coincide and no substitution takes place in the conclusion.

S-IN

x(z).P
x(y)
−−⇁ P{y/z}

S-COM-L

P
x̄y
−⇁ P′ Q

x(y)
−−⇁ Q′

P | Q
τ
−⇁ P′ | Q′

S-CLOSE-L

P
x̄(z)
−−⇁ P′ Q

x(z)
−−⇁ Q′ z /∈ fn(Q)

P | Q
τ
−⇁ (νz)(P′ | Q′)

Figure 7: Early transition semantics rules.

In order to prove the equivalence of the two semantics, we follow Parrow’s approach in [15]: namely,

our objective is to demonstrate that the two semantics allow to infer the same τ-transitions. Both direc-

tions are achieved by induction on the depth of the inference of the given transitions and rely on some

additional lemmas, which state a correspondence between input/output transitions of the two semantics

as well. The only non-trivial correspondence lies between input (in the late semantics) and free input (in

the early semantics), which is defined as follows:

P
x(y)
−−⇁ Q iff there are Q′ and w such that P

x(w)
−−→ Q′ and Q = Q′{y/w}. (2)

We begin the Beluga formalization by encoding the two semantics in the same environment (Fig. 8).

The type f_act presents a new constructor f_in for free input actions in the early semantics; as for

transitions, the constructors expressing identical rules in the two semantics are omitted for brevity. We

observe that the ebs_in constructor representing bound input transitions in the early semantics cannot be

eliminated, since bound input transitions are needed as premises in the rules introduced by the efs_close

constructors. For consistency of notation, the types fstep and bstep for late transitions have been

renamed as late_fstep and late_bstep.

The next ingredient for the formalization of the semantics equivalence is the definition of the type

family ex_latebs, which encodes the existence of a late transition such as in the correspondence (2):

LF ex_latebs: proc → names → names → proc → type =

| lbs: late_bstep P (b_in X) \w.(Q’ w) → eqp Q (Q’ Y) → ex_latebs P X Y Q

https://doi.org/10.1145/3622810
https://doi.org/10.1145/1656242.1656248

Cecilia & Momigliano 17

% Free Actions % Bound Actions

LF f_act: type = LF b_act: type =

| f_in: names → names → f_act | b_in: names → b_act

| f_out: names → names → f_act | b_out: names → b_act

| f_tau: f_act

% Early Transition Relation

LF early_fstep: proc → f_act → proc → type =

| efs_in: early_fstep (p_in X P) (f_in X Y) (P Y)

| efs_com1: early_fstep P (f_out X Y) P’ → early_fstep Q (f_in X Y) Q’

→ early_fstep (P p_par Q) f_tau (P’ p_par Q’)

| efs_com2: early_fstep P (f_in X Y) P’ → early_fstep Q (f_out X Y) Q’

→ early_fstep (P p_par Q) f_tau (P’ p_par Q’)

| efs_close1: early_bstep P (b_out X) P’ → early_bstep Q (b_in X) Q’

→ early_fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))

| efs_close2: early_bstep P (b_in X) P’ → early_bstep Q (b_out X) Q’

→ early_fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))

...

and early_bstep: proc → b_act → (names → proc) → type =

| ebs_in: early_bstep (p_in X P) (b_in X) P

...

Figure 8: Encoding of actions and early transition.

We then list the signature of the functions finp_earlytolate and finp_latetoearly, encoding the

correspondence between free input transitions in the early semantics and input transitions in the late

semantics. The correspondence between the other types of actions is performed analogously with two

functions for each case; since their formalization is straightforward, it is omitted.

rec finp_earlytolate: (g:ctx) [g ⊢ early_fstep P (f_in X Y) Q]

→ [g ⊢ ex_latebs P X Y Q] = ...

rec finp_latetoearly: (g:ctx) {Y:[g ⊢ names]} [g ⊢ ex_latebs P X Y Q]

→ [g ⊢ early_fstep P (f_in X Y) Q] = ...

In the second statement, the input name Y needs to be passed as an explicit argument, otherwise Beluga

would not be able to reconstruct it during some further calls of this lemma. The proofs of both lemmas

are straightforward inductions on the given derivation.

We can now state the signature of the functions tau_earlytolate and tau_latetoearly, which

encode the equivalence of the two semantics:

rec tau_earlytolate: (g:ctx) [g ⊢ early_fstep P f_tau Q]

→ [g ⊢ late_fstep P f_tau Q] = ...

rec tau_latetoearly: (g:ctx) [g ⊢ late_fstep P f_tau Q]

→ [g ⊢ early_fstep P f_tau Q] = ...

The proof follows by induction on the given transition. In case the transition is obtained through a S-COM

or S-CLOSE rule, we apply the previously defined lemmas in order to turn an early input/output transition

into a corresponding late input/output transition and then conclude.

Rabe, Sacerdoti Coen (Eds): LFMTP 2024

EPTCS 404, 2024, pp. 19–34, doi:10.4204/EPTCS.404.2

© T. Gray & G. Nadathur

This work is licensed under the

Creative Commons Attribution License.

Binding Contexts as Partitionable Multisets in Abella

Terrance Gray Gopalan Nadathur

University of Minnesota, Minneapolis, MN 55455, USA

grayx501@umn.edu ngopalan@umn.edu

When reasoning about formal objects whose structures involve binding, it is often necessary to an-

alyze expressions relative to a context that associates types, values, and other related attributes with

variables that appear free in the expressions. We refer to such associations as binding contexts.

Reasoning tasks also require properties such as the shape and uniqueness of associations concerning

binding contexts to be made explicit. The Abella proof assistant, which supports a higher-order treat-

ment of syntactic constructs, provides a simple and elegant way to describe such contexts from which

their properties can be extracted. This mechanism is based at the outset on viewing binding contexts

as ordered sequences of associations. However, when dealing with object systems that embody

notions of linearity, it becomes necessary to treat binding contexts more generally as partitionable

multisets. We show how to adapt the original Abella encoding to encompass such a generalization.

The key idea in this adaptation is to base the definition of a binding context on a mapping to an

underlying ordered sequence of associations. We further show that properties that hold with the or-

dered sequence view can be lifted to the generalized definition of binding contexts and that this lifting

can, in fact, be automated. These ideas find use in the extension currently under development of the

two-level logic approach of Abella to a setting where linear logic is used as the specification logic.

1 Introduction

It is often necessary to develop specifications and to reason about formal objects whose structures incor-

porate some notion of binding. Examples of such objects include formulas, types, proofs, and programs.

A recursive analysis of such objects requires the examination of their subparts in which there may be

occurrences of free variables. This analysis is usually parameterized by an association of some kind,

such as a type, a value, or a property, with each of these variables. This paper concerns support for such

associations, which we refer to as binding contexts, in reasoning tasks.

The focus of our work is the treatment of binding contexts relative to a particular reasoning system,

the Abella proof assistant [1]. A defining characteristic of Abella is that it provides intrinsic support for

the higher-order approach to abstract syntax. At the representation level, this support derives from the

use of the terms of the simply typed lambda calculus as the means for encoding objects. At the level of

the logic, Abella incorporates the special generic quantifier ∇, pronounced as nabla, to move binding into

the meta-level and the associated nominal constants to encode free variables. Further, it allows properties

of binding contexts to be made explicit through the definition of context predicates and context relations

and thereby to be used in proofs.

While Abella provides rich support for working with binding contexts, one aspect that it does not

treat adequately with respect to these contexts is linearity. This requirement arises, for instance, when

bound variables take on the connotation of resources that must be used exactly once within the overall

syntactic object. To provide support for this viewpoint, it becomes necessary to encode binding contexts

as partitionable entities. We show in this paper how this capability can be built into the Abella system.

The key idea underlying our proposal is to view binding contexts as multisets that are permutation in-

variant and that can be constructed from two simpler multisets through multiset union. Thus, if ∼ is an

http://dx.doi.org/10.4204/EPTCS.404.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

20 Binding Contexts as Partitionable Multisets in Abella

infix operator representing the permutation relation between multisets and ++ is an infix multiset union

operator, the expression G ∼ (G1 ++ G2) encodes the fact that G1 and G2 partition the multiset G.1

Unfortunately, the ability to partition a multiset is not by itself sufficient for the usual reasoning tasks.

When G1 and G2 have been determined to be partitions of a binding context G, we need also to know

that each of them independently satisfies the properties needed to be the required kind of binding context.

A related issue is that we must be able to define what it means to be a binding context in a particular

reasoning task when these contexts may be constructed using multiset unions. A major part of our work

here is to outline a systematic method for realizing these requirements. Our proposal in a nutshell is to

identify what it means to be a binding context through the definition of a context predicate or relation

while initially viewing it as an ordered sequence or list of associations. This definition can then be lifted

to arbitrary multisets through the permutation relation. Distributivity of the property over multiset union

then factors through the same permutation relation. An auxiliary consequence of what we show is the

fact that this scheme is to a substantial extent automatable.

The rest of the paper is structured as follows. In the next section, we identify in more detail the

idea of binding contexts and describe their realization in Abella when they are represented in a list-based

form; we assume in this presentation, and, indeed, the rest of the paper, a familiarity with the Abella

system. Section 3 then identifies the need for linearity with respect to binding contexts in specifications

and the additional constructors and definitions that suffice to realize it. Of course, it still remains to be

shown how to make things work at the reasoning level. Section 4 explains how context predicates can

be defined when binding contexts may be constructed using the multiset union operator and how the

properties of such contexts can be extracted into lemmas even in this situation. Section 5 shows that

these ideas extend also to the setting of context relations, which embody the simultaneous description

of multiple correlated contexts. Section 6 discusses a schematic presentation of context predicates and

context relations and explains how the lifting procedure may be automated, describing some tactics for

implementing the corresponding algorithms. Section 7 discusses related work and Section 8 closes out

the paper by sketching the use of our work in the particular application domain that has motivated it.

2 Binding Contexts and their Conventional Treatment in Abella

Towards understanding the nature of binding contexts and the kinds of properties that must be associated

with them in reasoning tasks, we may consider the example of type assignment for the simply typed

lambda calculus. We limit the expressions in the calculus to those constructed from variables using the

operations of application, written as (e1 e2), and abstraction, written as λx : τ .e. The rules for associating

types with expressions in this calculus are then the following:

x : τ ∈ Γ

Γ ⊢ x : τ

Γ ⊢ e1 : τ ′ → τ Γ ⊢ e2 : τ ′

Γ ⊢ (e1 e2) : τ

Γ,x : τ ′ ⊢ e : τ

Γ ⊢ λx : τ ′
.e : τ ′ → τ

x new to Γ

Type assignment for closed terms is ultimately a relation between a term and a type. However, a

recursive definition of this relation requires us to consider type assignments to open terms under the as-

sumption that the free variables in the term have designated types. Thus, the relation must be formalized

as a ternary one, written as Γ ⊢ e : τ . In this example, Γ constitutes the typing or binding context. The

structure of Γ is governed by the rule for assigning types to abstractions. Based on this rule, we can

observe some properties that are implicitly associated with Γ: it assigns types only to variables and there

1Partitioning of multisets can be described without the use of a permutation relation; this is mainly a convenient way to do

it if we have the relation.

T. Gray & G. Nadathur 21

is at most one assignment to any variable. While Γ is built one element at a time and seems to have the

structure of an ordered sequence, we are free to think of it a multiset or even a set. Note finally that a

closed-world assumption applies to the rules: a term may be assigned a type only by virtue of these rules.

Relational presentations of the kind above have a natural translation into Abella specifications. To

present this in the particular example under consideration, we must first describe a representation for

the types and terms of the simply typed lambda calculus. We will use the Abella types ty and tm for

encodings of expressions in these two categories. We will also use the constant arrow of type ty→ ty→
ty to represent the function type constructor, and the constants app and abs, respectively of type tm→
tm→ tm and ty→ (tm→ tm)→ tm, to represent application and abstraction in the object language. Note

the use of a higher-order abstract syntax representation here; for example, the term λx : τ1 → τ2.λy : τ1.x y

in the object language would be encoded by the Abella term (abs (arrow τ1 τ2) (x\abs τ1 (y\app x y))),
where τ1 and τ2 are the representations of the types τ1 and τ2, respectively.2 In this context, the content

of the type assignment rules is captured by the following Abella declarations that ultimately provide an

inductive definition for the ternary type assignment relation type_of:

Kind ty_assoc type .

Type ty_of tm -> ty -> ty_assoc .

Define member : A -> list A -> prop by

member X (X :: L) ;

member X (Y :: L) := member X L.

Define type_of : list ty_assoc -> tm -> ty -> prop by

type_of G X T := member (ty_of X T) G ;

type_of G (app M N) T := exists T', type_of G M (arrow T' T) /\ type_of G N T';

type_of G (abs T E) (arrow T T') := nabla x, type_of (ty_of x T :: G) (E x) T'.

Focusing on the first argument of the type_of relation, we see that it has the kinds of properties

that we observed of binding contexts that arise in type assignment and that it represents. While it has

the structure of an Abella list, it can equally be viewed as a multiset or a set; the use of the member

predicate relative to it is compatible with all these views. In the intended use of the predicate, this

collection is constructed one item at a time via the clause for assigning types to abstractions. The use

of the nabla quantifier also ensures that the associations it provides pertain only to nominal constants—

which represent the free variables in object language terms in the logic—and that there is at most one

such association in it for any such constant.

The properties we have described for binding contexts in type assignment can be important to rea-

soning tasks. They are key, for example, to showing the uniqueness of type assignment to any typeable

term: the proof of this fact hinges on the observations that the typing context does not assign types to

applications or abstractions and that the assignments to variables are unique. However, in a formalized

setting, it is not enough that these properties hold. It must also be made explicit that they do. This can be

done in Abella by what are commonly referred to as context definitions. In the example in question, the

following definition serves this purpose:

Define ty_ctx : list ty_assoc -> prop by

ty_ctx nil ;

nabla x, ty_ctx (ty_of x T :: G) := ty_ctx G.

The nabla quantifier in the head of the second clause is to be understood as follows: it must be instanti-

ated by a nominal constant in generating an instance of the clause and the substitutions for T and G that

2We recall that abstraction is written as the infix operator \ in Abella, i.e., the expression λx.F is denoted by x\F .

22 Binding Contexts as Partitionable Multisets in Abella

generate the instance must not contain that constant. The formula (ty_ctx G) now serves to assert that

G is a typing context with the necessary properties.

It is useful to drill down a little on the last statement. One of the requirements of a typing context is

that it associates types only with nominal constants, i.e., the representatives of variables in terms. The

following definition identifies the predicate name as a recognizer for such constants:

Define name : A -> prop by

nabla n, name n.

Using it, we can capture the desired property in the following Abella theorem about the “shape” of the

entities comprising a typing context:

Theorem ty_ctx_mem : forall L X,

ty_ctx L -> member X L -> exists n T, name n /\ X = ty_of n T.

Another property that is important is the uniqueness of type association. This can be rendered into the

following Abella theorem:

Theorem ty_ctx_uniq : forall L X T1 T2 ,

ty_ctx L -> member (ty_of X T1) L -> member (ty_of X T2) L -> T1 = T2

These theorems can both be proved by induction on the definition of ty_ctx. Once we have these

properties, it is an easy matter to prove the following theorem:

Theorem ty_uniq : forall L X T1 T2 ,

ty_ctx L -> type_of L X T1 -> type_of L X T2 -> T1 = T2.

The uniqueness of type assignment for closed terms follows easily from this theorem.

Although our discussion in this section has been oriented around an example, the underlying concepts

are quite general. Binding contexts manifest themselves commonly in specifications about syntactic con-

structs that incorporate binding notions. Context definitions make explicit the structure of such contexts

when a higher-order abstract syntax representation is used for the constructs. The properties that we must

extract from such definitions to support other reasoning tasks take two forms. First, there are member-

ship lemmas like ty_ctx_mem that constrain the shape of the elements of the context. Second, there are

uniqueness lemmas like ty_ctx_uniq that assert the uniqueness of bindings. We have seen how context

definitions can be played out and the associated lemmas can be proved when contexts are limited to being

constructed and analyzed one item at a time. We will next show why this view of the structure of contexts

needs to be generalized and then demonstrate how such a generalization may be accommodated.

3 Partitionable Binding Contexts and Multiset Union

The treatment of binding contexts that we have described in the previous section does not support the

aspect of linearity that is relevant to some applications. An example of such an application is provided

by the simply typed linear lambda calculus. To be well-formed, terms in this calculus must have the

additional property that every bound variable is used exactly once. Under this restriction, the term

λx : τ1 → τ2.λy : τ1.x y is well-formed but λx : τ1 → τ1 → τ2.λy : τ1.x y y and λx : τ1.λy : τ2.y are not.

If we are to build a linearity check into the type assignment process, the rule for assigning a type to

an application must incorporate the idea of partitioning a binding context. To support this possibility, we

propose allowing binding contexts to be constructed using one other operation, that of multiset union.

More specifically, we shall continue to use the type (list A) to represent such contexts but now we will

interpret this type as that of multisets of elements of type A rather than that of ordered sequences. We will

T. Gray & G. Nadathur 23

continue to use the constant nil and the infix operator :: as constructors of this type, but now interpret

the latter as a means for adding an element to a multiset. Additionally, the type now has one other

constructor, the infix operator ++ of type (list A) -> (list A) -> (list A). An expression of

the form G1 ++ G2 is intended to represent a multiset whose elements comprise those of G1 and G2.

The member predicate must be adapted to this changed syntax. Its definition becomes the following:

Define member : A -> list A -> prop by

member X (X :: G) ;

member X (Y :: G) := member X G ;

member X (G1 ++ G2) := member X G1 \/ member X G2.

To accommodate linearity, we will need a counterpart to this predicate that represents the selection of a

member from a multiset that simultaneously yields a smaller multiset. Towards this end, we will use a

predicate called select that has the definition below.

Define select : A -> list A -> list A -> prop by

select X (X :: G) G ;

select X (Y :: G) (Y :: G') := select X G G' ;

select X (G1 ++ G2) (G1 ' ++ G2) := select X G1 G1 ' ;

select X (G1 ++ G2) (G1 ++ G2 ') := select X G2 G2 '.

We want to be able to treat binding contexts that have the same elements as equivalent, regardless of

how they are constructed. Towards this end, we introduce a permutation predicate perm for multisets. It

is useful to define this, at a high-level, by recursion on the number of elements in each context, defining

an auxiliary no_elems predicate that holds of a context that is empty. The relevant definitions follow:

Define no_elems : list A -> prop by

no_elems nil ;

no_elems (G1 ++ G2) := no_elems G1 /\ no_elems G2.

Define perm : list A -> list A -> prop by

perm G1 G2 := no_elems G1 /\ no_elems G2 ;

perm G1 G2 := exists X G1 ' G2 ',

select X G1 G1 ' /\ select X G2 G2 ' /\ perm G1 ' G2 '.

The auxiliary definition of no_elems also gives us a means of ensuring that all bound variables are used

in a specification of a linear system. We can assert that the context satisfies this predicate after we have

analyzed the entirety of a term to ensure no variables were introduced by an abstraction but left unused.

We introduce a convenient notational shorthand for the predicate perm: we shall write G1∼ G2 to

represent (perm G1 G2). The perm predicate and the ++ operator together give us a means for encoding

a partition of n multisets into m multisets, which we can write as G1 ++ ... ++ Gn∼ D1 ++ ... ++ Dm.

Note that the permutation component of this expression allows elements to be distributed in any order

between the multisets on the other side—so that partitioning does not depend on the elements to partition

having been ordered correctly ahead of time.

The components that we have described in this section provide us the necessary means for writing

linear specifications. Let us bring this out through the definition of a typing relation for the linear lambda

calculus that only assigns types to valid linear lambda terms. The definition of this relation, which we

denote by the predicate ltype_of, is as follows:

Define ltype_of : list ty_assoc -> tm -> ty -> prop by

ltype_of G X T := exists G', select (ty_of X T) G G' /\ no_elems G' ;

ltype_of G (app M N) T := exists T' G1 G2 ,

G ∼ G1 ++ G2 /\ ltype_of G1 M (arrow T' T) /\ ltype_of G2 N T' ;

ltype_of G (abs T E) (arrow T T') :=

nabla x, ltype_of (ty_of x T :: G) (E x) T'.

24 Binding Contexts as Partitionable Multisets in Abella

It is worth mentioning the differences between the definition of this predicate and that of type_of

in Section 2 to understand how the linearity constraints are enforced. The use of select in the first

clause ensures that a particular association for a bound variable cannot be used more than once, and

the no_elems assertion ensures that every association must have been used. The formula G∼ G1 ++ G2

realizes a partitioning of the context G and thereby ensures that the type assignment to a particular bound

variable must be used for typing exactly one of the two subcomponents of an application. The structure

of the last clause, which is unchanged from the definition of type_of, still ensures that the binding

context has associations only for variables and that an association for any variable is unique. However,

we must reason now about the effect of partitioning to see that these properties actually hold.

4 Reasoning About Binding Contexts in the Generalized Form

In proving properties of relations whose definitions involve binding contexts in the extended form, we

will once again need to establish membership and uniqueness lemmas pertaining to the binding contexts.

For example, in showing the uniqueness of type assignment as expressed by the ltype_of relation, we

will need the counterparts of the ty_ctx_mem and ty_ctx_uniq lemmas for contexts in the new form.

We show here how this can be done. The difficulty that must be addressed is that the introduction of

multiset union breaks the view of contexts being constructed one element at a time. The solution that

we propose is based on flattening a context with arbitrary structure into one that is constructed in the

conventional way. We present the idea relative to an example but its generality should be clear from the

discussion.

4.1 Lifting Context Definitions to the Generalized Form

In Section 2, we defined the predicate ty_ctx to make explicit the logical structure of typing contexts

for the simply typed lambda calculus. This definition must now be extended to cover contexts that are

constructed using the multiset union operator. We might think of doing this by adding a third clause akin

to the following to the definition of ty_ctx:

ty_ctx (G1 ++ G2) := ty_ctx G1 /\ ty_ctx G2.

Unfortunately, this idea does not work: such a clause would break the property of the binding context

that associations for a particular name are unique, as nothing in it enforces that the names associated

within G1 and G2 are distinct from each other, even if they are distinct within each individual context.

The insight that underlies the solution that we propose is that the properties in question should not

depend on the order in which the associations in a binding context are listed or the way in which they

are distributed over a multiset, only on what those associations are. Thus, it would suffice if we could

restructure the multiset construction and rearrange its elements so as to produce a form that satisfies the

ty_ctx predicate that we had defined earlier. Further, the kind of projection that is necessary here can

be accomplished through the perm predicate that relates two multisets with possibly different structures

so long as they have the same elements. Thus, in the present example, the context definition might be

given by the ty_ctx' predicate that is defined as follows:

Define ty_ctx ' : list ty_assoc -> prop by

ty_ctx ' G := exists L, G ∼ L /\ ty_ctx L.

This predicate applies to typing contexts presented in the generalized form since the perm predicate

is defined over multisets that could include the ++ operator as well. Note, however, the definition of

T. Gray & G. Nadathur 25

ty_ctx is dependent on an “ordered sequence” view, i.e., the given context must be projected onto one

in this form to assess whether it possesses the necessary properties.

4.2 Proving Membership and Uniqueness Lemmas

The new definition must still enable us to prove lemmas about the shape of the associations in the binding

context as well as their uniqueness. These lemmas are the following in the present situation:

Theorem ty_ctx_mem ' : forall G X,

ty_ctx ' G -> member X G -> exists n T, name n /\ X = ty_of n T.

Theorem ty_ctx_uniq ' : forall G X T1 T2 ,

ty_ctx ' G -> member (ty_of X T1) G -> member (ty_of X T2) G -> T1 = T2.

The proofs of these lemmas also embody a process of “lifting” of properties established based on

the ordered sequence view through the projection. First observe that the theorems ty_ctx_mem and

ty_ctx_uniq continue to hold despite the change in the definition of the member predicate. Specifically,

the definition of this predicate reduces to the original one when the multiset argument is limited to having

a list-like structure, a structure that is forced by the ty_ctx predicate. But now we can also prove the

following (generic) lemma that states that membership in a multiset is preserved through a permutation:

Theorem mem_replace : forall X G G', member X G -> G ∼ G' -> member X G'.

Since contexts described by ty_ctx' are only a permutation away from those described by ty_ctx, this

is sufficient to lift the theorems ty_ctx_mem and ty_ctx_uniq into ty_ctx_mem' and ty_ctx_uniq'.

We need only apply the lemma to replace the member predicates in one theorem with those in the other.

4.3 Distributivity of Context Properties over Multiset Unions

The multiset union constructor was introduced originally to facilitate a partitioning of contexts. For this

to be useful for the intended purpose, the facet of being a context of the desired kind must distribute over

such partitioning. In our example, this translates into the desire that the following theorem be provable:

Theorem ty_ctx_distr : forall G G1 G2 ,

ty_ctx ' G -> G ∼ G1 ++ G2 -> ty_ctx ' G1 /\ ty_ctx ' G2.

Once again, we can prove the desired property by establishing a corresponding property for list-

like contexts, and then lifting that property to contexts that may include the multiset union operator in

their formation. One approach to stating the first property involves defining a predicate that encodes an

ordered partition relation between three lists:

Define partition : list A -> list A -> list A -> prop by

partition nil nil nil ;

partition (X :: L) (X :: L1) L2 := partition L L1 L2 ;

partition (X :: L) L1 (X :: L2) := partition L L1 L2.

By exploiting the fact that the relative order of elements in a list L is preserved within the related lists L1

and L2, we can easily prove the following theorem that states that the property of being a typing context

is preserved by such partitions:

Theorem ty_ctx_distr_part : forall L L1 L2 ,

ty_ctx L -> partition L L1 L2 -> ty_ctx L1 /\ ty_ctx L2.

We can lift this theorem to ty_ctx' and perm-style partitions by relating partition and perm.

Towards this end, we first define a predicate that captures the property that a context has a list-like

structure:

26 Binding Contexts as Partitionable Multisets in Abella

Define is_list : list A -> prop by

is_list nil ;

is_list (X :: L) := is_list L.

The following lemma then provides the necessary bridge:

Theorem perm_to_part : forall L G1 G2 ,

is_list L -> L ∼ G1 ++ G2 -> exists L1 L2 ,

G1 ∼ L1 /\ G2 ∼ L2 /\ partition L L1 L2.

Essentially, the lemma says that a partition of the elements in a list into two arbitrary contexts can

be flattened into a partition between lists of the same elements. It can be proved by inverting the

permutation and using the elements extracted from the multisets G1 and G2 to construct the lists L1 and

L2. The proof relies critically on the following lemma which allows elements in a multiset G that is

related by perm to L to be extracted one at a time in the order they appear in L:

Theorem sel_replace : forall X G1 G1 ' G2 ,

G1 ∼ G2 -> select X G1 G1 ' -> exists G2 ', G1 ' ∼ G2 ' /\ select X G2 G2 '.

Note that this lemma is, in fact, a counterpart to mem_replace for select.

At this stage, we have all the ingredients in place to prove the ty_ctx_distr theorem. Given any

context G for which ty_ctx' holds, there must, by definition, be an L such that G∼ L and ty_ctx L.

Since G∼ G1 ++ G2 holds, by properties of perm, it must then be the case that L∼ G1 ++ G2 holds.

Now, using theorems perm_to_part and ty_ctx_distr_part, we can conclude that there are con-

texts L1 and L2 such that G1∼ L1, G2∼ L2, ty_ctx L1, and ty_ctx L2 hold; we will need to show

that is_list L holds in order to invoke theorem perm_to_part, but this follows easily from the fact

that ty_ctx L holds. Using the definition of ty_ctx', it is then immediate that ty_ctx' G1 and

ty_ctx' G2 must hold.

5 Generalization to Context Relations

Typical meta-theoretic reasoning tasks require us to relate different kinds of analyses over the same

object-language expression. When the expression embodies binding constructs, these analyses would be

parameterized by binding contexts. In the Abella setting, the shape of each of these contexts must be

characterized by a definition. When different analyses are involved in the property to be proved, there

will generally be an additional requirement: the content of the different binding contexts parameteriz-

ing the analyses must be coordinated in an appropriate way. Context relations constitute the canonical

mechanism in Abella for phrasing context definitions to suit the reasoning needs in such situations. The

generalized multiset structure is needed for dealing with linearity in this situation as well and the meth-

ods for supporting it bear a remarkable resemblance to those when only one binding context is involved.

We bring this observation out in this section through an example.

The example we consider is that of relating typing judgments across a translation. The target lan-

guage for the translation shall be the linear variant of the simply typed lambda calculus that we introduced

in Section 3. The source language, which we will call mini linear ML, shall be similar, except that it

shall include an additional let construct. To represent such expressions, we introduce the constant let

that has the type ty→ tm→ (tm→ tm)→ tm. Observe that higher-order abstract syntax is used again in

the encoding of let expressions: the expression let X:τ = V in F is represented by (let τ V (X\F)),
where τ , V, and F are the representations of τ , V, and F, respectively. The typing relation for the source

language is now given by the following definition:

T. Gray & G. Nadathur 27

Define mltype_of : list ty_assoc -> tm -> ty -> prop by

mltype_of G X T := exists G', select (ty_of X T) G G' /\ no_elems G' ;

mltype_of G (app M N) T := exists T' G1 G2 ,

G ∼ G1 ++ G2 /\ mltype_of G1 M (arrow T' T) /\ mltype_of G2 N T' ;

mltype_of G (let T' V E) T := exists G1 G2 ,

G ∼ G1 ++ G2 /\ mltype_of G1 V T' /\

nabla x, mltype_of (ty_of x T' :: G2) (E x) T ;

mltype_of G (abs T E) (arrow T T') :=

nabla x, mltype_of (ty_of x T :: G) (E x) T'.

The translation of mini linear ML expressions to the linear lambda calculus essentially replaces let

expressions by applications. It is formalized by the following clauses for the ltrans predicate:

Kind var_assoc type .

Type trans_to tm -> tm -> var_assoc .

Define ltrans : list var_assoc -> tm -> tm -> prop by

ltrans G X Y := exists G', select (trans_to X Y) G G' /\ no_elems G' ;

ltrans G (app M N) (app M' N') := exists G1 G2 ,

G ∼ G1 ++ G2 /\ ltrans G1 M M' /\ ltrans G2 N N' ;

ltrans G (let T V E) (app (abs T E') V') := exists G1 G2 ,

G ∼ G1 ++ G2 /\ ltrans G1 V V' /\

nabla x y, ltrans (trans_to x y :: G2) (E x) (E' y) ;

ltrans G (abs T E) (abs T E') :=

nabla x y, ltrans (trans_to x y :: G) (E x) (E' y).

We would like to prove that this translation preserves the types of expressions. Since translation and

typing are defined by recursion over the structures of expressions and will, in general, encounter open

terms, the theorem to be proved must have a form such as the following:

Theorem ltrans_pres_ty '' : forall E E' T T' G G' G'',

mltype_of G E T -> ltrans G' E E' -> ltype_of G'' E' T' -> T = T'.

However, this formula cannot be proved as stated. The contexts that arise at intermediate points in trans-

lation and type assignment have structures and relationships that must be made explicit in the formulation

to yield a provable statement. Only names can be associated with other data in these contexts, and these

associations must be unique. Further, we will need to relate the types of free variables in a term and its

translation to be able to show that the two have the same type.

The canonical way to make the relationship in the content of multiple contexts explicit in Abella is

by defining an appropriate context relation as a predicate. Let trans_rel be a predicate that encodes

the relevant relationship between the three contexts in consideration here. The theorem to be actually

proved then becomes the following:

Theorem ltrans_pres_ty : forall E E' T T' G G' G'',

trans_rel G G' G'' -> mltype_of G E T -> ltrans G' E E'

-> ltype_of G'' E' T' -> T = T'.

In proving theorems such as these, there are, once again, certain lemmas about members of the contexts

that we must be able to extract from the relevant context relations. In this particular example, we would

need to be able to prove the following lemmas that express a uniqueness property and a membership

coordination property between the related contexts:

Theorem trans_rel_uniq : forall G1 G2 G3 X Y Y',

trans_rel G1 G2 G3 -> member (trans_to X Y) G2

-> member (trans_to X Y') G2 -> Y = Y'.

28 Binding Contexts as Partitionable Multisets in Abella

Theorem trans_rel_mem : forall G1 G2 G3 E,

trans_rel G1 G2 G3 -> member E G2 -> exists X Y T,

E = trans_to X Y /\ name X /\ name Y /\

member (ty_of X T) G1 /\ member (ty_of Y T) G3.

These properties are stated from the perspective of the second of the three contexts. There would be four

more similar properties when matters are viewed from either of the other two contexts.

The issue to be addressed, then, is how the context relation should be defined to allow for the extrac-

tion of such properties. There is a standard recipe for realizing the described objectives when contexts

are limited to a list-like structure. In this example, we may define a list-oriented version of trans_rel

following the conventional strategy as follows:

Define trans_rel_list : list ty_assoc -> list var_assoc

-> list ty_assoc -> prop by

trans_rel_list nil nil nil ;

nabla x y, trans_rel_list (ty_of x T :: L1)

(trans_to x y :: L2)

(ty_of y T :: L3) := trans_rel_list L1 L2 L3.

The uniqueness of binding property relativized to trans_rel_list has a proof similar to the one dis-

cussed for the typing context in Section 2. The second property follows easily from the fact that the

definition is based on a coordinated recursion over the three contexts that in fact ensures that they each

contain the right kinds of members.

What we want, though, is a definition of trans_rel that applies to contexts whose structure includes

the multiset union constructor. Using the ideas discussed in Section 4, we can accomplish this once again

by lifting the list-based definition up to contexts with a more general structure through permutations. The

following definition of the relation realizes the desired result:

Define trans_rel : list ty_assoc -> list var_assoc -> list ty_assoc -> prop by

trans_rel G1 G2 G3 := exists L1 L2 L3 ,

G1 ∼ L1 /\ G2 ∼ L2 /\ G3 ∼ L3 /\ trans_rel_list L1 L2 L3.

This definition still requires the associations in each context to correspond with associations in the other

contexts, but now the corresponding associations need not be in the same position in each context. Still,

since the associations are clearly linked in the list-based context relation, we will be able to lift the

necessary membership and uniqueness lemmas from the latter context relation. Indeed, the proof of

trans_rel_mem proceeds nearly as in the unary case: we can make use of mem_replace to ensure that

E is an element of the underlying translation context, and then make use of this lemma again to ensure that

ty_of X T and ty_of Y T are also members of the original typing contexts. The uniqueness lemma

can be proved from the corresponding lemma for the underlying context in a similar way, and the lifting

process is even simpler: since no conclusions need be drawn about the other contexts, mem_replace is

only needed in one direction.

The first clause in the definitions of mltype_of, ltrans, and ltype_of actually selects an associ-

ation from the relevant context rather than simply checking membership. Consequently, we would often

need a stronger version of the trans_rel_mem property that is based on the select relation and that

additionally asserts that the remaining contexts continue to be in the trans_rel relation:

Theorem trans_rel_sel : forall G1 G2 G2 ' G3 E,

trans_rel G1 G2 G3 -> select E G2 G2 ' -> exists X Y T G1 ' G3 ',

E = trans_to X Y /\ name X /\ name Y /\ select (ty_of X T) G1 G1 ' /\

select (ty_of Y T) G3 G3 ' /\ trans_rel G1 ' G2 ' G3 '.

T. Gray & G. Nadathur 29

The new requirement here is that we must show that trans_rel G1' G2' G3' holds for the three

new contexts G1', G2', and G3' that result from selection from G1, G2, and G3. Most of this lemma

can be proved without significant digression from the proof sketched for trans_rel_mem. For the lift-

ing step, where we convert the selects on multisets to selects on lists and vice versa, we can just

use sel_replace instead of mem_replace. This also yields the necessary permutations for conclud-

ing trans_rel G1' G2' G3': if trans_rel G1 G2 G3 holds because trans_rel_list L1 L2 L3

does, and selecting from L1, L2, and L3 yields L1', L2', and L3', then G2'∼ L2', G1'∼ L1', and

G3'∼ L3' must hold. In the overall scheme, we can think of just proving trans_rel_sel. We can get

a proof of trans_rel_mem from this if it is desired by using the following easily proved theorem that

asserts that selecting from a context implies membership in that context:

Theorem sel_implies_mem : forall X G G', select X G G' -> member X G.

Finally, when multiset union is permitted in the construction of contexts, we will need lemmas that

verify the distributivity of context relations over partitions. For example, the definitions of mltype_of,

ltrans, and ltype_of will force us to prove lemmas such as the following that are analogous to the

distributivity property for ty_ctx_distr in the preceding section:3

Theorem trans_rel_distr : forall G1 G1 ' G1 '' G2 G3 ,

trans_rel G1 G2 G3 -> G1 ∼ G1 ' ++ G1 '' -> exists G2 ' G2 '' G3 ' G3 '',

G2 ∼ G2 ' ++ G2 '' /\ G3 ∼ G3 ' ++ G3 '' /\

trans_rel G1 ' G2 ' G3 ' /\ trans_rel G1 '' G2 '' G3 ''.

To prove such a distributivity lemma, we can first state and prove an analogous lemma for the related

contexts in list form and then lift it to contexts with a more general structure. For this, we may reuse

the definition of partition and many of its properties, stating the lemma to prove in the case under

consideration as

Theorem trans_rel_list_distr : forall L1 L1 ' L1 '' L2 L3 ,

trans_rel_list L1 L2 L3 -> partition L1 L1 ' L1 '' -> exists L2 ' L2 '' L3 ' L3 '',

trans_rel_list L1 ' L2 ' L3 ' /\ trans_rel_list L1 '' L2 '' L3 '' /\

partition L2 L2 ' L2 '' /\ partition L3 L3 ' L3 ''.

The ordered nature of partition again is critical to the proof; since the related contexts are also ordered,

we can construct new partitions using the corresponding elements as in partition L1 L1' L1''

in the same places for the other contexts. Then, to lift this lemma to arbitrary multiset partitions, we can

exploit perm_to_part in a first step to transform G1∼ G1' ++ G1'' into partition L1 L1' L1'',

where G1∼ L1, G1'∼ L1', and G1''∼ L1'' hold. After applying trans_rel_list_distr, we can

make use of a kind of inverse of the perm_to_part lemma to convert partitions back into permuta-

tions:

Theorem part_to_perm : forall L L1 L2 , partition L L1 L2 -> L ∼ L1 ++ L2.

Since partitioning a list involves a restricted form of selection, the structure of the proof of this lemma

should be easy to visualize. To complete the proof of trans_rel_distr, we can then note that the

contexts it asserts the existence of can be the same as those asserted by trans_rel_list_distr, and

that for any G, L, L', and L'', G∼ L' ++ L'' follows from G∼ L and L∼ L' ++ L'' by properties of

perm. Thus, we can conclude that trans_rel G1' G2' G3' and trans_rel G1'' G2'' G3'' hold

by definition; we will need to show that each list is a permutation of itself for this, but this follows easily

from the fact that each is a list.

3Note that these lemmas do not let us specify the partition used for multiple contexts at once; they assert only the existence

of some partitions that work. However, they suffice for many reasoning examples or can be worked around by exploiting

properties of other predicates—such as the typing and translation relations here.

30 Binding Contexts as Partitionable Multisets in Abella

6 Schematic Context Specifications and Automated Proofs

The idea of defining a multiset-based context specification—via a context predicate or context relation—

by lifting from a list-based one has a general applicability and can be deployed in other developments as

well. We present in this section a general form for such specifications for which we can write schematic

proofs of several distributivity lemmas and of a lifting procedure for a reasonably large class of lemmas

based on the member predicate which includes our membership and uniqueness lemmas. This works

since the distributivity lemmas and lifting procedure depend only on the general structure of the context

specifications defined and not on the particular elements of the context(s). Hence, a user need only state

and prove the member lemmas that require explicit reference to the elements of the binding context(s)

for an underlying specification and can leave the rest of the work to an automated procedure.

Let us begin by introducing a command that might be used to succinctly generate a pair of context

specifications—one based on lists and the other based on multisets. The syntax of this command should

take the following general form, with each FORMULA referring to an expression of type prop, each TERM

referring to a term of some other type, each VAR referring to a variable identifier, and CTX-NAME referring

to the name of the context specification to be defined:

Context CTX-NAME with elems as

nabla VAR11 ... VAR1k_1 (TERM11 _|_ ... _|_ TERM1n -| FORMULA1) \/ ... \/

nabla VARm1 ... VARmk_m (TERMm1 _|_ ... _|_ TERMmn -| FORMULAm).

The use of the formula is to provide an additional means for encoding the relationship between elements

of each of the related contexts in a context relation. Also note that there may be zero variables, in which

case the nabla may be omitted, and we can omit the formula if it is true. However, there must be at

least one clause and at least one term denoting some element of a context. As examples of the intended

usage of this command, we present the commands that, following the process we describe next, would

generate the definitions of ty_ctx' and trans_rel from Sections 4 and 5:

Context ty_ctx ' with elems as nabla x (ty_of x T).

Context trans_rel with elems as

nabla x y (ty_of x T _|_ trans_to x y _|_ ty_of y T').

Our command schema is meant to define a pair of context specifications of the following forms,

where each TYPE is an Abella type inferred from the types of each contexts’ elements:

Define CTX-NAME_list : list TYPE1 -> ... -> list TYPEn -> prop by

CTX-NAME_list nil ... nil ;

nabla VAR11 ... VAR1k_1 , CTX-NAME_list (TERM11 :: L1) ... (TERM1n :: Ln) :=

CTX-NAME_list L1 ... Ln /\ FORMULA1 ;

...

nabla VARm1 ... VARmk_m , CTX-NAME_list (TERMm1 :: L1) ... (TERMmn :: Ln) :=

CTX-NAME_list L1 ... Ln /\ FORMULAm .

Define CTX-NAME : list TYPE1 -> ... -> list TYPEn -> prop by

CTX-NAME G1 ... Gn := exists L1 ... Ln ,

G1 ∼ L1 /\ ... /\ Gn ∼ Ln /\ CTX-NAME_list L1 ... Ln.

Once we have a context specification of the aforementioned form, a suite of lemmas can be automati-

cally generated about it. First, a distributivity lemma can be generated for each index of the specification

that allows the context specification to be distributed over partitions of the corresponding context while

generating corresponding partitions of the other context(s) as needed for the other indices. The general

form of the ith such lemma may be represented as follows:

T. Gray & G. Nadathur 31

Theorem CTX-NAME_distri : forall G1 ... Gi Gi ' Gi '' ... Gn ,

CTX-NAME G1 ... Gn -> Gi ∼ Gi ' ++ Gi '' -> exists G1 ' G1 '' ... Gn ' Gn '',

CTX-NAME G1 ' ... Gn ' /\ CTX-NAME G1 '' ... Gn '' /\

G1 ∼ G1 ' ++ G1 '' /\ ... /\ Gn ∼ Gn ' ++ Gn ''.

For instance, for trans_rel, we might automatically generate the lemma for i = 2 in this form as:

Theorem trans_rel_distr2 : forall G1 G2 G2 ' G2 '' G3 ,

trans_rel G1 G2 G3 -> G2 ∼ G2 ' ++ G2 '' -> exists G1 ' G1 '' G3 ' G3 '',

trans_rel G1 ' G2 ' G3 ' /\ trans_rel G1 '' G2 '' G3 '' /\

G1 ∼ G1 ' ++ G1 '' /\ G3 ∼ G3 ' ++ G3 ''.

Each lemma can be proved automatically as well. The generated proofs follow the structure that we

have already seen in Sections 4 and 5. In short, a corresponding lemma involving partition is first

automatically generated and proved by a routine inductive argument that depends only on the number of

clauses and names in the definition. Then, perm_to_part is applied to interface the desired lemma’s

hypotheses with this lemma’s, and finally part_to_perm is applied to obtain results in the right form.

For lemmas involving member, an algorithm exists to automatically lift lemmas proved for traditional

context specifications to their multiset versions. Suppose the user proves a lemma of the following form:

Theorem USER-LEMMA : forall L1 ... Ln VAR*,

CTX-NAME_list L1 ... Ln -> [member TERM Li ->]* [exists VAR*,]

[member TERM Lj /\]* [FORMULA /\]* [TERM = TERM /\]* true .

Suppose also that each FORMULA and TERM does not depend on any of the context variables Li, so that

any non-member assertions are only about the elements of the context(s). Then, a corresponding lemma

for multiset-based contexts, of the following form, can be automatically generated and proved:

Theorem USER-LEMMA-MSET : forall G1 ... Gn VAR*,

CTX-NAME G1 ... Gn -> [member TERM Gi ->]* [exists VAR*,]

[member TERM Gj /\]* [FORMULA /\]* [TERM = TERM /\]* true .

The automatically generated proof involves three main steps:

1. The context specification hypothesis CTX-NAME G1 ... Gn is unfolded and appropriate instances

of mem_replace are applied to each of the other hypotheses.

2. The user-provided lemma is applied to the hypotheses constructed in the first step.

3. The conclusions obtained using the user-provided lemma are converted into the desired forms.

Nothing needs to be done for the FORMULA and equality conclusions, but any obtained instances of

member are converted to the correct form via appropriate uses of mem_replace. Since the original

lemma’s form was restricted to only allow member to pull from contexts described by the context

specification, it is certain that the requisite permutations will be available; they are necessarily the

same permutations as obtained by unfolding CTX-NAME G1 ... Gn.

We envision tactics in Abella for handling the aforementioned automation. A subst tactic would

implement the mem_replace lemma, a distr tactic would implement the distributivity lemmas, and

a lift tactic would implement the procedure for lifting member-based lemmas. For example, calling

subst Hi into Hj would apply the mem_replace lemma, as long as Hi is an appropriate permutation

and Hj is an instance of the member predicate. On the other hand, calling distr Hi over Hj with

Hi being a context specification defined via the Context command and Hj being a perm-style partition

would prove and apply a distributivity lemma for whichever index of the context specification could be

matched with the input permutation. And, finally, calling lift USER-LEMMA would generate and prove

the corresponding USER-LEMMA-MSET, adding it as a new hypothesis.

32 Binding Contexts as Partitionable Multisets in Abella

7 Related Work

Our focus in this paper has been on the special problems that arise when binding contexts must be ac-

corded a resource interpretation. While this concern is original to our work, we have superimposed it

on a treatment of resources, which is an issue that has received the attention of other researchers. A

particular situation in which the need for such a treatment has arisen is in the encoding of linear logic [7]

within proof assistants towards mechanizing reasoning about the meta-theoretic properties of this logic.

Chaudhuri et al. have undertaken this task using the Abella system [4]. They too have used multisets to

encode resources, which, in their case, are linear collections of formulas. They observe that the repre-

sentation of multisets must support the ability to add an element to a multiset and to partition a multiset,

and it must ensure that multisets are considered to be equivalent under permutations. These observations

underlie our work as well, with the key difference that we have taken permutation equivalence to be fun-

damental to the representation. This allows us to introduce the ++ constructor that renders partitioning

into a syntactic operation rather than needing it to be defined, as is done by the merge predicate in [4].

Our approach has the benefit of succinctness, at least in presentation; for example, it accommodates a

simple rendition of the partitioning of a multiset into several subcomponents. On the negative side, the

definitions of permutation and the addition (or, dually, the selection) of an element are marginally more

complex. Similar concerns arise in the encoding of linear logic in the Coq system developed by Olivier

Laurent [8]. In that work, the choice was made to use lists to represent linear collections of formulas and

to realize the multiset interpretation via an explicit “exchange” rule that is implemented via permutations.

While this approach supports a simple encoding, it separates partitioning from permutations, an aspect

that can make the analysis of the derivability of particular sequents in linear logic more complex.

The notion of partitionable contexts is also relevant to the LINCX framework [6] that allows the user

to define functions whose types correspond to typing judgments in the linear logical framework LLF [3];

theorems given by the type of the function are considered proved if the function can be shown to be

total. Unlike our scheme that uses the explicit definition of a permutation relation for treating partitions,

LINCX provides a built-in operator ⊲⊳ for context joins, whose definition is hidden from the user. One

significant difference between these schemes is that, since LLF contexts are inherently ordered, context

joins must preserve the relative order of elements whereas perm-style partitions need not. Each element

of G = G1 ⊲⊳ G2 remains in the same order in G1 and G2 but is only made available in exactly one of

them—with only a placeholder in the other for order-preservation and type checking purposes. Since

context joins are built-in and system-manipulated, a user need not explicitly drive the functionality of

these. However, by the same token, they also cannot affect the functionality. In contrast, we expose the

definition of perm and allow users to reason about it and prove additional lemmas if needed—though the

user also typically must reason explicitly about perm in order to make use of it.

The encoding that we have used for type assignment in the simply typed linear lambda calculus is

based on superimposing linearity explicitly on typing contexts. This choice has been motivated by the

eventual application for our work that we discuss in the next section; the simply typed linear lambda

calculus figures mainly as an example to highlight the issues that have to be considered in this setting.

If the focus is instead on a specific example, then an encoding of a different style could be used to

circumvent the issues discussed. For instance, the simply typed linear lambda calculus could have been

treated by specifying type assignment and linearity separately; uniqueness of typing in this case would,

for example, be a simple consequence of the result for the regular simply typed lambda calculus. This

style in fact underlies the encoding of linear logic and other substructural logics described in [5].

The idea of schematically extracting context properties, useful for minimizing the burden of reason-

ing explicitly about contexts, has also been explored in other settings besides ours. Savary Bélanger

T. Gray & G. Nadathur 33

and Chaudhuri [2] define a plugin for Abella for concisely defining and extracting properties from what

they call regular context relations, which describe the structure of LF contexts. This structure is notice-

ably similar to the structure of context specifications without the addition of the lifting procedure using

perm. Specifically, in their framework, a user can define a context schema that fully specifies the form

of the elements in the desired context(s). Then, they can make use of provided tacticals for extracting

properties of the corresponding context relation. For example, the inversion tactical extracts the form of

(corresponding) elements in the context(s), much like our membership lemmas. Though both our and

their developments define a general form for contexts of interest that capture some desired properties and

then provide tools for extracting those properties, the specific goals and the actual form of the contexts

differ significantly.

8 Conclusion

In this paper, we have discussed our scheme for specifying binding contexts that must be partitionable

in Abella. We have illustrated our ideas by using typing judgments and a translation relation that are en-

coded directly as definitions in the reasoning logic of Abella. However, reasoning in Abella is often done

using a two-level logic approach, in which the reasoning logic is augmented with an auxiliary specifica-

tion logic that is well-suited for computation. This paradigm is realized by embedding the specification

logic in the reasoning logic via a definition that encapsulates the proof system of the specification logic;

one then describes object systems in the specification logic and reasons about them via the ability the

embedding provides to reason about derivability in the specification logic. In ongoing work, we are

exploring the possibility of using a variant of linear logic called Forum [9] that has a computational in-

terpretation as the specification logic in this framework. The motivation for doing so is that linear object

systems, such as the linear lambda calculus that we have considered here, can be specified in a logical

way by making use of linear implication (⊸) to encode resources and their usage, a move that enables

metatheoretic properties of the specification logic to be used in simplifying the reasoning process. To

support this idea, we must provide an embedding of Forum in Abella. Since formulas in one category in

such a logic must be used exactly once, their encoding and usage in the embedding necessitates a treat-

ment of linear contexts with an associated capability for considering their partitioning in the reasoning

process.4 Moreover, when the object system embodies notions of binding, such linear contexts take on

the attributes of binding contexts that have been the topic of interest in this paper. Many of the ideas

we have discussed remain applicable in this situation and we are in fact incorporating the automation

techniques described in Section 6 in our implementation towards providing the user a tool to simplify

reasoning developments that make use of the new specification logic.

Acknowledgements

This paper has benefitted greatly from the feedback provided by its reviewers. The work underlying it

was supported in its early stages by the National Science Foundation under Grant No. CCF-1617771.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National Science Foundation.

4Note that the kind of embedding we are interested in here makes it necessary to treat linear contexts explicitly, unlike what

is done, for example, in [5].

34 Binding Contexts as Partitionable Multisets in Abella

References

[1] David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen Tiu & Yuting Wang

(2014): Abella: A System for Reasoning about Relational Specifications. Journal of Formalized Reasoning

7(2), doi:10.6092/issn.1972-5787/4650.

[2] Olivier Savary Bélanger & Kaustuv Chaudhuri (2014): Automatically Deriving Schematic Theorems for Dy-

namic Contexts. In: Proceedings of the 2014 International Workshop on Logical Frameworks and Meta-

Languages: Theory and Practice, LFMTP ’14, Association for Computing Machinery, New York, NY, USA,

doi:10.1145/2631172.2631181.

[3] Iliano Cervesato & Frank Pfenning (2002): A Linear Logical Framework. Information & Computation 179(1),

pp. 19–75, doi:10.1006/inco.2001.2951.

[4] Kaustuv Chaudhuri, Leonardo Lima & Giselle Reis (2019): Formalized meta-theory of sequent calculi for

linear logics. Theoretical Computer Science 781, pp. 24–38, doi:10.1016/j.tcs.2019.02.023.

[5] Karl Crary (2010): Higher-order representation of substructural logics. In: Proceedings of the 15th ACM

SIGPLAN International Conference on Functional Programming, ICFP ’10, Association for Computing Ma-

chinery, New York, NY, USA, p. 131–142, doi:10.1145/1863543.1863565.

[6] Aina Linn Georges, Agata Murawska, Shawn Otis & Brigitte Pientka (2017): LINCX: A Linear Logical

Framework with First-Class Contexts. In H. Yang, editor: Programming Languages and Systems, ESOP17,

Lecture Notes in Computer Science 10201, Springer, pp. 530–555, doi:10.1007/978-3-662-54434-1_20.

[7] Jean-Yves Girard (1987): Linear Logic. Theoretical Computer Science 50, pp. 1–102, doi:10.1016/

0304-3975(87)90045-4.

[8] Olivier Laurent: YALLA: an LL library for Coq. Available from https://perso.ens-lyon.fr/olivier.

laurent/yalla/.

[9] Dale Miller (1996): Forum: A Multiple-Conclusion Specification Logic. Theoretical Computer Science 165(1),

pp. 201–232, doi:10.1016/0304-3975(96)00045-X.

https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.1145/2631172.2631181
https://doi.org/10.1006/inco.2001.2951
https://doi.org/10.1016/j.tcs.2019.02.023
https://doi.org/10.1145/1863543.1863565
https://doi.org/10.1007/978-3-662-54434-1_20
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://perso.ens-lyon.fr/olivier.laurent/yalla/
https://perso.ens-lyon.fr/olivier.laurent/yalla/
https://doi.org/10.1016/0304-3975(96)00045-X

Rabe, Sacerdoti Coen (Eds): LFMTP 2024

EPTCS 404, 2024, pp. 35–48, doi:10.4204/EPTCS.404.3

© T. Traversié

This work is licensed under the

Creative Commons Attribution License.

Kuroda’s Translation for the

λ Π-Calculus Modulo Theory and Dedukti

Thomas Traversié

Université Paris-Saclay, CentraleSupélec, MICS
Gif-sur-Yvette, France

Université Paris-Saclay, Inria, CNRS, ENS-Paris-Saclay, LMF
Gif-sur-Yvette, France

thomas.traversie@centralesupelec.fr

Kuroda’s translation embeds classical first-order logic into intuitionistic logic, through the insertion

of double negations. Recently, Brown and Rizkallah extended this translation to higher-order logic.

In this paper, we adapt it for theories encoded in higher-order logic in the λ Π-calculus modulo theory,

a logical framework that extends λ -calculus with dependent types and user-defined rewrite rules. We

develop a tool that implements Kuroda’s translation for proofs written in DEDUKTI, a proof language

based on the λ Π-calculus modulo theory.

1 Introduction

The λΠ-calculus modulo theory [6] is an extension of simply typed λ -calculus with dependent types and

user-defined rewrite rules. It is a logical framework, meaning that one can express many theories in it—

through the definitions of typed constants and rewrite rules. For instance, it is possible to encode Predi-

cate Logic, Simple Type Theory and the Calculus of Constructions in the λΠ-calculus modulo theory [2].

In particular, theories from other proof systems can be expressed inside this logical framework [20]. The

λΠ-calculus modulo theory has been implemented in the concrete language DEDUKTI [1, 15]. Besides

automatic proof checking, DEDUKTI can be used as a common language to exchange proofs between

different systems. However, if one wants to translate proofs from the classical proof assistant HOL

LIGHT to the intuitionistic proof assistant COQ via DEDUKTI, one must transform classical proofs into

intuitionistic proofs inside DEDUKTI.

Classical logic corresponds to intuitionistic logic extended with the principle of excluded middle

A∨¬A, or equivalently the double-negation elimination ¬¬A⇒A. Classical logic can be embedded

into intuitionistic logic, using double-negations translations. Glivenko [12] proved that any propositional

formula A is provable in classical logic if and only if its double negation ¬¬A is provable in intuition-

istic logic. Kolmogorov [17], Gödel [13], Gentzen [10] and Kuroda [18] developed double-negation

translations A 7→ A∗, which transforms any first-order formula A such that:

(i) if A is provable in classical logic then its translation A∗ is provable in intuitionistic logic,

(ii) A and A∗ are classically equivalent.

More recently, Brown and Rizkallah [4] showed that Kolmogorov’s and Gödel-Gentzen’s translations

cannot be extended to higher-order logic. They proved that, in higher-order logic, Kuroda’s translation

satisfies Property (i), but that it fails in the presence of functional extensionality. In fact [21], Property (i)

holds in the presence of functional extensionality under some specific condition, and Property (ii) holds

when assuming functional extensionality and propositional extensionality.

http://dx.doi.org/10.4204/EPTCS.404.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

36 Kuroda’s Translation for the λΠ-Calculus Modulo Theory and Dedukti

Contribution. In this paper, we express Kuroda’s translation for theories of the λΠ-calculus modulo

theory that are encoded in higher-order logic. It is both an encoding—into a logical framework that

features proofs as terms—and an extension—to a logical framework that features dependent types and

user-defined rewrite rules—of Kuroda’s translation. We implement such translation inside CONSTRUKTI,

a tool that translates DEDUKTI files. CONSTRUKTI is tested on a benchmark of a hundred formal proofs.

This tool and this benchmark are available at https://github.com/Deducteam/Construkti.

Outline of the paper. In Section 2, we present the λΠ-calculus modulo theory and we detail an encod-

ing of higher-order logic in it. In Section 3, we define Kuroda’s translation for theories of λΠ-calculus

modulo theory that are encoded in higher-order logic, and we prove the embedding of classical logic into

intuitionistic logic. In Section 4, we implement CONSTRUKTI and test it on DEDUKTI proofs.

2 Higher-Order Logic in the λ Π-Calculus Modulo Theory

In this section, we present the λΠ-calculus modulo theory, and we detail an encoding of higher-order

logic in this logical framework. We characterize the theories considered in the rest of this paper—theories

encoded in higher-order logic.

2.1 The λΠ-Calculus Modulo Theory

The Edinburgh Logical Framework [14], also called λΠ-calculus, is an extension of simply typed λ -

calculus with dependent types. The λΠ-calculus modulo theory [6] corresponds to the Edinburgh Logical

Framework extended with user-defined rewrite rules [7]. Its syntax is given by:

Sorts s ::= TYPE | KIND

Terms t,u,A,B ::= c | x | s | Πx : A. B | λx : A. t | t u

Contexts Γ ::= 〈〉 | Γ,x : A

Signatures Σ ::= 〈〉 | Σ,c : A

Rewrite systems R ::= 〈〉 |R, ℓ →֒ r

where c is a constant and x is a variable (ranging over disjoint sets). TYPE and KIND are two sorts: terms

of type TYPE are called types, and terms of type KIND are called kinds. Πx : A. B is a dependent product

(simply written A→ B if x does not occur in B), λx : A. t is an abstraction, and t u is an application.

Contexts, signatures and rewrite systems are finite sequences, and are written 〈〉 when empty. Signatures

Σ are composed of typed constants c : A, where A is a closed term (that is a term with no free variables).

Rewrite systems R are composed of rewrite rules ℓ →֒ r, where the head symbol of ℓ is a constant. The

λΠ-calculus modulo theory is a logical framework, in which Σ and R are fixed by the users depending

on the logic they are working in. The relation →֒βR is generated by β -reduction and by the rewrite rules

of R. The conversion ≡βR is the reflexive, symmetric, and transitive closure of →֒βR .

The typing rules for the λΠ-calculus modulo theory are given in Figure 1. We write ⊢ Γ when the

context Γ is well formed, and Γ ⊢ t : A when the term t is of type A in the context Γ. For convenience,

〈〉 ⊢ t : A is simply written ⊢ t : A. The standard weakening rule is admissible.

We write Λ(Σ) for the set of terms whose constants belong to Σ. We say that (Σ,R) is a theory when:

(i) for each rule ℓ →֒ r ∈R, both ℓ and r belongs to Λ(Σ), (ii) →֒βR is confluent on Λ(Σ), and (iii) each

https://github.com/Deducteam/Construkti

T. Traversié 37

⊢ 〈〉
[EMPTY]

⊢ Γ Γ ⊢ A : s

⊢ Γ,x : A
[DECL] x /∈ Γ

⊢ Γ

Γ ⊢ TYPE : KIND
[SORT]

⊢ Γ ⊢ A : s

Γ ⊢ c : A
[CONST] c : A ∈ Σ

⊢ Γ

Γ ⊢ x : A
[VAR] x : A ∈ Γ

Γ ⊢ A : TYPE Γ,x : A ⊢ B : s

Γ ⊢Πx : A. B : s
[PROD]

Γ ⊢ A : TYPE Γ,x : A ⊢ B : s Γ,x : A ⊢ t : B

Γ ⊢ λx : A. t : Πx : A. B
[ABS]

Γ ⊢ t : Πx : A. B Γ ⊢ u : A

Γ ⊢ t u : B[x← u]
[APP]

Γ ⊢ t : A Γ ⊢ B : s

Γ ⊢ t : B
[CONV] A≡βR B

Figure 1: Typing rules of the λΠ-calculus modulo theory.

rule ℓ →֒ r ∈R preserves types (for all context Γ, substitution θ , and term A ∈ Λ(Σ), if Γ ⊢ ℓθ : A then

Γ ⊢ rθ : A).

In the λΠ-calculus modulo theory, if Γ ⊢ t : A then Γ is well-formed and A is well-typed. To prove

this, we use the two following properties.

Lemma 1. If Γ ⊢ t : A, then either A = KIND or Γ ⊢ A : s for s = TYPE or s = KIND. If Γ ⊢ Πx : A. B : s,

then Γ ⊢ A : TYPE.

2.2 An Encoding of Higher-Order Logic

It is possible to express higher-order logic in the λΠ-calculus modulo theory [2]. For this, we have

to introduce the notions of proposition and proof. We declare the constant Set, which represents the

universe of sorts, along with the injection El that maps sorts to the type of its elements. The constant

Prop defines the universe of propositions, and the injection Prf maps propositions into the type of its

proofs. In this encoding, we say that P of type Prop is a proposition, that Prf P is a formula and that a

term of type Prf P is a proof of P.

Set : TYPE El : Set→ TYPE : Set→ Set→ Set o : Set

Prop : TYPE Prf : Prop→ TYPE El (x y) →֒ El x→ El y El o →֒ Prop

The arrow (written infix) is used to represent function types between terms of type Set. Propositions

are considered as objects, using the sort o and the rewrite rule El o →֒ Prop.

Now that we have introduced the notions of proposition and proof, we can define the logical connec-

tives and quantifiers of predicate logic.

⇒ : Prop→ Prop→ Prop ⊤ : Prop ∀ : Πx : Set. (El x→ Prop)→ Prop

∧ : Prop→ Prop→ Prop ⊥ : Prop ∃ : Πx : Set. (El x→ Prop)→ Prop

∨ : Prop→ Prop→ Prop ¬ : Prop→ Prop ⇔ : Prop→ Prop→ Prop

Remark that ∀ and ∃ are polymorphic quantifiers that can be applied to the sort of proposition o. Hence

the higher-order feature directly derives from the rewrite rule El o →֒ Prop.

38 Kuroda’s Translation for the λΠ-Calculus Modulo Theory and Dedukti

In natural deduction, each connective and quantifier comes with an introduction and an elimination

inference rule. The encoding of the notions of proposition and proof is well-suited for representing

inference rules: logical consequences are represented by arrow types, and parameters are represented by

dependent types. For instance, the inference rule for the elimination of disjunction

Γ ⊢ P∨Q Γ,P ⊢ R Γ,Q ⊢ R

Γ ⊢ R

is simply expressed by the constant ore of type

Πp,q : Prop. Prf (p∨q)→Πr : Prop. (Prf p→ Prf r)→ (Prf q→ Prf r)→ Prf r

that can be used for any context Γ. The constants representing the natural deduction rules for the logical

connectives are:

impi : Πp,q : Prop. (Prf p→ Prf q)→ Prf (p⇒q)

impe : Πp,q : Prop. Prf (p⇒q)→ Prf p→ Prf q

andi : Πp : Prop. Prf p→Πq : Prop. Prf q→ Prf (p∧q)

andeℓ : Πp,q : Prop. Prf (p∧q)→ Prf p

ander : Πp,q : Prop. Prf (p∧q)→ Prf q

oriℓ : Πp : Prop. Prf p→Πq : Prop. Prf (p∨q)

orir : Πp,q : Prop. Prf q→ Prf (p∨q)

ore : Πp,q : Prop. Prf (p∨q)→Πr : Prop. (Prf p→ Prf r)→ (Prf q→ Prf r)→ Prf r

negi : Πp : Prop. (Prf p→ Prf ⊥)→ Prf (¬p)

nege : Πp : Prop. Prf (¬p)→ Prf p→ Prf ⊥

For convenience, the semantic of the logical biconditional is encoded through the rewrite rule p⇔ q →֒
(p⇒q)∧ (q⇒ p). The introduction of tautology and the elimination of contradiction are encoded by:

topi : Prf ⊤

bote : Prf ⊥→Πp : Prop. Prf p

The natural deduction rules for the quantifiers are represented by the following constants:

alli : Πa : Set. Πp : El a→ Prop. (Πx : El a. Prf (p x))→ Prf (∀ a p)

alle : Πa : Set. Πp : El a→ Prop. Prf (∀ a p)→ Πx : El a. Prf (p x)

exi : Πa : Set. Πp : El a→ Prop. Πx : El a. Prf (p x)→ Prf (∃ a p)

exe : Πa : Set. Πp : El a→ Prop. Prf (∃ a p)→Πr : Prop. (Πx : El a. Prf (p x)→ Prf r)→ Prf r

All those constants and rewrite rules define the encoding of intuitionistic higher-order logic in the λΠ-

calculus modulo theory. We write Σi
HOL for its constants and RHOL for its rewrite rules. The principle of

excluded middle is represented by:

pem : Πp : Prop. Prf (p∨¬p)

Classical higher-order logic is encoded in the λΠ-calculus modulo theory by the constants Σc
HOL (that is

Σi
HOL along with pem) and by the rewrite rules RHOL.

T. Traversié 39

Remark that we have decided to encode the natural deduction rules via typed constants, while they

are often expressed via rewrite rules in the λΠ-calculus modulo theory [2]. For instance, both the

introduction and the elimination of implication can be derived from the rewrite rule Prf (p⇒ q) →֒
Prf p→ Prf q. So as to perform the translation from classical logic to intuitionistic logic, the natural

deduction steps must be explicit deduction steps, and cannot be implicit computation steps. That is why

we encode the natural deduction rules with a deep embedding—via typed constants—instead of a shallow

embedding—via rewrite rules.

2.3 Theories Encoded in Higher-Order Logic

When working with the encoding of higher-order logic in the λΠ-calculus modulo theory, it is possible

to mix sorts, propositions and proofs—which is not expected in higher-order logic. For example, propo-

sitions can be inserted in sorts when we have a term of type Prop→ Set, and proofs can be inserted

in propositions when we have a term of type Πp : Prop. Prf p→ Prop. To avoid such behavior, we

introduce five grammars:

κ1 ::= Set | κ1→ κ1

κ2 ::= Prop | El a |Πx : κi. κ2 with i ∈ {1,2}

κ3 ::= Prf p | κ3→ κ3 |Πx : κi. κ3 with i ∈ {1,2}

κ4 ::= TYPE |Πx : κi. κ4 with i ∈ {1,2}

κ5 ::= KIND

The grammar κ3 generates formulas and inference rules. The grammar κ4 generates a subclass of kinds,

and κ5 only generates KIND. We characterize the judgments of the λΠ-calculus modulo theory to ensure

that types and kinds are generated by one of those grammars.

Definition 1 (κ-property). The judgment Γ ⊢ t : A satisfies the κ-property when A∈ κi for some i∈ J1,5K.

The judgment ⊢ Γ satisfies the κ-property when for each (x : A) ∈ Γ we have A ∈ κi for some i ∈ J1,5K.

A derivation satisfies the κ-property when each of its judgments satisfies the κ-property.

Theories encoded in higher-order logic are theories that feature the base higher-order encoding and

in which the user-defined constants satisfy the κ-property.

Definition 2 (Theory encoded in higher-order logic). Let T = (Σ,R) be a theory in the λΠ-calculus

modulo theory. T is encoded in higher-order logic when:

1. Σ = Σk
HOL∪ΣT with k ∈ {i,c} and ΣHOL∩ΣT = /0,

2. R = RHOL∪RT with RHOL∩RT = /0,

3. for every c : A ∈ ΣT , the judgment ⊢ c : A satisfies the κ-property,

4. for every ℓ →֒ r ∈RT , ℓ is neither Prf nor ∀.

The fourth condition will ensure that the translation of a rewrite rule is a well-defined rewrite rule.

Theories encoded in higher-order logic extend higher-order logic with user-defined rewrite rules and

inference rules. The introduction of rewrite rules is part and parcel of deduction modulo theory [8],

while the introduction of inference rules has been developed in superdeduction modulo theory [3, 16].

When considering a theory encoded in higher-order logic, all the user-defined constants satisfy the

κ-property. In that respect, the only way to mix sorts, propositions and proofs is through λ -abstractions.

For instance, (λP : Prop. o) is a term taking as input a proposition and returning a sort. The type

40 Kuroda’s Translation for the λΠ-Calculus Modulo Theory and Dedukti

El ((λP : Prop. o)⊥) mixes propositions and sorts, but it is β -convertible to El o, in which no proposition

occurs. Using this principle, we can transform every derivation of a theory encoded in higher-order logic

into a derivation that satisfies the κ-property, by applying β -reduction on fragments of the derivation.

When a derivation satisfies the κ-property, the rewrite rules ℓ →֒ r with ℓ and r of type A ∈ κ3 cannot be

used. In the rest of this paper and without loss of generality, we only consider derivations that satisfy the

κ-property and rewrite rules ℓ →֒ r with ℓ and r of type A ∈ κi for i 6= 3.

Example 1 (Equational theory). Consider the theory T = (ΣHOL ∪Σeq,RHOL ∪Req), with a polymor-

phic equality symbol = : Πa : Set. El a→ El a→ Prop, and a rewrite rule for the Leibniz principle

Prf (= a x y) →֒ΠP : El a→ Prop. Prf (P x)→ Prf (P y). This theory is encoded in higher-order logic.

We can prove that the equality is reflexive, symmetric and transitive. For instance, the proof of reflexivity

is given by λa : Set. alli a (λx : El a.= a x x) (λx : El a. λP : El a→ Prop. λPx : Prf (P x). Px) which is

of type Πa : Set. Prf (∀ a (λx : El a.= a x x)).

3 Kuroda’s Translation in the λ Π-Calculus Modulo Theory

In this section, we adapt Kuroda’s double-negation translation to the λΠ-calculus modulo theory, when

working in theories encoded in higher-order logic. Kuroda’s translation [18] inserts a double negation in

front of formulas and one after every universal quantifier. More formally, we have AKu := ¬¬AKu where

AKu is defined by induction:

(A⇒B)Ku := AKu⇒BKu (¬A)Ku := ¬AKu PKu := P if P atomic

(A∧B)Ku := AKu∧BKu ⊤Ku :=⊤ (∀x A)Ku := ∀x ¬¬AKu

(A∨B)Ku := AKu∨BKu ⊥Ku :=⊥ (∃x A)Ku := ∃x AKu

This translation embeds classical logic into intuitionistic logic, as for any first-order formula A we have

Γ ⊢ A in classical logic if and only if ΓKu ⊢ AKu in intuitionistic logic.

3.1 Translation of Terms and Theories

When working inside a theory encoded in higher-order logic in the λΠ-calculus modulo theory, every

formula has head symbol Prf . Inserting a double negation in front of every formula is therefore equiv-

alent to inserting it after every Prf symbol. In that respect, we define a single translation t 7→ tKu by

induction on the terms of the λΠ-calculus modulo theory. The translation of Prf is λ p. Prf (¬¬p), and

the translation of the universal quantifier ∀ is λa. λ p. ∀ a (λ z. ¬¬(p z)). The translation of λ -abstraction

λx : A. t is naturally given by λx : AKu. tKu, the one of dependent type Πx : A. B is given by Πx : AKu. BKu

and the one of application t u is defined by tKu uKu.

As we are in the λΠ-calculus modulo theory with the proofs-as-terms paradigm, we have to translate

proofs as well. Kuroda’s translation relies on the fact that the translation of each natural deduction rule is

admissible in intuitionistic logic. For instance, the introduction of implication allows to derive Γ ⊢ P⇒Q

from Γ,P ⊢ Q. In intuitionistic logic, ΓKu ⊢ (P⇒Q)Ku is derivable from ΓKu,PKu ⊢ QKu. In the λΠ-

calculus modulo theory, the constant impi is of type Πp,q : Prop. (Prf p→ Prf q)→ Prf (p⇒ q), and

we can build a term impi
i of type Πp,q : Prop. (Prf ¬¬p→ Prf ¬¬q)→ Prf ¬¬(p⇒ q), that only

depends on the constants representing intuitionistic natural deduction rules. Each constant c of type A

representing a natural deduction rule is translated by the term ci of type AKu, where ci is an intuitionistic

proof term of AKu.

T. Traversié 41

Definition 3 (Translation of terms). Kuroda’s translation is inductively defined on the terms of the λΠ-

calculus modulo theory by:

xKu := x

cKu :=

λ p. Prf (¬¬p) if c = Prf

λx. λ p. ∀ x (λ z. ¬¬(p z)) if c = ∀
ci if c is a constant representing a natural deduction rule

c otherwise

sKu := s

(λx : A. t)Ku := λx : AKu. tKu

(Πx : A. B)Ku := Πx : AKu. BKu

(t u)Ku := tKu uKu

Proposition 1. For every constant c : A ∈ ΣHOL representing a natural deduction rule, we have ⊢ ci : AKu

in the theory (Σi
HOL,RHOL).

Proof. We have formalized the proof terms ci in DEDUKTI
1. For instance, topi

i is given in Section 4.

As we are not mixing sorts, propositions and proofs, we know that the symbol ∀, the symbol Prf and

the constants representing the natural deduction rules only occur in the grammar κ3. Therefore, any type

A ∈ κi is modified by Kuroda’s translation for i = 3, whereas AKu = A for i 6= 3.

We have defined the translation for terms, and we now want to define it for theories. Intuitively, we

would like to translate a rewrite rule ℓ →֒ r by ℓKu →֒ rKu. However, if the head constant of ℓ is Prf or ∀,
then the head symbol of ℓKu is Prf Ku or ∀Ku, that is a λ -abstraction and not a constant. Hence ℓKu →֒ rKu

may not be a valid rewrite rule in the λΠ-calculus modulo theory. We write ⌊ℓKu⌋ for the term obtained

by β -reducing the head symbol of ℓKu if it is Prf Ku or ∀Ku.

Definition 4. The translation t 7→ tKu is extended to contexts, signatures and rewrite systems by:

〈〉Ku ::= 〈〉
(Γ,x : A)Ku := ΓKu,x : AKu

(Σ,c : A)Ku := ΣKu,c : AKu

(R, ℓ →֒ r)Ku := RKu,⌊ℓKu⌋ →֒ rKu

When translating a theory encoded in higher-order logic, we replace Σc
HOL by Σi

HOL, and we translate

the user-defined signature ΣT and rewrite system RT .

Definition 5 (Translation of theories). Let T =(Σc
HOL∪ΣT ,RHOL∪RT) be a theory encoded in higher-

order logic. The translation of T is T Ku = (Σi
HOL∪ΣKu

T
,RHOL∪RKu

T
).

Remark that T Ku is a theory. Specifically, rewrite rules ⌊ℓKu⌋ →֒ rKu ∈RKu
T

are always well-defined,

since ℓ is neither Prf nor ∀, and by definition of ⌊ℓKu⌋.

3.2 Embedding Classical Logic into Intuitionistic Logic

We aim at proving that the extension of Kuroda’s translation in the λΠ-calculus modulo theory indeed

embeds classical logic into intuitionistic logic. In other words, we want to show that Γ ⊢ t : A in T

entails ΓKu ⊢ tKu : AKu in T Ku. To do so, we translate the derivations step by step. In particular, when

the CONV rule is used with A≡βR B in T , we want to have AKu ≡βR BKu in T Ku.

1See https://github.com/Deducteam/Construkti/blob/master/kuroda.dk.

https://github.com/Deducteam/Construkti/blob/master/kuroda.dk

42 Kuroda’s Translation for the λΠ-Calculus Modulo Theory and Dedukti

Lemma 2 (Translation of substitutions). (t[z← w])Ku = tKu[z← wKu]

Proof. By induction on the term t. We have (c[z← w])Ku = cKu = cKu[z← wKu] since cKu is a closed

term. Similarly, (s[z← w])Ku = sKu = sKu[z← wKu]. If x 6= z, then (x[z← w])Ku = xKu = xKu[z← wKu].
If x = z, then (x[z←w])Ku = wKu = x[z←wKu] = xKu[z←wKu]. The cases for λ -abstractions, dependent

types, and applications follow from the induction hypotheses.

Lemma 3 (Translation of conversions). If A≡βR B in T , then AKu ≡βR BKu in T Ku.

Proof. By induction on the construction of A≡βR B.

• If ℓ →֒ r in T , then we show (ℓθ)Ku≡βR (rθ)Ku in T Ku for any substitution θ . For ℓ →֒ r ∈RHOL,

we have ℓKu = ℓ and rKu = r, and we use Lemma 2. For ℓ →֒ r ∈RT , we have ⌊ℓKu⌋ →֒ rKu ∈RKu
T

,

which entails that (ℓθ)Ku = ℓKuθKu ≡βR ⌊ℓ
Ku⌋θKu ≡βR rKuθKu = (rθ)Ku by Lemma 2.

• If (λx : A. t) u →֒ t[x← u] in T , then we have ((λx : A. t) u)Ku = (λx : AKu. tKu) uKu , which

β -reduces to tKu[x← uKu], that is (t[x← u])Ku using Lemma 2.

• Closure by context, reflexivity, symmetry, and transitivity are immediate.

Theorem 1 (Translation of judgments). Let T be a theory encoded in higher-order logic.

• If ⊢ Γ in T then ⊢ ΓKu in T Ku.

• If Γ ⊢ t : A in T then ΓKu ⊢ tKu : AKu in T Ku.

Proof. We proceed by induction on the derivation. We present the most interesting cases, the others

follow the definition and the induction hypotheses.

• CONST: By induction we have ⊢ ΓKu and ΓKu ⊢ AKu : sKu in T Ku.

If c : A ∈ ΣT , then c : AKu ∈ ΣKu
T

and we derive ΓKu ⊢ c : AKu using CONST.

Suppose that c = Prf . We simply derive ΓKu ⊢ λ p. Prf (¬¬p) : Prop→ TYPE, that is ΓKu ⊢ Prf Ku :

(Prop→ TYPE)Ku, in T Ku.

Suppose that c = ∀. We simply derive ΓKu ⊢ λx. λ p. ∀ x (λ z. ¬¬(p z)) : Πx : Set. (El x→ Prop)→
Prop, that is ΓKu ⊢ ∀Ku : (Πx : Set. (El x→ Prop)→ Prop)Ku, in T Ku.

Suppose that c is a constant representing a natural deduction rule. Using Proposition 1, we have

ΓKu ⊢ ci : AKu in T Ku, that is ΓKu ⊢ cKu : AKu. In particular, we replace the classical axiom pem :

Πp : Prop. Prf (p∨¬p) by the intuitionistic term pemi : Πp : Prop. Prf (¬¬(p∨¬p)).

Otherwise, c : A ∈ ΣHOL but is not Prf , not ∀, and not a constant representing a natural deduction

rule. Then A does not contain Prf and ∀, so AKu = A. We derive ΓKu ⊢ c : AKu using CONST.

• CONV: By induction we have ΓKu ⊢ tKu : AKu in T Ku and ΓKu ⊢ BKu : sKu in T Ku. From Lemma 3,

we know that AKu ≡βR BKu, and we conclude that ΓKu ⊢ tKu : BKu in T Ku using CONV.

Example 2 (Translated equational theory). The translation of the theory T = (ΣHOL∪Σeq,RHOL∪Req)
of Example 1 is obtained by taking the equality symbol = : Πa : Set. El a→ El a→ Prop (which remains

unchanged), and by transforming the rewrite rule Prf (= a x y) →֒ ΠP : El a→ Prop. Prf (P x)→
Prf (P y) into Prf (¬¬(= a x y)) →֒ ΠP : El a→ Prop. Prf (¬¬(P x))→ Prf (¬¬(P y)). The proof

of reflexivity is now given by λa : Set. alli
i a (λx : El a. = a x x) (λx : El a. λP : El a→ Prop. λPx :

Prf (¬¬(P x)). Px) which is of type Πa : Set. Prf (¬¬(∀ a (λx : El a. ¬¬(= a x x)))).

T. Traversié 43

3.3 Back to the Original Theory

We have shown that, in the λΠ-calculus modulo theory, Γ ⊢ t : A in T implies ΓKu ⊢ tKu : AKu in T Ku.

We now want to prove the reverse implication: if there exists an intuitionistic proof of AKu in T Ku, then

there exists a classical proof of A in T . To do so, we reason in two steps: first we show that it is possible

to build a proof of A from a proof of AKu in classical logic, and then we show that any result in T Ku can

also be derived in T .

The first step consists in proving that, for any A ∈ κ3, it is possible to derive AKu from A. For this,

we show that any proposition P and its translation PKu are classically equivalent. Such a result is not

necessarily true in higher-order logic. We assume some property, called the Kuroda equivalence.

Definition 6 (Kuroda equivalence). Let Γ be a context, t be a constant or a variable such that Γ ⊢ t :

T1 → . . .→ Tn → Prop, and u1, . . . ,un be terms such that Γ ⊢ ui : Ti. There exists some p such that

Γ ⊢ p : Prf ((t u1 . . . un)
Ku⇔ t u1 . . . un).

The Kuroda equivalence property is derivable from functional extensionality and propositional ex-

tensionality in classical logic [21]. Remark that it is satisfied for the usual logical connectives and

quantifiers. For instance, we have AKu ∧BKu⇔ A∧B and ∀x ¬¬AKu⇔ ∀x A in classical logic. In the

rest of this paper, we work assuming the Kuroda equivalence.

Lemma 4. Any proposition P is β -convertible to a variable x, a constant c, or an application t u1 . . . un

where t is a constant or a variable of type T1 → . . . → Tn → Prop and u1, . . . ,un are terms of type

T1, . . . ,Tn.

The constant c may be ⊤ or ⊥, and the head symbol of the application may be any connective,

quantifier or predicate.

Proposition 2. Let Γ ⊢ P : Prop. In the theory (Σc
HOL∪Σ,RHOL∪R), there exists some proof term mP

such that Γ ⊢ mP : Prf (PKu⇔ P).

Proof. We distinguish cases thanks to Lemma 4.

• Suppose that P is β -convertible to a variable x. We have xKu = x so we build some mx such that

Γ ⊢ mx : Prf (xKu⇔ x). Since P is β -convertible to x, PKu is β -convertible to xKu (see Lemma 3)

and we conclude that Γ ⊢ mx : Prf (PKu⇔ P).

• If P is β -convertible to a constant c, then we are in the case where cKu = c and we proceed similarly.

• Suppose that P is β -convertible to an application t u1 . . . un where t is a constant or a variable. PKu

is β -convertible to (t u1 . . . un)
Ku and we conclude using the Kuroda equivalence.

Lemma 5. Let A∈ κ3 and ℓ be a strict subterm of A. In the theory (Σc
HOL∪Σ,RHOL∪R), for any context

Γ, there exists some t such that Γ ⊢ t : A[ℓ] if and only if there exists some t ′ such that Γ ⊢ t ′ : A[ℓKu].

Proof. We proceed by induction on the term A using the fact that A is generated by κ3.

• Suppose that A = Prf P. If ∀ does not occur in ℓ, then ℓKu = ℓ and P[ℓKu] = P[ℓ], so we directly

conclude. Otherwise, we use Proposition 2 on the right proposition.

• Suppose that A = Πx : B.C with B∈ κ1 or B∈ κ2. If ℓ occurs in B, then by definition B[ℓKu] = B[ℓ],
so ℓKu = ℓ and we directly conclude. Suppose that ℓ only occurs in C and that there exists some t

such that Γ ⊢ t : Πx : B. C[ℓ]. By induction on C with Γ,x : B ⊢ t x : C[ℓ] (obtained by weakening),

we get some t ′C such that Γ,x : B ⊢ t ′C : C[ℓKu]. Therefore, we have Γ ⊢ λx : B. t ′C : Πx : B. C[ℓKu].
We proceed similarly for the reverse implication.

44 Kuroda’s Translation for the λΠ-Calculus Modulo Theory and Dedukti

• Suppose that A = B→C with B,C ∈ κ3. Suppose that we have Γ ⊢ t : B[ℓ]→C[ℓ]. By induction

on B with Γ,x : B[ℓKu] ⊢ x : B[ℓKu], we get some tB such that Γ,x : B[ℓKu] ⊢ tB : B[ℓ]. By induction

on C with Γ,x : B[ℓKu] ⊢ t tB : C[ℓ], we get some t ′C such that Γ,x : B[ℓKu] ⊢ t ′C : C[ℓKu]. We conclude

that Γ ⊢ λx : B[ℓKu]. t ′C : B[ℓKu]→C[ℓKu]. We proceed similarly for the reverse implication.

Lemma 6. Let A ∈ κ3. In the theory (Σc
HOL∪Σ,RHOL ∪R), for any context Γ, there exists some t such

that Γ ⊢ t : A if and only if there exists some t ′ such that Γ ⊢ t ′ : AKu.

Proof. We proceed by induction on the term A using the fact that A is generated by κ3. We use Lemma 5

and the double-negation elimination.

We have shown that it is possible to build a proof of A in T Ku using a proof of AKu and the principle

of excluded middle. The next step is to derive a proof of A in the original theory T . In particular, it

requires to replace each use of ⌊ℓKu⌋ →֒ rKu ∈RKu
T

by a use of ℓ →֒ r ∈RT .

Lemma 7. Let A ∈ κ3 such that Γ ⊢ t : A[ℓKu]. Using ℓ →֒ r, there exists some t ′ such that Γ ⊢ t ′ : A[rKu].

Proof. Using Lemma 5, there exists some t ′ such that Γ ⊢ t ′ : A[ℓ]. Using ℓ →֒ r, we have Γ ⊢ t ′ : A[r].
We use Lemma 5 to obtain some t ′′ such that Γ ⊢ t ′′ : A[rKu].

Lemma 8. Let (Σc
HOL ∪Σ,RHOL ∪RKu) and (Σc

HOL ∪Σ,RHOL∪R) be two theories, abbreviated RKu

and R.

• If ⊢ Γ in RKu then ⊢ Γ in R.

• If Γ ⊢ t : A in RKu and A ∈ κi with i ∈ {1,2,4,5}, then Γ ⊢ t : A in R.

• If Γ ⊢ t : A in RKu and A ∈ κ3, then there exists some t ′ such that Γ ⊢ t ′ : A in R.

Proof. We proceed by induction on the typing derivation. We only present the relevant cases.

• ABS: Suppose that Γ ⊢ A : TYPE and Γ,x : A ⊢ B : s and Γ,x : A ⊢ t : B in RKu. By induction we

have Γ ⊢ A : TYPE and Γ,x : A ⊢ B : s in R.

If B ∈ κi with i ∈ {1,2}, then by induction we have Γ,x : A ⊢ t : B in R, and we derive Γ ⊢ λx :

A. t : Πx : A. B in R.

If B ∈ κ3, then by induction we have Γ,x : A ⊢ t ′ : B in R. We derive Γ ⊢ λx : A. t ′ : Πx : A. B in R.

• APP: Suppose that Γ ⊢ t : Πx : A. B and Γ ⊢ u : A in RKu.

If Πx : A. B ∈ κi with i ∈ {1,2,4}, then by induction we have Γ ⊢ t : Πx : A. B and Γ ⊢ u : A in R.

We derive Γ ⊢ t u : B[x← u] in R.

If Πx : A. B ∈ κ3, then by induction we have Γ ⊢ t ′ : Πx : A. B in R. If A ∈ κi with i ∈ {1,2}, then

by induction we have Γ ⊢ u : A in R, and we derive Γ ⊢ t ′ u : B[x← u] in R. If A ∈ κ3 (x does not

occur in B), then by induction we have Γ ⊢ u′ : A in R, and we conclude that Γ ⊢c t ′ u′ : B.

• CONV: If A≡βR B is obtained using β -conversion or the rewrite rules of RHOL, then we conclude

using the induction hypothesis and the CONV rule. Otherwise, and without loss of generality, we

consider that we only use one rewrite rule of RKu per CONV rule.

Suppose that A ≡βR B is obtained using the rewrite rule ℓKu →֒ rKu ∈RKu. In that case, we have

A=C[ℓKu] and B=C[rKu] (the case A=C[rKu] and B=C[ℓKu] is treated similarly). By assumption,

we have Γ ⊢ t : C[ℓKu] and Γ ⊢C[rKu] : s in RKu.

T. Traversié 45

If A,B ∈ κi with i ∈ {1,2,4,5}, then ℓKu = ℓ and rKu = r. By induction we have Γ ⊢ t : C[ℓKu] and

Γ ⊢C[rKu] : s in R. We apply CONV with C[ℓ]≡βR C[r].

If A,B ∈ κ3, then by induction we have Γ ⊢ t ′ : C[ℓKu] and Γ ⊢C[rKu] : s in R. We conclude using

Lemma 7.

We now have all the tools to show that, for any intuitionistic proof of AKu in the translated theory

T Ku, there exists a classical proof of A in the original theory T .

Theorem 2. Let T be a theory encoded in higher-order logic and A ∈ κ3. If ΓKu ⊢ t : AKu in T Ku, then

under the Kuroda equivalence there exists some term t ′ such that Γ ⊢ t ′ : A in T .

Proof. We directly have ΓKu ⊢ t : AKu in (Σc
HOL∪ΣKu

T
,RHOL∪RKu

T
).

• By Lemma 6, there exists some t ′ such that ΓKu ⊢ t ′ : A in (Σc
HOL ∪ΣKu

T
,RHOL ∪RKu

T
) and under

the Kuroda equivalence.

• Using Lemma 8, there exists some t ′′ such that ΓKu ⊢ t ′′ : A in (Σc
HOL∪ΣKu

T
,RHOL∪RT).

• We replace the signature ΣKu
T

by ΣT . For each constant c : C ∈ ΣT with C ∈ κ3, we replace c by tc
(provided by Lemma 6) in t ′′. We obtain ΓKu ⊢ t ′′[c← tc] : A in (Σc

HOL∪ΣT ,RHOL∪RT), that is

in T . These substitutions work since c cannot occur in a dependent type.

• We replace the context ΓKu by Γ. For each variable x : B ∈ Γ with B ∈ κ3, we replace x by tx
(provided by Lemma 6) in t ′′[c← tc]. We obtain Γ ⊢ t ′′[c← tc][x← tx] : A in T , which achieves

the proof.

The extension of Kuroda’s translation to the λΠ-calculus modulo theory is a generalization of Brown

and Rizkallah’s translation for simple type theory [4]. Indeed, if RT = 〈〉, then we obtain the result in

higher-order logic, at the only difference that proofs are represented by terms.

4 Construkti, an Implementation for Dedukti Proofs

Dedukti. The λΠ-calculus modulo theory has been implemented in the DEDUKTI proof language.

Abstractions λx : A. t are represented by x : A => t, and dependent types Πx : A. B are represented

by x : A -> B. Constants c : A are specified by c : A, prefixed with the keyword def if the constant

can be defined using rewrite rules. Rewrite rules ℓ →֒ r, where x and y are the free variables of ℓ and r,

are represented by [x,y] l --> r. For instance, using the encoding of the notions of proposition and

proof, we can encode the addition on natural numbers via rewrite rules.

nat : Set.

0 : El nat.

S : El nat -> El nat.

def add : El nat -> El nat -> El nat.

[x] add x 0 --> x.

[x, y] add x (S y) --> S (add x y).

Theorems are represented by thm n : T := p, where n is its name, T its statement and p its proof

term. For checking that p is indeed a proof of T, we can use one of the type checkers of DEDUKTI, for

instance DKCHECK [19] or LAMBDAPI [15].

46 Kuroda’s Translation for the λΠ-Calculus Modulo Theory and Dedukti

Construkti. We have implemented CONSTRUKTI
2 , a tool that performs Kuroda’s translation on DE-

DUKTI proofs. CONSTRUKTI takes as input a DEDUKTI file containing the specification of a user-defined

theory encoded in higher-order logic, as well as proofs in this theory. It returns a DEDUKTI file contain-

ing the specification of the translated theory, as well as the translated proofs.

In this implementation, we insert one double negation after every Prf and ∀ symbols, and we replace

the constants c representing natural deduction rules by the terms ci. For instance, the constant topi of

type Prf ⊤, representing the introduction of tautology, is replaced in the formal proofs by the term topi
i

of type Prf (¬¬⊤). The proof term topi
i relies on the proof of Πp : Prop. Prf (p⇒¬¬p).

top_i : Prf top.

thm prop_double_neg : p : Prop -> Prf (imp p (not (not p)))

:= p => imp_i p (not (not p))

(pP => neg_i (not p) (pNP => neg_e p pNP pP)).

thm top_i_i : Prf (not (not top))

:= imp_e top (not (not top)) (prop_double_neg top) top_i.

So as to obtain readable theorems, we directly β -reduce every application of Prf Ku and ∀Ku.

Benchmark. We have tested CONSTRUKTI on a benchmark of 101 DEDUKTI proofs, available in

the file hol-lib.dk. These proofs encompass results related to connectives and quantifiers, classical

formulas, De Morgan’s laws, polymorphic equality, and basic arithmetic. The proofs are expressed in

propositional, first-order and higher-order logics. This library of proofs includes user-defined rewrite

rules—a feature of the λΠ-calculus modulo theory—and inference rules—thanks to the encoding of the

notions of proposition and proof. We compare in Table 1 the different characteristics of the library: the

number of proofs, the number of classical proofs, the number of results expressed in higher-order logic,

and the number of results that are expressed via admissible inference rules.

Content of Number of ...

the library proofs classical proofs higher-order results admissible inference rules

Basic logic 38 0 15 26

Classical results 12 12 9 3

De Morgan 8 6 4 8

Equality 10 0 6 4

Arithmetic 33 0 0 16

All 101 18 34 57

Table 1: Comparison of the different libraries.

After running CONSTRUKTI, all the translated proofs of the translated theorems typecheck, and are

expressed in intuitionistic logic.

2Available at https://github.com/Deducteam/Construkti.

https://github.com/Deducteam/Construkti

T. Traversié 47

5 Conclusion

In this paper, we have extended Kuroda’s translation to the theories encoded in higher-logic in the λΠ-

calculus modulo theory, that is λ -calculus extended with dependent types and user-defined rewrite rules.

In this logical framework, proofs are terms following the Curry-Howard correspondence, and have to

be effectively translated. Due to the encoding of the notions of proposition and proof in the λΠ-

calculus modulo theory, we can assume, prove, and translate inference rules. We have implemented

CONSTRUKTI, a tool that transforms DEDUKTI proofs following Kuroda’s translation. Both DEDUKTI

and CONSTRUKTI pave the way for interoperability between classical proof systems—such as HOL

LIGHT or MIZAR—and intuitionistic proof systems—such as COQ, LEAN or AGDA.

Future work. There exist large libraries of proofs in higher-order logic, for instance the HOL LIGHT

standard library. Blanqui [9] recently translated it to COQ via DEDUKTI, taking the excluded middle as

an axiom. Future work would be to obtain an intuitionistic version of the HOL LIGHT standard library,

by applying Kuroda’s translation and CONSTRUKTI.

Related work. Double-negation translations aim at embedding classical logic into intuitionistic logic.

As such, double-negation translations always transform classical proofs into intuitionistic ones, but they

modify the formulas during the process. Proof constructivization aims at transforming classical proofs

into intuitionistic ones without translating the formulas, but such a process does not necessarily succeed.

Cauderlier [5] developed heuristics to constructivize proofs in DEDUKTI, via rewrite systems that try to

remove instances of the principle of excluded middle or of the double-negation elimination. Gilbert [11]

designed a constructivization algorithm for first-order logic, that was tested in DEDUKTI and works in

practice for large fragments of first-order logic.

Acknowledgments

The author would like to thank Marc Aiguier, Gilles Dowek and Olivier Hermant for helpful discussions

and valuable remarks about this work.

References

[1] Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek, Catherine Dubois, Frédéric

Gilbert, Pierre Halmagrand, Olivier Hermant & Ronan Saillard (2016): Dedukti: a Logical Framework based

on the λ Π-Calculus Modulo Theory. Manuscript.

[2] Frédéric Blanqui, Gilles Dowek, Émilie Grienenberger, Gabriel Hondet & François Thiré (2023): A modular

construction of type theories. Logical Methods in Computer Science Volume 19, Issue 1, doi:10.46298/

lmcs-19(1:12)2023. Available at https://lmcs.episciences.org/10959.

[3] Paul Brauner, Clement Houtmann & Claude Kirchner (2007): Principles of Superdeduction. In: LICS 2007 -

22nd Annual IEEE Symposium on Logic in Computer Science, Wroclaw, Poland, pp. 41–50, doi:10.1109/

LICS.2007.37. Available at https://ieeexplore.ieee.org/abstract/document/4276550. ISSN:

1043-6871.

[4] Chad E. Brown & Christine Rizkallah (2014): Glivenko and Kuroda for simple type theory. The Journal of

Symbolic Logic 79(2), pp. 485–495, doi:10.1017/jsl.2013.10. Available at http://www.jstor.org/

stable/43303744.

https://doi.org/10.46298/lmcs-19(1:12)2023
https://doi.org/10.46298/lmcs-19(1:12)2023
https://lmcs.episciences.org/10959
https://doi.org/10.1109/LICS.2007.37
https://doi.org/10.1109/LICS.2007.37
https://ieeexplore.ieee.org/abstract/document/4276550
https://doi.org/10.1017/jsl.2013.10
http://www.jstor.org/stable/43303744
http://www.jstor.org/stable/43303744

48 Kuroda’s Translation for the λΠ-Calculus Modulo Theory and Dedukti

[5] Raphaël Cauderlier (2016): A Rewrite System for Proof Constructivization. In: LFMTP 2016 - International

Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, Porto, Portugal, pp. 1 – 7,

doi:10.1145/2966268.2966270. Available at https://inria.hal.science/hal-01420634.

[6] Denis Cousineau & Gilles Dowek (2007): Embedding Pure Type Systems in the Lambda-Pi-Calculus Mod-

ulo. In Simona Ronchi Della Rocca, editor: Typed Lambda Calculi and Applications, Springer Berlin Hei-

delberg, Berlin, Heidelberg, pp. 102–117, doi:10.1007/978-3-540-73228-0_9.

[7] Nachum Dershowitz & Jean-Pierre Jouannaud (1991): Rewrite Systems. In: Handbook of Theoretical Com-

puter Science, Volume B: Formal Models and Sematics, doi:10.1016/B978-0-444-88074-1.50011-1.

[8] Gilles Dowek, Thérèse Hardin & Claude Kirchner (2003): Theorem Proving Modulo. Journal of Automated

Reasoning 31, pp. 33–72, doi:10.1023/A:1027357912519.

[9] Frédéric Blanqui (2024): Translating HOL-Light proofs to Coq. In: LPAR 2024 - 25th Conference on Logic

for Programming, Artificial Intelligence and Reasoning, Balaclava, Mauritius, pp. 1–18, doi:10.29007/

6k4x. Available at https://easychair.org/publications/paper/mtFT.

[10] Gerhard Gentzen (1936): Die Widerspruchsfreiheit der Reinen Zahlentheorie. Mathematische Annalen 112,

pp. 493–565, doi:10.1007/BF01565428.

[11] Frédéric Gilbert (2017): Automated Constructivization of Proofs. In: FOSSACS 2017 - 20th International

Conference on Foundations of Software Science and Computation Structures, Uppsala, Sweden, pp. 480–

495, doi:10.1007/978-3-662-54458-7_28.

[12] Valery Glivenko (1928): Sur quelques points de la logique de M. Brouwer. Bulletins de la classe des sciences

15, p. 183–188.

[13] Kurt Gödel (1933): Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines Mathematischen

Kolloquiums 4, p. 34–38.

[14] Robert Harper, Furio Honsell & Gordon Plotkin (1993): A Framework for Defining Logics. Journal of the

ACM 40(1), p. 143–184, doi:10.1145/138027.138060.

[15] Gabriel Hondet & Frédéric Blanqui (2020): The New Rewriting Engine of Dedukti. In: FSCD 2020 - 5th

International Conference on Formal Structures for Computation and Deduction, 167, Paris, France, p. 16,

doi:10.4230/LIPIcs.FSCD.2020.35. Available at https://inria.hal.science/hal-02981561.

[16] Clément Houtmann (2010): Représentation et interaction des preuves en superdéduction modulo. Ph.D.

thesis, Université Henri Poincaré - Nancy I. Available at https://theses.hal.science/tel-00553219.

[17] Andrey Nikolaevich Kolmogorov (1925): O principe tertium non datur. Matematicheskiı̆ Sbornik 32, p.

646–667.

[18] Sigekatu Kuroda (1951): Intuitionistische Untersuchungen der formalistischen Logik. Nagoya Mathematical

Journal 2, p. 35–47, doi:10.1017/S0027763000010023.

[19] Ronan Saillard (2015): Typechecking in the lambda-Pi-Calculus Modulo : Theory and Practice. Ph.D.

thesis, Ecole Nationale Supérieure des Mines de Paris. Available at https://pastel.hal.science/

tel-01299180.

[20] François Thiré (2020): Interoperability between proof systems using the logical framework Dedukti. Ph.D.

thesis, Université Paris-Saclay. Available at https://hal.science/tel-03224039.

[21] Thomas Traversié (2024): Kuroda’s translation for higher-order logic. Available at https://hal.

science/hal-04561757. Manuscript.

https://doi.org/10.1145/2966268.2966270
https://inria.hal.science/hal-01420634
https://doi.org/10.1007/978-3-540-73228-0_9
https://doi.org/10.1016/B978-0-444-88074-1.50011-1
https://doi.org/10.1023/A:1027357912519
https://doi.org/10.29007/6k4x
https://doi.org/10.29007/6k4x
https://easychair.org/publications/paper/mtFT
https://doi.org/10.1007/BF01565428
https://doi.org/10.1007/978-3-662-54458-7_28
https://doi.org/10.1145/138027.138060
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://inria.hal.science/hal-02981561
https://theses.hal.science/tel-00553219
https://doi.org/10.1017/S0027763000010023
https://pastel.hal.science/tel-01299180
https://pastel.hal.science/tel-01299180
https://hal.science/tel-03224039
https://hal.science/hal-04561757
https://hal.science/hal-04561757

Rabe, Sacerdoti Coen (Eds): LFMTP 2024

EPTCS 404, 2024, pp. 49–63, doi:10.4204/EPTCS.404.4

© T. Traversié

This work is licensed under the

Creative Commons Attribution License.

Proofs for Free in the λ Π-Calculus Modulo Theory

Thomas Traversié

Université Paris-Saclay, CentraleSupélec, MICS
Gif-sur-Yvette, France

Université Paris-Saclay, Inria, CNRS, ENS-Paris-Saclay, LMF
Gif-sur-Yvette, France

thomas.traversie@centralesupelec.fr

Parametricity allows the transfer of proofs between different implementations of the same data struc-

ture. The λ Π-calculus modulo theory is an extension of the λ -calculus with dependent types and

user-defined rewrite rules. It is a logical framework, used to exchange proofs between different proof

systems. We define an interpretation of theories of the λ Π-calculus modulo theory, inspired by para-

metricity. Such an interpretation allows to transfer proofs for free between theories that feature the

notions of proposition and proof, when the source theory can be embedded into the target theory.

1 Introduction

Many proof assistants have been developed during the past decades, such as AGDA, COQ, HOL LIGHT,

ISABELLE, LEAN or MIZAR. All those systems have their own theoretical foundations and proof lan-

guage. If a library of proofs has been formalized in some proof assistant, one would ideally like to

export it automatically to any other proof assistant. That is why the question of the interoperability

between proof systems arises. Exchanging formal proofs between different proof systems strengthen re-

usability, re-checking and preservation of libraries. For this purpose, Cousineau and Dowek developed

the λΠ-calculus modulo theory [8], that combines λ -calculus with dependent types and user-defined

rewrite rules. It is a logical framework, in which theories are defined by typed constants and rewrite

rules, specified by the users. Many theories can be expressed in the λΠ-calculus modulo theory [4], such

as Predicate Logic, Simple Type Theory and the Calculus of Constructions. Most of all, theories from

various proof assistants can be expressed in this logical framework. As a consequence, it can be used

as a common framework for exchanging proofs between proof systems [17]. The λΠ-calculus modulo

theory has been implemented in the concrete language DEDUKTI [1, 14] and in the LAMBDAPI proof

assistant, which features user-friendly proof tactics.

The problem of the exchange of proofs also emerges when it comes to the different implementations

of a same data structure. One would like to share the theorems proved for one implementation to all

the other implementations of the same data structure, without additional efforts. One method to derive

theorems for free is to use parametricity. Reynolds [16] originally introduced an abstraction theorem,

stating that the different implementations of a polymorphic function behave similarly. Wadler [18] used

this result to derive properties satisfied by polymorphic functions, depending on their types. In other

words, all functions of the same abstract type satisfy the same theorems. Bernardy et al. [2, 3] later

extended parametricity to Pure Type Systems. Keller and Lasson [15] investigated parametricity for

the Calculus of Inductive Constructions, the language behind the COQ proof assistant. More recently,

Cohen et al. [7] developed a parametricity framework and implemented TROCQ, a COQ plugin for proof

transfer based on parametricity. The exchange of proofs—the very purpose of the λΠ-calculus modulo

theory—is therefore an important application of the parametricity translations.

http://dx.doi.org/10.4204/EPTCS.404.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

50 Proofs for Free in the λΠ-Calculus Modulo Theory

Transferring databases of proofs is relevant when working with related mathematical structures. For

instance, if we have proved theorems in a theory of natural numbers and we want to use them in a

theory of integers, we would like to export the proofs for non-negative integers. The same issue arises

concerning various mathematical structures and databases of proofs, as we can embed natural numbers

into reals, reals into reals extended with infinity elements, or sets into pointed graphs [5]. It would

therefore be interesting to exchange proofs between theories of the λΠ-calculus modulo theory, when

the source theory can be embedded into the target theory.

Contribution. In this paper, we define an interpretation of theories of the λΠ-calculus modulo theory,

when they feature a prelude encoding of the notions of proposition and proof. Such an interpretation,

inspired by parametricity, applies when we can embed the source theory S into the target theory T. The

interpretation depends on parameters, given by the user for representing each constant of the source

theory by a term in the target theory. We provide the parameters necessary for interpreting the prelude

encoding. We show that if S has an interpretation in T, then the proofs written inside S can be transformed

into proofs written inside T. This interpretation comes with a relative consistency theorem: if T is

consistent, then S is consistent too.

In order to illustrate this interpretation, we embed a theory of natural numbers into a theory of inte-

gers. This example, as well as the parameters for the prelude encoding, are given in DEDUKTI, and are

available at https://github.com/thomastraversie/InterpDK.

Outline of the paper. In Section 2, we give a formal presentation of the λΠ-calculus modulo theory,

and we detail a prelude encoding of the notions of proposition and proof. In Section 3, we define an

interpretation of theories of the λΠ-calculus modulo theory. In particular, we specify the parameters

required for interpreting the prelude encoding. We prove the interpretation theorem and the relative

consistency theorem. At the end, we show how this interpretation can be used to derive theorems for

free, taking the running example of natural numbers and integers.

2 Theories in the λ Π-Calculus Modulo Theory

In this section, we give a formal definition of the syntax and type system of the λΠ-calculus modulo

theory. We present a standard way of expressing the notions of proposition and proof in it—called

prelude encoding—and we emphasize the theories that will be considered in the rest of the paper.

2.1 The λΠ-Calculus Modulo Theory

The Edinburgh Logical Framework [13], also known as λΠ-calculus, is an extension of simply typed

λ -calculus with dependent types. The λΠ-calculus modulo theory [8] is an extension of the Edinburgh

Logical Framework, in which user-defined rewrite rules [9] have been added. Its syntax is given by:

Sorts s ::= TYPE | KIND

Terms t,u,A,B ::= c | x | s | Π(x : A). B | λ (x : A). t | t u

Contexts Γ ::= 〈〉 | Γ,x : A

Signatures Σ ::= 〈〉 | Σ,c : A | Σ, ℓ →֒ r

where c is a constant and x is a variable (ranging over disjoint sets), Π(x : A). B is a dependent product

(simply written A→ B if x does not occur in B), λ (x : A). t is an abstraction, and t u is an application. For

https://github.com/thomastraversie/InterpDK

T. Traversié 51

convenience, λ (x1 : A1). . . .λ (xn : An). t is written λ (x1 : A1) . . . (xn : An). t and Π(x1 : A1). . . .Π(xn : An). B

is written Π(x1 : A1) . . . (xn : An). B. Terms of type TYPE are called types, and terms of type KIND are

called kinds. Signatures and contexts are finite sequences, and are written 〈〉 when empty. The λΠ-

calculus modulo theory is a logical framework, in which Σ is fixed by the users depending on the theory

they are working in. Signatures are composed of typed constants c : A (such that A is a closed term, that

is a term with no free variables) and rewrite rules ℓ →֒ r (such that the head-symbol of ℓ is a constant).

The relation →֒βΣ is the smallest relation, closed by context, such that if t rewrites to u for some rule in Σ

or by β -reduction, then t →֒βΣ u. The conversion ≡βΣ is the reflexive, symmetric, and transitive closure

of the relation →֒βΣ.

⊢ 〈〉
[EMPTY]

⊢ Γ Γ ⊢ A : TYPE

⊢ Γ,x : A
[DECL] x /∈ Γ

⊢ Γ

Γ ⊢ TYPE : KIND
[SORT]

⊢ Γ ⊢ A : s

Γ ⊢ c : A
[CONST] c : A ∈ Σ

⊢ Γ

Γ ⊢ x : A
[VAR] x : A ∈ Γ

Γ ⊢ A : TYPE Γ,x : A ⊢ B : s

Γ ⊢Π(x : A). B : s
[PROD]

Γ ⊢ A : TYPE Γ,x : A ⊢ B : s Γ,x : A ⊢ t : B

Γ ⊢ λ (x : A). t : Π(x : A). B
[ABS]

Γ ⊢ t : Π(x : A). B Γ ⊢ u : A

Γ ⊢ t u : B[x← u]
[APP]

Γ ⊢ t : A ⊢ B : s

Γ ⊢ t : B
[CONV] A≡β Σ B

Figure 1: Typing rules of the λΠ-calculus modulo theory.

The judgment ⊢ Γ means that the context Γ is well-formed, and Γ ⊢ t : A means that t is of type A in

the context Γ. When the context is empty, we simply write ⊢ t : A. The typing rules for the λΠ-calculus

modulo theory are given in Figure 1. The standard weakening rule is admissible.

A signature is a theory when its rewrite rules satisfy certain properties. We write ΛΣ for the set of

terms whose constants belong to Σ.

Definition 1 (Theory). A theory T in the λΠ-calculus modulo theory is given by a signature Σ such that:

1. for each rule ℓ →֒ r ∈ Σ, we have ℓ and r in ΛΣ,

2. →֒βΣ is confluent on ΛΣ,

3. for each rule ℓ →֒ r ∈ Σ, for all context Γ, term A ∈ ΛΣ and substitution θ , if Γ ⊢ ℓθ : A then

Γ ⊢ rθ : A.

Lemma 1. If Γ ⊢ t : A, then either A = KIND or Γ ⊢ A : s for s = TYPE or s = KIND. If Γ ⊢Π(x : A). B : s,

then Γ ⊢ A : TYPE.

2.2 A Prelude Encoding

It is possible to formalize the notions of proposition and proof in the λΠ-calculus modulo theory [4]. In

particular, this encoding—called prelude encoding—gives the possibility to quantify over certain propo-

52 Proofs for Free in the λΠ-Calculus Modulo Theory

sitions through codes, which is not possible inside the standard λΠ-calculus modulo theory. This encod-

ing is defined by the following signature, written Σpre.

Set : TYPE o : Set

El : Set→ TYPE Prf : El o→ TYPE

 d : Π(x : Set). (El x→ Set)→ Set ⇒d : Π(x : El o). (Prf x→ El o)→ El o

El (x d y) →֒Π(z : El x). El (y z) Prf (x⇒d y) →֒ Π(z : Prf x). Prf (y z)

π : Π(x : El o). (Prf x→ Set)→ Set ∀ : Π(x : Set). (El x→ El o)→ El o

El (π x y) →֒Π(z : Prf x). El (y z) Prf (∀ x y) →֒ Π(z : El x). Prf (y z)

We declare the constant Set, which represents the universe of sorts, along with the injection El that maps

terms of type Set to the type of its elements. We define a sort o, such that El o corresponds to the universe

of propositions. The injection Prf maps propositions to the type of its proof. In other words, a term P of

type El o is a proposition, and a term of type Prf P is a proof of P. The infix symbol d (respectively

⇒d) is used to represent dependent function types between terms of type Set (respectively El o). Remark

that the symbols d and⇒d are generalizations of the usual functionality and implication ⇒ in the

case of dependent types. The symbol π (respectively ∀) is used to represent dependent function types

between elements of type El o and Set (respectively Set and El o).

While it is not possible to quantify over TYPE in the λΠ-calculus modulo theory, this encoding allows

to quantify over propositions—objects of type El o—and then inject them into TYPE using Prf . Similarly,

we can quantify over sorts—objects of type Set—and then inject them into TYPE using El.

2.3 Theories with Prelude Encoding

In this paper, we consider theories that feature those basic notions of proposition and proof. More

formally, we take theories of the form T= Σpre∪ΣT, where the user-defined constants c : A ∈ ΣT have to

be expressed in the prelude encoding.

Definition 2 (Theories with prelude encoding). We say that a theory T = Σpre ∪ ΣT is a theory with

prelude encoding when for every c : A ∈ ΣT, we have ⊢ A : TYPE.

The condition guarantees that the user-defined constants of ΣT are indeed encoded in the prelude

encoding. For instance, we cannot define nat : TYPE, but are forced to take nat : Set. Consequently

inside a theory with prelude encoding, the only constants c : A ∈ Σ with A a kind are Set (of type TYPE),

El (of type Set→ TYPE) and Prf (of type El o→ TYPE).

For each rewrite rule ℓ →֒ r ∈ Σ, the head-symbol of ℓ is a constant. It follows that, if Γ ⊢ ℓ : A, then

A cannot be KIND. We thus have Γ ⊢ A : s with s = TYPE or s = KIND. In particular, TYPE cannot occur

in ℓ and r.

Example 1 (Natural numbers). We define a theory with prelude encoding Tn = Σpre ∪Σn for natural

numbers. nat is the sort of natural numbers. We declare two constructors 0n and succn, a relation ≥n,

T. Traversié 53

and an induction principle recn.

nat : Set

0n : El nat

succn : El nat→ El nat

≥n : El nat→ El nat→ El o

ax1
n : Π(x : El nat). Prf (x≥n x)

ax2
n : Π(x : El nat). Prf (succn x≥n x)

ax3
n : Π(x,y,z : El nat). Prf (x ≥n y)→ Prf (y≥n z)→ Prf (x≥n z)

recn : Π(P : El nat→ El o). Prf (P 0n)→
[Π(x : El nat). Prf (P x)→ Prf (P (succn x))]→
Π(x : El nat). Prf (P x)

In this theory, we can prove Π(x : El nat). Prf (x≥n 0n) and Π(x : El nat). Prf (succn x≥n 0n).

Example 2 (Integers). We define a theory with prelude encoding Ti = Σpre∪Σi for integers. int is the sort

of integers. We declare three constructors 0i, succi and predi, a relation ≥i and a generalized induction

principle reci.

int : Set

0i : El int

succi : El int→ El int

predi : El int→ El int

≥i : El int→ El int→ El o

ax1
i : Π(x : El int). Prf (x≥i x)

ax2
i : Π(x : El int). Prf (succi x≥i x)

ax3
i : Π(x,y,z : El int). Prf (x≥i y)→ Prf (y≥i z)→ Prf (x≥i z)

ax4
i : Π(x : El int). Π(P : El int→ El o). Prf (P (succi (predi x)))→ Prf (P x)

ax5
i : Π(x : El int). Π(P : El int→ El o). Prf (P (predi (succi x)))→ Prf (P x)

reci : Π(c : El int)(P : El int→ El o). Prf (P c)→
[Π(x : El int). Prf (x≥i c)→ Prf (P x)→ Prf (P (succi x))]→
Π(x : El int). Prf (x≥i c)→ Prf (P x)

In this theory, we cannot prove Π(x : El int). Prf (x ≥i 0i) and Π(x : El int). Prf (succi x≥i 0i), but we

can prove Π(x : El int). Prf (x≥i 0i)→ Prf (succi x≥i 0i).

3 Interpretation in the λ Π-Calculus Modulo Theory

In this section, we define an interpretation of theories with prelude encoding. To do so, we first define

the interpretation for the terms of the λΠ-calculus modulo theory, and then we extend it to theories with

prelude encoding. Such an interpretation requires external parameters. In particular, we provide the

parameters necessary for interpreting the prelude encoding. We show how the interpretation of a source

theory S in a target theory T can be used to derive in T the theorems proved in S. We conclude with

an example: we provide the formal parameters for interpreting the theory of natural numbers Tn in the

theory of integers Ti.

54 Proofs for Free in the λΠ-Calculus Modulo Theory

3.1 Interpretation of Terms

Intuition. When we interpret the source theory S in the target theory T, we want to represent every

term t of S by a term t∗ in T, such that if t is of type A in S then t∗ is of type A∗ in T. For instance, when

interpreting the theory of natural numbers Tn in the theory of integers Ti, we have to represent El nat

by (El nat)∗. We would like to take (El nat)∗ := Σ(z : El int). Prf (z ≥i 0i). However, the λΠ-calculus

modulo theory does not feature Σ-types, and it is therefore difficult to express (El nat)∗ in Ti.

An alternative is to interpret the type of natural numbers El nat by the type of integers El int, but

we must guarantee that every integer representing a natural number is indeed non-negative. We natu-

rally interpret the sort nat by int, 0n by 0i, succn by succi, and ≥n by ≥i. The interpretation of the

theorem Π(x : El nat). Prf (succn x ≥n 0n) should not be Π(x∗ : El int). Prf (succi x∗ ≥i 0i), which

is generally false for integers. Instead, we must ensure that x∗ is an integer corresponding to a natu-

ral number, meaning that we suppose a proof of Prf (x∗ ≥i 0i). Thus the interpretation of the theorem

Π(x : El nat). Prf (succn x≥n 0n) should be Π(x∗ : El int). Prf (x∗ ≥i 0i)→ Prf (succi x∗ ≥i 0i).

Formal definition. Following this intuition, when interpreting a term t of type A in S by a term t∗ of

type A∗ in T, we must take into account that A∗ is a type that encompasses A, but may be larger than A.

In that respect, we introduce another term t+ of type A+ t∗, where A+ is a predicate asserting that a given

object of type A∗ satisfies the semantic of type A.

The interpretation of every constant c is given by two parameters c∗ and c+. The translation of an

application (t u)∗ is t∗ u∗ u+, since t∗ takes as arguments u∗ but also the witness u+. Similarly, (t u)+ is

given by t+ u∗ u+. If the variable x occurs in t, then x∗ and x+ may occur in t∗ and t+. Hence (λ (x : A). t)∗

is given by λ (x∗ : A∗)(x+ : A+ x∗). t∗ and (λ (x : A). t)+ is given by λ (x∗ : A∗)(x+ : A+ x∗). t+.

The same intuition holds for dependent types (Π(x : A). B)∗. The predicate (Π(x : A). B)+ asserts

that an object f of type (Π(x : A). B)∗ corresponds to the semantic of Π(x : A). B. In other words, for

every x∗ of type A∗ and x+ of type A+ x∗, the term f x∗ x+ should satisfy the predicate B+. When B is

of type TYPE, we take (Π(x : A). B)+ := λ (f : (Π(x : A). B)∗). Π(x∗ : A∗)(x+ : A+ x∗). B+ (f x∗ x+).
However, we cannot do the same when B is of type KIND, because this term would be ill-typed. Indeed,

(Π(x : A). B)∗ has type KIND, while the type of the bound variable f must have type TYPE. To get

around this issue, we introduce metavariables. We write T{X} when the metavariable X occurs in T ,

and we write T{t} for the term obtained when substituting X by t in T . When B has type KIND, we

take (Π(x : A). B)+{X} := Π(x∗ : A∗)(x+ : A+ x∗). B+{X x∗ x+}. Metavariables are only used for this

purpose. In particular, they are always substituted and they never appear in typed terms.

Definition 3 (Interpretation of terms). The interpretation of terms of the λΠ-calculus modulo theory is

given by the function t 7→ t∗ defined inductively by

(x)∗ := x∗ (variable)

(c)∗ := c∗ (parameter)

TYPE∗ := TYPE

KIND∗ := KIND

(t u)∗ := t∗ u∗ u+

(λ (x : A). t)∗ := λ (x∗ : A∗)(x+ : A+ x∗). t∗

(Π(x : A). B)∗ := Π(x∗ : A∗)(x+ : A+ x∗). B∗

T. Traversié 55

and by the function t 7→ t+ defined inductively by

(x)+ := x+ (variable)

(c)+ := c+ (parameter)

TYPE+{X} := X → TYPE

KIND+ := KIND

(t u)+ := t+ u∗ u+

(λ (x : A). t)+ := λ (x∗ : A∗)(x+ : A+ x∗). t+

(Π(x : A). B)+ := λ (f : (Π(x : A). B)∗). Π(x∗ : A∗)(x+ : A+ x∗). B+ (f x∗ x+) if B : TYPE

(Π(x : A). B)+{X} := Π(x∗ : A∗)(x+ : A+ x∗). B+{X x∗ x+} if B : KIND.

where the X is a metavariable. The interpretation is extended to contexts with

〈〉∗,+ := 〈〉
(Γ,x : A)∗,+ := Γ∗,+,x∗ : A∗,x+ : A+ x∗.

When the free variable x occurs in t, then x∗ and x+ may both occur in t∗ and t+. As such, we do

not define distinct translations Γ∗ and Γ+, but a single translation Γ∗,+, such that if (x : A) ∈ Γ then

(x∗ : A∗) ∈ Γ∗,+ and (x+ : A+ x∗) ∈ Γ∗,+.

Parametricity. Remark that our interpretation is intuitively related to the parametricity translation [2].

Using parametricity, the translation (t u)∗ is given by t∗ u∗, the translation (λ (x : A). t)∗ is given by

λ (x∗ : A∗). t∗, and the translation (Π(x : A). B)∗ is given by Π(x∗ : A∗). B∗. In our interpretation, we

focus on embeddings and we want to represent every type A of the source theory by a type A∗ of the

target theory. While Σ-types are well-suited for expressing such A∗, they are not defined in the λΠ-

calculus modulo theory. That is why we have applied a currying operation on Σ-types. We therefore

represent type A using a more general type A∗, and we guarantee that each term of type A∗ representing

a term of type A enjoys the predicate A+. Consequently, the translation (Π(x : A). B)∗ is given by

Π(x∗ : A∗)(x+ : A+ x∗). B∗, the translation (λ (x : A). t)∗ is given by λ (x∗ : A∗)(x+ : A+ x∗). t∗, and the

translation (t u)∗ is given by t∗ u∗ u+. The formal relation between the parametricity translation and our

interpretation remains to be investigated.

3.2 Parameters for the Prelude Encoding

We aim at interpreting a source theory S in a target theory T, when S and T are theories with prelude

encoding. Such an interpretation is parametrized by the terms of T that correspond to the constants of S.

In particular, we have to provide the parameters for the constants of the prelude encoding.

When ⊢ t : A in S, we want to have ⊢ t∗ : A∗ in T. Moreover, we want ⊢ A+ : A∗→ TYPE in T when

A = TYPE. These conditions lead to the definition of Set∗, Set+, El∗, El+, Prf ∗, Prf+ and o∗. When t is

of type Prf p, we need a witness t+ of type (Prf p)+ t∗ asserting that t∗ is indeed a proof of p∗. Since t∗

is of type Prf p∗, it is necessarily a proof of p∗, and we define Prf+ so that we can always choose t+ to

be t∗. The predicate o+ asserts that an object p∗ of type El o is indeed a proposition, so we choose o+ to

be λ (z : El o). z⇒d (λ (x : Prf z). z). Consequently, it is is always possible to find a witness p+ of type

56 Proofs for Free in the λΠ-Calculus Modulo Theory

Prf (o+ p∗), that is Prf p∗→ Prf p∗.

Set∗ := Set

Set+ := λ (x : Set). El x→ El o

o∗ := o

o+ := λ (z : El o). z⇒d (λ (x : Prf z). z)
El∗ := λ (x∗ : Set)(x+ : El x∗→ El o). El x∗

El+ := λ (u∗ : Set)(u+ : El u∗→ El o)(x : El u∗). Prf (u+ x)
Prf ∗ := λ (x∗ : El o)(x+ : Prf (o+ x∗)). Prf x∗

Prf+ := λ (u∗ : El o)(u+ : Prf (o+ u∗))(x : Prf u∗). Prf u∗

Parameters d
∗ and d

+ are defined so that (El (a d b))@≡βΣ (Π(x : El a). El (b x))@ for @∈{∗,+}.

 d
∗ := λ (a∗ : Set)(a+ : El a∗→ El o)(b∗ : Π(x∗ : El a∗). Prf (a+ x∗)→ Set).

λ (b+ : Π(x∗ : El a∗)(x+ : Prf (a+ x∗)). El (b∗ x∗ x+)→ El o).
a∗ d (λ (x

∗ : El a∗). π (a+ x∗) (b∗ x∗))

 d
+ := λ (a∗ : Set)(a+ : El a∗→ El o)(b∗ : Π(x∗ : El a∗). Prf (a+ x∗)→ Set).

λ (b+ : Π(x∗ : El a∗)(x+ : Prf (a+ x∗)). El (b∗ x∗ x+)→ El o).
λ (f : El (a d b)∗).
∀ a∗ (λ (x∗ : El a∗). (a+ x∗)⇒d (λ (x

+ : Prf (a+ x∗)). b+ x∗ x+ (f x∗ x+)))

Parameter⇒d
∗ is defined so that (Prf (a⇒d b))∗ ≡βΣ (Π(x : Prf a). Prf (b x))∗. Because the condition

(Prf (a⇒d b))+ ≡βΣ (Π(x : Prf a). Prf (b x))+ holds regardless of the definition of ⇒d
+, we choose

⇒d
+ so that ⊢⇒d

+ : (Π(a : El o). (Prf a→ El o)→ El o)+ ⇒d
∗.

⇒d
∗ := λ (a∗ : El o)(a+ : Prf (o+ a∗))(b∗ : Π(x∗ : Prf a∗). Prf a∗→ El o).

λ (b+ : Π(x∗ : Prf a∗)(x+ : Prf a∗). Prf (o+ (b∗ x∗ x+))).
a∗⇒d (λ (x

∗ : Prf a∗). a∗⇒d (b∗ x∗))

⇒d
+ := λ (a∗ : El o)(a+ : Prf (o+ a∗))(b∗ : Π(x∗ : Prf a∗). Prf a∗→ El o).

λ (b+ : Π(x∗ : Prf a∗)(x+ : Prf a∗). Prf (o+ (b∗ x∗ x+))).
λ (p : Prf (a⇒d b)∗). p

Parameters π∗ and π+ are defined so that (El (π a b))@ ≡βΣ (Π(x : Prf a). El (b x))@ for @ ∈ {∗,+}.

π∗ := λ (a∗ : El o)(a+ : Prf (o+ a∗))(b∗ : Π(x∗ : Prf a∗). Prf a∗→ Set).
λ (b+ : Π(x∗ : Prf a∗)(x+ : Prf a∗). El (b∗ x∗ x+)→ El o).
π a∗ (λ (x∗ : Prf a∗). π a∗ (b∗ x∗))

π+ := λ (a∗ : El o)(a+ : Prf (o+ a∗))(b∗ : Π(x∗ : Prf a∗). Prf a∗→ Set).
λ (b+ : Π(x∗ : Prf a∗)(x+ : Prf a∗). El (b∗ x∗ x+)→ El o).
λ (f : El (π a b)∗).
a∗⇒d (λ (x∗ : Prf a∗). a∗⇒d (λ (x

+ : Prf a∗). b+ x∗ x+ (f x∗ x+)))

Parameter ∀∗ is defined so that (Prf (∀ a b))∗ ≡βΣ (Π(x : El a). Prf (b x))∗. Because the condition

(Prf (∀ a b))+ ≡βΣ (Π(x : El a). Prf (b x))+ holds regardless of the definition of ∀+, we choose ∀+ so

that ⊢ ∀+ : (Π(a : Set). (El a→ El o)→ El o)+ ∀∗.

∀∗ := λ (a∗ : Set)(a+ : El a∗→ El o)(b∗ : Π(x∗ : El a∗). Prf (a+ x∗)→ El o).
λ (b+ : Π(x∗ : El a∗)(x+ : Prf (a+ x∗)). Prf (o+ (b∗ x∗ x+))).
∀ a∗ (λ (x∗ : El a∗). (a+ x∗)⇒d (b

∗ x∗))

T. Traversié 57

∀+ := λ (a∗ : Set)(a+ : El a∗→ El o)(b∗ : Π(x∗ : El a∗). Prf (a+ x∗)→ El o).
λ (b+ : Π(x∗ : El a∗)(x+ : Prf (a+ x∗)). Prf (o+ (b∗ x∗ x+))).
λ (p : Prf (∀ a b)∗). p

The parameters chosen for the constants of the prelude encoding satisfy the expected properties. For any

c : A ∈ Σpre, we have ⊢ c∗ : A∗ and ⊢ c+ : A+ c∗. Moreover, the interpretation respects the conversion

relation, meaning that for each rewrite rule ℓ →֒ r of Σpre, we have both ℓ∗ ≡βΣ r∗ and ℓ+ ≡βΣ r+.

Proposition 1. Let c : A ∈ Σpre.

1. We have ⊢ c∗ : A∗.

2. (a) If ⊢ A : TYPE then ⊢ c+ : A+ c∗.

(b) If ⊢ A : KIND then ⊢ c+ : A+{c∗}.

Proof. By simple verification. The result has been checked in DEDUKTI, see the definitions of the

parameters in the file lo sp.dk1.

Proposition 2. For every ℓ →֒ r ∈ Σpre, we have ℓ∗ ≡βΣ r∗ and ℓ+ ≡βΣ r+.

Proof. We only show the case El (a d b) →֒Π(x : El a). El (b x).

We have (El (a d b))∗ ≡βΣ El (a d b)∗

≡βΣ El (a∗ d (λx∗. π (a+ x∗) (b∗ x∗)))
≡βΣ Π(x∗ : El a∗). El (π (a+ x∗) (b∗ x∗))
≡βΣ Π(x∗ : El a∗)(x+ : Prf (a+ x∗)). El (b∗ x∗ x+)
≡βΣ Π(x∗ : (El a)∗)(x+ : (El a)+ x∗). (El (b x))∗

≡βΣ (Π(x : El a). El (b x))∗

and (El (a d b))+ ≡βΣ λ (f : El (a d b)∗). Prf ((a d b)+ f)
≡βΣ λ (f : El (a d b)∗).

Prf (∀ a∗ (λx∗. (a+ x∗)⇒d (λx+. b+ x∗ x+ (f x∗ x+))))
≡βΣ λ (f : El (a d b)∗). Π(x∗ : El a∗).

Prf ((a+ x∗)⇒d (λx+. b+ x∗ x+ (f x∗ x+)))
≡βΣ λ (f : (El (a d b))∗). Π(x∗ : El a∗)(x+ : Prf (a+ x∗)).

Prf (b+ x∗ x+ (f x∗ x+))
≡βΣ λ (f : (Π(x : El a). El (b x))∗). Π(x∗ : (El a)∗)(x+ : (El a)+ x∗).

(El (b x))+ (f x∗ x+)
≡βΣ (Π(x : El a). El (b x))+.

The result has been checked in DEDUKTI for the four rewrite rules, see the #ASSERT commands in the

file lo sp.dk.

3.3 Interpretation of Theories

The interpretation of a source theory S in a target theory T is given by the parameters c∗ and c+, for each

constant c of Σ. We have provided the parameters for the constants of Σpre, but the parameters for the

constants of ΣS remain to be given by the user.

1All the DEDUKTI files are available at https://github.com/thomastraversie/InterpDK.

https://github.com/thomastraversie/InterpDK

58 Proofs for Free in the λΠ-Calculus Modulo Theory

Definition 4 (Interpretation of theories). Let S and T be two theories with prelude encoding. We say that

S has an interpretation in T when:

1. for each constant c : A ∈ ΣS, we have a term c∗ such that ⊢ c∗ : A∗ in T,

2. for each constant c : A ∈ ΣS, we have a term c+ such that ⊢ c+ : A+ c∗ in T,

3. for each rewrite rule ℓ →֒ r ∈ ΣS, we have ℓ∗ ≡βΣ r∗ and ℓ+ ≡βΣ r+ in T.

Remark that, in the third item, ℓ+ and r+ do not contain metavariables, as we have seen that TYPE

cannot occur in ℓ and r.

If we cannot interpret the rewrite rules of S into conversions in T, we can nonetheless replace the

rewrite rules of S by equational axioms—that is by typed constants—and then interpret such constants

in T. So as to replace user-defined rewrite rules by equational axioms [6], we add an equality in our

signature, and we use functional extensionality, uniqueness of identity proofs, and the congruence of

equality on applications.

The λΠ-calculus modulo theory features substitutions in the type of an application—in the case of

dependent types—and features user-defined rewrite rules. So that the translation of a provable judgment

remains provable, it is important to maintain substitution and conversion through the translations t 7→ t∗

and t 7→ t+. For each variable z occurring in a term t, the two variables z∗ and z+ occur in the translated

terms t∗ and t+. The translation (t[z← w])∗ is thus given by t∗[z∗← w∗][z+← w+].

Proposition 3 (Substitution). Let t and w be two terms and z be a variable. We have:

• (t[z← w])∗ = t∗[z∗← w∗][z+← w+].

• (t[z← w])+ = t+[z∗← w∗][z+← w+].

Proof. By induction on the term t.

Proposition 4 (Conversion). If A≡βΣ B in S, then A∗ ≡βΣ B∗ and A+ ≡βΣ B+ in T.

Proof. We prove the result by induction on the formation of A≡βΣ B.

• We have (λ (x : A). t) u)∗=(λ (x∗ : A∗)(x+ : A+ x∗). t∗) u∗ u+, which β -reduces to t∗[x∗← u∗][x+←
u+], that is (t[x← u])∗ following Proposition 3. Similarly, ((λ (x : A). t) u)+ ≡βΣ (t[x← u])+.

• For each ℓ →֒ r ∈ Σ and any substitution θ , we have ℓ∗ ≡βΣ r∗ by definition and Proposition 2.

Using Proposition 3, we have (ℓθ)∗ = ℓ∗θ∗,+ and (rθ)∗ = r∗θ∗,+, where θ∗,+ is defined so that if

θ substitutes z by w, then θ∗,+ substitutes z∗ by w∗ and z+ by w+. Therefore (ℓθ)∗ = ℓ∗θ∗,+ ≡βΣ

r∗θ∗,+ = (rθ)∗. Similarly, we have (ℓθ)+ = ℓ+θ∗,+ ≡βΣ r+θ∗,+ = (rθ)+.

• For closure by context, we only show the λ -abstraction case. Suppose that λ (x : A). t ≡βΣ λ (x :

B). u derives from A≡βΣ B and t ≡βΣ u. By induction, we have A∗ ≡βΣ B∗, and A+ ≡βΣ B+, and

t∗≡βΣ u∗, and t+ ≡βΣ u+. We derive that λ (x∗ : A∗)(x+ : A+ x∗). t∗ ≡βΣ λ (x∗ : B∗)(x+ : B+ x∗). u∗,

that is (λ (x : A). t)∗ ≡βΣ (λ (x : B). u)∗. Similarly, (λ (x : A). t)+ ≡βΣ (λ (x : B). u)+.

• Reflexivity, symmetry and transitivity are immediate.

We have at hand all the tools allowing us to prove that, when S has an interpretation in T, any provable

judgment in S is interpreted as a provable judgment in T. The first item of the theorem concerns well-

formedness judgments. The second item concerns typing judgments with respect to the translation t 7→ t∗,

and the third item concerns typing judgments with respect to the translation t 7→ t+.

T. Traversié 59

Theorem 1 (Interpretation). Let S and T be two theories with prelude encoding, such that S has an

interpretation in T.

1. If ⊢ Γ in S, then ⊢ Γ∗,+ in T.

2. If Γ ⊢ t : A in S then Γ∗,+ ⊢ t∗ : A∗ in T.

3. (a) If Γ ⊢ t : A and Γ ⊢ A : TYPE in S, then Γ∗,+ ⊢ t+ : A+ t∗ in T.

(b) If Γ ⊢ t : A and Γ ⊢ A : KIND in S, then Γ∗,+ ⊢ t+ : A+{t∗} in T.

(c) If Γ ⊢ A : KIND in S, then for every t such that Γ∗,+ ⊢ t : A∗ in T, we have Γ∗,+ ⊢A+{t} : KIND.

Proof. We proceed by induction on the derivation. We only show the most interesting cases.

• CONST: By induction, we have ⊢ Γ∗,+ and ⊢ A∗ : s∗. Since c : A ∈ Σ, we have ⊢ c∗ : A∗. We derive

Γ∗,+ ⊢ c∗ : A∗ by weakening. If s = TYPE, then ⊢ c+ : A+ c∗ and we derive Γ∗,+ ⊢ c+ : A+ c∗ by

weakening. If s = KIND, then ⊢ c+ : A+{c∗} and we derive Γ∗,+ ⊢ c+ : A+{c∗} by weakening.

• PROD: By induction, we have Γ∗,+ ⊢ A∗ : TYPE, and Γ∗,+ ⊢ A+ : A∗→ TYPE, and Γ∗,+,x∗ : A∗,x+ :

A+ x∗ ⊢ B∗ : s∗. Using PROD, we get Γ∗,+ ⊢Π(x∗ : A∗)(x+ : A+ x∗). B∗ : s∗.

Suppose that s = TYPE. By induction, Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ B+ : B∗→ TYPE. By weakening,

we have Γ∗,+, f : (Π(x : A). B)∗,x∗ : A∗,x+ : A+ x∗ ⊢ B+ : B∗ → TYPE. Since Γ∗,+, f : (Π(x :

A). B)∗,x∗ : A∗,x+ : A+ x∗ ⊢ B+ (f x∗ x+) : TYPE, we derive Γ∗,+ ⊢ λ (f : (Π(x : A). B)∗). Π(x∗ :

A∗)(x+ : A+ x∗). B+ (f x∗ x+) : (Π(x : A). B)∗ → TYPE, which corresponds to Γ∗,+ ⊢ (Π(x :

A). B)+ : TYPE+{(Π(x : A). B)∗}.

Suppose that s = KIND and that we have Γ∗,+ ⊢ t : (Π(x : A). B)∗. Since Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢
t x∗ x+ : B∗, by induction we get Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ B+{t x∗ x+} : KIND. We derive Γ∗,+ ⊢
Π(x∗ : A∗)(x+ : A+ x∗). B+{t x∗ x+} : KIND, that is Γ∗,+ ⊢ (Π(x : A). B)+{t} : KIND.

• ABS: By induction, we have Γ∗,+ ⊢ A∗ : TYPE, and Γ∗,+ ⊢ A+ : A∗→ TYPE, and Γ∗,+,x∗ : A∗,x+ :

A+ x∗ ⊢ B∗ : s∗, and Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ t∗ : B∗, . We derive Γ∗,+ ⊢ λ (x∗ : A∗)(x+ : A+ x∗). t∗ :

Π(x∗ : A∗)(x+ : A+ x∗). B∗, that is Γ∗,+ ⊢ (λ (x : A). t)∗ : (Π(x : A). B)∗.

Suppose that s = TYPE. By induction, we have Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ B+ : B∗ → TYPE and

Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ t+ : B+ t∗. We derive Γ∗,+ ⊢ λ (x∗ : A∗)(x+ : A+ x∗). t+ : Π(x∗ : A∗)(x+ :

A+ x∗). B+ t∗. Using CONV, we conclude that Γ∗,+ ⊢ (λ (x : A). t)+ : (Π(x : A). B)+ (λ (x : A). t)∗.

Suppose that s = KIND. By induction, we have Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ B+{t∗} : KIND and

Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ t+ : B+{t∗}. We derive Γ∗,+ ⊢ λ (x∗ : A∗)(x+ : (A+ x∗)). t+ : Π(x∗ :

A∗)(x+ : A+ x∗). B+{t∗}, that is Γ∗,+ ⊢ (λ (x : A). t)+ : (Π(x : A). B)+{(λ (x : A). t)∗} using CONV.

• APP: By induction, we have Γ∗,+ ⊢ t∗ : Π(x∗ : A∗)(x+ : A+ x∗). B∗, and Γ∗,+ ⊢ u∗ : A∗, and Γ∗,+ ⊢
u+ : A+ u∗. We derive Γ∗,+ ⊢ t∗ u∗ u+ : B∗[x∗← u∗][x+← u+]. Using Proposition 3, we conclude

that Γ∗,+ ⊢ (t u)∗ : (B[x← u])∗.

Suppose that Γ ⊢ Π(x : A). B : TYPE (and thus Γ ⊢ B : TYPE). By induction, we have Γ∗,+ ⊢
t+ : Π(x∗ : A∗)(x+ : A+ x∗). B+ (t∗ x∗ x+). It follows that Γ∗,+ ⊢ t+ u∗ u+ : B+[x∗ ← u∗][x+ ←
u+] (t∗ u∗ u+). Using Proposition 3, we conclude that Γ∗,+ ⊢ (t u)+ : (B[x← u])+ (t u)∗.

Suppose that Γ ⊢ Π(x : A). B : KIND (and thus Γ ⊢ B : KIND). By induction, we have Γ∗,+ ⊢ t+ :

Π(x∗ : A∗)(x+ : A+ x∗). B+{t∗ x∗ x+}. It follows that Γ∗,+ ⊢ t+ u∗ u+ : (B+{t∗ x∗ x+})[x∗ ←
u∗][x+← u+]. Using Proposition 3, we conclude that Γ∗,+ ⊢ (t u)+ : (B[x← u])+{(t u)∗}.

• CONV: We conclude using the induction hypotheses and Proposition 4.

60 Proofs for Free in the λΠ-Calculus Modulo Theory

Given an interpretation of a source theory S in a target theory T, the results proved in S are automat-

ically transported to T. The interpretation of S in T only requires the parameters c∗ and c+ in T for each

user-defined constant c of S. Once we have an interpretation of S in T, it is possible to prove that S is

consistent provided that T is so. In the λΠ-calculus modulo theory, we say that a theory is inconsistent

when we can build a term that takes a proposition and returns one of its proofs, that is when there exists

a term t such that ⊢ t : Π(P : El o). Prf P.

Theorem 2 (Relative consistency). Let S and T be two theories with prelude encoding, such that S has

an interpretation in T. If T is consistent, then S is consistent too.

Proof. Assume that S is inconsistent, meaning that we have a term ⊢ t : Π(P : El o). Prf P. By applying

Theorem 1, we get ⊢ t : Π(P∗ : El o)(P+ : Prf P∗ → Prf P∗). Prf P∗. We take the term t ′ := λ (P∗ :

El o). t P∗ (λ (x : Prf P∗). x) and we have ⊢ t ′ : Π(P∗ : El o). Prf P∗. It follows that T is inconsistent.

3.4 Examples of Interpretation

We illustrate the interpretation with two examples. First, we detail the embedding of the theory of natural

numbers into the theory of integers. This example has been implemented in DEDUKTI. Second, we give

an informal presentation of the embedding of Zermelo set theory into a theory where sets are represented

by graphs. These two examples exemplify the practicality and limitations of this interpretation.

3.4.1 Natural Numbers and Integers

We aim at interpreting the theory of natural numbers Tn in the theory of integers Ti. We intuitively

take nat∗ := int. An integer is a non-negative natural number, so the predicate asserting that an integer

is a natural number is defined by nat+ := λ z. z ≥i 0i. The interpretation of 0n is given by 0∗n := 0i,

and we choose 0+n := ax1
i 0i for the proof of 0∗n ≥i 0i. We take succ∗n := λx∗. λx+. succi x∗ and

succ∗n := λx∗. λx+. ax3
i (succi x∗) x∗ 0i (ax

2
i x∗) x+. For the interpretation of ≥n, we choose ≥∗n:=

λx∗. λx+. λy∗. λy+. x∗ ≥i y∗. Given that ≥n returns a proposition, the parameter ≥+
n must have type

Πx∗. Πx+. Πy∗. Πy+. Prf (x∗ ≥i y∗)→ Prf (x∗ ≥i y∗), which has an immediate inhabitant. The inter-

pretation of ax1
i is given by (ax1

i)
∗ := λx∗. λx+. ax1

i x∗. Since ax1
i returns a proof, and by definition of

Prf+, both (ax1
i)
∗ and (ax1

i)
+ have the same type, so we can take (ax1

i)
+ := (ax1

i)
∗. The parameters for

ax2
i and ax3

i are chosen correspondingly.

When defining the parameter rec∗n, we assume P∗ of type Π(x∗ : El nat∗). Prf (x∗ ≥i 0i)→ El o. We

must apply reci to a predicate of type El nat∗→ El o, which asserts that an integer z is non-negative and

that, given a proof hz of its non-negativity, it holds P∗ z hz. Such a predicate can be encoded using ∀ and

⇒d . At some point in the proof, we want to show P∗ z hz, but we can only derive P∗ z h′z, where hz and

h′z are two proofs of z≥i 0i. To overcome this problem, we suppose proof irrelevance

proof irr : Π(p : El o)(h h′ : Prf p)(Q : Prf p→ El o). Prf (Q h)→ Prf (Q h′)

which states that two proofs of the same proposition are equal.

Using this interpretation of natural numbers into integers, we can derive for free the theorems of

Tn in Ti. For instance, we can show in Tn that ⊢ thm : Π(x : El nat). Prf (succn x ≥n 0n), where thm

is a proof that uses recn, ax1
n, ax2

n and ax3
n. The interpretation of Tn in Ti allows us to directly derive

⊢ thm∗ : Π(x∗ : El int). Prf (x∗ ≥i 0i)→ Prf (succi x∗ ≥i 0i) in Ti.

The complete interpretation of natural numbers into integers has been formalized in DEDUKTI, and

is available in the file nat sp.dk.

T. Traversié 61

3.4.2 Sets and Pointed Graphs

Sets can be represented by a more primitive notion of pointed graphs, such that this encoding satisfies

Zermelo set theory [11]. Pointed graphs are directed graphs with a distinguished node—the root. In

the λΠ-calculus modulo theory, pointed graphs are implemented [5] thanks to sorts graph and node

of type Set. The predicate eta : El graph→ El node→ El node→ El o is such that eta a x y is the

proposition asserting that there is an edge in pointed graph a from node y to node x. The operator

root : El graph→ El node returns the root of a pointed graph, and cr : El graph→ El node→ El graph

is such that cr a x corresponds to the pointed graph a in which the root is now at node x.

The different constructors on sets—unions, pairs, powersets and comprehension—are defined via

rewrite rules using the structure of pointed graphs. At the end, every axiom of Zermelo set theory is

a theorem in the theory of pointed graphs. Hence we can naturally interpret Zermelo set theory in the

theory of pointed graphs. Remark that every pointed graph represents a set. It follows that the predicates

asserting that an object of type El graph is indeed a set are not necessary.

The theory of pointed graphs is more computational than the usual Zermelo set theory. In particular,

it satisfies a normalization theorem in deduction modulo theory [11]. Using such an interpretation, the

theorems proved in Zermelo set theory can be transferred to the theory of pointed graphs.

4 Conclusion

In this paper, we have defined an interpretation of theories of the λΠ-calculus modulo theory with prelude

encoding, given well-suited parameters for interpreting the constants of the source theory. If a source

theory S has an interpretation in a target theory T, then the theorems proved in S come for free in T. At

the end, we obtain a relative consistency result, establishing that the consistency of the theory T entails

the consistency of the theory S.

This interpretation applies when S can be embedded into T. In particular, we allow the interpretation

of a type A of S by a more general type A∗ of T. As a consequence, we ensure that, for every term t of

type A in S, its interpretation t∗ of type A∗ in T indeed satisfies the predicate A+. Such an interpretation

is well-suited when we embed a source theory into a more general target theory, as we have seen with

natural numbers and integers. However, if the target theory encompasses exactly the source theory, then

the translation introduces unnecessary predicates, as we have seen with sets and pointed graphs.

Practical application. The λΠ-calculus modulo theory has been implemented in the DEDUKTI proof

language and in the LAMBDAPI proof assistant. Future work would be to implement this interpretation

in DEDUKTI. It would allow effective proof transfers between different DEDUKTI theories, and would

therefore strengthen the interoperability between proof assistants via DEDUKTI.

Theoretical application. Dowek and Miquel [12] developed a method for interpreting theories of first-

order logic. They showed that this interpretation can be used to prove a relative normalization result for

theories in deduction modulo theory [10], that is first-order logic extended with user-defined rewrite

rules. An application of this paper would be to prove a relative normalization result for the λΠ-calculus

modulo theory. We would therefore be able to show that the encoding of set theory via pointed graphs

in the λΠ-calculus modulo theory [5] satisfies a relative normalization result, just like this encoding in

deduction modulo theory [11] does.

62 Proofs for Free in the λΠ-Calculus Modulo Theory

Acknowledgments

The author is grateful to Valentin Blot, Gilles Dowek and Théo Winterhalter for their insightful feedback

on this work, and thanks the reviewers for their relevant comments.

References

[1] Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek, Catherine Dubois, Frédéric

Gilbert, Pierre Halmagrand, Olivier Hermant & Ronan Saillard (2016): Dedukti: a Logical Framework based

on the λ Π-Calculus Modulo Theory. Manuscript.

[2] Jean-Philippe Bernardy, Patrik Jansson & Ross Paterson (2010): Parametricity and dependent types. In:

ICFP 2010 - 15th ACM SIGPLAN International Conference on Functional Programming, Association for

Computing Machinery, Baltimore, USA, p. 345–356, doi:10.1145/1863543.1863592.

[3] Jean-Philippe Bernardy, Patrik Jansson & Ross Paterson (2012): Proofs for free: Parametricity for dependent

types. Journal of Functional Programming 22(2), p. 107–152, doi:10.1017/S0956796812000056.

[4] Frédéric Blanqui, Gilles Dowek, Emilie Grienenberger, Gabriel Hondet & François Thiré (2023): A modular

construction of type theories. Logical Methods in Computer Science Volume 19, Issue 1, doi:10.46298/

lmcs-19(1:12)2023. Available at https://lmcs.episciences.org/10959.

[5] Valentin Blot, Gilles Dowek & Thomas Traversié (2022): An Implementation of Set Theory with Pointed

Graphs in Dedukti. In: LFMTP 2022 - International Workshop on Logical Frameworks and Meta-Languages

: Theory and Practice, Haı̈fa, Israel. Available at https://inria.hal.science/hal-03740004.

[6] Valentin Blot, Gilles Dowek, Thomas Traversié & Théo Winterhalter (2024): From Rewrite Rules to Axioms

in the λ Π-Calculus Modulo Theory. In: FoSSaCS 2024 - 27th International Conference on Foundations of

Software Science and Computation Structures, Springer Nature Switzerland, Luxembourg, Luxembourg, pp.

3–23, doi:10.1007/978-3-031-57231-9_1.

[7] Cyril Cohen, Enzo Crance & Assia Mahboubi (2024): Trocq: Proof Transfer for Free, With or Without

Univalence. In: ESOP 2024 - 33rd European Symposium on Programming, Springer Nature Switzerland,

Luxembourg, Luxembourg, pp. 239–268, doi:10.1007/978-3-031-57262-3_10.

[8] Denis Cousineau & Gilles Dowek (2007): Embedding Pure Type Systems in the Lambda-Pi-Calculus Mod-

ulo. In: TLCA 2007 - 8th International Conference on Typed Lambda Calculi and Applications, Springer

Berlin Heidelberg, Paris, France, pp. 102–117, doi:10.1007/978-3-540-73228-0_9.

[9] Nachum Dershowitz & Jean-Pierre Jouannaud (1991): Rewrite Systems. In: Handbook of Theoretical Com-

puter Science, Volume B: Formal Models and Sematics, doi:10.1016/B978-0-444-88074-1.50011-1.

[10] Gilles Dowek, Thérèse Hardin & Claude Kirchner (2003): Theorem Proving Modulo. Journal of Automated

Reasoning 31, pp. 33–72, doi:10.1023/A:1027357912519.

[11] Gilles Dowek & Alexandre Miquel (2007): Cut elimination for Zermelo set theory. Manuscript.

[12] Gilles Dowek & Alexandre Miquel (2007): Relative normalization. Available at https://arxiv.org/

abs/2310.20248. Manuscript.

[13] Robert Harper, Furio Honsell & Gordon Plotkin (1993): A Framework for Defining Logics. Journal of the

ACM 40(1), p. 143–184, doi:10.1145/138027.138060.

[14] Gabriel Hondet & Frédéric Blanqui (2020): The New Rewriting Engine of Dedukti. In: FSCD 2020 - 5th

International Conference on Formal Structures for Computation and Deduction, 167, Paris, France, p. 16,

doi:10.4230/LIPIcs.FSCD.2020.35. Available at https://inria.hal.science/hal-02981561.

[15] Chantal Keller & Marc Lasson (2012): Parametricity in an Impredicative Sort. In: CSL 2012 - 26th

EACSL Annual Conference on Computer Science Logic, 16, Schloss Dagstuhl – Leibniz-Zentrum für Infor-

matik, Fontainebleau, France, pp. 381–395, doi:10.4230/LIPIcs.CSL.2012.381. Available at https://

drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.381.

https://doi.org/10.1145/1863543.1863592
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.46298/lmcs-19(1:12)2023
https://doi.org/10.46298/lmcs-19(1:12)2023
https://lmcs.episciences.org/10959
https://inria.hal.science/hal-03740004
https://doi.org/10.1007/978-3-031-57231-9_1
https://doi.org/10.1007/978-3-031-57262-3_10
https://doi.org/10.1007/978-3-540-73228-0_9
https://doi.org/10.1016/B978-0-444-88074-1.50011-1
https://doi.org/10.1023/A:1027357912519
https://arxiv.org/abs/2310.20248
https://arxiv.org/abs/2310.20248
https://doi.org/10.1145/138027.138060
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://inria.hal.science/hal-02981561
https://doi.org/10.4230/LIPIcs.CSL.2012.381
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.381
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.381

T. Traversié 63

[16] John C. Reynolds (1983): Types, Abstraction and Parametric Polymorphism. In: Information Processing 83

- IFIP 9th World Computer Congress, North-Holland/IFIP, Paris, France, pp. 513–523.

[17] François Thiré (2020): Interoperability between proof systems using the logical framework Dedukti. Ph.D.

thesis, Université Paris-Saclay. Available at https://hal.science/tel-03224039.

[18] Philip Wadler (1989): Theorems for free! In: FPCA 1989 - 4th International Conference on Functional

Programming Languages and Computer Architecture, Association for Computing Machinery, New York,

USA, p. 347–359, doi:10.1145/99370.99404.

https://hal.science/tel-03224039
https://doi.org/10.1145/99370.99404

	Introduction
	The -Calculus and its Operational Semantics
	Syntax
	Reduction Semantics
	Labelled Transition System Semantics
	The Harmony Lemma
	Theorem 1: -Transition Implies Reduction
	Theorem 2: Reduction Implies -Transition

	Beluga Formalization
	Syntax
	Reduction Semantics
	Labelled Transition System Semantics
	The Harmony Lemma
	Theorem 1: -Transition Implies Reduction
	Theorem 2: Reduction Implies -Transition

	Evaluation and Conclusions
	Appendix: Late vs Early Transitions
	Introduction
	Binding Contexts and their Conventional Treatment in Abella
	Partitionable Binding Contexts and Multiset Union
	Reasoning About Binding Contexts in the Generalized Form
	Lifting Context Definitions to the Generalized Form
	Proving Membership and Uniqueness Lemmas
	Distributivity of Context Properties over Multiset Unions

	Generalization to Context Relations
	Schematic Context Specifications and Automated Proofs
	Related Work
	Conclusion
	Introduction
	Higher-Order Logic in the lambdaPi-Calculus Modulo Theory
	The lambdaPi-Calculus Modulo Theory
	An Encoding of Higher-Order Logic
	Theories Encoded in Higher-Order Logic

	Kuroda's Translation in the lambdaPi-Calculus Modulo Theory
	Translation of Terms and Theories
	Embedding Classical Logic into Intuitionistic Logic
	Back to the Original Theory

	Construkti, an Implementation for Dedukti Proofs
	Conclusion
	Introduction
	Theories in the lambdaPi-Calculus Modulo Theory
	The lambdaPi-Calculus Modulo Theory
	A Prelude Encoding
	Theories with Prelude Encoding

	Interpretation in the lambdaPi-Calculus Modulo Theory
	Interpretation of Terms
	Parameters for the Prelude Encoding
	Interpretation of Theories
	Examples of Interpretation
	Natural Numbers and Integers
	Sets and Pointed Graphs

	Conclusion

