Supplementary Materials

The role of WO₃ nanoparticles on the properties of gelatin films

Katia Rubini, Arianna Menichetti, Maria Cristina Cassani, Marco Montalti, Adriana Bigi, Elisa Boanini

Figure S1 - Photographs of gelatin films showing the different colors due to WO_3 nanoparticles and/or crosslinking with glutaraldehyde solution.

Figure S2 - FEG-SEM morphological investigation reveals the presence of aggregates of nanoparticles on the surfaces of gelatin films containing WO₃. The high-magnification images (100,000x) show the presence of sputtered gold.

Figure S3 – EDS spectra of GW4 (WO₃ loaded, on the left) and GP4 (unloaded, on the right) films.

Figure S4 - DSC thermograms recorded from G films and GTA films show the presence of an endothermic peak due to collagen triple helix denaturation

Figure S5 - FT-IR spectra collected in ATR mode: (a) comparison between GW7 and pure PVP; (b) selected crosslinked films. Green arrows indicate the absorption bands due to the presence of PVP; dashed line indicates the absorption bands due to the nanoparticles.

Figure S6 - Gelatin films photochromic effect. The left part of every sample has been irradiated with a LED at 365 nm (irradiance 80 W/m^2) for 20 seconds.

Figure S7 - Gelatin films photochromic effect efficiency. (a) GW4 and GW7, (b) GTAW4 and GTAW7. The irradiation was performed by a LED at 365 nm (irradiance 80 W/m^2). The irradiation lasted until a transmittance value lower than 5% was achieved.

Vibration modes	G	GW7	GP7
v -NH ; v -OH	3450 - 3295	3485 - 3305	3490 - 3305
v_s and vas -CH ₂	2950 - 2880	2930 - 2875	2955-2880
v C=O amide I	1627	1632	1632
δ N-H ; v C-N amide II	1543	1550	1550
δ -CH ₂	1450	1440	1440
δ -NH amide III	1235	1289 - 1240	1283 - 1230
v C-0	1080	1081	1081

Table S1 - Main vibration modes and related wavenumbers (cm⁻¹) in the FTIR spectra of noncrosslinked films. v: stretching (s: symmetric, as: asymmetric), δ : bending

Table S2 - Main vibration modes and related wavenumbers (cm⁻¹) in the FTIR spectra of crosslinked films. ν : stretching (s: symmetric, as: asymmetric), δ : bending

Vibration modes	GTA	GTAW7	GTAP7
v-NH ; v-OH	3510-3290	3570-3305	3485-3296
v_s and v_{as} - CH_2	3935-	2952-2878	2935-2875
v C=O amide I	1635	1633	1632
δ N-H ; v C-N amide II	1538	1547	1544
δ -CH ₂	1452-1401	1444	1448-1400
δ -NH amide III	1237	1288-1237	1284-1237
v C-0	1078	1079	1080