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Abstract
In this manuscript we provide a representation in infinite dimension for stochastic
optimal control problems with delay in the control variable. The main novelty consists
in the fact that the representation can be applied also to dynamics where the delay in
the control appears as a nonlinear term and in the diffusion coefficient. We then apply
the representation to a LQ case where an explicit solution can be found.
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1 Introduction

In this paper we consider a class of stochastic optimal control problems where the
state equation is a stochastic delay differential equation in Rn of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = f

(

x(t), u(t),
∫ 0

−∞
〈α(r), u(t + r)〉dr

)

dt

+g

(

x(t), u(t),
∫ 0

−∞
〈β(r), u(t + r)〉dr

)

dW (t), t ≥ 0,

x(0) = x0 ∈ R
n,

u(s) = ϕ(s) ∈ R
k, s ∈ (−∞, 0),

(1.1)
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where W is a Brownian motion with values in R
m , x is the state variable with values

in R
n , u is a control process taking values in a suitable set U ⊂ R

k , x0 ∈ R
n is

the initial value of the state variable, ϕ ∈ L2(R−,Rk) is the initial given control,
f : Rn × U × R −→ R

n , g : Rn × U × R −→ R
m×n and α, β are L2(R−,Rk)

functions. The goal is to maximize, over all u ∈ U , the functional

J (x0, u) = E

[∫ ∞

0
e−ρt l

(

xx0,u(t), u(t),
∫ 0

−∞
〈γ (r), u(t + r)〉dr

)

dt

]

, (1.2)

where γ ∈ L2(R−,Rk) and l : Rn × U × R −→ R. The key feature of such class
of problems is the integral dependence of all the ingredients (coefficients f , g of the
state equation and running reward function l) on the path of the control u.

As in the case where the delay dependence is with respect to the state variable,
also the models that we address lack of Markovianity. Due to this fact, the dynamic
programming approach cannot be directly applied. To overcome this difficulty, when
it is the delay in the state variable but not in the control variable that appears in
the problem, one available approach consists in rephrasing the finite dimensional
problem in a Hilbert space setting, where the constituents of the new problem do
not present anymore a delay-type dependence. The benefit of this approach is to
recover Markovianity, hence to allow for an application of the dynamic programming
machinery.Clearly, there is a cost to pay in doing so, due to the fact that amore technical
theory is required, in particular for dealing with unbounded second-order Hamilton-
Jacobi-Bellman equations on Hilbert spaces. Nevertheless, such a theory has been
developed and is available for application (Fabbri et al. 2017). For stochastic optimal
control problems with a delay dependence on the state variable, but not on the control
variable, see Biffis et al. (2020), Biagini et al. (2022), Djehiche et al. (2022), De Feo
et al. (2023), Di Giacinto et al. (2011), Federico (2011), Federico and Tankov (2015),
Fuhrman et al. (2010), Masiero and Tessitore (2022), Pang and Yong (2019). Se also
Cosso et al. (2023); Ren and Rosestolato (2020); Cosso et al. (2023) for a different
approach, where no representation in Hilbert space is performed, but the problem,
presented in a path-dependent framework, is addressed via dynamic programming in
the original setting, but making use of the so-called pathwise derivatives (see Cont
and Fournie (2010a, b) for an account on this topic).

On the other hand, if we take into consideration models where we have a distributed
delay dependence,

as we do in the present work, the infinite dimensional representation trick to over-
come the lack of Markovianity is not obvious.

A way to do it is the one followed originally by Vinter and Kwong (1981), extended
in the stochastic case with additive noise in

Gozzi and Marinelli (2004), then recently generalized in De Feo (2023) by consid-
ering a nonlinear dependence on the present of the control variable in the diffusion
coefficient. In these works, the authors rephrase the original dynamics as an equiva-
lent abstract SDE in a Hilbert space, controlled now only on the present value of the
control variable. The drift of such an abstract controlled SDE is linearly dependent
on an unbounded linear operator acting on the infinite dimensional state variable. The
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setting thereby recovered is then suitable to apply the theory of optimal control in
infinite dimension, as developed in Fabbri et al. (2017).

Such a strategy to rephrase the problem strongly relies on the fact that the integral
dependence on the past of the control variable appears only linearly in the drift of
the original state dynamics. If in our model we used the same representation as in
Gozzi andMarinelli (2004), De Feo (2023), the corresponding abstract equationwould
show a nonlinear dependence, both in the drift and in the diffusion coefficient, on an
unbounded linear operator acting on the infinite dimensional state. This structure
would make the problem very much difficult, and untreatable, when referring to the
theory in Fabbri et al. (2017).

It is to overcome this issue, hence to let the delay dependence on the control appear
nonlinearly both in the drift and in the diffusion coefficient, that we present an alter-
native representation.

The starting point is the simple observation that the function

x1(t) =
∫ t

−∞
u(s)ds

(
u(s) = ϕ(s) for s ≤ 0

)

can be introduced as a second state variable to rewrite the integral dependence in (1.1)
and in (1.2) as

∫ 0

−∞
〈α(r), u(t + r)〉dr = 〈α(0),

∫ 0

−∞
u(t + r)dr〉 −

∫ 0

−∞
〈α′(r),

∫ r

−∞
u(t + s)ds〉dr

= 〈α(0), x1(t)〉 −
∫ 0

−∞
〈α′(r), x1(t + r)〉dr ,

(1.3)

and similarly for the other terms involving β, γ . The point is that in (1.3) there is no
more the control the variable u, but only the newly introduced state x1, whose dynamics
is trivially dx1(t) = u(t)dt . Of course, if we use (1.3) (and similarly for β, γ ) in (1.1)
and in (1.2), we still have to deal with a delay model: but now the delay is in the
state variable x1. This fact is important, because we can now perform the standard
representation in infinite dimnesion for models with delay in the state, and, as said
above, an unbounded linear operator will appear in the infinite dimensional dynamics,
but it will appear linearly and only in the drift coefficient. Of course, differently
from Gozzi and Marinelli (2004), in order to compute (1.3), we need some regularity,
meaning α, β, γ ∈ W 1,2(R−,R).

Using this approach, once the problem has been represented in an infinite dimen-
sional setting, one ends up with a structure that can be tackled by appealing to the
available theory for dynamic programming in infinite dimension, including the theory
of B-viscosity solution theory, as presented in Fabbri et al. (2017).

Concerning applications, themodel thatwepresent here canbe exploited for optimal
advertising. Within this field, a basic setting has been provided by the seminal papers
(Nerlove and Arrow 1962; Vidale and Wolfe 1957), then extended to the stochastic
case, in particular, by Grosset andViscolani (2004),Marinelli (2007),Motte and Pham
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(2021), Prasad and Sethi (2008). The delay in the control variable, representing the
advertisement spending, is then introduced, in our model as in Gozzi et al. (2009);
Gozzi and Marinelli (2004); De Feo (2023), in order to account for a delay effect
in the spending, often called carryover effect (see Gozzi et al. (2009); Hartl (1984);
Feichtinger et al. (1994)). A further extension of the stochastic linear model with delay
in the control, and additive noise, has been recently provided by Gozzi et al. (2024)
and Ricciardi and Rosestolato (2024), where a mean field term is introduced, in order
to account for non-competitive and competitive environments, respectively.

We point out that when the delay dependence on the control is not in an integral
form, aswe assumed in the discussion above, but e.g. pointwise, then the representation
infinite dimension in general more difficult to perform, and other strategies have to be
exploited (see e.g. Lefebvre and Miller (2021)).

The plan of the paper is the following. In Sect. 2 we introduce the needed notations.
In Sect. 3 we formulate the optimal control problem in finite dimension with delay
in the control variable. In Sect. 4 we introduce the infinite dimensional setting and
prove Theorem 6, which states the equivalence between the finite dimensional control
problem with delay in the control, introduced in Sect. 3, and an infinite dimensional
control problem, where there is no delay in the control variable. Finally, in Sect. 5,
we show how the representation of Sect. 4 can be used to find an explicit solution for
an LQ model, where both the drift and the diffusion coefficient of the state dynamics
depend on the path of the delay.

2 Notation and preliminaries

We fix natural numbers n, k,m, that will represent the dimension of the state variable,
the control variable, the Brownian motion, respectively. By Mn×m(R) we denote the
space of n×m matrices with real entries, endowed with the Frobenius norm. For finite
dimensional spaces, the Euclidean norm and scalar product will be always denoted
by | · | and 〈·, ·〉, respectively, without any subscript. We denote R

+ = [0,+∞)

and R
− = (−∞, 0]. If T is any topological space, BT denotes its Borel sigma-

algebra. We fix a filtered probability space (�,F ,F = {Ft }t∈R+,P) satisfying the
usual conditions, and anm-dimensional BronwianmotionW defined on it.We assume
F to be the completion of the natural filtration of W .
Given any separable Banach space (E, | · |E ), we introduce the following function
spaces.

(i) For p ≥ 1, L p(E) denotes the space L p(R−, E) of E-valued p-Lebesgue inte-
grable functions defined on R

−. Its usual L p-norm will be denoted by | · |L p .
(ii) For p ≥ 1 and any sub-sigma-algebra G ⊂ F , L p

G(E) denotes the space of G-
measurable random variables ξ such that

|ξ |p:=
(
E

[|ξ |pE
])1/p

< ∞.

(iii) For t ≥ 0, L0
F,t (E) denotes the space of {Fs}s∈[t,∞)-progressively measurable

processes X : � × [t,∞) → E endowed with the (quotient) metrizable topology
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associated to convergence in measure, when (�×[t,∞),F ⊗B[t,∞)) is endowed
with the product measure P ⊗ λ (λ is the Lebesgue measure).

(iv) For p ≥ 1 and 0 ≤ t ≤ T , L p
F,t,T (E) denotes the space of {Fs}s∈[t,T ]-

progressively measurable processes X : � × [t, T ] → E such that

|X |p,t,T :=
(

E

[∫ T

t
|Xs |pEds

])1/p

< ∞.

The couple (L p
F,t,T (E), | · |p,t,T ) is a Banach space.

(v) For p ≥ 1 and t ≥ 0, L p
F,t (E) denotes the Fréchet space of processes X ∈ L0

F,t (E)

such that |X |p,t,T < ∞ for all T > t .
(vi) For p ≥ 1 and 0 ≤ t ≤ T , Sp

F,t,T (E) denotes the Fréchet space of continuous

processes X ∈ L p
F,t,T (E) such that

‖X‖p,t,T :=
(

E

[

sup
s∈[t,T ]

|Xs |pEds
])1/p

< ∞.

(vii) For p ≥ 1 and t ≥ 0, Sp
F,t (E) denotes the Fréchet space of continuous processes

X ∈ L p
F,t (E) such that ‖X‖p,t,T < ∞ for all T > t .

If E, F are Banach spaces, the space L(E, F) of linear and continuous operators
E → F is considered as endowed with the operator norm, denoted by | · |L(E,F).
If K is a Hilbert space, its scalar product will be denote by 〈·, ·〉K . When K = L2(Rk),
we simply write 〈·, ·〉L2 .

We assume that the control variable takes value in a nonempty Borel set U ⊂ R
k .

The control processes that we take into consideration are those belonging to the set

U :=
{
u : � × R

+ → U such that u ∈ L2
F,0(R

k)
}

For given α : R− → R
k and β : R+ → R

k , and for given times t0, t ∈ R
+, t0 ≤ t , we

denote by α ⊗t0
t β the function R

− → R
k defined by

α ⊗t0
t β(s):=

{
α((t − t0) + s) if s ∈ (−∞,−(t − t0)]
β(t + s) if s ∈ (−(t − t0), 0].

Notice that, if ϕ ∈ L2(Rk) and u ∈ U , then ϕ ⊗t0 u = {ϕ ⊗t0
t u}t≥t0 belongs to

L2
F,t (L

2(Rk)).
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3 The optimal control problem

3.1 State equation

For an initial time t ∈ R
+, an inital state ξ ∈ L2

Ft
(Rn), and a control process u ∈ U ,

we consider a state process x evolving according to the following delayed controlled
stochastic differential equation:

⎧
⎪⎨

⎪⎩

dx(s) = f (x(s), u(s), 〈α, ϕ ⊗t
s u〉L2)ds + g(x(s), u(s), 〈β, ϕ ⊗t

s u〉L2)dW (s)

∀s ∈ (t,+∞)

x(t) = ξ

(3.1)

where we recall that 〈·, ·〉L2 denotes the scalar product in L2(Rk), and the data
f , g, α, β, ϕ are assumed to satisfy the following assumptions.

Assumption 1 The functions

f : Rn ×U × R → R
n and g : Rn ×U × R → Mn×m(R),

are such that

(i) f , g are measurable;
(ii) there exists a constant L such that

| f (x, u, r) − f (x ′, u, r)| ≤ L|x − x ′|
|g(x, u, r) − g(x ′, u, r)| ≤ L|x − x ′|

| f (0, u, r)| + |g(0, u, r)| ≤ L(1 + |u| + |r |)

for all (x, u, r) ∈ R
n ×U × R.

Assumption 2 (i) α, β are functions belonging to W 1,2(R−,Rk);
(ii) ϕ ∈ L1(Rk) ∩ L2(Rk) is such that

∫ ·
−∞ ϕ(r)dr ∈ L2(Rk).

Notice that Assumption 2(ii) is satisfied whenever ϕ ∈ L2(Rk) has compact support.
We have the following well-posedness result for the state equation and continuity

and growth properties of the strong solution.

Proposition 3 For t ∈ R
+, ξ ∈ L2

Ft
(Rn), and u ∈ U , there exists a unique strong

solution xt,ξ,u ∈ L0
F,t (R

n) of (3.1). Moreover, xt,ξ,u ∈ S2
F,t (R

n) and

(a) for any M > 1, there exists a constant C(M, L) depending only on M, L such
that

sup
u∈U

ϕ∈L2(Rk)

‖xt,ξ,u − xt,ξ
′,u‖2,t,T ≤ MeC(M,L)·(T−t) · |ξ − ξ ′|2

∀0 ≤ t ≤ T , ξ, ξ ′ ∈ L2
Ft

(Rn); (3.2)
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(b) there exists Ĉ = Ĉ(L, |α|L2 , |β|L2), depending only on L, |α|L2 , |β|L2 , and D̂ =
D̂(L), depending only on L, such that

‖xt,ξ,u‖2,t,T ≤ Ĉ
(
1 + |ξ |2 + |ϕ|L2(Rk ) + |u|2,t,T

) · eD̂·(T−t), (3.3)

for all ϕ ∈ L2(Rk), u ∈ U , 0 ≤ t ≤ T , and ξ ∈ L2
Ft

(Rn).

We omit the proof, since it based on standard arguments. To give the reader an
idea for (3.2), consider e.g. Proposition 2.8 in Cosso et al. (2023). There, the Lipschitz
constant is not expressed as in (3.2). Neverthless, by inspection, one can check that the
constant γ in Claim III of Proof of Proposition 2.8, at p. 2897 in Cosso et al. (2023),
can be arbitrarily close to 0, as long as ε is small enough. This fact entails that the
Lipschitz constant in Proposition 2.8 in Cosso et al. (2023) can be arbitrarily close to
1, as long as T − t is is small enough. This provides our M in (3.2), as long as T − t
is small enough. For general intervals [t, T ], one can use the estimate obtained for
small T − t , combined with the flow property of solutions. In this way one obtains the
exponential term in (3.2).

To obtain (3.3), with an explicit growth constant D̂, one can argue as in the proof
of (Fabbri et al. (2017), Proposition 3.24, p. 187).

3.2 Objective functional and value function

Weconsider a discount factorρ > 0 and a current reward function l : Rn×R
k×R → R

on which we impose the following assumptions.

Assumption 4 (i) The function l is measurable.
(ii) There exist constants a ≥ 0, 0 ≤ q ≤ 2, d > 0, θ > q such that

l(x, u, r) ≤ a(1 + |x |q + |r |q) − d|u|θ ∀u ∈ U , x ∈ R
n, r ∈ R.

(iii) ρ > 2D̂, where D̂ is as in (3.3).
(iv) γ is a function belonging to W 1,2(R−,Rk).

Under Assumptions 1 and Assumptions 4, from Proposition 3 we get the reward
functional J , given by

J (x0, u) :=E

[∫ ∞

0
e−ρt l

(
x0,x0,u(t), u(t), 〈γ, ϕ ⊗0

t u〉L2
)
dt

]

∀x0 ∈ R
n, u ∈ U ,

(3.4)

is well-defined as a function R
n × U → R.

We then consider the optimal control problem consisting in maximizing J over the
set of admissible controls U , for any given x0 ∈ R

n :

sup
u∈U

J (x0, u). (f-OCP)
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For x0 ∈ R
n , we define the value function

V (x0) := sup
u∈U

J (x0, u).

4 Representation in infinite dimension

Due to the dependence on the past of the control variable u, the finite dimensional
stochastic dynamics (3.1) is not Markovian. This feature entails that the standard
dynamic programming approach cannot be applied to the finite dimensional stochastic
optimal control problem (f-OCP). A classical workaround to regain Markovianity
consists in rephrasing the model in a functional space setting.

In order to do that, we start by introducing the Hilbert space

H :=R
n × R

k × L2(Rk),

endowed with the induced scalar product

〈z, y〉H = 〈z0, y0〉 + 〈z1, y1〉 + 〈z2, y2〉L2 ,

where z = (z0, z1, z2), z0 ∈ R
n, z1 ∈ R

k, z2 ∈ L2(Rk), and similarly for y.

4.1 Reformulation of the state equation in H

Then consider functions F̂,G, associated to b, σ , respectively, defined by

F̂ : H ×U → H , (z, u) �→ (
f
(
z0, u, 〈α(0), z1〉 − 〈α′, z2〉L2

)
, u, 0

)

G : H ×U → L(Rm, H), (z, u) �→ (
g(z0, u, 〈β(0), z1〉 − 〈β ′, z2〉L2

)
, 0, 0)

(4.1)

where z = (z0, z1, z2) denotes a generic point of H = R
n ×R

k × L2(Rk). Notice the
the pointwise evaluations α(0), β(0) and the square-integrable derivatives α′, β ′ exist
because of our initial assumption on α, β.
For t ∈ R

+, consider the family operators Ŝ = {Ŝt }t∈R+ defined by

Ŝt : H → H , z �→ (z0, z1, z2(t + ·)1(−∞,−t))(·) + z11[−t,0](·)).

Then Ŝ is a strongly continuous semigroup, with infinitesimal generator (D( Â), Â)

specified by

Â : D( Â) → H , z �→ (0, 0, z′2)

with

D( Â) =
{
z ∈ H : z2 ∈ W 1,2(R−,Rk), z1 = z2(0)

}
.
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Then we consider the H -valued dynamics

⎧
⎪⎪⎨

⎪⎪⎩

d Ẑ(s) =
(
Â Ẑ(s) + F̂(Ẑ(s), u(s))

)
ds

+G(Ẑ(s), u(s))dW (s) s ∈ (t, T ]
Ẑ(t) = ζ,

(4.2)

where u ∈ U , ζ ∈ L2
Ft

(H), t ∈ R
+.

Observe that, for fixed u ∈ U , Assumptions 1 on f , g entail Lipschitz continuity
and sublinear growth with respect to z of F̂ and G.

As it can be easily checked, Ŝ is a C0-semigroup of pseudo-contractions (see e.g.
Appendix B.4 in Fabbri et al. (2017) for the definition). If follows that there exists
a unique mild solution Ẑ to (4.2), and the mild solution has a continuous version
(Gawarecki and Mandrekar 2011, Theorem 3.3).

We could directly link Ẑ t,ζ,u to xt,ξ,u , but, with the purpose to set up a framework
suitable to be investigated in future works within the theory of B-viscosity solutions,
as presented in Fabbri et al. (2017), Chapter 3, we need a dynamic representation Ẑ
similar to (4.2) but with the unbounded term appearing in the drift being the generator
of a C0-semigroup of contractions (see e.g. Appendix B.4 in Fabbri et al. (2017) for
the definition). A simple way to do that consists in introducing the semigroup

S := {St := e−t/2 Ŝt }t∈R+,

which is a semigroup of contractions, as it is easily seen by straightforward computa-
tions. The generator (D(A), A) of S is specified by

D(A) = D( Â) and Az = Âz − z

2
, ∀z ∈ D(A),

To use A in place of Â in (4.2), we apply a translation to the bounded part of the drift
F̂ , defining

F : H ×U → H , (z, u) �→ (
f
(
z0, u, 〈α(0), z1〉 − 〈α′, z2〉L2

)
, u, 0

) + z

2
.

(4.3)

Finally, we consider the H -valued dynamics

{
dZ(s) = (AZ(s) + F(Z(s), u(s))) ds + G(Z(s), u(s))dW (s) s ∈ (t, T ]
Z(t) = ζ,

(4.4)

where u ∈ U , ζ ∈ L2
Ft

(H), t ∈ R
+. As noticed for (4.2), also (4.4) admits a unique

mild solution Zt,ζ,u , that can be assumed to be pathwise continuous. It should also be
clear that Zt,ζ,u = Ẑ t,ζ,u . For future reference, we state this result in a proposition.
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Proposition 5 For u ∈ U , ζ ∈ L2
Ft

(H), t ∈ R
+, there exists a unique (up to indistin-

guishability) pathwise-continuous mild solution Zt,ζ,u. Moreover, Z t,ζ,u ∈ S2
F,t (H),

and Zt,ζ,u = Ẑ t,ζ,u, where Ẑ t,ζ,u is the unique mild solution to (4.2).

Proof For existence and uniqueness, and integral estimates, see (Gawarecki and Man-
drekar (2011), Theorem 3.3).

Regarding the fact that Zt,ζ,u = Ẑ t,ζ,u , argue as in Rosestolato and Swiech (2017),
pp. 1901–1902. ��

Denote by

P0 : H → R
n, z �→ z0 P1 : H → R

k, z �→ z1 P2 : H → L2(Rk), z �→ z2

the orthogonal projections of H = R
n × R

k × L2(Rk) onto Rn,Rk, L2(Rk), respec-
tively.

The following result explain the link between the mild solution of (4.4) Zt,ζ,u , and
the strong solution of (3.1) xt,ξ,u .

Theorem 6 Let t ∈ R
+, ξ ∈ L2

Ft
(Rn), u ∈ U . Let ζ ξ,ϕ = (ζ0, ζ1, ζ2) ∈ L2

Ft
(H) be

defined by

ζ0:=ξ, ζ1:=
∫ 0

−∞
ϕ(h)dh, and ζ2(r):=

∫ r

−∞
ϕ(h)dh ∀r ∈ R

−.

Then Zt,ζ ξ,ϕ ,u = (Y0,Y1,Y2), where, for s ≥ t ,

Y0(s) := xt,ξ,u(s),Y1(s):=ζ1 +
∫ s

t
u(h)dh, and

(
Y2(s)

)
(r)

:=
∫ r

−∞
ϕ ⊗t

s u(h)dh ∀r ∈ R
−. (4.5)

Proof First, we notice that, by Assumption 2(ii), ζ1 and ζ2 are well-defined, and
ζ2 ∈ L2(Rk). Then, we observe that, integrating by parts, for s ≥ t ,

〈α, ϕ ⊗t
s u〉L2 = 〈α(0),

∫ 0

−∞
ϕ ⊗t

s u(h)dh〉 −
∫ 0

−∞
α′(h)

(∫ h

−∞
ϕ ⊗t

s u(r)dr

)

dh

= 〈α(0),Y1(s)〉 − 〈α′,Y2(s)〉L2

〈β, ϕ ⊗t
s u〉L2 = (similarly) = 〈β(0),Y1(s)〉 − 〈β ′,Y2(s)〉L2 ,

(4.6)

where we have used the fact that

Y1(s) = ζ1 +
∫ s

t
u(h)dh =

∫ 0

−∞
ϕ ⊗t

s u(h)dh.
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Now let Y = (Y0,Y1,Y2), where Y0,Y1,Y2 are as defined by (4.5). Let x = xt,ξ,u be
the strong solution of (3.1). Due to the fact that the operator Ŝs (s ∈ R

+) is the identity
with respet to the first component, we can write, for s ≥ t ,

Y0(s) = x(s) = ξ +
∫ s

t
f (x(h), u(h), 〈α, ϕ ⊗t

h u〉L2)dh

+
∫ s

t
g(x(h), u(h), 〈β, ϕ ⊗t

h u〉L2)dW (h)

= Y0(t) +
∫ s

t
f (Y0(h), u(h), 〈α(0),Y1(h)〉 − 〈α′,Y2(h)〉L2)dh

+
∫ s

t
g(Y0(h), u(h), 〈β(0),Y1(h)〉 − 〈β ′,Y2(h)〉L2)dW (h)

= P0
(
Ŝs−tζ

ξ,ϕ
)

+
∫ s

t
P0

(
Ŝs−h F̂(Y (h), u(h))

)
dh

+
∫ s

t
P0

(
Ŝs−hG(Y (h), u(h))

)
dW (h)

= P0

(

Ŝs−tζ
ξ,ϕ +

∫ s

t
Ŝs−h F̂(Y (h), u(h))dh

+
∫ s

t
Ŝs−hG(Y (h), u(h))dW (h)

)

. (4.7)

Regarding Y1, exploiting now the fact that Ŝs (s ∈ R
+) is the identity in the second

component, we have

Y1(s) =
∫ 0

−∞
ϕ ⊗t

s u(h)dh =
∫ 0

−∞
ϕ(h)dh +

∫ s

t
u(h)dh = ζ1 +

∫ s

t
u(h)dh

= P1
(
Ŝs−tζ

ξ,ϕ
)

+
∫ s

t
P1

(
Ŝs−h F̂(Y (h), u(h))

)
dh

+
∫ s

t
P1

(
Ŝs−hG(Y (h), u(h))

)
dW (h)

= P1
(
Ŝs−tζ

ξ,ϕ

+
∫ s

t
Ŝs−h F̂(Y (h), u(h))dh +

∫ s

t
Ŝs−hG(Y (h), u(h))dW (h)

)

(4.8)

Regarding Y2, we have, denoting by 0 the function zero in L2(Rk),

Y2(s) =
∫ ·

−∞
ϕ ⊗t

s u(h)dh =
(∫ ·

−∞
ϕ ⊗t

s u(h)dh

)

1(−∞,−(s−t))

+
(∫ ·

−∞
ϕ ⊗t

s u(h)dh

)

1[−(s−t),0]

= ζ2((s − t) + ·)1(−∞,−(s−t))
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+
(∫ ·

−∞
ϕ ⊗t

s 0(h)dh +
∫ ·

−∞
0 ⊗t

s u(h)dh

)

1[−(s−t),0]

= ζ2((s − t) + ·)1(−∞,−(s−t)) +
(∫ 0

−∞
ϕ(h)dh

)

1[−(s−t),0]

+
(∫ ·

−∞
0 ⊗t

s u(h)dh

)

1[−(s−t),0]

= ζ2((s − t) + ·)1(−∞,−(s−t)) + ζ11[−(s−t),0]

+
(∫ ·

−(s−t)
0 ⊗t

s u(h)dh

)

1[−(s−t),0]

= P2(Ŝs−tζ
ξ,ϕ) +

(∫ ·

−(s−t)
0 ⊗t

s u(h)dh

)

1[−(s−t),0]

= (this passage is justified below)

= P2(Ŝs−tζ
ξ,ϕ) +

∫ s

t
u(h)1[−(s−h),0](·)dh

(this is a Bochner integral in the function space L2(Rk))

= P2(Ŝs−tζ
ξ,ϕ) +

∫ s

t
P2

(
Ŝs−h F̂(Y (h), u(h))

)
dh

+
∫ s

t
P2

(
Ŝs−hG(Y (h), u(h))

)
dW (h)

= P2

(

Ŝs−tζ
ξ,ϕ) +

∫ s

t
Ŝs−h F̂(Y (h), u(h))dh

+
∫ s

t
Ŝs−hG(Y (h), u(h))dW (h)

)

. (4.9)

To justify the equality in L2(Rk)

(∫ ·

−(s−t)
0 ⊗t

s u(h)dh

)

1[−(s−t),0] =
∫ s

t
u(h)1[−(s−h),0](·)dh, (4.10)

we pick any a ∈ L2(Rk), and compute

〈a,

(∫ ·

−(s−t)
0 ⊗t

s u(h)dh

)

1[−(s−t),0]〉L2(Rk )

=
∫ 0

−(s−t)
a(r)

(∫ r

−(s−t)
0 ⊗t

s u(h)dh

)

dr

=
∫ 0

−(s−t)
a(r)

(∫ r

−(s−t)
u(s + h)dh

)

dr

=
∫ 0

−(s−t)

(∫ 0

h
a(r)u(s + h)dr

)

dh
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=
∫ s

t

(∫ 0

h−s
a(r)u(h)dr

)

dh

=
∫ s

t

(∫ 0

−∞
a(r)u(h)1[−(s−h),0)](r)dr

)

dh

=
∫ s

t
〈a, u(h)1[−(s−h),0)]〉L2(Rk)dh

= 〈a,

∫ s

t
u(h)1[−(s−h),0)]dh〉L2(Rk ).

This proves (4.10). Collecting (4.7), (4.8), (4.9), we obtain

Y (s) = Ŝs−tζ
ξ,ϕ +

∫ s

t
Ŝs−h F̂(Y (h), u(h))dh +

∫ s

t
Ŝs−hG(Y (h), u(h))dW (h).

(4.11)

Equality (4.11) tells us that Y is the unique mild solution to (4.2), i.e., Y = Ẑ t,ζ ξ,ϕ,u .
Finally, by Proposition 5, we conclude Y = Zt,ζ ξ,ϕ ,u . ��

4.2 Reformulation of the optimal control problem in H

Thanks to Theorem 6, we can rephrase the finite dimensional optimal control problem
(f-OCP), with delay in the control variable u, in an infinite dimensional setting, where
there is no more delay in the control variable u. Indeed, if ζ ξ,ϕ, Zt,ζ ξ,ϕ ,u are as in
Theorem 6, the functional J defined by (3.4) can be written as

J (x0, u) = E

[∫ ∞

0
e−ρt l

(
x0,x0,u(t), u(t), 〈γ, ϕ ⊗0

t u〉L2
)
dt

]

= (integrating by parts as in (4.6))

= E

[∫ ∞

0
e−ρt l

(
Z0,ζ x0,ϕ ,u
0 (t), u(t), 〈γ (0), Z0,ζ x0,ϕ ,u

1 (t)〉

−〈γ ′, Z0,ζ x0,ϕ ,u
2 (t)〉L2

)
dt

]

= J̃ (ζ x0,ϕ, u), (4.12)

where J̃ is defined by

J̃ (z, u) :=E

[∫ ∞

0
e−ρt l̃

(
Z0,z,u(t), u(t)

)
dt

]

∀z ∈ H , u ∈ U ,

with

l̂(z, u) := l
(
z0, u, γ (0)z1 − 〈γ ′, z2〉L2

) ∀z ∈ H , u ∈ U .
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It then follows that the problem (f-OCP) is a particular case of the infinite dimensional
dimensional optimal control problem

sup
u∈U

J̃ (z, u). (∞-OCP)

Indeed, by introducing the value function Ṽ associated to (∞-OCP), defined as

Ṽ (z) := sup
u∈U

J̃ (z, u) ∀z ∈ H ,

we have

V (x0) = Ṽ (ζ x0,ϕ), ∀x0 ∈ R
n . (4.13)

4.3 Hamilton-Jacobi-Bellman equation and verification theorem

Denote by S(H) the space of self-adjoint operators in L(H). Following the
dynamic programming approach, the Hamilton-Jacobi-Bellman equation associated
to (∞-OCP) is

ρv − 〈Az, Dv〉H − H(z, Dv, D2v) = 0 z ∈ H (4.14)

where

H(z, p, X) := sup
u∈U

HCV (z, p, X , u) ∀z ∈ H , p ∈ H , X ∈ S(H),

with

HCV (z, p, X , u) := 1

2
Tr

(
G(z, u)G∗(z, u)X

) + 〈p, F(z, u)〉H + l̃(z, u)

∀z ∈ H , p ∈ H , X ∈ S(H), u ∈ U .

We recall the definition of classical solution of (4.14).

Definition 1 A function v : H → R is a classical solution of (4.14) if v ∈ C2(H),
Dv ∈ D(A∗), A∗Dv ∈ C(H , H), and v satisfies

ρv(z) − 〈z, A∗Dv(z)〉H − H(z, Dv(z), D2v(z)) = 0

for all z ∈ H .

Assumption 7 There exists a constant C > 0 such that

| f (x, u, r)| ≤ C(1 + |x |) ∀x ∈ R
n, u ∈ U , r ∈ R

|g(x, u, r)| ≤ C(1 + |x |) ∀x ∈ R
n, u ∈ U , r ∈ R.

(4.15)
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Assumption 8 (i) The functions f , g and l are continuous, l(x, u, r) is uniformly
continuous in x onbounded subsets ofRn , uniformly foru ∈ R

k, r ∈ R.Moreover,
there exists C such that

|l(x, u, r)| ≤ C(1 + |x |)

for all (x, u, r) ∈ R
n × R

k × R.
(ii) The function v : H → R and its derivatives Dv, D2v are uniformly continuous

on bounded subsets of H . Moreover, Dv : H → D (A∗) and A∗Dv is uniformly
continuous on bounded subsets of H , and there exists C, N such that

|v(z)| + |Dv(z)|H + Tr
(
D2v(z)(D2v(z))∗

)
+ ∣

∣A∗Dv(z)
∣
∣
H ≤ C(1 + |z|)N

(4.16)

for all z ∈ H .

Theorem 9 (Theorem 2.42 in Fabbri et al. (2017)) Let v : H → R be a classical
solution of

ρv − 〈Dv, Az〉H − H(z, Dv, D2v) = 0

In addition to our standing Assumptions 1,2,4, let Assumptions 7 and 8 be satisfied.
Assume that

ρ > ρ̄:=(N + 2)

(

C + 1

2
(N + 1)C2

)

,

where C is the constant appearing in (4.15) and N is as in (4.16). Then, we have the
following statements:

1. For all z ∈ H

v(z) ≥ Ṽ (z).

2. Let u∗ ∈ U be such that

u∗(s) ∈ argmax
u∈U HCV

(
Z0,z,u(s), Dv

(
Z0,z,u(s)

)
, D2v

(
Z0,z,u(s)

)
, u

)

for almost every s ∈ [0,+∞) and P-almost surely. Then u∗ is an optimal control
and v(z) = Ṽ (z).

5 Explicit solution in the LQ case

We now take into consideration a simple example to show how the representation in
H leads to an explicit solution.
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As coefficients for the state equation we consider, for real numbers a, b, c,

f (x, u, r) = ax + cu + r

g(x, u, r) = bx + r ,

for all x ∈ R, u ∈ U = R, r ∈ R. Dynamics (3.1) is written as

⎧
⎪⎪⎨

⎪⎪⎩

dx(s) =
(
ax(s) + ∫ 0

−∞ α(h)ϕ ⊗t
s u(h)dh

)
ds

+
(
bx(s) + ∫ 0

−∞ β(h)ϕ ⊗t
s u(h)dh

)
dW (s) ∀s ∈ (t,+∞)

x(t) = ξ,

(5.1)

where α, β, ϕ are assumed as in Assumption 2. As running reward we consider, for
strictly positive real numbers c1, c2, the linear-quadratic function

l(x, u, r) = c1x − c2
2
u2, ∀x ∈ R, u ∈ R.

The value function V is

V (x0) = sup
u∈L2

F0
(R)

E

[∫ ∞

0
e−ρt

(
c1x

0,x0,u − c2
2
u2(t)

)
dt

]

∀x0 ∈ R.

Then, for ρ sufficiently large, Assumptions 1 and 4 are satisfied.
Now we describe the corresponding infinite dimensional representation. We have

H = R × R × L2(R). The coefficients F,G, as defined by (4.1), (4.3), are linear:

F(z, u) = Bz + Cu, G(z, u) = �z

for all z ∈ H , u ∈ L2
F0

(R), where

Bz = (〈B0, z〉H , 0, 0) + z

2
with B0 = (

a, α(0),−α′) ,

C =(c, 1, 0),

�z =(〈�0, z〉H , 0, 0) with �0 = (
b, β(0),−β ′)

The value function associated to the infinite dimensional problem (∞-OCP) is

Ṽ (z) = sup
u∈L2

F0
(R)

E

[∫ ∞

0
e−ρt

(
c1Z

0,z,u
0 (t) − c2

2
u2(t)

)
dt

]

,

where Z is the mild solution of (4.4), with F,G as specified here above. The Hamil-
tonian H in (4.14) is

H(z, p, X) = 1

2
|〈�0, z〉H |2X00 + 〈p, Bz〉H + c1z0 + sup

u∈U

{
〈p,Cu〉H − c2

2
u2

}
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for z ∈ H , p ∈ H , X ∈ S(H), X00:=〈X(1, 0, 0), (1, 0, 0)〉H , and it is maximized
by

umax := 〈p,C〉
c2

. (5.2)

Then the HJB Eq. (4.14) is

ρv − 〈Az, Dv〉H − 1

2
|〈�0, z〉H |2D2

00v − 〈Dv, Bz〉H − c1z0 − 〈Dv,C〉2
2c2

= 0

z ∈ H , (5.3)

where D2
00v = 〈D2v(1, 0, 0), (1, 0, 0)〉H and D1v = 〈Dv, (0, 1, 0)〉H .

Though the data do not satisfy the assumptions of Theorem 9 in this case an explicit
solution of (5.3) is given by a suitably chosen linear function.

Proposition 10 The function v : H → R, defined by

v(z) = 〈�, z〉H + �3,

where � = (�0, �1, �2),

�0 = c1
ρ − a

, �1 = �2(0) + α(0)�0

ρ
, �2(·) = −�0

∫ ·

−∞
α′(s)eρ(s−·)ds,

�3 = (c�0 + �1)
2

2ρc2
,

is a classical solution of (5.3). Moreover, v = Ṽ , and the control u∗:= c0�0+�1
c2

is
optimal.

Proof Clearly v ∈ C2(H). To argue that � ∈ D(A∗), which is equivalent to �2 ∈
W 1,2(R−,R), it is sufficient, first, to notice that Young’s inequality for convolutions
implies that �2 ∈ L2(R−,R), then to consider the fact that �2 solves the differential
equation

�′
2 = −ρ�2 − �0α

′,

which entails �′
2 ∈ L2(R−,R). Now, since � ∈ D(A∗), we have

〈A∗Dv(z), z〉H = 〈A∗�, z〉H = 〈(0, �2(0),−�′
2), z〉H − 1

2
〈�, z〉H .

Moreover, 〈C, Dv(z)〉H = 〈C, �〉H , and

〈Dv, Bz〉H + c1z0 + 〈D1v,C〉2
2c2

= 〈�, Bz〉H + c1z0 + 〈C, �〉2
2c2
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= �0〈B0, z〉H + 1

2
〈�, z〉H + c1z0 + 〈C, �〉2

2c2
= �0az0 + �0α(0)z1 − �0〈α′, z2〉L2

+1

2
〈�, z〉H + c1z0 + 〈C, �〉2

2c2
. (5.4)

Then

ρv − 〈Az, Dv〉H−1

2
|〈�0, z〉H |2D2

00v − 〈Dv, Bz〉H − c1z0 − 〈C, �〉2
2c2

=
=ρ

(
�0z0 + �1z1 + 〈�2, z2〉L2 + �3

) − 〈(0, �2(0),−�′
2), z〉H

− �0az0 − �0α(0)z1 + �0〈α′, z2〉L2 − c1z0 − 〈C, �〉2
2c2

= 0,

where we used �′
2 = −ρ�2 − �0α

′.
We sketch the rest of the proof, as it goes in a standard way (see (Fabbri et al.

(2017), Theorem 2.42)) Let Z = Z0,ζ z,ϕ ,u . Since � ∈ D(A∗), Itô’s formula can be
applied, and then, since v is a classical solution of (5.3), we obtain

v(z) = eρt
E [v(Zt )] +

∫ t

0
e−ρs

E
[
l̃(Zs, us)

]
ds

−
∫ t

0
e−ρs

E

[
HCV (Zs, Dv(Zs), D

2v(Zs), us)

−H(Zs, Dv(Zs), D
2v(Zs))

]
ds.

Letting t goes to ∞ (ρ large enough), we recover the fundamental identity

v(z) =
∫ ∞

0
e−ρs

E
[
l̃(Zs, us)

]
ds

+
∫ ∞

0
e−ρs

E

[
H(Zs, Dv(Zs), D

2v(Zs))

−HCV (Zs, Dv(Zs), D
2v(Zs), us)

]
ds. (5.5)

Since (5.5) holds true for any control u, recalling thatH ≥ HCV , we conclude v ≥ Ṽ .
Finally, by (5.2) and (5.5), we have

v(z) =
∫ ∞

0
e−ρs

E
[
l̃(Zs, u

∗
s )

]
ds ≤ Ṽ (z),

which concludes the proof. ��
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