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Abstract: In this paper, we tackle structure learning of Directed Acyclic Graphs

(DAGs), with the idea of exploiting available prior knowledge of the domain at hand

to guide the search of the best structure. In particular, we assume to know the

topological ordering of variables in addition to the given data. We study a new

algorithm for learning the structure of DAGs, proving its theoretical consistency in the

limit of infinite observations. Furthermore, we experimentally compare the proposed

algorithm to several popular competitors, to study its behaviour in finite samples.
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Biological validation of the algorithm is presented through the analysis of non-small

cell lung cancer data.

Key words: Consistency; Directed acyclic graphs; Graphical models; Guided struc-

ture learning; Topological ordering

1 Introduction

Current demand for modelling complex interactions between variables, combined with

the greater availability of high-dimensional discrete data, possibly showing a large

number of zeros and measured on a small number of units, has led to an increased

focus on structure learning for discrete data in high dimensional settings. In some

applications, directed graphs are preferable, as they translate naturally into domain-

specific concepts. One notable example are biological pathways, i.e., directed, possibly

cyclic, graphs, representing biological systems. It is widely acknowledged that various

types of biological pathways, including those related to gene expression, cell signalling,

metabolic processes, development, and ecological systems, are used as valuable tools

for capturing causal relationships (see, for instance, Palumbo et al., 2006). In these

contexts, arrows between two variables picture the information flows from the parent

nodes to their descendants. From an alternative viewpoint, and considering solely

the realm of probability, directed acyclic graphs (DAGs) serve as graphical tools for

depicting the probabilistic conditional independence relationships among variables.

Within this framework, the arrows represent associations between variables and allow

for the exchange of directional relationships.
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When the task at hand involves the estimation from observational data of properties

of a system of variables, not allowing for cycles, excluding latent variables and (nonlin-

ear) functional relationships between the variables, the problem is commonly referred

to as structure learning of DAGs. Some solutions are nowadays available in the lit-

erature for learning (sparse) DAGs for discrete data. Hadiji et al. (2015) introduce a

novel family of non-parametric Poisson graphical models, called Poisson Dependency

Networks (PDN), trained using functional gradient ascent; Park and Raskutti (2015)

define general Poisson DAG models which are identifiable from observational data,

and present a polynomial-time algorithm that learns the Poisson DAG model under

suitable regularity conditions.

The previously cited approaches, and, more broadly, typical approaches to structure

learning of DAGs, usually assume no knowledge of the graph structure to be learned

other than sparseness. However, in some contexts, such as that of learning gene

networks, a wealth of information is available, usually stored in repositories such as

KEGG (Kanehisa and Goto, 2000), about a myriad of interactions, reactions, and

regulations. Such information is often identified piecemeal over extended periods and

by a variety of researchers, and can therefore be not fully precise. Nevertheless, it

allows some topological ordering variables.

When an ordering of variables can be assumed, then the strategy of neighbourhood

recovery turns the problem of learning the structure of a DAG into a straightforward

task. The graph selection problem is split into a sequence of feature selection problems

by assuming that the conditional distribution of each variable given its precedents in

the topological ordering follows the chosen distribution. To learn the structure of

a DAG, it is sufficient to perform a (sparse) regression for each variable, treating
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all preceding variables as covariates. It is known that simply performing lasso-type

`1-penalized regressions yields consistency for both the coefficients and the sparsity

pattern (the set of nonzero coefficients) in regression (Li et al., 2015), and thus, yields

consistency for the DAG structure.

The idea of assuming a known ordering of the variables is not novel and several au-

thors have considered decoupling the search over orderings from the graph estimation

given the ordering (Friedman and Koller, 2003). However, coming up with a good or-

dering of variables usually requires a significant amount of domain knowledge, which

is not commonly available in many practical applications. As a consequence, various

approaches exploiting the topological ordering of the variables implement, in differ-

ent ways, a search over the space of topological orderings. In the Gaussian setting,

Bühlmann et al. (2014) estimate a superset of the skeleton of the underlying DAG,

then search a topological ordering using (restricted) maximum likelihood estimation

based on an additive structural equation model with Gaussian errors, and finally,

exploiting the estimated order of the variables, use sparse additive regression to es-

timate the functions in an additive structural equation model. Teyssier and Koller

(2005) propose to learn a DAG by a search, not over the space of structures, but over

the space of orderings, selecting for each ordering the best consistent network (OS

algorithm); Schmidt et al. (2007) couple the OS algorithm with a sparsity-promoting

`1-regularization.

In this work, we propose one algorithm for structure learning of DAGs for count data

which is not affected by the non-uniqueness of the topological ordering and overcomes

some of the shortcomings induced by the use of penalized procedures. It is the case

that penalization is scale-variant, a condition that often interferes with some of the
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filtering steps that are commonly performed in the analysis of complex datasets, such

as those arising in genomics. Moreover, it could suffer from the over-shrinking of

small but significant covariate effects. Our proposal, named Or-PPGM (PC-based

learning of Oriented Poisson Graphical Models), is based on a modification of the

PC algorithm (Kalisch and Bühlmann, 2007; Spirtes et al., 1993). In Or-PPGM, we

assume to know whether a variable, i say, comes before or after j (i 6= j) in an order-

ing of the available variables that describes the fundamental mechanisms operative

in the physical situation. Furthermore, we substitute penalized estimation of the lo-

cal regressions with a testing procedure on the regression parameters, following the

lines of the PC algorithm. Provided that the assumed topological ordering belongs to

the space of true topological orderings, we give a theoretical proof of convergence of

Or-PPGM that shows that the proposed algorithm consistently estimates the edges

of the underlying DAG, as the sample size n → ∞, irrespective of the choice of the

topological ordering. The iterative testing procedure performed within the PC algo-

rithm allows to guarantee scale-invariance of the procedure and avoids over-shrinking

of small effects.

The paper is organized as follows. Some essential concepts on DAG models and

Poisson DAG models are given in Section 2. Section 3 is devoted to the illustration

of the proposed algorithm. We then provide statistical guarantees in Section 4, and,

in Section 5, experimental results that illustrate the performance of our methods

in finite samples. Section 6 provides an application to gene expression data. Some

conclusions and remarks are provided in Section 7. Results needed to prove the main

theorem in the paper, another structure learning algorithm and additional simulation

results can be found in Supplementary Material.
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2 Background on Poisson DAG models

In this section, we review, setting up the required notation, some essential concepts on

DAG models and present Poisson DAG models according to the model specification

introduced by Park and Raskutti (2015).

Consider a p-dimensional random vector X = (X1, . . . , Xp) such that each random

variable Xs corresponds to a node of a directed graph G = (V,E) with index set

V = {1, 2, . . . , p}. A directed edge from node k to node j is denoted by k → j, k

is called a parent of node j, and j is a child of k. The set of parents of a vertex

j, denoted pa(j), consists of all parents of node j; its descendants, i.e., nodes that

can be reached from j by repeatedly moving from parent to child, are denoted de(j).

Non-descendants of j are nd(j) = V \({j} ∪ de(j)).

A DAG is a directed graph that does not have any directed cycles. In other words,

there is no pair (j, k) such that there are directed paths from j to k and from k to j.

A topological ordering j1, . . . , jp is an order of p nodes such that there are no directed

paths from jk to jt if k > t.

In a DAG, independence is encoded by the relation of d-separation, defined as in

Lauritzen (1996). A random vector X satisfies the local Markov property with respect

to (w.r.t.) a DAG G if Xv⊥⊥Xnd(v)\pa(v)|Xpa(v) for every v ∈ V, where XU = {Xt, t ∈

U}. Similarly, X satisfies the global Markov property w.r.t. G if XA ⊥⊥ XB|XC for

all triples of pairwise disjoint subsets A,B,C ⊂ V such that C d-separates A and B

in G, which we denote by A⊥⊥GB|C. In this work, we make the assumption that the

DAG G is a perfect map, i.e., it satisfies the global Markov property and its reverse

implication, known as faithfulness. A distribution PX is said to be faithful to graph
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G if XA ⊥⊥XB|XC ⇒ A⊥⊥G B|C, for all disjoint vertex sets A,B,C.

In the Poisson case, the distribution of X has the form

Pθ(x) =

p∏
s=1

Pθs(xs|xpa(s)) (2.1)

= exp
{ p∑
s=1

∑
t∈pa(s)

θstxsxt −
p∑
s=1

log(xs!)−
p∑
s=1

e
∑

t∈pa(s) θstxt
}
.

where x is a realization of the random variable X, θs = {θst| t ∈ pa(s)}, and

θ = {θs, s ∈ V } denotes the set of conditional dependence parameters of the local

Poisson regression models characterizing the conditional densities Pθs(xs|xpa(s)),

Pθs(xs|xpa(s))=exp
{∑
t∈pa(s)

θstxsxt − log(xs!)− e
∑

t∈pa(s)θstxt
}
.

If we zero-pad the parameter θs ∈ R|pa(s)| to include zero weights over V \{{s} ∪

pa(s)}, then the resulting parameter would lie in Rp−1. Therefore, Poisson conditional

densities can be written as,

Pθs(xs|xpa(s)) = exp
{∑
t∈pa(s)

θstxsxt − log(xs!)− e
∑

t∈pa(s)θstxt
}

(2.2)

= exp
{
xs〈θs,xV \{s}〉 − log(xs!)−D(〈θs,xV \{s}〉)

}
,

where 〈., .〉 denotes the dot product, and D(〈θs,xV \{s}〉) = e
∑

t∈V \{s} θstxt . This specifi-

cation puts an edge from node t to node s if θst 6= 0. A missing edge t→ s corresponds

to the condition θst = 0, implying conditional independence of Xs and Xt given the

parents of s, i.e., Xs ⊥⊥ Xt|xpa(s). As we are only interested in the structure of the

graph G, without loss of generality we have assumed that the local Poisson regres-

sion models characterizing the conditional densities Pθs(xs|xpa(s)) have zero intercept.

Specification (2.2) is similar to that used in Allen and Liu (2013) for the undirected

version of Poisson graphical models. The only difference lies in the identification
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of the parameter space for θ that guarantees the existence of the joint distribution.

While the distribution represented in (2.1) is always a valid distribution, in the undi-

rected case a joint distribution compatible with the local specifications exists only if

all parameters assume non-positive values.

It is worth noting that, to have a perfect map, it is enough to assume faithfulness of the

Poisson node conditional distributions to the graph G, as this guarantees faithfulness

of the joint distributions thanks to the equivalence between local and global Markov

property.

3 The Or-PPGM algorithm

In this section, we tackle structure learning of DAGs, with the idea of exploiting

available prior knowledge of the domain at hand to guide the search for the best

structure. In particular, we will assume to know the topological ordering of variables.

In what follows, we adopt the convention of using superscripts, e.g., X(1), . . . ,X(n),

to denote independent copies of the p-random vector X, where X(i) = (Xi1, . . . , Xip).

We denote with X = {x(1), . . . ,x(n)} the collection of n observed samples drawn from

the random vectors X(1), . . . ,X(n), with x(i) = (xi1, . . . , xip), i = 1, . . . , n.

Let i1, i2, . . . , ip indicate one of the possible topological orderings of the variables. The

conditional distribution of each variable Xis given its precedents, denoted pre(is), in

the topological ordering i1, i2, . . . , ip can be written as

Pθis|pre(is)
(xis|xpre(is)) = exp

{
xis〈θis|pre(is),xpre(is)〉 − log(xis !)

−D(〈θis|pre(is),xpre(is)〉)
}
, (3.1)
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where θs|K = {θst|K : t ∈ K} denote the set of conditional parameters on conditional

set K. Then, a rescaled negative node conditional log-likelihood formed by products

of all the conditional distributions is as follows

l(θis|pre(is),Xis ;Xpre(is)) = − 1

n
log

n∏
i=1

Pθis|pre(is)
(xiis |x

(i)
pre(is)

) (3.2)

=
1

n

n∑
i=1

[
− xiis〈θis|pre(is),x

(i)
pre(is)

〉 − log(xiis !)

−D(〈θis|pre(is),x
(i)
pre(is)

〉)
]
.

The absence of an edge t→ is implies θist|pre(is) to be equal to zero.

When the topological ordering is assumed to be known, the expression of the joint

distribution in (2.1) suggests that the structure of the network might be recovered

from observed data by disjointly maximizing the single factors in the log-likelihood

`(θ,X) since the log-likelihood is decomposable as the sum of partial log-likelihoods

over all nodes. Therefore, structure learning could be based on solving local convex

optimization problems. Each local estimated conditional dependence parameter θ̂s is

then combined to form the global estimate.

To tackle this problem, we propose a new algorithm, called Or-PPGM, based on a

modification of the well-known PC algorithm (Kalisch and Bühlmann, 2007). Here, we

exploit the idea that the consistency of the PC algorithm ultimately depends upon

the consistency of the tests of conditional independence employed in the learning

process. In our case, consistent tests can be constructed from Wald-type tests on the

parameters θst|K (see also Nguyen and Chiogna (2021)). We combine this idea with

that of making use of topological ordering to determine the sequence of tests to be

performed. Assuming that the order of variables is specified beforehand considerably

reduces the number of conditional independence tests to be performed. Indeed, for
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each s ∈ V , it is sufficient to test if the data support the existence of the conditional

independence relation Xs⊥⊥Xt|XS only for t ∈ pre(s) and for any S ⊆ pre(s)\{t}. In

detail, we assume that the distribution of each variable Xs, conditional to all possible

subsets of variables XK, K ⊆ pre(s) is a Poisson distribution:

Xs|xK ∼ Pois
(

exp
{∑
t∈K

θst|Kxt
})
.

Then, the algorithm starts from the complete DAG obtained by directing all edges of

a complete undirected graph as suggested by the topological ordering. At each level

of the cardinality of the conditioning variable set S, we test, at some pre-specified

significance level, the null hypothesis H0 : θst|K = 0, where S = K\{s}. If the null

hypothesis is not rejected, the edge t→ s is considered to be absent from the graph.

We note that the cardinality of the set S increases from 0 to min{ord(s) − 1,m},

where ord(s) is the position of node s in the topological ordering and m an upper

bound on the cardinality of conditional sets. It is worth noting that the value of

m is chosen based on prior knowledge about the sparsity of the graph. In the case

of no prior knowledge, it will be set to p − 2. For a description of the conditional

independence test, as well as the definition of an appropriate test statistic, we refer

readers to Nguyen and Chiogna (2021). The pseudo-code of the Or-PPGM algorithm

is given in Algorithm 1.

4 Statistical Guarantees

In this section, we address the property of statistical consistency of Or-PPGM. In de-

tail, we study the limiting behaviour of our estimation procedure as the sample size

n, and the model size p go to infinity. In what follows, we derive uniform consistency
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Algorithm 1 The Or-PPGM algorithm.

1: Input: n independent realizations of the p-random vector X, x(1),x(2), . . . ,x(n); a topological ordering

Ord, (and a stopping level m).

2: Output: An estimated DAG Ĝ.

3: Form the complete undirected graph G̃ on the vertex set V .

4: Orient edges on G̃ respecting the topological ordering to form DAG G′.

5: l = −1; Ĝ = G′

6: repeat

7: l = l + 1

8: for all vertices s ∈ V , do

9: let Ks = pa(s)

10: end for

11: repeat

12: Select a (new) edge t→ s in Ĝ such that

13: |Ks\{t}| ≥ l.

14: repeat

15: choose a (new) set S ⊂ Ks\{t} with |S| = l.

16: if H0 : θst|K = 0 not rejected

17: delete edge t→ s from Ĝ

18: end if

19: until edge t→ s is deleted or all S ⊂ Ks\{t} with |S| = l have been considered.

20: until all edge t→ s in Ĝ such that |Ks\{t}| ≥ l and S ⊂ Ks\{t} with |S| = l have been tested for

conditional independence.

21: until l = m or for each edge t→ s in Ĝ: |Ks\{t}| < l.
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of our estimators explicitly as a function of the sample size, n, the number of nodes,

p, (and of m) by assuming that the true distribution is faithful to the graph. We

acknowledge that our results are based on the work of Yang et al. (2012) for expo-

nential family models, and leverage the proof of Lemma 4 in Kalisch and Bühlmann

(2007) in the proof of our main theorem.

For the readers’ convenience, before stating the main result, we summarize some

notation that will be used throughout this proof. Given a vector u ∈ Rp, and a

parameter q ∈ [0,∞], we write ‖u‖q to denote the usual `q norm. Given a ma-

trix A ∈ Rp×p, denote the largest and smallest eigenvalues as Λmax(A), Λmin(A),

respectively. We use |||A|||2 =
√

Λmax(ATA) to denote the spectral norm, corre-

sponding to the largest singular value of A, and the `∞ matrix norm is defined as

|||A|||∞ = maxi=1,...,a

∑a
j=1 |Ai,j|.

4.1 Assumptions

We will begin by stating the assumptions that underlie our analysis, and then give a

precise statement of the main results.

Denote the population Fisher information matrix and the sample Fisher information

matrix corresponding to the covariates in model (2.2) with K = V \{s} as follows

Is(θs) = −Eθ

(
∇2 log

(
Pθs(Xs|XV \{s})

))
, and Qs(θs) = ∇2l(θs,Xs; XV \{s}). We note

that we will consider the problem of maximum likelihood on a closed and bounded

dish Θ ⊂ R(p−1). For θs|K ∈ R|K|, we can immerse θs|K into Θ ⊂ R(p−1) by zero-pad

θs|K to include zero weights over V \{K ∪ {s}}.

Assumption 1. The coefficients θs|K ∈ Θ for all sets K ⊆ V \{s} and all s ∈ V have
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an upper bound norm, maxs,t,K |θst|K| ≤M, and a lower bound norm, mins,t,K |θst|K| ≥

c, ∀t ∈ K.

Assumption 2. The Fisher information matrix corresponding to the covariates in

model (2.2) with K = V \{s} has bounded eigenvalues, i.e., there exists a constant

λmin > 0 such that Λmin(Is(θs)) ≥ λmin, ∀ θs ∈ Θ. Moreover, we require that

Λmax

(
Eθ

(
XT
V \{s}XV \{s}

))
≤ λmax,∀s ∈ V, ∀ θ ∈ Θ, where λmax is some constant

such that λmax <∞.

Assumption 1 simply bounds the effects of covariates in all local models. In other

words, we consider that the parameters θst|K belong to a compact set bounded by

M . Note that the upper bound value M can be arbitrarily large. Hence, this as-

sumption does not limit the general applicability of the method. Being the expected

value of the rescaled negative log-likelihood twice differentiable, the lower bound on

the eigenvalues of the Fisher information matrix in Assumption 2 guarantees strong

convexity in all partial models. Condition on the upper eigenvalue of the covariance

matrix guarantees that the relevant covariates do not become overly dependent, a

requirement which is commonly adopted in these settings.

It is worth noting that for a given topological ordering, consistency of the proposed

algorithm requires that condition in Assumption 1 is satisfied only on all subsets K ⊆

pre(is). However, the topological ordering may not be unique and, as a consequence,

different topological orderings may lead to different results. To prove consistency

uniformly over all topological orderings, a stronger assumption is needed, that requires

the condition in Assumption 1 to be satisfied on all subsets K ⊆ V \{s}. This is the

solution adopted here.

Assumption 3. Suppose X is a p-random vector with node conditional distribution
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specified in (2.2). Then, for any positive constant δ, there exists some constant c1 > 0,

such that Pθs(Xs ≥ δ log n) ≤ c1n
−δ, ∀ s ∈ V, ∀ θs ∈ Θ.

Assumption 4. Suppose X is a p-random vector with node conditional distribution

specified in (2.2). Then, for any θ ∈ Θ, there exists some positive constants ν, c2,

and γ < 1/3, such that Pθ(ν + 〈θ,X〉 ≥ γ log n) ≤ c2κ(n, γ), where κ(n, γ) = op(n
a)

for some a < −1.

The condition on the marginal distribution in Assumption 3 guarantees that the con-

sidered variables do not have heavy tails, a common condition permitting to achieve

consistency. Assumption 4 specifies the parameter space on which we can prove the

consistency of local estimators. Compared to Assumption 5 in Yang et al. (2012) and

Condition 4 in Yang et al. (2015), Assumption 4 appears to be much weaker. Indeed,

Yang et al. (2012) require γ <
1

4
and ‖θ‖2 ≤

log n

18 log(max{n, p})
, whereas we only

require γ <
1

3
and no specified bound is put on ‖θ‖2 (since the negative elements of

θ can be arbitrarily small). Moreover, Condition 4 in Yang et al. (2012) is written in

analytical form, i.e., a form more restrictive than the probability form here employed.

When conditional dependencies are all positive, a condition also known as “additive

relationship” among variables, Assumption 4 also implies the sparsity of the graphs.

4.2 Consistency of the Or-PPGM algorithm

DAG models can be defined only up to their Markov equivalence class, a set con-

sisting of all DAGs encoding the same set of conditional independence. Here, we

consider a particular parametric distributions, as specified in Equation (2.2). Under

this stronger assumption, Poisson DAG models in (2.2) are identifiable, as shown
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in Appendix, Theorem A1, where we provide an alternative proof of identifiability

benefiting from the ideas developed in the work of Peters and Bühlmann (2013), and

avoiding a condition in Park and Raskutti (2015) related to the conditional variance

of the general Poisson DAG models (see Theorem 3.1) that become redundant under

our specificied Poisson generalized linear model. Identifiability has important con-

sequences in our setting. Indeed, it guarantees that the true graph is unique, and,

consequently, that Or-PPGM converges to the true unique graph irrespective of which

ordering among the true existing ones is chosen to inform the algorithm.

Theorem 1. Assume 1- 4. Denote by Ĝ(αn) the estimator resulting from Algorithm

1, and by G the true graph. Then, there exists a numerical sequence αn −→ 0, such

that Pθ(Ĝ(αn) = G) = 1, ∀ θ ∈ Ω(Θ), when n −→∞, where Ω(Θ) is the space such

that the faithfulness assumption is satisfied.

Proof. See Appendix, Section B.

The proof of the above-given Theorem 1 does not depend on which topological order is

considered. This implies that, even if for different topological orderings T1, T2, . . . , Tk,

Algorithm 1 performs different sequences of tests S1, S2, . . . , Sk, resulting respectively

in estimated graphs ĜT1(αn), ĜT2(αn), . . . , ĜTk(αn), there exists a numerical sequence

αn → 0, such that the estimators ĜT (αn), T = T1, T2, . . . , Tk converge to the true

unique graph.

It is worth noting that for structure learning of undirected graphs, Nguyen and

Chiogna (2021) derived statistical guarantees based on the assumption that the node-

wise data generating process belongs to the truncated Poisson distribution. In the

case of Poisson node conditional distributions, a proof of consistency of PC-LPGM
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with proper test statistic can be provided in the situation of “competitive relation-

ships” between variables, and it is still an unsolved question in the case of unrestricted

conditional interaction parameters. Here, we consider DAGs, a situation that guar-

antees the existence of a joint distribution without the need of restricting conditional

interaction parameters, i.e., considering both positive and negative parameters. More-

over, in Nguyen and Chiogna (2021), for each pair of nodes s and t, we test θst|K = 0,

where K could be all possible subsets of V \{s}. Here, for each ordered pair of nodes

s and t, we test θst|K = 0, with K as a subset of pre(s). Therefore, the number of

conditional independent tests performing during the run of PC procedure reduces.

This difference ensures the validation of the proof of Theorem 1 when moving from

undirected graphs to DAGs.

5 Empirical study

Here, we empirically evaluate the ability of our proposal to retrieve the true DAG.

As a measure of the ability to recover the true structure of the graphs, we adopt

three criteria including Precision P ; Recall R; and their harmonic mean, known as

F1-score, respectively defined as

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2

P.R

P +R
,

where TP (true positive), FP (false positive), and FN (false negative) refer to the

number of inferred edges (Liu et al., 2010).

We also aim to compare Or-PPGM to possible contestants. To evaluate the effect of

limiting the cardinality of the conditional set, we consider a variant of our proposal,

that we call Oriented-Local Poisson Graphical Models (Or-LPGM), that for each
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is ∈ V fixes the set of parents of node is to be

p̂a(is) = {t ∈ pre(is) such that H0 : θist|pre(is) = 0 is rejected}.

Moreover, we compare Or-PPGM to several popular competitors. As competitors,

we consider structure learning algorithms for both Poisson and non-Poisson variables.

Some of the considered competitors are adaptations to our specific setting of estab-

lished algorithms and are, therefore, firstly scrutinised in this simulation exercise. In

detail, as representatives of algorithms for Poisson data, we consider: i) one vari-

ant of the K2 algorithm (Cooper and Herskovits, 1992), PKBIC, able to deal with

Poisson data and based on a scoring criterion frequently used in model selection (see

Supplementary Material, Section B for details); ii) the PDN (Poisson Dependency

Networks) algorithm in Hadiji et al. (2015); iii) the overdispersion scoring (ODS)

algorithm in Park and Raskutti (2015). It is worth noting that PKBIC is indeed

a new structure learning algorithm for Poisson data, whose consistency is proved

in Supplementary Material, Section B. Moreover, we consider a structure learning

method dealing with the class of categorical data, namely the Max Min Hill Climbing

(MMHC) algorithm (Tsamardinos et al., 2006). To apply such algorithms, we cate-

gorize our data using Gaussian mixture models on log-transformed data shifted by 1

(Fraley and Raftery, 2002). Finally, taking into account that structure learning for

discrete data is usually performed by employing methods for continuous data after

suitable data transformation, we consider two representatives of approaches based on

the Gaussian assumption, that are, the PC algorithm (Kalisch and Bühlmann, 2007),

and the Bayesian network structure learning (Kuipers et al., 2022) using BGe score,

applied to log-transformed data shifted by 1.
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5.1 Data generation

For two different cardinalities, p = 10 and p = 100, we consider three graphs of

different structure: (i) a scale-free graph, in which the node degree distribution

follows a power law; (ii) a hub graph, where each node is connected to one of the

hub nodes; (iii) an Erdos-Renyi graph, where the presence of the edges is drawn from

independent and identically distributed Bernoulli random variables. To construct

the scale-free and Erdos-Renyi graphs, we employed the R package igraph (Csardi

et al., 2006). For the scale-free graphs, we followed the Barabasi-Albert model with

parameter power = 0.01, zero.appeal = p. For the Erdos-Renyi graphs, we followed

the Erdos-Renyi model with probability to draw one edge between two vertices γ = 0.2

for p = 10 and γ = 0.02 for p = 100. To construct the hub graphs, we assumed 2

hub nodes for p = 10, and 5 hub nodes for p = 100. To convert them into DAGs,

we fixed a topological ordering for each graph by taking a permutation of considered

variables. Once the order was defined, undirected edges were oriented to form a

DAG. See Figure 1 and 2 for plots of the three chosen DAGs for p = 10 and p = 100,

respectively.

To simulate data, we first construct an adjacency matrix Adj = (θij) as follows:

1. fill in the adjacency matrix Adj with zeros;

2. replace every entry corresponding to a directed edge by one;

3. replace each entry equal to 1 with an independent realization from a Uniform

random variable U([−0.5, 0.5]), representing the true values of parameter θst.

This yields a matrix Adj whose entries are either zeros or in the range [−0.5, 0.5],
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Figure 1: The graph structures for p = 10 employed in the simulation studies: (a) scale-free; (b) hub; (c)

Erdos-Renyi graph.
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Figure 2: The graph structures for p = 100 employed in the simulation studies: (a) scale-free; (b) hub; (c) random

graph.
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representing positive and negative relations among variables. For each DAG corre-

sponding to an adjacency matrix Adj, 50 datasets are sampled for four sample sizes,

n = 100, 200, 500, 1000 with p = 10, and n = 200, 500, 1000, 2000 with p = 100 as

follows. The realization of the first random variable Xi1 in the topological order-

ing i1, i2, . . . , ip is sampled from a Pois(exp{θ1}), where the default value of θ1 is 0.

Realizations of the following random variables are recursively sampled from

X
(t)
ij
∼ Pois(exp{

i(j−1)∑
k=i1

θijkxtk}).

5.2 Learning algorithms

Acronyms of the considered algorithms are listed below, along with specifications, if

needed, of tuning parameters. In this study, besides the topological ordering, we also

specify an additional input, the upper limit for the cardinality of conditional sets, m,

which in this study was set to m = 8 for p = 10 and m = 3 for p = 100, respectively.

- Or-PPGM: PC-based learning of Oriented Poisson Graphical Models (Section

3);

- PKBIC: variant of K2 tailored on Poisson data based on the use of BIC (Sup-

plementary Material, Section B);

- Or-LPGM: Oriented Local Poisson Graphical Model, variant of Or-PPGM

with no restriction on cardinality of the conditioning set (Section 5);

- PDN: Poisson Dependency Networks algorithm (Hadiji et al., 2015), imple-

mented in the R function learnPDN (see https://sfb876.tu-dortmund.de/

auto?self=%24eon9ai8e80) with n.trees = 20;

https://sfb876.tu-dortmund.de/auto?self=%24eon9ai8e80
https://sfb876.tu-dortmund.de/auto?self=%24eon9ai8e80
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- ODS: Overdispersion Scoring (ODS) algorithm (Park and Raskutti, 2015) with

k-fold cross validation (k = 10);

- MMHC: Max Min Hill Climbing algorithm (Tsamardinos et al., 2006), im-

plemented in the R package bnlearn, applied to data categorized by mixture

models, using χ2 tests of independence.

- PC: PC algorithm (Kalisch and Bühlmann, 2007), implemented in the R pack-

age pcalg, applied to log-transformed data, using Gaussian conditional inde-

pendent tests.

- GBiDAG: Bayesian network structure learning (Kuipers et al., 2022), im-

plemented in the R package BiDAG (Suter et al., 2023), with an iterative order

MCMC algorithm on an expanded search space using BGe score, using the order

as an input, and applied to log-transformed data.

We note that ODS, PDN and MMHC employ a preliminary step aimed to estimate the

topological ordering. This makes the comparison with our algorithms not completely

fair. Nevertheless, we decided to consider these algorithms in our numerical studies

to get a measure of the impact of the knowledge of the true topological ordering.

It is also worth noting that the PC algorithm returns PDAGs that consist of both

directed and undirected edges. In this case, we borrow the idea of Dor and Tarsi

(1992) to extend a PDAG to DAG. This procedure is guaranteed to find a solution

for CPDAGs but not for more general PDAGs, as a directed extension of the PDAG

may not exist, and the procedure will pick only one DAG from the equivalence class.

However, we can prove that the Poisson DAG is identifiable (see Appendix, Theorem

A1), i.e., there is a unique DAG equivalent to the set of conditional independence
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relations between considered variables. Hence, there is no problem if the procedure

picks only one DAG from the equivalence class because the equivalence class has only

one element. For details of the algorithm, we refer the interested reader to the paper

by Dor and Tarsi (1992).

5.3 Results

For the two considered vertex cardinalities, p = {10, 100}, and the chosen sample

sizes, n = {100, 200, 500, 1000, 2000}, Table 1 and Table 2 report, respectively, Monte

Carlo means of TP, FP, FN, P, R and F1 score for each considered method. Each value

is computed as an average of the 150 values obtained by simulating 50 samples for

each of the three networks. Results disaggregated by network types are given in Sup-

plementary Material, Section D, Tables D.1, and Tables D.2. These results indicate

that the proposed algorithm (Or-PPGM), along with Or-LPGM and the modifica-

tion of K2 (PKBIC) described in Supplementary Material, Section B, outperforms,

on average, Gaussian-based competitors (GBiDAG, PC), category-based competitors

(MMHC), as well as the state-of-the-art algorithms that are specifically designed for

Poisson graphical models (ODS, PDN).

When p = 10, the algorithms PKBIC, Or-PPGM and Or-LPGM reach the highest

F1 score, followed by the ODS, GBiDAG, and the PC algorithms. When n ≥ 1000,

the three first algorithms recover almost all edges, see Figure 3. A closer look at

the Precision P and Recall R plot (see Figure D.1 in Supplementary, Section D.2)

provides further insight into the behaviour of considered methods. The PKBIC, Or-

LPGM and Or-PPGM algorithms always reach the highest Precision P and Recall

R.
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It is interesting to note that the performance of PKBIC, Or-PPGM and Or-LPGM

appears to be far better than that of the competing algorithms employing the Poisson

assumption (PDN and ODS). The use of topological ordering overcomes the inaccu-

racies of the first step of the ODS algorithm, i.e., the identification of the order of

variables, as well as the uncertainties in recovering the direction of interactions in

PDN.
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Figure 3: F1-score of the considered algorithms: PKBIC; Or-PPGM; Or-LPGM; PDN; ODS; MMHC; PC; and

BiDAG for the three types of graphs in Figure 1 with p = 10 and sample sizes n = 100, 200, 500, 1000.

When considering other methods, category-based methods (MMHC), and Gaussian-

based methods (GBiDAG, PC), both perform less accurately than the three leading

methods, i.e., PKBIC, Or-PPGM and Or-LPGM. Moreover, the GBiDAG is the

closest method to our proposal, i.e., using the topological ordering as an input to

search for the underlying structure. However, this algorithm works well only for the
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hub graph with p = 10. This result can be explained by the loss of information

due to the data transformation, an approach can be ill-suited, possibly leading to

wrong inferences in some circumstances (Gallopin et al., 2013). Another variant of

BiDAG that uses BDe score with categorical representation proved to be sensitive

to the categorisation of the data, and in particular, not effective when the employed

categorisation was that of MMHC.
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Figure 4: F1-score of the considered algorithms: PKBIC; Or-PPGM; Or-LPGM; PDN; ODS; MMHC; PC; and

BiDAG for the three types of graphs in Figure 2 with p = 100 and sample sizes n = 200, 500, 1000, 2000.

Results for the high dimensional setting (p = 100) are somehow comparable to the

ones of the previous setting, as it can be seen in Figure 4, and Figure D.2 in Sup-

plementary, Section D.2. The performance of the considered algorithms are clustered

into two different groups. In detail, PKBIC, Or-PPGM, and Or-LPGM still rank as

the top three best algorithms, with Or-LPGM scoring as the best-performing one for
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the highest sample size. Overall, their F1 scores become already reasonable when n

approaches 1000 observations.

We also need to stress the good performances of Or-PPGM related to the difference

between penalization and restriction of the conditional sets. In the PDN algorithm, as

well as in the ODS algorithm, a prediction model is fitted locally on all other variables,

using a series of independent penalized regressions. In contrast, Or-PPGM controls

the number of variables in the conditional sets for node s, which is progressively

increased from 0 to min{m, ord(s)− 1}.

As a final remark, we note that the performances of ODS are overall less accurate than

expected. A reason for it is that ODS uses the LPGM model (Allen and Liu, 2013) to

search the candidate parent sets for each node. As a consequence, the performance of

ODS is highly dependent on the result obtained by the LPGM algorithm. However,

this result depends on the tuning of its parameters (β, γ, sth, etc). Here, we used

the best combination of parameters that we managed to find in Nguyen and Chiogna

(2021), i.e., B = 50, nlambda = 20, λmin

λmax
= 0.01, γ = 10−6, sth = 0.6, β = 0.1 for

p = 10 and β = 0.05 for p = 100.

6 Results on Non-small cell lung cancer data

Here, we show an application of our proposed algorithm to the problem of learning

gene interactions starting from gene expression measurements on a set of lung cancer

cells.
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Specifically, we aim at reconstructing the connected part of the manually curated

network in Figure 2c of Xue et al. (2020) from gene expression data, exploiting the

topological ordering deriving from the non-small cell lung cancer (Kanehisa and Goto,

2000), which is directly connected to the scope of the original analysis.

Briefly, the data consists of gene expression measurements of individual cells by RNA

sequencing, which yields discrete counts as a measure of the activity of each gene. We

followed the filtering procedure described in the original publication (see Xue et al.,

2020, for details).

Xue et al. (2020) identified 10 different clusters of cells based on their sensitivity to

treatment. We selected only the cells in clusters 1, 3, 4, 5, and 10 as described in

Figure 1 of Xue et al. (2020), which leads to a total of n = 5505 cells. These clusters

correspond to the cells that showed resistance to the treatment and are of particular

biological interest.

The network in Figure 2c of Xue et al. (2020) presents a total of 11 genes, of which,

only 8 belong to a connected component of the non-small cell lung cancer pathways,

and hence further considered for the analysis, see Figure 5a. It is important to high-

light that these 8 genes are part of the initial (upstream) segment of the signaling

pathway. These genes are situated at the beginning of the directional flow of infor-

mation and are not influenced by downstream signaling. This characteristic helps to

mitigate concerns related to potential confounding from other genes in the pathway,

although it does not solve the issue of relations of this pathway with the other path-

ways. The topological ordering of the considered genes has been abstracted from

the KEGG pathway database. In light of the localized nature of this topological

assumption, it is important to acknowledge that the ordering may not entirely reflect
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the physical properties of the variables involved. However, it does significantly con-

tribute to the estimation process by providing valuable information to the search for

associations. Our objective is to assess the capability of our algorithm to identify and

reconstruct some of the connections involving these variables that are documented and

widely acknowledged in the relevant literature. It is crucial to emphasize, however,

that the algorithm’s capabilities do not encompass the determination of causality for

the estimated links.

SOS1

RAF1 PIK3CA

HBEGF

EGFR

KRAS

PTPN11

GRB2

(a) (b)

Figure 5: (a) Non-small cell lung cancer network manually curated by Xue et al. (2020); (b) Non-small cell lung

cancer network estimated by Or-PPGM algorithm.

After removing values that are more than three standard deviations away from the

mean, we applied the Or-PPGM algorithm, with a significance level of 5%, and the

results are shown in Figure 5b. By visually comparing our estimated DAG with

the manually curated network of Xue et al. (2020), we confirm that our algorithm
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can reconstruct, from gene expression data, a biologically meaningful structure that

confirms several known biological processes. For instance, the expression of heparin-

binding epidermal growth factor (HBEGF) mRNA encodes a ligand of the epidermal

growth factor receptor (EGFR) (Lemmon and Schlessinger, 2010). In detail, the lig-

and drives changes in EGFR depending on the expression of secreted HBEGF, and

EGFR plays a potential role in mediating adaptation (Xue et al., 2020). This is con-

sistent with EGFR being a descendant of HBEGF. Moreover, by activating EGFR,

the secretion of HBEGF affects a population of cells in an autocrine and/or paracrine

fashion, which drives nucleotide exchange to activate RAS. Indeed, Xue et al. (2020)

showed that stimulation with recombinant EGF induced KRAS activation in sorted

quiescent cells and enhanced signalling in an EGFR- and PTPN11-dependent manner.

This is coherent with the path from HBEGF through EGFR and PTPN11 to KRAS.

Aside from this, it is well known that GRB2 mediates the EGF-dependent activation

of guanine nucleotide exchange on RAS (Gale et al., 1993). The fact that our algo-

rithm reconstructs this known signalling pathway holds promise for novel biological

insight that could be provided by inspecting other, lesser-known, gene interactions.

However, we should note that inherent limitations with the available gene expression

data prevent us to confidently assert that the estimated associations are causal in

nature. Indeed, even if the available set of variables were causally sufficient, it is

essential to bear in mind the continuous-time nature of the world when reconstructing

causal DAGs from gene expression data. Our guided structure learning strategy

is entirely independent of how measurements are made. Consequently, the learned

conditional independence relationships may not necessarily reflect the true causal

structure. See, for example, Aalen et al. (2016).



Guided structure learning of DAGs for count data 29

7 Conclusions and remarks

We have considered structure learning of DAGs for count data in a scenario where we

know one possible topological ordering of the variables. We have proposed and com-

pared various guided structure learning algorithms that owe their attractiveness to the

improvement in accuracy and the reduction of computational costs due to exploita-

tion of the topological ordering, an ingredient that considerably reduces the search

space. For the new proposals, estimators enjoy strong statistical guarantees under

assumptions considerably weaker than those employed in related works. Following

the empirical comparison with several different approaches, our proposals appear to

be promising algorithms as far as prediction accuracy is concerned.

Here, we consider the probabilistic interpretation of DAGs, which differs from the

causal interpretation (see Dawid (2010) for more details). Indeed, in the applications

that motivate this work, we cannot assume that the set of observed variables is

causally sufficient, that is every common direct cause of the observed variables is also

observed. Taking this under consideration, we can not guarantee full appropriateness

of a causal interpretation (see also Pearl et al. (2000)). Nonetheless, as we show in

Section 6, learning DAGs is informative and aids the interpretation of the results

compared to undirected graphs, ultimately generating causal hypotheses that can be

further explored with subsequent experiments.

It is worth remarking that when p is small (such as p = 10), Or-LPGM performs

similarly to Or-PPGM while the average of the runtime of Or-PPGM is around 12

times that of Or-LPGM (see Supplementary, Table D.1). Hence, in low-dimensional

regimes, Or-LPGM is the worth-considering variant. However, when the number of
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variables is large (for example p = 100), and the sample size is not large enough

(for example n = 200), the performance of Or-LPGM is overall less accurate than

Or-PPGM (see Supplementary, Table D.2), an effect due to inclusion of covariates

which are spuriously related to the outcome reduces the estimated residual variance

when the variance is unknown. Here, Or-PPGM is the preferable solution.

Or-PPGM makes the stronger assumption that Xs conditional on all possible subsets

of its precedents follows a Poisson distribution, while Or-LPGM relaxes this assump-

tion, requiring that Xs conditional on its precedents is Poisson. However, the stronger

assumption of Or-PPGM did not negatively affect the performances of the algorithm

on simulations built on Or-LPGM assumptions.

An important side effect of our empirical study was shedding some light on the effect

of data transformation finalized to the use of structure learning under model speci-

fications irrespective of the discrete nature of the data, such as those for continuous

or categorical data. We have noticed that making the data continuous by log trans-

formation is better than categorizing them when the PC algorithm is used and that

mixture-based categorization is better than cut points-based categorization with K2.

This is an important empirical conclusion that we draw from this study.

Results from Empirical study showed that the two considered variants of BiDAG

(Kuipers et al., 2022) that use BDe or BGe scores perform less accurately than the

proposed method because of the loss of information due to the data transformation.

In future work, it will be worth considering the BiDAG with the score defined in the

PKBIC algorithm, an approach does not suffer from the loss of information due to

the data transformation.
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Overall, our exploration has consolidated avenues for learning DAGs, the properties

and applications of which leave much room for future research. For example, the

topological ordering may be misspecified, or only a partial order on the set of nodes

might be specified due to several reasons. How to tackle these and other extensions

of our setting is the core of our current research.

Table 1: Monte Carlo marginal means of TP, FP, FN,P,R, and F1 score

obtained by simulating 50 samples from each of the three networks shown

in Figure 1 (p = 10). The levels of significance of tests α = 2(1−Φ(n0.15))

.

n Algorithm TP FP FN P R F1

100 PKBIC 5.133 1.393 3.200 0.791 0.613 0.678

Or-PPGM 4.573 1.380 3.760 0.774 0.546 0.625

Or-LPGM 5.200 1.740 3.133 0.758 0.621 0.669

PDN 6.187 32.613 2.147 0.164 0.738 0.267

ODS 1.791 0.721 6.581 0.786 0.211 0.315

PC 2.734 2.604 5.626 0.511 0.325 0.392

MMHC 1.723 3.088 6.635 0.381 0.205 0.260

GBiDAG 3.080 4.094 5.283 0.434 0.368 0.392

200 PKBIC 6.293 0.693 2.040 0.907 0.750 0.811

Or-PPGM 5.853 0.680 2.480 0.904 0.698 0.773

Or-LPGM 6.173 0.867 2.160 0.887 0.737 0.794

PDN 6.820 28.820 1.513 0.201 0.814 0.320

ODS 2.667 1.236 5.681 0.714 0.315 0.422

PC 4.062 2.000 4.283 0.654 0.484 0.550

MMHC 2.329 3.859 6.007 0.392 0.276 0.319

GBiDAG 4.139 3.368 4.194 0.559 0.497 0.521

500 PKBIC 7.593 0.520 0.740 0.940 0.909 0.920

Or-PPGM 7.340 0.433 0.993 0.947 0.879 0.907

Or-LPGM 7.387 0.387 0.947 0.955 0.884 0.914

PDN 7.067 22.180 1.267 0.258 0.844 0.388

ODS 4.347 1.813 3.987 0.714 0.520 0.593

PC 5.450 1.839 2.886 0.746 0.654 0.694

MMHC 3.338 4.365 5.000 0.444 0.398 0.417
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Table 1 – continued from previous page

n Algorithm TP FP FN P R F1

GBiDAG 5.351 2.932 2.986 0.656 0.643 0.646

1000 PKBIC 8.093 0.353 0.240 0.962 0.970 0.964

Or-PPGM 7.907 0.180 0.427 0.979 0.948 0.961

Or-LPGM 7.880 0.180 0.453 0.980 0.944 0.959

PDN 7.307 17.927 1.027 0.309 0.873 0.448

ODS 5.213 2.527 3.120 0.681 0.625 0.648

PC 6.233 1.513 2.100 0.805 0.749 0.775

MMHC 4.000 4.327 4.340 0.484 0.477 0.478

GBiDAG 5.799 2.772 2.537 0.681 0.698 0.688

Table 2: Monte Carlo marginal means of TP, FP, FN,P,R, and F1 score

obtained by simulating 50 samples from each of the three networks shown

in Figure 2 (p = 100). The levels of significance of tests α = 2(1 −

Φ(n0.2)) for n = 500, 1000, 2000, and α = 2(1− Φ(n0.225)) for n = 200.

n Algorithm TP FP FN P R F1

200 PKBIC 60.220 81.113 40.780 0.424 0.595 0.495

Or-PPGM 35.307 5.320 65.693 0.854 0.349 0.482

Or-LPGM 26.107 6.340 74.893 0.780 0.258 0.374

PDN 50.580 547.487 50.420 0.128 0.498 0.164

ODS 23.413 91.947 77.587 0.201 0.229 0.205

PC 14.399 16.601 86.895 0.403 0.141 0.205

MMHC 27.527 98.873 73.473 0.216 0.272 0.241

GBiDAG 36.553 167.740 64.447 0.178 0.362 0.238

500 PKBIC 80.933 49.520 20.067 0.619 0.800 0.697

Or-PPGM 63.180 3.333 37.820 0.950 0.625 0.749

Or-LPGM 58.813 2.493 42.187 0.956 0.580 0.711

PDN 64.773 419.773 36.227 0.216 0.637 0.250

ODS 36.040 84.007 64.960 0.298 0.353 0.317

PC 26.693 26.127 74.307 0.444 0.259 0.323

MMHC 47.993 89.340 53.007 0.348 0.474 0.401

GBiDAG 57.773 103.533 43.227 0.358 0.573 0.440
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Table 2 – continued from previous page

n Algorithm TP FP FN P R F1

1000 PKBIC 89.000 34.685 12.013 0.719 0.879 0.790

Or-PPGM 77.658 1.208 23.356 0.985 0.769 0.862

Or-LPGM 76.153 0.200 24.847 0.997 0.751 0.852

PDN 69.713 323.793 31.287 0.286 0.685 0.309

ODS 45.413 83.947 55.587 0.355 0.444 0.386

PC 34.087 32.827 66.913 0.459 0.331 0.381

MMHC 62.447 74.787 38.553 0.455 0.618 0.524

GBiDAG 69.173 77.180 31.827 0.473 0.686 0.559

2000 PKBIC 91.833 23.713 9.167 0.794 0.906 0.846

Or-PPGM 87.273 1.493 13.727 0.984 0.865 0.920

Or-LPGM 89.267 0.020 11.733 1.000 0.882 0.936

PDN 67.733 237.620 33.267 0.338 0.664 0.341

ODS 54.767 82.687 46.233 0.398 0.538 0.452

PC 41.400 39.180 59.600 0.478 0.402 0.435

MMHC 72.100 60.813 28.900 0.544 0.714 0.617

GBiDAG 78.420 57.313 22.580 0.579 0.778 0.663

8 Software

The methods presented in this article are available in the learn2count R package,

available at https://github.com/drisso/learn2count. The code to reproduce the

analyses of this paper is available at https://github.com/kimhuenguyen/guided_

structure_learning.

https://github.com/drisso/learn2count
https://github.com/kimhuenguyen/guided_structure_learning
https://github.com/kimhuenguyen/guided_structure_learning
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Appendix

A Identifiability

In what follows, we provide a proof of identifiability of models specified in Section 2

of the main paper.

Proposition A1. Let X be a p-random vector defined as in (2.1) and G = (V,E) be

a DAG. Consider a variable Xj, j ∈ V , and one of its parents k ∈ paG(j). For all

set S with paG(j)\{k} ⊆ S ⊆ ndG(j)\{k}, we have Xj ⊥6⊥Xk|XS.

Proof. This proposition can be proved easily by using the definition of d-connection

and the faithfulness assumption. Indeed, for a fixed node j ∈ V , for all k ∈ paG(j)

and for all set S satisfies paG(j)\{k} ⊆ S ⊆ ndG(j)\{k}, there always exists the path

k → j satisfies the definition of d-connection. Hence, Xj ⊥6⊥Xk|XS.

Theorem A1. The Poisson DAG model defined as in Equation 2.2 is identifiable.

Proof. Assume there are two structure models as in 2.2 which both encode the same

set of conditional independences, one with graph G, and the other with graph G′. We

will show that G ≡ G′.

Since DAGs do not contain any cycles, we can always find one node without any

child. Indeed, assume to start at some node, and follow a directed path that contains

the chosen node. After at most |V − 1| steps, a node without any child is reached.

Eliminating such a node from the graph leads to a new DAG.
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We repeat this process on G and G′ for all nodes that have: (i) no children, (ii) the

same parents in G and G′. This process terminates with one of two possible outputs:

(a) no nodes left; (b) a subset of variables, which we call again X, two sub-graphs,

which we call again G and G′, and a node j that has no children in G such that either

paG(j) 6= paG′(j) or chG′(j) 6= ∅. If (a) occurs, the two graphs are identical and the

result is proved. In what follows, we consider the case that (b) occurs.

For such a j node, we have

Xj ⊥⊥XV \(paG(j)∪{j})|XpaG(j), (A.1)

thanks to the Markov properties with respect to G. To make our argument clear, we

divide the set of parents paG(j) into three disjoint partitions W,Y, Z representing,

respectively, the set of common parents in both graphs; the set of parents in G being

a subset of children in G′; the set of parents in G which are not parents in G′.

Formalizing,

• Z = paG(j) ∩ paG′(j);

• Y ⊂ paG(j) such that chG′(j) = Y ∪ T ;

• W ⊂ paG(j) such that W are not adjacent to j in G′.

Thus,

paG(j) = W ∪ Y ∪ Z, chG(j) = ∅,

paG′(j) = D ∪ Z, chG′(j) = T ∪ Y,

where D is not adjacent to j in G. Let U = W ∪ Y and consider the following two

cases:
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• U = ∅. Then, there exists a node d ∈ D or a node t ∈ T , otherwise j would

have been discarded.

– If there exists a node d ∈ D, (A.1) implies Xj⊥⊥Xd|XQ, for Q = Z∪D\{d},

which contradicts Proposition (A1) applied to G′.

– If D = {∅}, and there exists a node t ∈ T , then (A.1) implies Xj⊥⊥Xt|XQ,

for Q = Z ∪ paG′(t)\{j}, which contradicts Proposition (A1) applied to

G′.

• U 6= ∅. We note that, within the structure of the graph G′, the Poisson assump-

tion implies

Var
(
Xj|XpaG′ (j)

)
= E

(
Xj|XpaG′ (j)

)
. (A.2)

However, by applying the law of total variance we get

Var
(
Xj|XpaG′ (j)

)
= Var

(
E(Xj|XpaG′ (j)

∪XpaG(j))|XpaG′ (j)

)
+E
(
Var(Xj|XpaG′ (j)

∪XpaG(j))|XpaG′ (j)

)
.

By applying Property (A.1) we can rewrite

Var
(
Xj|XpaG′ (j)

)
= Var

(
E(Xj|XpaG(j))|XpaG′ (j)

)
+ E

(
Var(Xj|XpaG(j))|XpaG′ (j)

)
.

(A.3)

Let fs(Xpa(s)) = exp{
∑

t∈pa(s) θstXt},∀ s ∈ V . In graphG, we haveXj|XpaG(j) ∼

Pois(fj(XpaG(j))), so that

E(Xj|XpaG(j)) = Var(Xj|XpaG(j)) = fj(XpaG(j)).

Hence, from Equation (A.3), we get

Var
(
Xj|XpaG′ (j)

)
= Var

(
fj(XpaG(j))|XpaG′ (j)

)
+ E

(
E(Xj|XpaG(j))|XpaG′ (j)

)
(A.4)

= Var
(
fj(XpaG(j))|XpaG′ (j)

)
+ E

(
E(Xj|XpaG(j) ∪XpaG′ (j)

)|XpaG′ (j)

)
= Var

(
fj(XpaG(j))|XpaG′ (j)

)
+ E

(
Xj|XpaG′ (j)

)
,
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by applying (A.1). Equation (A.4) implies

Var
(
Xj|XpaG′ (j)

)
> E

(
Xj|XpaG′ (j)

)
,

since Var
(
fj(XpaG(j))|XpaG′ (j)

)
> 0 in general, except at the root node.

B Proof of Theorem 1

Proof. Given a topological ordering, let θ̂st|K, and θ∗st|K denote the estimated and true

partial weights between Xs and Xt given Xr, r ∈ S, where S = K\{t} ⊆ pre(s). For

a fixed-ordered pair of nodes s, t, the conditioning sets are elements of

Km
st = {S ⊆ pre(s)\{t} : |S| ≤ min{ord(s)− 1,m}} .

The cardinality is bounded by

|Km
st | ≤ Cpmin{ord(s)−1,m} ≤ Cpm, for some 0 < C <∞.

Let Est|K denote type I or type II errors occurring when testing H0 : θst|K = 0. Thus

Est|K = EI
st|K ∪ EII

st|K, (B.1)

in which, for n large enough

• type I error EI
st|K: |Zst|K| > Φ−1(1− α/2) and θ∗st|K = 0;

• type II error EII
st|K: |Zst|K| ≤ Φ−1(1− α/2) and θ∗st|K 6= 0;
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where Zst|K =

√
nθ̂st|K√[

J(θ̂s|K)−1
]
tt

was defined in Nguyen and Chiogna (2021), and α is a

chosen significance level. Consider an arbitrary matrix θ|K = {θs|K}Ts∈V ∈ Ω(Θ), such

that |θst|K| ≥ δ, for some δ > 0. Let θ0
|K be the matrix that has the same elements

as θ|K except θst|K = θ0st|K = 0. Choose αn = 2(1 − Φ(nb)), where 0 < b < 1/2 will

be chosen later, then

sup
s,t,K∈Km

st

Pθ0
|K

(EI
st|K) = sup

s,t,K∈Km
st

Pθ0
|K

(
|θ̂st|K| > nb−1/2

√[
J(θ̂s|K)−1

]
tt

)
= sup

s,t,K∈Km
st

Pθ0
|K

(
|θ̂st|K − θ0st|K| > nb−1/2

√[
J(θ̂s|K)−1

]
tt

)
≤ exp{−cn}+ c2nκ(n, γ) + c1n

−2, (B.2)

using Theorem C.6, Supplementary, and the fact that nb−1/2
√[

J(θ̂s|K)−1
]
tt
−→ 0 as

n −→∞. Furthermore, with the choice of αn above, and δ ≥ 2nb−1/2
√[

J(θ̂s|K)−1
]
tt

,

sup
s,t,K∈Km

st

Pθ|K(EII
st|K) = sup

s,t,K∈Km
st

Pθ|K

(
|θ̂st|K| ≤ nb−1/2

√[
J(θ̂s|K)−1

]
tt

)
= sup

s,t,K∈Km
st

Pθ|K

(
|θst|K| − |θ̂st|K| ≥ |θst|K| − nb−1/2

√[
J(θ̂s|K)−1

]
tt

)
≤ sup

s,t,K∈Km
st

Pθ|K

(
|θst|K − θ̂st|K| ≥ |θst|K| − nb−1/2

√[
J(θ̂s|K)−1

]
tt

)
≤ sup

s,t,K∈Km
st

Pθ|K

(
|θ̂st|K − θst|K| ≥ nb−1/2

√[
J(θ̂s|K)−1

]
tt

)
,

Finally, by Theorem C.6, Supplementary, we then obtain

sup
s,t,K∈Km

st

Pθ|K(EII
st|K) ≤ exp{−cn}+ c2nκ(n, γ) + c1n

−2, (B.3)
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as n −→∞. Now, by (B.1)-(B.3), we get

Pθ( a type I or II error occurs in testing procedure)

≤ Pθ|K(∪s,t,K∈Km
st
Est|K)

≤ Op(p
m+2) sup

s,t,K∈Km
st

Pθ|K(Est|K)

≤ Op(p
m+2)

[
exp{−cn}+ c2nκ(n, γ) + c1n

−2
]

→ 0,

as n −→∞.
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Kalisch, M. and Bühlmann, P. (2007). Estimating high-dimensional directed acyclic

graphs with the PC-algorithm. Journal of Machine Learning Research, 8(Mar),

613–636.

Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and

Genomes. Nucleic Acids Research, 28(1), 27–30. ISSN 0305-1048. URL http:

//www.ncbi.nlm.nih.gov/pubmed/10592173.

Kuipers, J., Suter, P., and Moffa, G. (2022). Efficient sampling and structure learning

of bayesian networks. Journal of Computational and Graphical Statistics, 31(3),

639–650.

Lauritzen, S. L. (1996). Graphical Models, volume 17. Clarendon Press, Oxford.

Lemmon, M. A. and Schlessinger, J. (2010). Cell signaling by receptor tyrosine ki-

nases. Cell, 141(7), 1117–1134.

Li, Y.-H., Scarlett, J., Ravikumar, P., and Cevher, V. (2015). Sparsistency of `1-

regularized m-estimators. In Artificial Intelligence and Statistics, pages 644–652.

PMLR.

Liu, H., Roeder, K., and Wasserman, L. (2010). Stability approach to regularization

selection (stars) for high dimensional graphical models. In Advances in neural

information processing systems, pages 1432–1440.

http://www.ncbi.nlm.nih.gov/pubmed/10592173
http://www.ncbi.nlm.nih.gov/pubmed/10592173


42 N.T.K. Hue et al.

Nguyen, T. K. H. and Chiogna, M. (2021). Structure learning of undirected graphical

models for count data. Journal of Machine Learning Research, 22(50), 1–53. URL

http://jmlr.org/papers/v22/18-401.html.

Palumbo, M. C., Farina, L., Colosimo, A., Tun, K., Dhar, P. K., and Giuliani, A.

(2006). Networks everywhere? some general implications of an emergent metaphor.

Current Bioinformatics, 1(2), 219–234.

Park, G. and Raskutti, G. (2015). Learning large-scale Poisson DAG models based

on overdispersion scoring. In Advances in Neural Information Processing Systems,

pages 631–639.

Pearl, J. et al. (2000). Models, reasoning and inference. Cambridge, UK: Cambridge-

UniversityPress, 19(2), 3.
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