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Abstract
Over the past few decades, the scientific community’s and industry’s interest in additive manufacturing technologies has 
surged. This technology is distinguished by the layer-by-layer deposition of the raw materials and the piece’s growth in a 
predetermined build orientation. This factor impacts the process’ overall cost, surface quality, and other crucial parameters. 
Numerous methods to solve competing aspects have been proposed in the literature, with the more promising that iteratively 
uses ray-tracing techniques. Existing algorithms iterate for each discrete element of the model’s bounding box projection 
onto the building platform. However, when optimisation algorithms are used on real-life industrial parts, computational time 
problems arise due to the high number of faces in the models. A new computational technique to determine the appropriate 
part orientation to reduce the support volume is proposed to address the problem. The method reduces the computational 
time, cycling the ray-tracing only on the triangles where the model surface is discretised. This approach has been integrated 
into an enhanced particle swarm optimisation algorithm to prove its efficiency. The approach is intended for industrial appli-
cations where it is necessary to handle complicated geometries quickly and efficiently to find the best orientation. Based 
on the computer’s resources and the complexity of the faceted model, a set of case studies with an industrial engineering 
significance is used to demonstrate the approach’s effectiveness.
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1  Introduction

Unlike the conventional manufacturing process based on 
chip removal, additive manufacturing (AM) is character-
ised by the layer-by-layer deposition of raw material [1]. 
Its employment has surged in all fields of industrial engi-
neering, including automotive, aerospace, and biomedicine 
[2, 3]. AM is suitable for all applications requiring limited, 
customised production quantities and quick prototyping of 
shrunk-down models. AM technology offers some advan-
tages, such as a short design-to-manufacturing cycle, design 
flexibility, the ability to build complex structures in one 

piece, reduced raw material waste, and the potential to rep-
licate light and bioinspired geometries.

One of the key technical characteristics of AM tech-
nologies is how the component is produced by depositing 
material layer by layer and growing on its own along the 
building orientation. This manufacturing process variable 
impacts the created object’s cost, surface quality, and other 
crucial attributes. Even though AM is a promising technol-
ogy that is changing the economics and production work-
flow, there are still many unresolved issues, including high 
surface roughness [4], small AM machine’s building volume 
[5], high mechanical anisotropy [6], and non-trivial numeri-
cal assessment of mechanical performances [7], on which 
the scientific community is concentrating its efforts. High 
raw materials and equipment costs and a slow certification 
process also impact AM products. This is due to the signifi-
cant structural performance variability driven by variations 
in raw material quality, adjustments (often minor) made to 
machine settings or environmental conditions, and how AM 
structures react to fatigue stresses.
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The model layering is a stage in all AM techniques 
required to plan the operations for material deposition. This 
procedure is carried out by giving the object a build orien-
tation that is orthogonal to the machine platform. The raw 
material is deposited during manufacturing, and the previ-
ous layer often supports the newly constructed layer against 
gravity. The actual layer may be overexposed in compari-
son to the preceding one for some complex geometries. The 
overhang area, defined as the portions of surfaces whose 
normal vector is perpendicular to the construction direction, 
could be candidates for support infrastructure for some AM 
techniques [8]. The primary results of support generation 
are an increase in the material amount, build time, and sub-
sequent cost. Last but not least, supports reduce the quality 
of the sections of surfaces they come into touch with. As 
a result, choosing the appropriate build orientation in an 
additive manufacturing scenario is a complex challenge that 
has been extensively discussed in the literature, as shown by 
several review papers on the subject [8–10].

Specifically, it should be essential to replicate the complete 
manufacturing process for the given component orientation to 
estimate the support volume accurately. However, this method 
is associated with high and unacceptable computing demands 
in an optimisation environment. So, simplification techniques 
are required to estimate the amount of support material with 
high precision. The literature suggests many quick and easy 
methods to assess 1D [11] and 2D [12–14] characteristics 
connected to support material, such as the area of supports 
[15]; however, their accuracy is relatively poor, and the actual 
volume of support material is not available.

Several contributors ([16–18]) established fairly pre-
cise approaches to estimate the actual quantity of support 
material; however, they only considered the support linked 
directly to the building plate and ignored the internal over-
hangs. A voxel-based technique to estimate the total support 
material, considering both plate and internal supports, is 
suggested by [19] and [20] to resolve these challenges. How-
ever, voxelisation is a labour-intensive graphical representa-
tion method, making it unsuitable for use in an optimisation 
framework where it is necessary to analyse several orienta-
tion configurations to select the best one quickly. Das et al. 
[21] suggest using NURBS-based modelling rather than the 
tessellation technique to determine the appropriate quan-
tity of support material. However, a professional operator is 
required to create a cloud of points that is coherent with the 
component’s surface using a NURBS-based technique, as 
this is a very challenging procedure. Several methods in the 
literature address the support material prediction problem 
by using machine learning (ML) techniques embedded in 
an optimisation framework [22–24]. However, all ML tech-
niques must be trained on massive datasets to obtain accu-
rate results that may not be accessible in industrial applica-
tions, especially for start-up businesses.

To address the abovementioned problems, [25] and [26] 
proposed two precise approaches to calculate the support 
material required to manufacture a product given a specific 
component orientation based on existing techniques, i.e. 
ray-tracing [15]. The methodology, which is based on a 2D 
tessellation technique of the component’s footprint that is 
quicker than voxelisation (a 3D tessellation), can capture 
both internal and plate supports. Thus, this method may be 
used to implement optimisation methods to determine the 
ideal component orientation in a typical scenario. How-
ever, there could be some problems with the computing 
needs, particularly in industrial applications where the STL 
file might include hundreds of thousands of facets. This 
approach has a computational cost proportional to the prod-
uct of the number of facets of the STL file and the number 
of tessellation elements of the printing bed. Indeed, the tra-
ditional algorithm is constituted by an iterative cycle that 
analyses each grid element of the 3D model footprint: for 
each grid element, the algorithm checks for triangle facets 
in an overhang status. In this scenario, the computational 
power is proportional to the number of grid elements times 
the number of triangular facets of the model. On the one 
hand, the model complexity in the case of real-life compo-
nents is large. On the other, the number of grid elements 
should be large enough to achieve accurate results. The con-
sequent high computational time can be acceptable in the 
case of a single run. However, when optimisation algorithms 
are applied to find optimal solutions, thousands of processes 
should be run, with unacceptable computational times. Thus, 
a more effective and consistent strategy is therefore required.

This work proposes an original approach for support vol-
ume estimation with a computational demand proportional 
to the number of triangle facets. Moreover, the algorithm 
can recognise the facets that are in overhang with respect 
to the building platform so that only the grid elements that 
contain the footprint of triangular facets in overhangs are 
investigated. The innovative support volume estimation 
routine is included in an optimisation framework to test it 
in a scenario where the algorithm is called iteratively. The 
optimisation can determine the ideal component orienta-
tion by exploring every conceivable configuration with a 
modified version of a particle swarm optimisation (PSO) 
method [27]. Additionally, the framework can provide the 
expected time required for the complete simulation, know-
ing the computer performances and the number of facets of 
the component, thanks to a proven dataset. The contribution 
of this paper to the current literature is to develop a fast 
algorithm for supporting volume estimation with accuracy 
similar to existing approaches. Developing an efficient algo-
rithm with a reduced computational cost can be helpful in all 
the applications where support volume routines are called 
repetitively or with complex parts. Indeed, the approaches 
in the literature suit the typical benchmark geometries used 
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in papers but show their limits when dealing with complex 
industrial components. The computational demand is crucial 
in all the cases where the support volume estimation func-
tion is called iteratively, such as in optimisation frameworks 
based on evolutionary algorithms.

The manuscript is organised as follows. The novel 
approach to estimating the support volume is described in 
Sect. 2, along with how it fits into the overall optimisation 
strategy. The implementation of the optimisation framework 
in FreeCAD is covered in depth in Sect. 3. Section 4 presents 
three case studies for evaluating the strategy’s effectiveness 
and discusses the findings. Finally, Sect. 5 summarises the 
study and offers recommendations and potential directions 
for the established research area.

2 � Methodology

In the following subsections, the mathematical method 
behind the functions implemented in the proposed frame-
work will be described in detail. Particular focus will be 
given to the support volume estimation (described in 
Sect. 2.4), but other functions, such as the area and volume 
estimation of the STL file (described in Sect. 2.1), the rota-
tion operation (described in Sect. 2.2), and the analysis of 

the growth ratio (described in Sect. 2.3), are included for a 
complete overview of the proposed STL analysis and opti-
misation framework.

2.1 � Body area and volume estimation

The volume of the body to print is computed according to 
the methodology used in [28]. The STL format is based upon 
discretising a single or a set of surfaces using triangles. For 
each ith triangle, the STL format lists the position of the 
vertices [P1X ,P1Y ,P1Z]i, [P2X ,P2Y ,P2Z]i, [P3X ,P3Y ,P3Z]i , and 
the normals [NX ,NY ,NZ]i . The external area ( SurfT ) can be 
evaluated as half of the cross product in ℝ3 of the two vec-
tors connecting vertices 2 and 1 (V2 − V1)i , as well as 3 and 
1 (V3 − V1)i:

where:

The volume of a single tetrahedron is as follows:
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The whole volume of the body is contained by the surfaces 
dsescribed in the STL file and can be found by summing all 
the contributions of the individual tetrahedrons.

2.2 � Body rotation

For clarity, a brief paragraph about the 3D rotation of a sur-
face mesh file is included in the manuscript: rotation angles 
will be selected as input variables in the algorithm to search 
for optimal orientation.

The Euler angles — defined by three angles, namely pitch 
(around the Y-axis), roll (around the X-axis), and yaw (around 

the Z-axis) — can be used to compute a rotation of an STL 
file [29]. The rotated coordinates of the vertices [Pjx,Pjy,Pjz]i 
indicated with the R superscript 

([
Pjx,Pjy,Pjz

]R
i

)
 can be found 

using Eq. 4 (j = 1:3, ith triangle):

Using the abbreviated form s(x) = sinx and c(x) = cosx , the 
rotation matrix rotMATRIX is defined in Eq. 5:
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2.3 � Growth ratio computation

Computing the growth ratio means dividing the body into a 
set of slicing planes (Nslices) and checking the area obtained 
intersecting the body with the single slicing plane. The slicing 

is carried out along the directions where the layers are deposed 
once a slicing step Δz is set by the user.

Every single triangle is checked, and if an intersection is found 
with the current plane, the two intersection points [BX1,BY1,BZ1]i 
and [BX2,BY2,BZ2]i of ith triangle are computed (see Fig. 1 
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left). All those points are ordered up to obtaining a closed loop, 
as defined in [30], or more than a closed loop if two or more are 
detected. Summing up the area of the triangles connecting a com-
mon fixed origin and two consecutive points of the loop allows the 
computation of the layers’ area (see Fig. 1 right).

2.4 � Overhang area and support volume

The method to evaluate the overhang area is described below. 
Each triangle in the STL is cycled, and for each one, the angle 
(θ) between the ith triangle normal vector [Nx,Ny,Nz]i and the 
floor’s normal vector Nfloor =

√
(Nx)2 + (Ny)2 is computed:

Given a threshold angle (θtr), usually set equal to 45–55°, 
a triangle is considered to belong within the threshold area 
if: 𝜃 < (𝜃tr − 90◦) . In this latter case, the area of the triangle 
is summed to the overhang area of the body. A check is car-
ried out to verify if the triangles are lying on the building 
plate, meaning that support material is not required: This 
condition is assumed if Nz is close to 1 and the distance 
between the building plane and the triangle is close to 0.

About the support volume, the traditional methodology, 
employed mainly in literature and described in papers such 
as [25] or [26], is based upon the ray-intersecting Möller-
Trumbone mathematical approach [31]. However, as Fig. 2 
depicts, this methodology requires cycling for each grid ele-
ment in which the body’s footprint bounding box is divided 
by the number of all the mesh triangles to find the intersec-
tion points (black circles in Fig. 2). However, much compu-
tational power (referring to red grid elements) is inefficiently 
spent because no triangular facet’s footprint is contained on 
that specific element of the grid.

In this way, the total number of computations to be carried 
out is proportional to Nsq times Ntr, as seen from the method-
ology flowchart proposed in Fig. 3. In the case of a real-life 
body, this number could be enormous because Ntr can be up to 
thousands of triangles. The traditional methodology requires 
significant computational time, which is inadequate for iterative 
optimisations, where several evaluations must be done.

(6)� = arctan

(
Nz

Nfloor

)

A new original methodology has been developed to cope 
with this problem. The methodology flowchart is changed, 
as shown in Fig. 4.

As can be seen, this algorithm is proportional only to Ntr 
number of triangles. For each triangle, only the grid ele-
ments belonging to the facet footprint will be investigated 
through the ray-intersecting method. This way, the computa-
tional demand can be drastically decreased. Using the same 
example seen in Fig. 2, the new methodology will investigate 
each triangle (in cyan) and find only the grid’s element on 
which an overhang region footprint overlaps on that particu-
lar grid element (in dark green), as seen in Fig. 5.

The proposed methodology uses the gift-wrapping algorithm 
to find which grid elements belong to the facet’s footprint under 
investigation [32]: once the triangle of vertices 

(
VX ,VY ,VZ

)
A
 , (

VX ,VY ,VZ

)
B
 , and 

(
VX ,VY ,VZ

)
C
 is selected, only the possible 

Fig. 1   Computation of the cross area along slicing planes

Fig. 2   Support volume estimation in literature is based on calculat-
ing perpendicular rays from each coloured square of the grid (red and 
green); however, just the green elements will support the component
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grid elements under it are considered. For each grid element, 
the midpoint coordinates 

(
VX ,VY ,VZ

)
n
 are used to examine the 

number of points present in the convex hull formed by connecting 
the triangle’s vertices with the point under consideration (Eq. 7). 

The grid midpoint lies in the interior of the triangle if a, b > 0 
and a + b < 1 , where a and b are defined according to Eq. 8.
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Fig. 3   Traditional computation methodology for support computation

Fig. 4   New computation methodology for identifying triangles lying over checkerboard (proportional to Ntr) divisions and further support vol-
ume evaluation

Fig. 5   Innovative support volume estimation is based on calculating 
perpendicular rays just from grid elements that belong to the com-
ponent’s footprint of a specific triangle (in cyan); this way, only the 
green elements that will support the part are investigated

Fig. 6   For each ray originating from the printing bed, only the rela-
tive heights of the odd intersections (in yellow) contribute to the sup-
port volume estimation
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If the mathematical conditions are satisfied, the element 
grid under the ith triangle is activated (a true value is saved 
in the grid matrix footprint) because it belongs to the compo-
nent’s footprint. Moreover, if the triangle over the activated 
element is in overhang, an additional flag is initiated to save 
this property.

The vertical intersection point for the specific grid ele-
ment is evaluated by a weighted average of the z-coordinates 
of the three vertices of the triangle; the weights are com-
puted as the reciprocal of the square of the distance between 
the node and the triangle’s vertex, as seen in Eq. 9:

(8)

{
a =

D1

DD

b =
D2

DD
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Then, the average z height of the intersection point for 
the specific grid element can be approximated as follows:

One or more intersection points may be found for each active 
(green referring to Fig. 5) square element of the grid belong-
ing to the component’s footprint. These heights are sorted in 
ascending order and categorised if belonging to an overhang 
(yellow dots in Fig. 6). Starting from z = 0 (printing bed level) 
and rising to the highest intersection, and for each odd intersect-
ing point, the support volume contribution can be approximated 
as the relative height of the intersecting point with respect the 
previous one, times the area of the element grid.

An incremental sum of all contributions can evaluate the 
overall support volume. The obtained value is considered 
valid only if a 100% infill density is used when setting the 
manufacturing parameters. To support the description of the 
innovative methodology to estimate the support volume, the 
pseudocode follows:

(10)z =
KA ∙ VZA

+ KB ∙ VZB
+ KC ∙ VZC

KA + KB + KC

Fig. 7   Example of support 
volume estimation: The amount 
is precisely the volume gap of 
the square hole

Fig. 8   The computational time versus the number of linear checkerboard subdivisions for different % of overhang triangles: a) a model with 
overhang triangles occupying 97% and b) a model with 38% in overhang
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Support volume function
Make a n x n grid with the dimensions of X x Y bounding box of the STL file

Area_grid = area of the single grid element

For each i triangle of the STL

Evaluate X x Y bounding area of the i-th triangle

Verify how many grid elements are under the i-th triangle

If node (j,k) of grid is inside the i-th triangle

If i-th triangle is in overhang

Flag_overhang_node(j,k)=1

End
Num_tria_inist(j,k)=Incremental sum of number of triangles whose footprint 

is contained within the (j,k) elem. of the grid 

Save index i of i-th triangle in index_tria_inis(j,k,l) where l is the number of 

triangles whose footprint is contained within on (j,k) element found on the 
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previous line

Evaluate the height of the i-th triangle from the printing bed and save it in 

height_z_tria(j,k,l)
If i-th triangle is in overhang

Height_z_tria_overh(j,k,l)=1

Else
Height_z_tria_overh(j,k,l)=0

End
End

End
For each elem. of the grid (j,k) that contains at least an overhang triangle footprint

Save the height of intersection of a perpendicular ray starting from (j,k) elem. 

contained in height_z_tria and sort them in increasing order

Among the intersections, isolate those referring to overhang regions

For m=1:half of (j,k) intersections

If m=1 % support directly attached to printing bed

save the height of the intersection in height(m)
Else % support also inside the component

Evaluate the relative height between the odd and even intersection 

and save the result in height(m)
End

SupportVolume= incremental sum of height(m)*area_grid 
End

End
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Figure 7 shows an example of the support volume esti-
mation required to build the 3D model. This approach can 
detect both internal and on-plate supports differently from 
several methodologies available in the literature.

The support volume estimation described in this section 
depends on the orientation of the 3D model, where the ori-
entation can be described thanks to the pitch and roll angles. 
The approach we propose should be included in an optimi-
sation framework described in the following paragraphs to 
minimise the support volume and find the best orientation.

In this research, the component’s footprint is divided into 
30 × 30 grid elements; this value will be used for all the 
examples and case studies in this manuscript. This parameter 
affects the accuracy of the support volume estimation. On 
the one hand, the finer the footprint’s checkerboard, the more 
precise the estimation of the support volume; on the other 
hand, a coarser grid will reflect a worse estimation. The 
computation of the support volume requires knowledge of 
the triangles lying on a grid element of the checkerboard and 
understanding which triangles are in overhang and require 
supports. This additional workload, typical of the traditional 
methodologies and the new one herein proposed, affects the 
whole computational time of support volume. However, for 
parts where overhang triangles occupy a high portion of the 
checkerboard division of the footprint, the more demand-
ing computational load is required by the identification of 

the triangles lying on the single grid element. The image in 
Fig. 8 shows the impact of the checkerboard division size 
on the computational time when overhang triangles occupy 
97% (Fig. 8a) and 38% (Fig. 8b) of the footprint.

In the case of 38% of triangles in overhang, finding the 
triangles lying on the single element of the checkerboard 
requires more time than the other operations. In this latter 
case, it is evident that our approach to compute the triangles 
lying on a single element is proportional to Ntr without being 
influenced by the size of the grid: The computational time 
for a 20 × 20 grid has been taken as a reference in Fig. 8, 
and it is evident that the increase of computational time for 
a 60 × 60 grid is low.

Figure 9 shows a simple spherical geometry with a 100-
mm radius, with 2352 facets (whose STL file has a dimen-
sion of 115 KB) used as a benchmark to compare the pro-
posed algorithm for support volume estimation with the 
approach proposed by [25], used as a reference. The sup-
port volume can be analytically estimated due to the simple 
topology; with an overhang angle threshold of 45°, the sup-
port material is visible in Fig. 9b. The approach described in 
[25] has been implemented and tested on the same geometry, 
varying the underlying grid resolution. A comparison of the 
computational time and the error in the support volume esti-
mation is collected in Table 1.

Fig. 9   a Simple geometry is 
used as a benchmark to compare 
the proposed algorithm for sup-
port volume estimation with the 
literature; b the support volume 
visible in blue can be analyti-
cally evaluated and compared 
with numerical results

Table 1   The computational time comparison between the proposed approach and the method presented in [25]

N. of checker-
board subdivi-
sions

Proposed algo-
rithm running 
time [s]

Support volume estimation 
error with analytical value 
[%]

Running time for the 
algorithm presented in 
[25] [s]

Support volume estimation 
error with analytical value 
[%]

Speedup time 
ratio ([25]/
proposed)

20 1.29 25.94 1.91 24.17 1.48
30 2.93 12.88 3.83 12.99 1.31
40 6.33 14.57 7.35 14.32 1.16
50 8.63 11.05 11.03 10.91 1.28
60 14.63 10.84 20.66 11.08 1.41
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2.5 � Particle swarm optimisation

A variety of strategies, including gradient-based [33], Monte 
Carlo [34], meta-heuristic approaches [35], or even machine 
learning [36], can be used to set up an optimisation process. 
A meta-heuristic algorithm was selected as the foundation 
for the optimisation method in this study from the broad 
spectrum of optimisation philosophies available in the lit-
erature because it can be seen as a trade-off between a purely 
random approach and a more mathematically sophisticated 
methodology. Generally, the process used to evaluate the fit-
ness function is usually called many times in an optimisation 
framework. The authors’ main contribution is the support 
volume estimation algorithm. The optimisation framework 
described in this manuscript is the enclosure used to test the 
support volume estimation algorithm. A robust and well-
consolidated optimisation algorithm has been implemented 
to cooperate with the support volume algorithm to find the 
best STL orientation. However, other novel optimisation 
approaches can be used to implement the proposed approach.

Among the meta-heuristic strategies, which mimic how 
the physical world or nature functions, the particle swarm 
optimisation (PSO) method ensures good results using plain 
and straightforward code [37]. It has been used in various 
industrial investigations [38]. It operates by considering the 
location of a potential solution in the design space, where 
some parameters define a single solution. The location that 
a single particle Xi(t) has during the design space explo-
ration will depend on both the best position of each indi-
vidual member of the population (personal best Bi ) and the 
best position that the entire set will find (global best G ). 

Equation 11 is used to determine the locations Xi(t) and 
velocities Vi(t) of each particle at the following iteration 
using the iteratively updated values of Bi and G, where i is 
the single particle’s index and t denotes the algorithmic step.

The inertia weight w determines how the actual velocity 
will affect the following generation. The impact of the prior 
velocity on the current velocity increases with increasing 
inertia weight value and vice versa. The result of the ran-
dom function rand(0,1) is a number between 0 and 1. It is 
necessary to predetermine the learning parameters c1 and c2 , 
because the PSO algorithm performs significantly differently 
depending on their values, according to convergence criteria 
available in the literature [39].

All particles’ velocities are initially zero, and their posi-
tions are picked randomly from acceptable values when the 
algorithm is initialised.

In the classical optimisation algorithm, there are two 
approaches to accomplish the stopping condition for the 
simulation. In the first, the procedure terminates after a preset 
maximum number of repetitions nmax is reached. A second exit 
strategy can be triggered when no advancement in the solution 
is made for a predetermined number of consecutive iterations.

However, the traditional PSO can reduce its efficacy 
once the global best particle is trapped in a local minimum: 
all particles will eventually be attracted there. Thus, it 
would be hard for the other particles to escape the local 

(11)

⎧⎪⎨⎪⎩

Vi(t + 1) = w ∙ Vi(t) + c
1

∙ rand(0,1) ∙
�
Bi − Xi(t)

�
+ c

2

∙ rand(0,1) ∙ (G − Xi(t))

Xi(t + 1) = Xi(t) + Vi(t + 1)

Fig. 10   Optimisation strategy based on the improved PSO of [27] to find the best part orientation
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minimum since they follow the global best particle. The 
improved particle swarm optimisation algorithm, described 
in [27], has been applied in this research to avoid this 
undesired condition. The following paragraph includes 
a detailed description of the optimisation methodology 
followed in this study.

2.6 � Improved PSO for build orientation in AM

The overall support volume, calculated using the method 
given in Sect. 2.4 as a function of the rotations around the two 
principal axes (X and Y) of the printing bed, roll and pitch , is 
the fitness function F(X) that the PSO should minimise in this 
specific application (Eq. 12). Figure 10 displays a thorough 
flowchart to help discuss the overall optimisation technique.

First, a check is made in the fitness value when the digital 
model is imported with the default orientation to see if the 
support volume quantity has already reached its absolute 
minimum, which is zero. After the check, a new set of 
particles is created by initialising the particles with zero 
velocity and random positions in the design space defined 
in Eq. 12. At this point, the iterative optimisation process 
begins, and the steps listed below are repeated until the 
stopping criteria are met. The stopping criteria are verified 
either when the iterations have reached the maximum 
number permitted by the user, chosen a priori, or when the 
optimisation process has been stuck in a minimum for longer 
than seven cycles despite the application of two numerical 
perturbations on the particle’s positions (the particle’s 
perturbation is defined in detail in [27]). If Eq. 13 is verified, 
meaning that the global fitness value has not significantly 
improved after two successive iterations, the optimisation 
process is said to be stuck in a local minimum at the t + 1 
iteration and a counter value is updated until reaching a 
value equal to 7 for the simulations carried out. A threshold 
can be set to implement the termination criterion:

A threshold value equal to 0.01 has been set in the tests 
carried out. If the terminating criteria are not met, the 
algorithm assesses each particle’s fitness function, updating 
Bi and G to check if any improvements are noted and save 
the relevant rotations in the memory. Then, the algorithm 
verifies any improvement in the fitness function thanks to 
the new iteration by Eq. 12. If the support volume decreases 
by a relevant amount comparing two consecutive iterations, 
the algorithm updates the velocities and positions of all the 

(12)

⎧⎪⎨⎪⎩

findX�minF({roll;pitch})

−180 < roll < 180

−180 < pitch < 180

F(X) ≥ 0

(13)|G(t + 1) − G(t)| < threshold

particles, knowing the renewed values of the local and global 
minima. Otherwise, if the counter of not improving iterations 
reaches a value of 7, a perturbation on the particle’s position 
is applied. According to [27], a perturbation applied to the 
particles consists of altering learning factors c1 and c2 if the 
fitness value does not improve after 7 consecutive training 
cycles. In the occasion that particles have already reached 
the global solution, the algorithm, however, also saved the 
current best personal and global solutions. This step is added 
twice to the conventional PSO strategy with the assumption 
that it will be sufficient to reach the global minimum 
and escape from local minima. From the experimental 
results available in [27], the values of the applied learning 
parameters directly affect how the perturbations behave. In 

Fig. 11   Improved PSO to escape from local minima applied to the 
research of optimal part orientation: a fitness function behaviour 
during the iterations with two perturbations highlighted by vertical 
lines; b 10 particles moving inside the design space and converging 
in X = 140 and Y = 129
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this specific research, for the first perturbation c1 = c2 = 5 is 
adopted, while for the second one, c1 = c2 = 20 is assigned 
to increase the effect of the perturbations, following the 
suggestions contained in [27].

Figure  11a perfectly shows how the modified PSO 
behaves on the fitness function value during the optimisa-
tion process, while particles move inside the design space 
(Fig. 11b). Thanks to the perturbations highlighted with ver-
tical lines in Fig. 11a, the fitness function of the improved 

PSO reaches an optimised value which is 76% lower than 
a traditional PSO that stops after the first plateau at around 
F(X) = 40.

The previous case study demonstrates the benefits of the 
improved version of the PSO, which is implemented in the 
AMVER environment where authors have implemented a 
GUI to optimise the part orientation to minimise the support 
volume required to manufacture a specific 3D model with 
AM technologies.

Fig. 12   AMVER flowchart 
explaining the optimisation 
framework implemented in 
FreeCAD

Fig. 13   AMVER graphic interface implemented in FreeCAD

Fig. 14   Input parameters 
required for the optimisation 
through a graphic window in 
AMVER
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3 � FreeCAD implementation

The developed framework, AMVER, to improve the build 
orientation of 3D STL models is described in this section. It 
has been created to be user-friendly for both seasoned indus-
trial operators and newcomers to the field of AM. Figure 12 
depicts the flowchart of the philosophy behind AMVER.

FreeCAD [40], an open-source computer-aided design 
(CAD) package, has been used to structure the Python-
coded AMVER framework to optimise the building direc-
tion of 3D models.

Figure 13 illustrates the AMVER Interface. The 3D 
digital model is imported inside the AMVER framework 
with the original and non-optimal orientation in the 3D 
space after acquiring an STL file.

Before starting the optimisation process, the framework 
can automatically estimate the time needed to optimise 
the model’s orientation using the modified PSO approach. 
This is done by saving important information about the 
STL file, such as the number of vertices and facets. In 
Sect. 3.1, the evaluation of the optimisation time estima-
tion (OTE) will be covered in depth.

As shown in Fig. 14, the user is prompted to enter the 
maximum permitted overhang angle in degrees and the num-
ber of particles he wishes to use in the modified PSO before 
the optimisation process can begin. Moreover, two additional 
lines inform the designer of the OTE when using 10 and 20 
particles (good preset values) for the optimisation process.

The improved PSO approach mentioned in Sect. 2 is 
executed once the user clicks the “Optimise” button. The 
framework then returns the minimal fitness value and the 
ideal orientation to apply to reduce the support volume 
after the optimisation process is complete. Downstream 
the optimisation, the user can rotate the object with the 
resulting angles, which reorients the digital model with 
respect to the building platform. The user can export the 
modified 3D model with the ideal orientation by choosing 
the STL Mesh from the feature design tree as the final step.

Furthermore, the AMVER framework can quickly 
assess several significant manufacturing and geometric 
aspects of the actual 3D model. For instance, the software 
can calculate the following characteristics while knowing 
the actual orientation:

•	 Contact area: the amount of surface in contact between 
the 3D model and the printing bed

•	 Overhang surface: total external surface in overhang 
with respect to the building platform

•	 Overhang plan area: projected area of the overhang 
regions on the building platform

•	 Platform area: total projected area of the object on the 
building platform

•	 Support volume: the total support volume required to 
sustain the overhang regions with the actual orientation

•	 Mean layer surface: the average cross-sectional area of 
the component along the growth direction during the pro-
duction process

•	 Layer standard deviation: the standard deviation of the 
cross-sectional areas of the component along the growth 
direction during the production process

The computation of the growth ratio has been included in 
Sect. 2.3, and other factors, such as surface finish, residual 
stress, build time, and cost, could be integrated based on the 
several approaches proposed in the literature [25]. The PSO 
fitness function could consider simultaneously all these factors, 
and weights could be added to differentiate the importance of 
the single requirements. However, in this study, we want to 
show our approach’s efficiency in computing the support vol-
ume, which is a computationally intensive task for large parts. 
Therefore, in the case study included in this paper, the fitness 
function will only consider reducing the support volume.

3.1 � Optimisation time estimation

This section provides a thorough explanation of how the 
OTE was appropriately evaluated. Before starting the opti-
misation, an OTE is correctly displayed on the screen in an 
appropriate window to properly advise the designer on how 
long it will take to finish the optimisation.

The complexity of the 3D model, which can be correlated 
with the number of facets in the STL file, and the processing 
capacity available on the computer where the AMVER 
framework is installed are directly related to the OTE. A 
numerical metric, called CPU performance index, based on 
Eq. 14, is established to consider CPU performance.

The evaluation of the timing value ttest , which the com-
puter needs to iteratively calculate the factorial number of 
the first 5000 integer numbers, is the basis for this index. The 
more powerful of two machines will have a higher CPUindex 
value. The mathematical assessment takes 3.26 s on a PC with 
16 GB of RAM and an i7-6700HQ CPU running at 2.6 GHz; 
hence, the CPU performance index is CPUindex = 0.3027.

By pressing the relevant button in AMVER, the previ-
ously mentioned mathematical test is automatically done 
once at the initial run of the programmed environment for 
each computer on which the AMVER framework is installed.

Once the CPUindex has been established, the goal is to 
construct a fitting surface function that can forecast the OTE, 
given the CPUindex and the number of facets in the 3D digital 

(14)CPUindex =
1

ttest
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model. The authors chose a small dataset with nine digital 
models to establish a relationship between the OTE and the 
facet number. Ten and twenty particles have been used as 
an excellent preset value for the modified PSO algorithm to 
find optimal orientation. Some models have been pre-rotated 

from the best orientation to access the capacity of the opti-
miser to determine and return to the initial position. The 
timings for a single computer with a CPUindex of 0.9987 are 
collected in Table 2, and the same dataset is used on two 
more PCs with CPUindex of 0.3027 and 0.5980.

Table 2   The computational time required to complete the optimisation process for a dataset of 9 models for CPU
index

= 0.9987 using 10 and 20 
particles

STL 
dimension 

[KB]
N. of facets

Computational time 
with 10 particles [s]

Computational time 
with 20 particles [s]

4 12 15.72 36.32

6 20 24.67 50.41

434 1638 79.28 157.71

434 1638 72.47 219.53

1039 3756 164.12 234.64

1056 3918 85.92 250.57

3654 74816 834.87 2979.86

19627 401952 6893.07 11259.41

 

43930 899682 12980.2 28963.8 
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Once all of the simulations have been run on the three dif-
ferent computers, a 3D surface may be constructed to accom-
modate the data for a fixed number of particles (Fig. 15), and 
the OTE can then be assessed using the nearest-neighbour 
interpolation available in the Python scipy module.

In the following section, different case studies involving 
industrial 3D models will be described in depth. The results 
demonstrate encouraging results and good accuracy for the 
OTE prediction.

4 � Case studies

Three industrial case studies are described in this section 
to assess the effectiveness of the proposed methodology 
and comprehend how optimisation influences the produc-
tion process. The digital models of significant parts are 
depicted in Fig. 16 in their original orientation. These mod-
els, representative of parts used in industrial applications, 

Fig. 15   Fitting surface of the computational time required to optimise 
the orientation built using a small dataset of 3D models as a func-
tion of the CPU

index
 and the number of facets ( n

facets
 ) of the STL files 

using ten exploring particles; T  represents the time required for the 
optimal orientation algorithm to find the best solution (in seconds)

Fig. 16   Three digital models were used to test the proposed approach: from left to right, the original orientation is shown using isometric, fron-
tal, lateral and upper views
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are characterised by a complicated shape that precludes a 
clear preferred orientation that minimises the use of support 
material. Therefore, they can be regarded as good candidates 
to test the AMVER framework.

The topological characteristics of these components are 
compared in terms of the required support volume amount 
to manufacture the objects using the AM process. A second 
comparison uses the hypothetical time needed to manufac-
ture the digital models. Fused deposition modelling (FDM) 
has been chosen for easy comparison, although the same 
results may be applied to any AM method. Moreover, addi-
tional data demonstrate how the improved PSO behaves dur-
ing optimisation.

A comparison of the computational time and estimation 
accuracy between the proposed support volume algorithm 
and the method described in [25] is collected in Table 3 
when applied to the geometries shown in Fig. 16. These data 
come from a single support volume estimation algorithm run 

not included in an optimisation framework. An overhang 
angle threshold of 55° has been set. A typical evolutionary/
meta-heuristic algorithm requires hundreds of runs of the 
volume evaluation routine; thus, the time spared is magni-
fied in those cases.

The AMVER framework is used to analyse the volume of 
support material needed, and Cura Ultimaker [41], a slicing 
software explicitly designed for the FDM technique, is used 
to evaluate the amount of raw material and manufacturing 
time required with the original orientation. The amount of 
support material is assessed with a 100% support infill den-
sity, and a maximum overhang angle of 55° is considered. 
The resulting information is gathered in Table 4, and the 
amount of support material is evaluated with AMVER using 
a 30 × 30 checkerboard grid. In the last column of Table 4, 
the percentage of footprint covered by triangles in overhang 
aligns with the assumptions considered in Sect. 2.4.

The digital models have been imported one at a time into 
the AMVER framework to optimise the part orientation and 
reduce the raw material required to produce the component 
through AM techniques, focusing on support material mini-
misation. The simulations were run on a workstation with 
128 GB of RAM and an Intel i9-11900 at 2.50 GHz CPU, 
which is associated with a CPUindex = 0.9852 . Additionally, 
the authors selected c1 = 3 , c2 = 1.1 as learning parameters 
and w = 0.5 as the velocity weight for the PSO. These val-
ues follow the convergence criteria for the PSO and can be 
assumed to be good candidates for preset values.

Table 3   The computational time comparison between the proposed approach and the method presented in [25] for all the three digital models 
used as the case study of this research

N. of checkerboard 
subdivisions

Proposed algorithm 
running time [s]

Support volume esti-
mation error [%]

Running time for the algo-
rithm presented in [25] [s]

Support volume esti-
mation error [%]

Speedup time ratio 
([25]/Proposed)

Model 1 — 2510 kb; 51,392 facets; 75 × 100 × 61 bounding box L × W × H [mm]
20 1.22 2.10 45.53 1.21 37.44
30 2.50 7.52 112.27 2.09 44.89
40 4.33 0.97 154.48 0.78 35.69
50 6.35 6.25 370.90 1.79 58.43
60 9.45 2.94 549.50 1.01 58.15
Model 2 — 3838 kb; 78,594 facets; 159 × 59 × 60 bounding box L × W × H [mm]
20 0.89 5.93 194.93 0.34 219.77
30 1.87 4.89  315.25 0.92 168.49
40 3.40 3.79 637.41 0.14 187.53
50 5.22 3.03 894.75 1.89 171.44
60 7.45 2.82 1143.80 1.48 153.49
Model 3 — 17, 287 kb; 354,034 facets; 105 × 97 × 59 bounding box L × W × H [mm]
20 1.30 0.27 324.34 1.72 249.68
30 2.66 0.25 739.99 2.33 277.88
40 4.45 0.13 969.49 1.74 218.01
50 6.96 0.85 1487.40 1.58 213.77
60 10.17 1.56 2649.70 1.42 260.59

Table 4   Some data about the three models concerning the original 
orientation

Support 
material 
[cm3]

Manufacturing 
time [min]

Raw mate-
rial mass 
[g]

% of overhang 
triangles in the 
footprint

Model 1 9.04 207 27 28
Model 2 102.28 840 145 47
Model 3 101.53 1438 274 58
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The maximum number of iterations the optimiser can use 
has been adjusted at nmax = 40 after some testing to avoid 
making the simulations run too long. It is rare to reach a high 
number of iterations because the two sets of perturbations 
of the improved PSO, as stated in Sect. 2.6, always func-
tion appropriately before the 40th iteration. Indeed, Fig. 17 
collects the fitness function behaviour during the iterative 
process that involves the PSO methodology for the three 
case studies proposed in this section.

Fig. 17   Fitness function behaviour (support material volume in cm3) of the three case studies during the iterations of the optimisation algorithm: 
a) Model 1, b) Model 2 and c) Model 3

Fig. 18   OTE of the three case studies shows good agreement with the 
built surface fit for ten particles; T  represents the time required for the 
optimal orientation algorithm to find the best solution (in seconds) 
as a function of the CPU

index
 and the number of facets ( n

facets
 ) of the 

STL files

Table 5   Main results of the optimisation of part orientation using the 
ismproved PSO

N. of 
itera-
tions

Improved PSO 
running time 
[s]

Optimised 
support vol-
ume [cm3]

Roll[°] Pitch[°]

Model 1 25 509 8.13  − 2 88
Model 2 28 1124 5.57 152 85
Model 3 33 6435 86.62  − 12  − 4
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The AMVER framework provides an OTE for each of the 
three digital models before beginning the optimisation. The 
OTEs coming from AMVER, in terms of a surface fitting 
function, and the actual simulation times needed to find the 
global optimum are represented visually in Fig. 18. From 
a quantitative point of view, the case studies’ errors on the 
OTE are 10%, 8%, and 2%, respectively. This indicates a 
generally positive agreement and suggests that the models 
used to construct the dataset presented in the previous sec-
tion were adequately selected. In an industrial context where 
the design-to-manufacturing cycle has stringent deadlines, 
the user must know in advance how long the optimisation 
process will take, and the computational times should be 
reduced as much as possible.

The design space was explored using 10 particles to 
determine the ideal orientation. Table 5 aggregates the key 
outcomes from the improved PSO technique, including the 
total number of iterations, the running time, and the optimal 
amount of support material.

Table 6 summarises the percentage variations of a few 
metrics comparing the original and optimum orientations, 
considering all the information presented in this section to 
provide a clear picture of how the suggested framework 
influences manufacturing time and costs.

4.1 � Discussion of the results

The results gathered in the previous section are thoroughly 
examined to demonstrate the effectiveness of the suggested 
methodology, which aims to optimise the part orientation 
of STL models to reduce the volume of support material 
needed for proper manufacturing and, as a result, comply 
with DfAM rules. Especially with manufacturing techniques 
based on metallic powders, removing support is a manual 
operation that is time-consuming and painstaking.

As the primary outcome, Table 1 and Table 3 compare the 
performances of the proposed algorithm with the approaches 
available in the literature; among them, the authors have 
implemented the algorithm based on the description 
included in the paper ([25]). The results in Table 1 show a 
significant decrease in computational time, with 1.33 times 
fast computation without compromising the accuracy of the 
support volume estimation (13% mean error compared to 
12% of the [25] method). The advantages of the proposed 

approach are magnified when dealing with the complex 
geometries typical of industrial applications. Indeed, the 
speedup efficiency increases by 47, 180, and 244 times for 
models 1, 2, and 3, reducing to a few seconds instead of 
several minutes of the approach presented in [25]. This result 
demonstrates that the computational gain increases with the 
increase in geometry complexity. The estimation error is 
limited to a maximum of 7% to the actual amount of support 
compared to 2% of the approach described in [25].

Thus, implementing the proposed approach in an iterative 
optimisation framework amplifies the computational gain by 
far. The algorithm herein presented can be an alternative to 
approaches such as the one presented in [25] when complex 
shapes must be analyzed or iterative procedures are imple-
mented: The decrease in support volume precision is com-
pensated by far with a dramatic decrease in computational 
time. Therefore, when a high precision in the computation of 
the support volume is required, the approach in [25] is pref-
erable, but when a trade-off between precision and compu-
tational time is necessary, our algorithm shows advantages.

Moving to the optimisation framework, the OTE func-
tion deserves special attention since it provides a reliable 
estimate of the time needed to conclude the optimisation 
process with just about a 10% error compared to the actual 
running time of the AMVER framework for all three models. 
This error can be considered acceptable because of the phi-
losophy of this evaluation. The OTE computation is based 
on a match with a surface fitting function developed using 
a dataset that aims to gather various potential scenarios that 
the AMVER framework could encounter.

The AMVER orientation optimisation framework, which 
incorporates a tailored version of the PSO, achieves encour-
aging results in the reduction of support material needed to 
manufacture the items by comparing the data collected in 
Table 4 (original orientation), Table 5 (optimised orienta-
tion), and Table 6 (variation analysis). The support volume 
decreases by 10, 94, and 14%, respectively, for models 1, 2, 
and 3. A straightforward consequence of support volume 
reduction is the lower time spent to depose material to build 
the supports during the AM process. Just to spotlight a case 
study where the algorithm can be applied, by reducing the 
support volume, the total raw material consumption consist-
ently reduces by 11, 74, and 5%, respectively, for models 
1, 2, and 3. The improved PSO algorithm took less than 40 

Table 6   Comparison between 
original and optimised 
orientation according to some 
manufacturing parameters

Support volume [%] Manufacturing 
time [%]

Raw material mass 
[%]

Manufacturing 
time of supports 
[%]

Model 1  − 10.10  + 1.97  − 11.11  − 12.33
Model 2  − 94.55  − 52.98  − 74.48  − 84.62
Model 3  − 14.69  + 0.42  − 5.47  − 6.12
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iterations (threshold value) to achieve this result (respec-
tively 25, 28, and 33 iterations) thanks to two perturbations 
of the particles. As expected, the overall optimisation frame-
work running time is proportional to the number of facets of 
the STL file that describe the complexity of the geometry. 
The improved PSO running time for the specific cases was 
509 up to 6435 s. The algorithm herein presented could also 
be implemented in all the optimisation procedures requiring 
iterative evaluations.

From the outcomes collected in Table 6, it is straightfor-
ward that the digital model’s topology significantly impacts 
the approach’s effectiveness. Model 2, which has a consider-
able elongation along one dimension, significantly reduces 
support material (94%) because the original orientation 
was unfavourable. Models 1 and 3, which have comparable 
lengths in all three dimensions, have a lower support mate-
rial reduction (10–15%) since the initial orientation was near 
the ideal one. However, this encouraging result shows that 
the AMVER framework can determine a component orien-
tation that minimises the amount of support material, fully 
accomplishing the initial aim of the suggested technique.

Moreover, Fig. 17 demonstrates the effectiveness of per-
turbations in the PSO algorithm. In all three case studies, the 
general behaviour of the fitness function slightly changes: 
a sudden drop after a few iterations (model 3) or a more 
stable behaviour (model 1). However, what characterises all 
the case studies is that after the PSO is trapped in a local 
minima, the first perturbation can move the particles properly 
to escape from the plateau region. Without the implementa-
tion of the improved PSO, thus with the traditional PSO, the 
fitness function drop would be reduced to − 2.88%, − 5.81%, 
and − 9.34%, respectively, for models 1, 2, and 3; on the other 
hand, to avoid particles trapped for the remaining iterations, 
the improved PSO reaches − 10.10%, − 94.55%, and − 14.69% 
support volume reduction. Thus, it is immediately apparent 
that the improved PSO demonstrates encouraging results.

Lastly, Cura Ultimaker’s estimates of the raw material 
consumption in each of the proposed case studies consist-
ently show some percentage points drop (from 5 to 74% 
depending on the case studies). This finding is of the utmost 
significance when seen from the perspective of a product’s 
whole development cycle.

5 � Conclusions

The amount and position of support material are the most 
significant aspects that may impact additive manufacturing 
production. The build orientation affects the quantity of 
support material in most additive manufacturing methods. 
Therefore, accurately predicting the ideal build orientation 
is essential in today’s competitive global market to minimise 
costs and increase the quality of the surfaces.

An accurate assessment of support volume factors that can 
be evaluated quickly and effectively is necessary to determine 
the appropriate build direction reliably: This is particularly 
true for enterprises because of the tight timelines for the prod-
uct development cycle. As the manuscript shows, the more 
relevant works in the literature discuss many support volume 
estimation approaches that are precise and reliable, allowing 
its integration into iterative optimisation frameworks due to 
low computational times (less than a second). However, this 
manuscript applies those methodologies to three complex 
geometries typical of the industrial environment: A high com-
putational time (several minutes) is noticed in this case, thus 
limiting the applicability in optimisation algorithms. The high 
computational time can be blamed for the ray-tracing meth-
odology applied to the entire ground footprint of the model 
to analyse and determine possible overhangs. However, only 
certain regions of the model may require support material, 
thus inefficiently using the computational resources.

The strength of the method proposed in this paper is the 
numerically efficient way to estimate the support material 
accurately. Thanks to the three case studies in this paper, 
the comparison with the literature approach reveals a com-
putational time gain of 47, 180, and 244 times compared to 
[25], with a 6% precision in the support volume estimation 
compared to the actual amount of support. These results are 
achieved by the automatic detection of the checkboard ele-
ments leaning under the triangles of the mesh and the appli-
cation of the ray-tracing technique that is applied only to the 
underlying grid elements that contain at least one overhang 
triangle facet footprint of the model: This means that in that 
particular region, some overhangs may be present. The sug-
gested method is particularly well suited for optimising situ-
ations where the solution requires numerous iterations and 
repeated evaluations. To prove its reliability, the support mate-
rial estimation is integrated into an improved particle swarm 
optimisation method to prevent local minima and offer the best 
solution. An add-on capable of estimating the overall optimisa-
tion running time as a function of the computational power of 
the PC and the STL file’s complexity has been developed and 
widely tested. The results demonstrate good accuracy (with 
less than a 10% error if comparing the OTEs and the actual 
optimisation running timings), indicating satisfactory attention 
for creating the dataset to build the fitting function for estimat-
ing optimisation times. Indeed, a proper time estimation could 
be fundamental in industrial applications to forecast and plan 
the different design and production cycle stages.

Three case studies with different complexities and ran-
dom orientations have been used to validate the optimisa-
tion approach for the support material. The proposed algo-
rithm can find the optimal orientations efficiently (support 
volume reduction from 10 up to 90% compared to original 
orientations) with running times compatible with the com-
pany’s needs (an average of 0.7 h, which is negligible when 
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compared to the time required for creating the support mate-
rial). The decrease in the amount of support material directly 
affects the manufacturing time and the amount of raw material 
used to manufacture the components, with reductions of up 
to 52% and 74%, respectively. This result is significant when 
considering a product’s entire development cycle because 
companies could economise on the production process thanks 
to AM and an intelligent strategy of part orientation.

The tests included in this paper consider only the compu-
tation of the volume of the supports. Other simulations could 
be carried out considering other requirements linked to the 
growth ratio, the overhang area and surface, and the footprint 
on the building plate. In the future, the capabilities of the 
developed framework will be enlarged by including these 
critical factors in the AM process, which should be consid-
ered in the search for the optimal part orientation. In future 
work, implementing functions to consider such aspects could 
be integrated to carry out multidisciplinary optimisations.

In conclusion, the provided findings show that the pro-
posed function used to estimate the support volume shows 
encouraging results with a considerable decrease in com-
putational resources, making it appropriate for inclusion in 
commercial software for iterative optimisation: The reduc-
tion of computational speed is obtained paying a slight 
reduction in support volume precision respect to methods 
such as what presented in [25]. The tool used to test the 
algorithm developed herein can return the ideal component 
orientation for additive manufacturing procedures to mini-
mise the support volume quickly. By doing so, the tedious 
process of trial and error to identify an adequate orientation 
to reduce the supports is eliminated, resulting in a significant 
improvement in time to market, a decrease in operator effort, 
and an increase in precision and final quality of components.
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