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Abstract: Metformin is a highly effective medication for managing type 2 diabetes mellitus. Recent

studies have shown that it has significant therapeutic benefits in various organ systems, particularly

the liver. Although the effects of metformin on metabolic dysfunction-associated steatotic liver

disease and metabolic dysfunction-associated steatohepatitis are still being debated, it has positive

effects on cirrhosis and anti-tumoral properties, which can help prevent the development of hepato-

cellular carcinoma. Furthermore, it has been proven to improve insulin resistance and dyslipidaemia,

commonly associated with liver diseases. While more studies are needed to fully determine the

safety and effectiveness of metformin use in liver diseases, the results are highly promising. Indeed,

metformin has a terrific potential for extending its full therapeutic properties beyond its traditional

use in managing diabetes.

Keywords: NAFLD; NASH; MASLD; chronic liver disease; hyperglycaemia; type 2 diabetes mellitus;

HCC; insulin resistance; metabolic syndrome; cirrhosis; nutrition; diet

1. Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known
as non-alcoholic fatty liver disease (NAFLD) [1], is a common condition that affects both
adults and children, which is characterised by macrovesicular steatosis in ≥5% of hepa-
tocytes, with no hepatocellular damage; metabolic dysfunction-associated steatohepatitis
(MASH), also known as non-alcoholic steatohepatitis (NASH), is an advanced form of
MASLD, identified by the presence of steatosis, hepatocyte ballooning, lobular inflam-
mation, and fibrosis at histology [2]. People diagnosed with MASH experience a more
severe progression of the disease, leading to advanced chronic liver disease (ACLD) and
hepatocellular carcinoma (HCC) [3]. It is estimated that approximately 25% of the adult
population and 3–10% of children are diagnosed with MASLD, with the number increasing
up to 40% in children and to 70% in adults who are obese [4,5].

At present, no pharmacological therapies are approved for MASH, and current man-
agement approaches are focused on lifestyle modification, like a low-calorie diet, physical
activity—both aerobic and resistance training—and cognitive behavioural therapy [6],
to obtain weight loss and, at the same time, improve other related conditions, namely,
blood pressure, triglycerides levels and insulin resistance. Diet is a cornerstone of MASLD
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management, primarily representing the first line of therapy. All international guidelines
advise lifestyle modifications as a cornerstone of MASLD treatment, along with reducing
alcohol intake; in addition, caloric restriction, generating a negative energy balance, has
been associated with MASLD improvement [7]. A sustained weight loss of 10% has been
proven to reduce liver fibrosis in patients with MASH [8,9].

Besides weight control, liver fibrosis benefits from enhanced insulin sensitivity and
reduced glyco- and lipo-toxicity, which is also the aim of the therapy in Type 2 Diabetes
Mellitus (T2DM), owing to the glucose-lowering action of anti-diabetic drugs [10–13].

Metformin is an oral anti-diabetic drug that improves insulin sensitivity and reduces
glucose production in the liver. Its mechanisms of action extend beyond glycaemic control,
making it a potential candidate for MASLD/MASH treatment. Several studies have
investigated the effects of metformin on MASLD/MASH on liver histology and metabolic
parameters in patients with MASLD with controversial results [8,14].

This review aims to provide a comprehensive overview of the current knowledge
and research, consolidate the existing evidence, and stimulate further scientific inquiry to
unlock the full therapeutic potential of metformin and lifestyle interventions in liver-related
conditions beyond its traditional role in managing T2DM.

2. Metformin’s Mechanism of Action and Role in Liver Disease

2.1. Historical Backgrounds and Absorption

Metformin has significant benefits concerning glucose metabolism and diabetes-related
complications. The chemical structure of metformin is derived from galegine, a natural
product extracted from the plant Galega officinalis [15]. Chemical analyses of Galega
officinalis dating from the mid-1800s discovered the plant to be abundant in guanidine,
which was reported to lower animal blood glucose [16]. Although metformin shares
structural similarities with glucose-reducing mono- and diguanidines, its blood glucose-
lowering effects in animals (rabbits and dogs) were only reported in 1929 [17,18]. In 1957,
Jean Stern converted the blood glucose-lowering potential of metformin in therapy for
T2DM: he observed that, in subjects with maturity-onset diabetes, metformin could replace
or reduce the need for insulin without the occurrence of frank hypoglycemia [19–23].
Currently, metformin is still considered among the first-line treatments for T2DM [24].

Approximately 70% of the metformin dose is absorbed from the small intestine, while
the remaining part passes into the colon before being excreted in faeces. Metformin is
excreted in the urine unchanged, with no metabolites reported [25].

Metformin uptake requires organic cation transporter 1 (OCT1), which is highly
expressed in the liver, kidneys, and small intestines, with little uptake from the peripheral
tissues. OCT3 and multidrug and toxin extrusion 1 (MATE1) transporters play a minor role
in metformin uptake [25]. Metformin uptake is saturable and dose-dependent, consisting
of a predominantly transporter-dependent mechanism; accordingly, genetic variations in
the transporters or transporter-inhibiting drugs could affect its uptake and tolerance [26].
Modified-release formulations have been developed to enhance gastrointestinal tolerability,
spreading the absorption of metformin along the gut and reducing local concentrations [27,28].

2.2. Mechanism of Action of Metformin

The most important mechanism of action of metformin occurs in the liver, where met-
formin regulates hepatic glucose production. Other benefits have been linked to alterations
in the composition of the gut microbiome, intestinal glucose uptake, and hormone secretion
(e.g., growth differentiation factor 15 [GDF15], glucagon-like peptide-1 [GLP-1]).

2.2.1. Regulation of Hepatic Gluconeogenesis

Hepatic glucose production depends on hepatic gluconeogenesis, glycogenolysis,
glycogen synthesis, and glycolysis. These biochemical mechanisms lead to 85% to 90% of
endogenous glucose production [29].
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The glucose-lowering effect of metformin is primarily due to its role in regulating hep-
atic gluconeogenesis. Metformin causes a modest inhibition of mitochondrial respiratory
chain Complex I, leading to a mild reduction in adenosine triphosphate (ATP) synthe-
sis and a concomitant increase in adenosine monophosphate (AMP) cellular levels. The
metformin-induced reduction in hepatic gluconeogenesis is an ATP-dependent process
that could result from decreased ATP levels [30]. Moreover, increased AMP levels result in
the inhibition of the activity of enzymes that are regulated by AMP and are involved in
gluconeogenesis, such as adenylate cyclase and fructose-1-6-bisphosphatase (FBP1), which
contributes to reducing glucose output [31].

In addition, in Complex I, metformin directly down-regulates mitochondrial glycerol
3 phosphate dehydrogenase (mGPDH), leading to an increased cytosolic redox state—with
a reduction in nicotinamide adenine dinucleotide reduced form (NADH) and increased
nicotinamide adenine dinucleotide (NAD)—to reduced gluconeogenesis from lactate, and
to a decrease in the activity of the glycerol–phosphate shuttle (which transfers NADH
from the cytosol to mitochondria). Furthermore, metformin elevates the hepatic redox
state by increasing the glutathione to oxidised glutathione ratio (GSH:GSSG), inhibiting
genes encoding the enzymes implicated in gluconeogenesis. Thus, metformin inhibits
mitochondrial respiratory chain complex IV, indirectly inhibiting mGPDH activity [26].

Furthermore, metformin activates AMPK, which phosphorylates nuclear receptor TR4
to prevent its transcriptional activation, inhibiting the expression of the TR4-mediated
gene for coenzyme A dehydrogenase-1 [32]. AMPK also phosphorylates SREBP-1c, which
inhibits proteolytic maturation, nuclear translocation of SREBP-1c, and the expression
of the downstream fatty acid synthase gene, thus increasing fatty acid β-oxidation and
reducing the de novo synthesis of triglycerides (TG) [33] and their liver accumulation,
finally preventing hepatocyte steatosis [34] (Figure 1).
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Figure 1. Mechanisms of action of Metformin.

2.2.2. Metformin and Glucagon-Like Peptide 1

Metformin treatment has been shown to increase the concentration of GLP-1, a hor-
mone derived from the proglucagon gene. GLP-1 regulates blood glucose levels by en-
hancing insulin secretion, inhibiting glucagon secretion, stimulating the growth of beta
cells, delaying stomach emptying, and promoting a sense of satiety and fullness [35]. Thus,
GLP-1 has an anorexigenic activity, reducing both homeostatic and hedonic feeding due to
a loss of interest in food and a decreased appetite [36–38]. Being a potent insulin secreta-
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gogue, GLP-1 has a brief half-life in the body due to rapid cleavage by the widely expressed
enzyme DPP-4 (dipeptidyl peptidase-4), whose levels are reduced during metformin treat-
ment [39]. In conclusion, metformin treatment increases the levels of GLP-1 and reduces
those of DPP-4, enhancing GLP-1 properties in blood glucose and appetite management.

2.2.3. Metformin and Skeletal Muscle

Glucose uptake in skeletal muscle is mediated by insulin signals, which determine
the translocation of glucose transporter 4 (GLUT4) from the cytosol to the plasma mem-
brane [40]. GLUT4 is also expressed in adipose tissue and cardiac muscle; its dysfunction in
adipose tissues and skeletal muscle is associated with glucose uptake and lipid synthesis in
the liver [41]. Skeletal muscle is responsible for the majority of insulin-stimulated glucose
disposal in the body [42,43], and it is involved in insulin resistance, a condition in which
peripheral tissues lose the ability to uptake glucose from the bloodstream; thus, muscle
has a crucial role in the development and progression of metabolic diseases such as T2DM
and obesity [44–46]. Metformin activates AMPK in skeletal muscle, leading to increased
translocation of GLUT4 to the cell membrane and, thereby, increased glucose uptake. This
action reduces insulin resistance and liver steatosis [16].

2.2.4. Gut Glucose Uptake and Intestinal Microbiota Modification

Recently, it has been reported that metformin impacts glucose uptake from the intesti-
nal tract [28,47]. A study by Ito, conducted using positron emission tomography (PET),
has shown that metformin administration is associated with the intestinal accumulation
of i.v.-injected [18F] fluorodeoxyglucose (FDG), a non-metabolizable glucose derivative,
thus promoting glucose transport from the circulation into excrement [48]. Moreover, met-
formin alters the gut microbiome’s composition, contributing to its therapeutic effects [49].
Akkermansia muciniphila is reduced in patients with prediabetes (impaired glucose tolerance
and/or impaired fasting glucose) and with a newly detected T2DM, Indicating that a low
abundance of this bacterium might be a biomarker for glucose intolerance [50]. Metformin
treatment is associated with the increased presence of Akkermansia muciniphila in the gut
lumen, which promotes the maintenance of intestinal barrier integrity, the increment of
short-chain fatty acids with positive actions on peripheral tissues (adipose tissue, skeletal
muscle, and liver) by improving insulin sensitivity [49,51,52], and reduced reabsorption of
bile acids in the distal ileum, resulting in increasing bile salt levels within the colon, which
might modify its microbiota [53,54] (Figure 1).

2.2.5. Metformin and Peptide Hormone Growth/Differentiation Factor 15 (GDF15)

GDF15, a member of the transforming growth factor β superfamily, is expressed in
various tissues, primarily the liver and the kidney, but also in white and brown adipose
tissues and skeletal muscle, and plays an important role in the integrated cellular stress
response [55]. High levels of GDF15 are associated with reduced food intake and weight
loss [56]; these actions are largely centrally mediated because GDF15 binds to its receptor,
the glial cell line-derived neurotrophic factor family receptor alpha-like (GFRAL), which is
localised in the hindbrain and hypothalamus [57–59]. GDF15-induced weight loss in rodents
is accompanied by increased insulin sensitivity and improved glucose tolerance [57–61].
Furthermore, in subjects with obesity, bariatric surgery was shown to increase the plasma
levels of GDF15 and insulin sensitivity, suggesting a possible positive role of GDF15 on
insulin activity in humans [62]. Sjøberg et al. recently proved that treatment with GDF15
ameliorated insulin sensitivity independently of weight loss in mice and rats [63]. Finally,
metformin increases circulating levels of GDF15, which explains the role of metformin in
energy balance and body weight control [64–67] (Figure 1). In conclusion, GDF15 may
represent a future target therapy for T2DM and obesity.
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2.2.6. Metformin and Platelet-Derived Growth Factor (PDGF)

The PDGF signalling pathway is one of the pathways used in activating hepatic stel-
late cells (HSC) [68]. PDGF-BB, a subtype of the PDGF family, is induced by the most
potent stimulator of HSC growth and intracellular signal transduction [68]. PDGF activates
extracellular signal-regulated kinase and the protein kinase B (Akt)/mammalian target of
rapamycin (mTOR) pathways, which are serine/threonine protein kinases which are crucial
in cell growth, differentiation, proliferation, migration, and survival [68]. Metformin acti-
vates AMPK to regulate PDGF-BB-induced phenotypic changes in HSC activation [69,70].
Adachi et al. demonstrated that metformin inhibits PDGF-induced phosphorylations, re-
sulting in the inhibition of HSC proliferation and migration and a reduction in extracellular
matrix secretions consisting of type I collagen and fibronectin, which leads to the inhibition
of fibrosis [69,71].

2.2.7. Metformin and Mitochondria

Mitochondria are crucial in the energetic homeostasis of cells. Subjects affected by
T2DM have a reduction in number of mitochondria and their respiratory activity in the
liver and other metabolic tissues, and mitochondrial dysfunction is implicated in the
development of T2DM [72].

Human studies discovered that metformin promoted mitochondrial respiratory chain
activity in various tissues [73,74]; in this context, it has been found that metformin signifi-
cantly increased mitochondrial complex 1 activity in the livers of mice [75,76]. Consequently,
pharmacological metformin concentrations increased mitochondrial oxidative phosphoryla-
tion in liver cells [76,77] and promoted mitochondrial fission through the phosphorylation
of mitochondrial fission factor and the recruitment of dynamin-related protein 1 (DRP1)
by AMPK [76,78]. In liver-specific Drp1 knockout mice, a marked reduction in mitochon-
drial respiration was observed, associated with increased lipid accumulation [76]. Since
mitochondrial fission is connected with oxidative phosphorylation, metformin-mediated
mitochondrial fission increases nutrient oxidation in mitochondria. In addition, metformin-
promoted fission eliminates compromised mitochondria via mitophagy to maintain a
healthy mitochondrial population [79].

2.2.8. Regulation of Lipid Metabolism

Metformin also has a role in the regulation of lipid metabolism. Indeed, in patients
with T2DM or insulin resistance, high insulin levels are related to the dysregulation of
intestinal lipoprotein metabolism [80–83]. The expression of lipogenic genes involved in de
novo lipogenesis is controlled by the sterol regulatory element-binding protein-1c (SREBP-
1c) expressed in the jejunum and ileum [84]. SREBP-1c is positively regulated by insulin and
negatively by AMPK and promotes enzymes, i.e., acetyl-CoA carboxylase (ACC1) and fatty
acid synthase (FAS), which are involved in de novo fatty acid synthesis [85,86]. Metformin
can reduce intestine-derived triglyceride-rich lipoproteins measured in the plasma (−50%
chylomicrons and−20% chylomicron remnant lipoprotein fractions) of T2DM patients [83].
Moreover, metformin induced a small decrease in mRNA expression of SREBP-1c and
ACC1, causing a moderate amelioration of intestinal lipid homeostasis [82]. In addition,
a reduced chylomicron concentration could also be determined by an increased GLP-1
concentration in the intestine, leading to a reduction in apo B-48, triglyceride availability,
and chylomicron secretion [87,88].

Furthermore, in the liver, the activation of AMPK provided by metformin is con-
nected to the modulation of cholesterol synthesis, as the phosphorylation of 3-hydroxy-
3-methyl-glutaryl-coenzyme A reductase (HMGCR) leads to a reduction in cholesterol
biosynthesis [89]. Other than the phosphorylation of AMPK, in hepatoma cells of rats,
downregulated mRNA levels of HMGCR and HMG-CoA synthase (HMGCS) were iden-
tified; this phenomenon was detected with high doses of metformin [90], but it was not
registered with lower doses. The inhibition of HMGCR was associated with decreased
triglycerides and LDL levels in plasma [91]. Unfortunately, a minimal reduction in HMGCR
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activity in human-cultured fibroblasts was detected with metformin treatment [92]. On
the one hand, in 1983, Scott et al. demonstrated that hepatic HMGCR was not affected by
metformin treatment; on the other hand, intestinal HMGCR showed a reduction in activity
of 62%. The Acyl-CoA cholesterol acyltransferase (ACAT) in the catalysis of cholesterol
esters also showed decreased activity (−35%) [93]. In this context, the action of metformin
in regulating lipid metabolism is mainly explained by its activity in the intestine. Accord-
ingly, inhibiting the intestinal absorption of bile acids mediated by metformin determined
an increased synthesis of bile acids in the liver, and cholesterol is used for this process,
leading to a reduction in cholesterol inside the hepatocytes [94,95]. The up-regulation of
the LDL receptor may increase the uptake of lipoproteins, restoring an adequate cholesterol
concentration in the liver. Hereby, metformin may indirectly decrease LDL and total plasma
cholesterol concentrations [96].

3. Metformin in Clinical Practice

3.1. Efficacy of Metformin in Liver Diseases

3.1.1. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)

Preclinical studies have shown that metformin has beneficial effects in animal models
of MASLD, reducing hepatic steatosis, inflammation, and fibrosis [97]. Treatment with
metformin might reverse fatty liver disease in obese, leptin-deficient mice by inhibiting
the hepatic expression of tumour necrosis factor (TNF)-α and TNF-inducible factors that
promote hepatic lipid accumulation and ATP depletion [98]. Despite promising data on
animal models, clinical studies evaluating the efficacy of metformin in MASLD have yielded
mixed results.

Clinical studies demonstrated that metformin significantly reduces liver enzymes,
improving aspartate and alanine amino-transferase (AST and ALT) levels [99–110]. Three
studies also testified to improvements in MASLD after metformin treatment in 2010, 2013
and 2019, in which a reduction in intrahepatic fat content was assessed by ultrasonogra-
phy [111–113]. Furthermore, metformin improved the amount of fat measured by controlled
attenuation parameter (CAP, performed with FibroScan™) after three and five months
of therapy [114]. Several meta-analyses confirmed that metformin ameliorates MASLD,
improving ALT and AST levels [115–117]. These data have also been confirmed by a recent
meta-analysis published in 2022, in which metformin decreased circulating ALT and AST
levels [115].

On the other hand, some studies did not show significant improvements in ALT and
AST levels after metformin treatment [118–121]. Similarly, in a trial published in 2023,
metformin was demonstrated to be less effective in reducing GGT levels and fat content
measured with CAP in patients with a new diagnosis of T2DM [122]. In a randomised,
double-blinded, placebo-controlled clinical trial conducted on 173 patients (8–17 years)
with biopsy-confirmed MASLD, metformin was not superior to the placebo in achieving a
sustained reduction in ALT levels [123]. In this context, in two systematic reviews and meta-
analyses, metformin did not ameliorate ALT levels [4,124]. Moreover, hepatic fat content,
evaluated by ultrasonography, computed tomography, and proton magnetic resonance
spectroscopy, did not improve after 16–48 weeks of metformin therapy compared with the
baseline [125]. Finally, in a meta-analysis including four randomised controlled trials (RCTs)
with 309 paediatric patients with MASLD, treatment with metformin failed to improve
liver enzymes statistically, but was beneficial in enhancing lipid parameters and insulin
metabolism [126].

In conclusion, the heterogeneity across study designs, patient cohorts, and treatment
regimens may underlie the observed outcome disparities. Nevertheless, we also suggest
what was emphasised in the meta-analysis mentioned, demonstrating that metformin
could be a potential modality for reducing liver enzyme elevation and decreasing hepatic
fat content.
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3.1.2. Metabolic Dysfunction-Associated Steatohepatitis (MASH) and Fibrotic-MASH

Currently, there is no standardised treatment for MASH, and drugs that counteract
insulin resistance, necro-inflammatory activity, and fibrosis have been used to reduce
inflammation and fibrosis.

In 2004, Nair et al. conducted a pilot trial and demonstrated that one year of therapy
with metformin improved the histological features of liver steatohepatitis (steatosis, inflam-
mation and fibrosis), which was proven by biopsy [109]. Loomba et al. and Torres et al.
later confirmed this data in two trials [101,106]. In 2019, an open-label randomised trial
conducted for 48 weeks, including patients with biopsy-proven MASH, demonstrated that
the association between N-acetylcysteine and metformin could reduce liver disease activity
in patients with MASH, testified by the improvement in ballooning and NAS [127], and in
a randomised, double-blind, placebo-controlled trial conducted on 173 children affected
by MASLD, metformin (−0.3 vs. 0.1) and vitamin E (−0.5 vs. 0.1) significantly improved
the ballooning degeneration score compared with the placebo [123]. In a retrospective
study including 1292 patients with T2DM, 48 out of 83 patients (57.8%) who had advanced
fibrosis (defined by Fibrosis-4 index > 2.67) experienced a regression of fibrosis after two
years of treatment with metformin. Unfortunately, this study lacks a control group and uses
a surrogate marker for liver fibrosis [128]. However, in 2009, in a randomised controlled
trial, it was demonstrated that combined therapy with metformin and pentoxifylline vs. a
prescriptive diet was not associated with a statistical difference between the two groups in
terms of histological parameters, although there was a tendency for NAS to be reduced in
the metformin plus pentoxifylline group [129].

In a group of 166 paediatric patients affected by MASLD/MASH, Gawrieh et al. no-
ticed that ELF (enhanced liver fibrosis score), useful for detecting different stages of fibrosis,
did not show a significant decrease with fibrosis improvement since neither vitamin E nor
metformin resulted in substantial improvement in fibrosis [130]. In a randomised open-
label study involving 64 patients with T2DM or impaired glucose tolerance, no substantial
improvement in histological parameters was detected by liver biopsy, even though only
ten patients out of twenty-two patients were biopsied and treated with metformin [105].

On the other hand, in an open-label, randomised trial, including 55 non-diabetic
patients who received metformin and 12 patients and 28 controls who received vitamin E
or a weight-reducing diet, the histological assessment showed a significant improvement in
fibrosis and necro-inflammation when compared to baseline. Unfortunately, a liver biopsy
was only performed in the metformin group [104].

Many systematic reviews have been conducted, and globally, it has been concluded
that there is insufficient evidence to support metformin’s efficacy in treating
MASH [124,131]. Even in a previous meta-analysis of nine randomised controlled trials,
it was found that metformin improved liver histologic scores for steatosis and ballooning
without any significant improvement in fibrosis and lobular inflammation [132]. Recently,
Mantovani et al. [133] evaluated the use of metformin (1000–2000 mg/die) in six RCTs
(573 individuals treated for a median of 9 months; 5/1 study on adults/children) and
concluded that, except for the paediatric trial, metformin showed a small beneficial effect
on histologic steatosis and inflammation but not on liver fibrosis. When evaluated by
imaging, the impact of metformin on steatosis was neutral, as it was on BMI, whereas it
was associated with a significant reduction in serum aminotransferase levels (especially
serum ALT) and an improvement in HbA1c levels [133].

In summary, although several studies tested metformin for MASH treatment, not all
are methodologically sound. The actual evidence shows that the use of metformin does not
lead to any significant improvement in histological parameters such as steatosis, ballooning,
and lobular inflammation. Therefore, further research and investigations are required to
fully understand its potential benefits for MASH improvement.
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3.1.3. Advanced Chronic Liver Disease (Cirrhosis) and Complications

Advanced chronic liver disease (ACLD) is the end-stage of chronic liver disease
characterised by extensive fibrosis and the disruption of normal liver architecture. ACLD
is associated with numerous complications, such as portal hypertension, ascites, hepatic
encephalopathy, and an increased risk of hepatocellular carcinoma (HCC). Metformin has
been shown to have potential effects on liver fibrosis and disease progression [134], but the
exact mechanisms are not fully understood. Insulin resistance is commonly observed in
ACLD-related MASLD and is associated with disease progression [68]. Metformin’s ability
to improve insulin sensitivity may have implications for slowing down the progression
of cirrhosis [135]. Additionally, the anti-inflammatory effects of metformin and its role in
reducing oxidative stress could attenuate the inflammatory response and fibrogenesis seen
in cirrhosis [136].

Portal Hypertension-Related Complications

The development of portal hypertension (PH) is a major inflexion point in the natural
progression of ACLD, conferring the risk of hepatic decompensation with ascites, variceal
bleeding, and other PH-related syndromes [137]. Mechanistically, PH is caused by increased
intrahepatic vascular resistance due to the distortion of liver architecture by fibrosis, a
dynamic increase in sinusoidal tone, and progressive splanchnic vasodilation [137]. PH and
clinically significant portal hypertension (CSPH) are defined by hepatic venous pressure
gradients (HVPG) of ≥5 mmHg and ≥10 mmHg, respectively [138]. In a trial conducted by
Triphati et al., cirrhotic mice models were treated with metformin, resulting in a reduction
in portal pressure [139]. Studies in rodents suggest that metformin increases hepatic nitric
oxide bioavailability, potentially through AMPK-dependent mechanisms that ultimately
reduce hepatic vascular resistance [139–142]. Also, in a murine model of cirrhosis, met-
formin was associated with reduced liver fibrosis and intrapulmonary shunts [143]. Based
on these observations, in 2021, Ritting et al. observed that HVPG was acutely reduced after
administering metformin to 16 cirrhotic patients, compared to placebo [144]. In conclusion,
based on limited evidence, metformin improves HVPG and may reduce complications
related to high portal pressure in patients with ACLD.

Hepatic Encephalopathy

Hepatic encephalopathy is a syndrome characterised by anxiety, cognitive, memory,
and learning impairment, balance problems, and personality changes; it may eventually
result in a coma and, ultimately, death [145]. This deterioration of brain function is due to
the liver’s incapacity to remove blood toxins, such as ammonia and lipopolysaccharides,
which causes systemic inflammation and activation of the circulatory neutrophils [146].
Then, ammonia and other toxic agents move to the brain, generating pathological changes
such as neuroinflammation and neuropathy [147]. Because metformin contributes to intesti-
nal barrier integrity and prevents bacteria translocation from the gut to the bloodstream, it
may have a role in preventing hepatic encephalopathy [148].

Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and a major
global health concern [149,150]. It is closely associated with ACLD. Metabolic disorders,
such as obesity, T2DM, and insulin resistance, have emerged as significant risk factors for
the development and progression of HCC [151].

Metformin, in addition to its role as an antidiabetic agent, has garnered attention for
its potential anticancer properties in several neoplasia [152–156], although the mechanisms
underlying its anticancer effects are not fully understood [26]. Preclinical studies using
in vitro and in vivo models have provided valuable insights: metformin might inhibit
cell proliferation [157] by inducing cell cycle arrest [158], and promoting apoptosis [159]
through the AMP-activated protein kinase (AMPK) pathway [160], the mammalian target
of rapamycin (mTOR) pathway [157], and the insulin-like growth factor (IGF) signalling
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pathway [161]. Metformin has also been found to inhibit angiogenesis [162], reduce cancer
stem cell properties, and enhance the efficacy of conventional anticancer therapies [154].
Metformin also has indirect antitumoral effects due to its ability to reduce insulin and
insulin-like growth factor 1 (IGF-1) levels and to influence metabolic pathways such as lipid
metabolism and inflammation [15], which are known to promote HCC tumour growth and
proliferation [162–165].

In this context, Kaplan et al. demonstrated a null association between metformin
therapy and the occurrence of HCC [166]. On the other hand, concerning the risk of HCC
development, You et al. reported metformin to be potentially chemopreventive [167].
In 2017, a meta-analysis of nineteen studies (two RCTs, ten cohorts, seven case-control
studies) involving patients with T2DM showed that metformin reduces the risk of HCC
by 48% in patients treated with metformin (OR = 0.52; 95% CI: 0.40–0.68), compared with
non-users [168]. Later, Li et al. also confirmed the association between metformin and a
decreased risk of HCC in subjects with T2DM [169], but a 2023 meta-analysis by Zeng et al.
failed to reach statistical significance (HR: 0.57; 95% CI: 0.31–1.06) [170].

Metformin has also been associated with increased survival in patients with HCC, as
shown by a meta-analysis including six retrospective cohort studies [171]. Treatment with
metformin was associated with longer overall survival at one (OR = 2.62, 95% CI: 1.76–3.90),
three (OR = 3.14, 95%CI: 2.33–4.24), and five years (OR = 3.31, 95%CI: 2.39–4.59), and with
significantly longer recurrence-free survival at one (OR = 2.52, 95%CI: 1.84–3.44) and three
years (OR = 2.87, 95%CI: 2.15–3.84) but not at five years (OR = 2.26, 95%CI: 0.94–5.45) after
curative treatment including hepatic resection and radiofrequency ablation therapy. These
data were confirmed in 2022 by a meta-analysis in which metformin utilisation after HCC
curative treatment increased 3-year [OR = 1.50, 95% CI: 1.22–1.83] and 5-year (OR 1.88,
95% CI: 1.47–2.41) overall survival and decreased 1-year (OR = 1.31, 95% CI: 1.08–1.59),
3-year (OR = 1.88, 95% CI: 1.48–2.37), and 5-year (OR = 1.83, 95% CI: 1.40–2.40) recurrence
rates [172]. On the other hand, metformin treatment was not associated with prolonged
overall and recurrence-free survival after non-curative HCC treatment (systemic therapy
with sorafenib) compared to insulin treatment [171].

Clinical studies are being conducted to investigate the potential of metformin in treat-
ing HCC. Recent studies have reported that patients with HCC treated with metformin
showed improved overall and recurrence-free survival. Due to its immunomodulatory
properties, metformin could be combined with other therapeutic strategies for HCC man-
agement. However, further studies are necessary to fully understand the potential of
metformin treatment in HCC [173].

3.2. Potential Preventive Effects of Metformin in High-Risk Populations

Different studies have investigated the effect of metformin in populations at increased
risk of MASLD. Metformin has also been associated with a reduction in the prevalence of
metabolic syndrome and liver involvement in a study including 140 overweight patients
with hyperinsulinemia and PCOS treated with metformin for 12 months [174]. Four meta-
analyses, including studies on the use of metformin in MASLD, revealed substantial
improvement in blood cholesterol levels, fasting plasma glucose, and haemoglobin A1c
(HbA1c), suggesting that metformin can be helpful as a treatment against MASLD risk
factors [8,124,175,176]. Huang et al. [115], in a meta-analysis with network pharmacology—
a discipline which attempts to understand drug actions and interactions with multi-
ple targets—including ten studies (both RCTs and non-RCTs) involving 576 patients
with MASLD, highlighted an association between metformin and reduced triglyceride
(TG) levels (mean decrease (MD) = −0.17, 95% CI = −0.26 to −0.08), total cholesterol
(MD = −0.29, 95% CI = −0.47 to −0.10), and insulin resistance (MD = −0.42,
95% CI = −0.82 to −0.02). The authors found no association with reduced body mass
index (BMI (MD = −0.65, 95% CI = −1.46 to 0.16). On the other hand, in another network,
a meta-analysis by Huang et al. [177], including twenty-two RCTs involving 1377 patients,
a poor performance was observed for metformin when compared to other antidiabetic
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drugs such as the GLP-1 receptor agonist for hepatic fat content, the MASLD activity score,
ALT, AST, GGT, and body weight. In conclusion, despite its insulin-sensitizing activity,
metformin has not been proven to play a role in MASLD prevention in clinical studies.

3.3. Drug-Induced Liver Injury (DILI) and Chemical-Induced Liver Injury

DILI refers to various types of liver injury during medication exposure, resulting
from metabolite hepatotoxicity or poor drug tolerance in specific patient populations. The
incidence is increasing yearly in China and Western countries due to substance abuse [178].
DILI is the most common cause of acute liver failure [179]; chemical hepatotoxicants
determine chemical-induced liver injury and are similar to DILI in terms of mechanism.

In Western countries, acetaminophen (APAP) overdose is the most frequent cause
of DILI and acute liver failure [180]; this event is related to excessive APAP consump-
tion, which is converted to N-acetylbenzoquinone imine (NAPQI) by hepatic cytochrome
P4502E1. It consumes reduced glutathione in mitochondria, and the remaining NAPQI
then reacts to form covalent links with biological macromolecules, proteins in particular,
resulting in mitochondrial damage and necrotic cell death. This phenomenon increases
radical oxygen species (ROS) production, determining Jun N-terminal kinase (JNK) phos-
phorylation and activation, which contributes to liver cell death [181]. It has been found
that metformin has a protective role against APAP overdose-provoked hepatotoxicity via
growth arrest and DNA damage 45β (GADD45β)-dependent JNK regulation. Metformin
can enhance the expression of growth arrest and GADD45β to inhibit the phosphorylation
of mitogen-activated protein kinase 4, inhibiting JNK phosphorylation to protect hepa-
tocytes from oxidative damage [182]. However, another study reported that metformin
does not prevent JNK activation or mitochondrial JNK translocation but reduces APAP
protein adducts in mitochondria. Moreover, metformin inhibits mitochondrial respiratory
chain complex I, which reduces proton leak and ROS generation in liver cell mitochondria,
thereby reducing hepatocyte apoptosis to treat DILI [183].

Metformin is also protective against chemical-induced liver injury. D-galactosamine in-
creases Lipopolysaccharides (LPS) and Tumor Necrosis Factor α (TNF-α), determining liver
injury. Metformin is able to decrease inflammatory indicators such as myeloperoxidase and
malondialdehyde by promoting the classic AMPK signalling pathway to inhibit apoptosis
induced by LPS and TNF-α, thus mitigating liver damage [184,185]. Furthermore, arsenic
trioxide, a chemotherapy substance used to treat promyelocytic leukaemia, causes liver
injury by generating ROS, while metformin can inhibit mitochondrial respiratory chain
complex I and increase NAD+/NADH ratio, protecting against arsenic trioxide damage.
Moreover, metformin can inhibit carbon tetrachloride-induced hepatotoxicity, possibly
connected with the increase in glutathione in hepatocyte mitochondria [186].

4. Adverse Effects and Safety Profile of Metformin in Liver Disease Management

4.1. Common Side Effects of Metformin

Metformin tolerance is limited by the side effects experienced by many patients. The
most common are gastrointestinal tract disorders such as diarrhoea, nausea, vomiting,
flatulence, abdominal pain, and loss of appetite. Approximately 25–30% of patients report
these effects, leading to treatment withdrawal in 5% of cases [28], although the modified-
release formulation is more tolerable [187].

4.1.1. Gastrointestinal Side Effects

Different pathophysiological hypotheses have been proposed to explain metformin-
induced gastrointestinal effects. These theories include genetic variations in the transporter,
stimulation of the intestinal secretion of serotonin, production of lactic acid by the intestinal
mucosa, bile-salt malabsorption, and changes in the microbiome [188].

Among the pharmacokinetic mechanisms, genetic variations in the organic cation
transporter-1 (OCT1) seem to be involved [189]. OCT1 is predominantly expressed in the
liver but plays an important role in transferring metformin from the gut lumen to the
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interstitium. According to recent papers, this would take place on the apical surface of
intestinal epithelial cells, with PMAT (plasma membrane monoamine transporter) and SERT
(serotonin transporter) [190] being actively involved. In the GoDARTS study, individuals
with two reduced-function OCT1 alleles who were treated with OCT1 inhibitors, such as
tricyclic antidepressants, citalopram, proton-pump inhibitors, and spironolactone, were
over four times more likely to develop intolerance [189]. OCT3, another member of the
solute carrier family 22 (SCL22), is instead mainly expressed in the skeletal muscle but is
also expressed in the intestine, and it is associated with metformin efflux in the salivary
glands, leading to dysgeusia during metformin treatment [191].

Serotonin released by mucosal enterochromaffin cells stimulates 5-hydroxytryptamine
receptors number 3 (5-HT3) and 5-HT4 to induce or augment peristalsis and propul-
sion [192]. Metformin may cause gastrointestinal side effects by inhibiting the SERT-
mediated serotonin re-uptake due to increased gastrointestinal motility induced by sero-
tonin [189,192].

Diarrhoea associated with metformin treatment could also result from the osmotic
effect of increased luminal bile salt. Bile acid absorption in the ileum is an active process
involving the nuclear farnesoid X receptor (FXR), which can be phosphorylated by AMPK,
decreasing FXR transcription. Through AMPK activation, metformin could be responsi-
ble for increased bile salt presence in the intestinal lumen, leading to alterations in the
microbiome and stool consistency [193].

Concerning the microbiome, adverse gastrointestinal effects could be mediated by the
relative abundance of Escherichia spp. in people treated with metformin [194]. Escherichia
spp. has been functionally associated with gas metabolism, and the prevalence of bloating
and flatulence in people treated with metformin is around 25% and 8%, respectively [195].
Akkermansia’s presence increases with metformin treatment, contributing to maintaining
intestinal barrier integrity, but it is unclear whether it plays a role in the development of
gastrointestinal side effects (Figure 2).

Most common side effects and contraindications of metformin and metformin

liver biopsy, making it difficult to mon-

to treatment, specifically NAS scores. Research has shown that metformin affects 

tumour effects by reducing insulin and insulin

impact lipid metabolism and inflammation, which play a role in hepatocarcinogenesis. 

if it reduces hepatic fibrosis and improves survival or slows disease progression.

Figure 2. Most common side effects and contraindications of metformin and metformin-associated
lactic acidosis (MALA).

4.1.2. Metformin Associated Lactic Acidosis (MALA)

MALA is a rare condition resulting in altered lactate and hydrogen metabolism defined
as pH < 7.35 and lactate > 5.0 mmol/L in the setting of metformin use or overdose [196]. A
proposed mechanism suggests that metformin reduces mitochondrial complex activity, in-
creasing enterocyte glycolysis and lactate production to maintain energy homeostasis [197].
In the incidental form of MALA, predisposing pathophysiological conditions determine
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supratherapeutic metformin levels in plasma; in particular, this situation occurs in the
presence of chronic comorbidities such as kidney, liver, and heart failure, shock, and critical
illness [196]. The risk is minimised when metformin is used appropriately, the dosage is
adjusted according to kidney function, and contraindications are considered [198]. The
exact mechanism by which metformin can contribute to lactic acidosis has yet to be fully
understood [199]. Metformin inhibits mitochondrial complexes in the electron transport
chain, leading to decreased aerobic metabolism and a subsequent increase in lactate pro-
duction; if lactate clearance is impaired due to conditions such as kidney dysfunction,
lactate accumulation in the blood may occur [200]. Moreover, although reduced gluconeo-
genesis is a desired effect in managing T2DM, it can potentially lead to lactic acidosis if
glucose metabolism is compromised and lactate production increases [201]. In conclusion,
lactic acidosis is not necessarily exclusively due to metformin accumulation, and the over-
all prognosis depends on the underlying conditions [202] (Figure 2); elevated alcoholic
consumption is connected to an increased risk of MALA [203].

4.2. Safety of Metformin in Patients with Liver Disease

Despite the potential benefits of metformin, the FDA’s official ‘label’, under ‘Warnings
and Precautions’, warned against its use in hepatic impairment due to the risk of lactic
acidosis [204]. This advice derives from historical concerns that the reduced hepatic
clearance of lactate in chronic liver disease may enhance the risk of lactic acidosis associated
with metformin therapy [205,206], but the evidence supporting this warning is limited. In
1979, Woll reported that subjects with ACLD had a prolonged lactate half-life compared
to a control group [206]; in 2012, Jeppesen et al. recruited 142 individuals with ACLD
and 14 healthy controls and demonstrated that, after stimulation with galactose, lactic
acid levels were more elevated in cirrhotic individuals than in the control group. Lactate
levels seemed to increase with the severity of ACLD [205]. The mildly elevated plasma
lactate levels in ACLD subjects vs. those without ACLD with lesser degrees of fibrosis may
stem from a major decrease in hepatic blood flow and, thus, reduced hepatic uptake and
elimination of lactate [205].

On the other side, in 2020, Smith and al., in a cross-sectional study evaluating the
safety of metformin in patients affected by all-cause CLD, with or without T2DM [204],
reported that metformin and lactate levels in plasma remained below the considered
safety thresholds of 5 mg/L and 5 mmol/L, respectively. Considering that only lactate
concentrations above 5 mmol/L are related to a major risk of lactic acidosis [25,206–208],
when the dose of metformin is chosen to be in line with renal function, plasma metformin
concentrations stay below 5 mg/L [209]. This evidence is consistent with the findings of the
Smith group, where the metformin levels in all patients did not exceed the range according
to their renal function [204]. In conclusion, suitable doses of metformin are not associated
with unsafe plasma lactate and metformin levels in individuals with ACLD [204].

4.3. Monitoring Guidelines for Patients on Metformin Therapy

Metformin was first approved in the United States in 1995 [210] and has long been
considered as a first-line therapy by the American Diabetes Association (ADA) and the Eu-
ropean Association for the Study of Diabetes [211], as well as by the American Association
of Clinical Endocrinologists and American College of Endocrinology (AACE/ACE) [212].
Many new drug classes have been approved in the last few years; despite the availability
of these new agents, metformin continues to be the first-line agent for most patients with
T2DM [24], with the notable exclusion of patients with heart failure. When compared with
other glucose-lowering drugs, cardiovascular mortality was lower among metformin vs.
sulfonylureas users, without any increase in body weight [213].

4.3.1. Serum Creatinine Level Monitoring

Metformin was initially contraindicated for patients with renal disease due to con-
cerns about lactic acidosis, and in the United States, it was recommended that metformin
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should be avoided in patients with a serum creatinine level > 1.4 mg/dL in women and
>1.5 mg/dL in men [214].

Despite the restrictions, substantial evidence indicates that prescribers have continued
to use metformin in patients with contraindications. The Diabetes Audit and Research in
Tayside Scotland/Medicines Monitoring Unit (DARTS/MEMO) retrospectively tested the
use of metformin in 691 patients with T2DM who developed contraindications, defined as
two recordings of serum creatinine > 1.7 mg/dL on different days within 4 weeks. Only 10%
discontinued therapy [214]. Despite the high number of patients treated with metformin in
the presence of contraindications, only one episode of lactic acidosis occurred [214]. This
patient was 72 years old, and the lactic acidosis was attributed to renal failure and acute
myocardial infarction with massive myocardial damage [214].

Ekström et al. evaluated the Swedish National Diabetes Register to determine the
safety and efficacy of metformin in patients with T2DM and varying levels of renal func-
tion [215]. Metformin had a lower incidence of any acidosis and severe infection in the
range of the estimated glomerular filtration rates (eGFRs) of the 45 to <60 mL/min/1.73 m2

and eGFR ≥ 60 mL/min/1.73 m2 groups, with adjusted hazard ratio (HR) = 0.85 (95% CI =
0.74 to 0.97) and adjusted HR 0.91 (95% CI = 0.84 to 0.98), respectively [215]. Metformin
was also associated with reducing all-cause mortality in the eGFR ≥ 60 mL/min/1.73 m2

group with an adjusted HR of 0.87 (95% CI = 0.81 to 0.94) [215]. These subgroup analyses
did not reveal any increased risk of CVD, any acidosis, or severe infection, or all-cause
mortality from metformin monotherapy [215].

A Cochrane review confirmed the incidence of lactic acidosis in those treated with
metformin compared to those who were not. There were no fatal or non-fatal lactic acidosis
cases in the metformin users group and the non-metformin group [215].

In the years between 2012 and 2015, in response to the evidence of continued use
in renal insufficiency and its safety in doing so, as well as citizens’ petitions, the FDA
decided to change the renal restrictions on the use of metformin in mild to moderate
kidney disease [216]. They now recommend using eGFR instead of serum creatinine to
determine if a patient with reduced renal function can safely take metformin. The new
recommendation states that metformin is contraindicated in patients with an eGFR <
30 mL/min/1.73 m2 [217]. Metformin treatment should not be initiated in Those with
an eGFR between 30 and 45 mL/min/1.73 m2 [217]. If the eGFR falls between 30 and
45 mL/min/1.73 m2 during metformin treatment, providers should assess the risks and
benefits associated with continued use [217]. The AACE/ACE consensus statements on
diabetes management agree with the FDA statement but recommend a reduced metformin
dose in those with an eGFR between 30 and 45 mL/min/1.73 m2 [212].

In conclusion, new changes continue to occur regarding metformin use and moni-
toring. Prescribers should use eGFR cut-off points to determine the appropriateness of
metformin therapy in patients with renal dysfunction. In patients with an eGFR of 30
to 45 mL/min/1.73 m2, the FDA recommends that metformin use should be continued
with an increased frequency of monitoring of renal function. The available data indi-
cate that metformin can reduce mortality, even in those with an eGFR between 30 and
60 mL/min/1.73 m2, and should not be used for those with an eGFR < 30 mL/min/1.73 m2

(Figure 2).

4.3.2. Vitamin B12 Monitoring

Since the early 1970s, vitamin B12 deficiency has been reported with metformin
use [218,219], with an incidence as high as 9.5% to 31% [218,220]. There is some concern
about interpreting the incidence reported from these studies, as there is a wide variation
in the literature regarding the definition of vitamin B12 deficiency. The exact mechanism
is unknown, but it is theorised that metformin antagonises the calcium cation required in
the ileal absorption of the vitamin [221]. In evaluating potential risk factors for metformin-
induced vitamin B12 deficiency, the dose of metformin and its duration are two of the most
significant risk factors for its development [221]. As some of the manifestations of vitamin
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B12 deficiency can occur as complications in diabetes, it is important to properly evaluate a
patient treated with metformin for vitamin B12 deficiency. The neurologic manifestations of
an untreated vitamin B12 deficiency can be irreversible, so identification and treatment (by
oral or intramuscular route) are prudent [222]. A Cochrane review set out to determine the
difference in efficacy of oral versus intramuscular vitamin B12; it concluded that the oral
supplementation was as efficacious as the intramuscular route in achieving a hematologic
response [223]. Prophylactic treatment was also suggested in patients at risk, particularly
in patients undergoing gastric bypass surgery [224]. Serum levels of vitamin B12 should be
obtained from those treated with metformin doses >1000 mg/day and those treated for an
extended duration greater than 3 years (Figure 2).

5. Conclusion and Future Perspectives

Most studies on metformin use for the treatment of T2DM, impaired fasting glucose,
and decreased glucose tolerance did not involve a liver biopsy, making it difficult to monitor
the progression of MASLD/MASH accurately. Performing a liver biopsy before metformin
therapy in patients with T2DM could provide valuable insights into their response to
treatment, specifically their NAS scores. Research has shown that metformin affects various
pathways involved in cancer development and progression, including AMP-activated
protein kinase, mammalian target of rapamycin, and insulin-like growth factor signalling.
Metformin also has indirect anti-tumour effects by reducing insulin and insulin-like growth
factor 1 levels, which promote tumour growth and proliferation. It can also impact lipid
metabolism and inflammation, which play a role in hepatocarcinogenesis. Therefore, it is
worthwhile to examine the safety of metformin in patients already diagnosed with HCC
and its potential to halt or regress its progression. Additionally, studying the combination
of metformin with GLP1-receptor agonists (like liraglutide and semaglutide) commonly
used in patients with T2DM and obesity with cirrhosis can determine if it reduces hepatic
fibrosis and improves survival or slows disease progression.

In conclusion, metformin also may have a potential role in the management of
cholestatic liver disease due to its antioxidant actions (particularly via glutathione per-
oxidase enzyme) in an animal model with bile duct ligation-induced liver injury [225].
In this context, it is also relevant to the possible action of metformin with coordinated
p-cymene ligand incorporated into Ru-based organometallic anticancer agents, with the
aim of enhancing the cytotoxic activity of the complex.
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